JP2003300076A - Water treatment method and apparatus for the same - Google Patents

Water treatment method and apparatus for the same

Info

Publication number
JP2003300076A
JP2003300076A JP2002104761A JP2002104761A JP2003300076A JP 2003300076 A JP2003300076 A JP 2003300076A JP 2002104761 A JP2002104761 A JP 2002104761A JP 2002104761 A JP2002104761 A JP 2002104761A JP 2003300076 A JP2003300076 A JP 2003300076A
Authority
JP
Japan
Prior art keywords
tank
water
separation
raw water
electric field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002104761A
Other languages
Japanese (ja)
Inventor
Kenji Fujihata
健二 藤畑
Kazuya Yamada
和矢 山田
Hideji Seki
秀司 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2002104761A priority Critical patent/JP2003300076A/en
Publication of JP2003300076A publication Critical patent/JP2003300076A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Electrostatic Separation (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To treat the impurity substances existing as minute solid components and dissolved components in water by a simple construction without being affected by water temperature and electrical conductivity. <P>SOLUTION: A separation water tank 10 into which raw water 9 is admitted and a concentration tank 14 are connected by a flow passage pipe 13. An electrode and magnet which impress an electric field 11 and magnetic field 12 respectively perpendicularly to the flow of the raw water 9 containing the impurity substances 8 in the tank 10 are arranged in the pipe 13. As a result, the electric field 11 and the magnetic field 12 are applied perpendicularly into the raw water 9 and Lorentz force is generated in the direction perpendicular thereto, by which the impurity substances 8, such as ions and charged particles, are migrated in the direction and the impurity substances 8 can thus be removed. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は水中に微小固形成分
や溶解成分として存在する不純物質を処理するための水
処理方法およびその装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a water treatment method and apparatus for treating impurities present in water as fine solid components and dissolved components.

【0002】[0002]

【従来の技術】水中に含まれる不純物質の例として水道
水を上げれば、水道水中に含まれるカルシウムやマグネ
シウムなどのいわゆるミネラル成分が溶解成分であり、
鉄配管から発生する鉄錆などが微小な固形成分である。
2. Description of the Related Art If tap water is used as an example of impurities contained in water, so-called mineral components such as calcium and magnesium contained in tap water are dissolved components.
Iron rust generated from iron piping is a small solid component.

【0003】水中に含まれる溶解成分を除去する方法と
しては、イオン交換法が一般的に広く採用されている。
これは樹脂にカチオンあるいはアニオン性のイオン交換
基を付加したイオン交換樹脂を充填した反応塔に原水を
通水し、その原水中に含まれる溶解したカチオンあるい
はアニオン成分をイオン交換樹脂のイオン交換基に捕捉
されている無害イオンと交換することで原水から不純な
溶解成分を分離するものである。
An ion exchange method is generally widely used as a method for removing dissolved components contained in water.
This is because raw water is passed through a reaction tower filled with an ion exchange resin in which a cation or anionic ion exchange group is added to the resin, and the dissolved cation or anion component contained in the raw water is added to the ion exchange group of the ion exchange resin. It is intended to separate impure dissolved components from raw water by exchanging them with harmless ions captured in.

【0004】次に、水中の微小な固形分を除去する方法
としては、ろ過が広く採用されている。これは微細な孔
径を持つろ過材を配置したろ過器に原水を通水し、その
ろ過の表面で固形分を分離するものである。
Next, filtration is widely adopted as a method for removing minute solids in water. In this method, raw water is passed through a filter provided with a filter medium having a fine pore size, and solids are separated on the surface of the filtration.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、イオン
交換法では根本的な問題として使用済みのイオン交換樹
脂が大量の二次廃棄物となることを抱えている。また、
イオン交換樹脂のイオン交換基と樹脂基体との結合が弱
いため、多少の加熱で両者は分解し、その分解生成物が
さらなる不純物質として溶出してしまう。その他、基本
的にイオン交換樹脂がいろいろな有機物の複合構造体で
ある以上、処理水中に微量の有機性不純物質が含まれる
ことはやむを得ない課題がある。
However, the ion exchange method has a fundamental problem that the used ion exchange resin becomes a large amount of secondary waste. Also,
Since the bond between the ion exchange group of the ion exchange resin and the resin substrate is weak, both are decomposed by some heating, and the decomposition products are eluted as further impurities. In addition, since the ion exchange resin is basically a composite structure of various organic substances, it is an unavoidable problem that the treated water contains a trace amount of organic impurities.

【0006】また、固形分除去方法ではろ過材の材質は
高分子有機物とセラミックス燒結体に大別でき、高分子
有機物での基本的な問題は多少の加熱により有機物の分
解や変形が生じ、また、セラミックス燒結体材質では母
材構造に安定性を損なう孔を設けるため、その不安定部
分からの構成物質の溶出が避けられない課題がある。
Further, in the solid content removing method, the material of the filtering material can be roughly classified into a high molecular weight organic material and a ceramic sintered body, and the basic problem with the high molecular weight organic material is that the organic material is decomposed or deformed by some heating, and However, in the sintered ceramic material, since holes that impair stability are provided in the base material structure, there is an unavoidable problem in which elution of constituents from the unstable portion is unavoidable.

【0007】本発明は上記課題を解決するためになされ
たもので、簡単な構造で水温や電気電導性に影響されな
い水中不純物質を除去することができる水処理方法およ
びその装置を提供することにある。
The present invention has been made to solve the above problems, and provides a water treatment method and an apparatus therefor capable of removing impurities in water which are not affected by water temperature and electric conductivity with a simple structure. is there.

【0008】[0008]

【課題を解決するための手段】請求項1に係る発明は、
イオンまたは荷電粒子を含む原水中に電場と磁場を直角
に与え、その直角方向にローレンツ力を発生させること
で、前記イオンまたは荷電粒子を前記ローレンツ力方向
に移動させることを特徴とする。
The invention according to claim 1 is
An electric field and a magnetic field are applied at a right angle to raw water containing ions or charged particles, and a Lorentz force is generated in a direction perpendicular to the electric field, whereby the ions or charged particles are moved in the Lorentz force direction.

【0009】請求項1の発明によれば、水中に電場と磁
場を直角に与えることで、荷電粒子体をローレンツ力方
向に移動させ、電磁場の働きにより不純物荷電粒子体を
除去することができる。これにより化学的な吸着材や物
理的なろ過を必要とせず、二次的な廃棄物の発生を防止
できる。
According to the first aspect of the present invention, by applying an electric field and a magnetic field at a right angle in water, the charged particle bodies can be moved in the Lorentz force direction, and the impurity charged particle bodies can be removed by the action of the electromagnetic field. This makes it possible to prevent the generation of secondary waste without the need for chemical adsorbents or physical filtration.

【0010】請求項2に係る発明は、イオンまたは荷電
粒子を含む原水を分離水槽に入れ、前記分離水槽に電磁
力作用部位を取り付け前記電磁力作用部位で電場と磁場
を垂直に印加することで発生する電磁力によって前記イ
オンまたは荷電粒子を泳動させて分離することを特徴と
する。
According to the second aspect of the present invention, raw water containing ions or charged particles is placed in a separation water tank, an electromagnetic force acting portion is attached to the separation water tank, and an electric field and a magnetic field are vertically applied at the electromagnetic force acting portion. It is characterized in that the ions or charged particles are electrophoresed and separated by the generated electromagnetic force.

【0011】請求項2の発明によれば、従来の水処理技
術に見られた温度などの使用条件に対する制限や二次的
な廃棄物の発生、定常的な薬剤等の添加などを必要とし
ない。また、電磁力の作用は原水と接触する必要が必ず
しもないため、従来例にない非接触水処理技術を確立す
ることができる。
According to the second aspect of the present invention, there is no need to limit the use conditions such as the temperature as found in the conventional water treatment technology, generate secondary waste, and constantly add chemicals. . Further, since the action of electromagnetic force does not necessarily have to come into contact with raw water, it is possible to establish a non-contact water treatment technology that has never been seen in the prior art.

【0012】すなわち、電場と磁場の印加部分が原水と
非接触配置にした場合に泳動分離効果が得られるため、
電場や磁場の印加体からの不純物質の溶出を防止でき
る。また、原水が純水、または純水と同等レベルの電気
電導度であった場合でも、電場と磁場によってもたらさ
せる泳動分離効果が損なわれることはない。さらに、原
水が高温の場合でも、泳動分離効果は問題なく作用し、
簡便な機構で水温に影響されることなく、水処理するこ
とができる。
That is, when the portion to which the electric field and the magnetic field are applied is placed in non-contact with the raw water, an electrophoretic separation effect can be obtained.
It is possible to prevent the elution of impurities from the body to which an electric field or a magnetic field is applied. Further, even when the raw water is pure water or has an electric conductivity equivalent to that of pure water, the electrophoretic separation effect provided by the electric field and the magnetic field is not impaired. Furthermore, even when the raw water is at a high temperature, the electrophoretic separation effect works without problems,
Water can be treated with a simple mechanism without being affected by water temperature.

【0013】請求項3に係る発明は、原水を流入する分
離水槽と、この分離水槽に前記原水の流れに対して水平
方向に接続された濃縮槽と、前記分離水槽内に配置され
前記原水の流れに対して水平方向に電場と磁場をそれぞ
れ垂直に印加する電極および磁石とを具備したことを特
徴とする。
In the invention according to claim 3, a separation water tank into which raw water flows, a concentration tank connected to the separation water tank in a horizontal direction with respect to the flow of the raw water, and the raw water arranged in the separation water tank. It is characterized in that it is provided with an electrode and a magnet for applying an electric field and a magnetic field vertically to the flow, respectively.

【0014】請求項3の発明によれば、電場と磁場によ
ってその交差面ではそれと垂直方向の電磁力が生じ、原
水中に含まれる電荷を帯びた溶解成分および微小固形分
はその電磁力にしたがって電場と磁場の交差面を通過し
て続く濃縮槽へと泳動するため、原水中の不純物は濃縮
槽へと分離されていくことになる。
According to the third aspect of the present invention, the electric field and the magnetic field generate an electromagnetic force in a direction perpendicular to the electric field and the magnetic field, and the charged dissolved components and minute solids contained in the raw water follow the electromagnetic force. Impurities in the raw water are separated into the concentration tank because they migrate to the subsequent concentration tank after passing through the intersection of the electric and magnetic fields.

【0015】請求項4に係る発明は、原水を流入する分
離水槽と、この分離水槽に前記原水の流れに対して左右
方向に接続された左右一対の流路管と、この左右一対の
流路管に接続された左右一対の濃縮槽と、前記左右一対
の流路管にそれぞれ設けられ前記原水の流れに対して水
平方向に電場と磁場をそれぞれ垂直に印加する電極およ
び磁石とを具備したことを特徴とする。
According to a fourth aspect of the present invention, a separation water tank for inflowing raw water, a pair of left and right flow pipes connected to the separation water tank in the left-right direction with respect to the flow of the raw water, and a pair of left and right flow passages. A pair of left and right concentrating tanks connected to the pipe, and electrodes and magnets respectively provided in the pair of left and right flow pipes for vertically applying an electric field and a magnetic field to the flow of the raw water, respectively. Is characterized by.

【0016】請求項4の発明によれば、左右に設置され
た流路に対して垂直方向から印加される電場と磁場によ
り生じる電磁力が原水中に含まれる電荷を帯びた溶解成
分および微小固形分を流路から左側濃縮槽または右側濃
縮槽へと泳動させることで、原水中から不純物質を分離
することができる。
According to the fourth aspect of the present invention, an electromagnetic force generated by an electric field and a magnetic field applied in a direction perpendicular to the left and right flow passages causes the electromagnetic force generated in the raw water to carry a charged dissolved component and fine solids. Impurities can be separated from the raw water by migrating the fractions from the flow channel to the left concentration tank or the right concentration tank.

【0017】請求項5に係る発明は、前記左右一対の濃
縮槽の間に電場を印加できるように前記各々の濃縮槽内
に第2の電極を配置してなることを特徴とする。請求項
5の発明によれば、左右一対の流路に対して垂直方向か
ら印加される電場と磁場により生じる電磁力が原水中に
含まれる電荷を帯びた溶解成分および微小固形分を左右
一対の流路管から左側濃縮槽と右側濃縮槽に設けた電極
に電圧を印加して生じる電場による泳動をも加えること
で、原水中から不純物質を分離することができる。
The invention according to claim 5 is characterized in that a second electrode is arranged in each of the concentration tanks so that an electric field can be applied between the pair of left and right concentration tanks. According to the invention of claim 5, the electromagnetic force generated by the electric field and the magnetic field applied in the vertical direction to the pair of left and right flow paths causes the charged dissolved component and the minute solid content contained in the raw water to form a pair of left and right. Impurities can be separated from raw water by applying migration from an electric field generated by applying a voltage from the flow path tube to the electrodes provided in the left concentration tank and the right concentration tank.

【0018】請求項6に係る発明は、原水を流入する分
離水槽と、この分離水槽に前記原水の流れに対して左右
方向に接続された左右一対の流路管と、この左右一対の
流路管にそれぞれ接続された左側濃縮槽及び右側濃縮槽
と、この左側濃縮槽及び右側濃縮槽間に電場を印加でき
るように前記左側濃縮槽及び右側濃縮槽内に配置された
電極とを具備したことを特徴とする。
In the invention according to claim 6, a separation water tank for inflowing raw water, a pair of left and right flow pipes connected to the separation water tank in the left-right direction with respect to the flow of the raw water, and a pair of left and right flow passages. A left concentrating tank and a right concentrating tank, each connected to a pipe, and electrodes arranged in the left concentrating tank and the right concentrating tank so that an electric field can be applied between the left concentrating tank and the right concentrating tank. Is characterized by.

【0019】請求項6の発明によれば、分離水槽の左右
に接続された流路管に対して左側濃縮槽と右側濃縮槽の
電極に電圧を印加した電場により生じる電気力が原水中
に含まれる電荷を帯びた溶解成分および微小固形分を流
路から左側濃縮槽または右側濃縮槽へと泳動させること
で、原水中から不純物質を分離することができる。
According to the sixth aspect of the present invention, the raw water contains an electric force generated by an electric field applied with a voltage to the electrodes of the left concentrating tank and the right concentrating tank with respect to the flow path pipes connected to the left and right of the separation water tank. Impurities can be separated from the raw water by migrating the charged dissolved components and minute solids from the flow channel to the left side concentration tank or the right side concentration tank.

【0020】請求項7に係る発明は、前記分離水槽およ
び前記濃縮槽の材質は非電気電導性材料であることを特
徴とする。請求項7の発明によれば、分離槽および濃縮
槽を非電気導体とすることで、分離槽または濃縮槽で起
こり得る電場損失を低減できる。
The invention according to claim 7 is characterized in that the materials of the separation water tank and the concentration tank are non-electrically conductive materials. According to the invention of claim 7, the separation tank and the concentration tank are made of non-electrical conductors, so that the electric field loss that can occur in the separation tank or the concentration tank can be reduced.

【0021】請求項8に係る発明は、前記分離水槽およ
び前記濃縮槽の材質は非磁性材料であることを特徴とす
る。請求項8の発明によれば、分離槽および濃縮槽を非
磁性体とすることにより、磁場損失を低減できる。
The invention according to claim 8 is characterized in that the materials of the separation water tank and the concentration tank are non-magnetic materials. According to the invention of claim 8, magnetic field loss can be reduced by making the separation tank and the concentration tank nonmagnetic.

【0022】[0022]

【発明の実施の形態】図1(a)〜(c)により本発明
に係る水処理方法の第1の実施の形態を説明する。図1
(a)は本実施の形態の構成を説明するための概略図
で、図1(b)は図1(a)のA部拡大図、図1(c)
は本実施の形態の作用を説明するための模式図である。
BEST MODE FOR CARRYING OUT THE INVENTION A first embodiment of a water treatment method according to the present invention will be described with reference to FIGS. Figure 1
1A is a schematic diagram for explaining the configuration of the present embodiment, FIG. 1B is an enlarged view of part A of FIG. 1A, and FIG.
FIG. 4 is a schematic diagram for explaining the operation of the present embodiment.

【0023】図1(a)中符号1は配管で、この配管1
は分離水槽の一例として示したもので、要部のみを示し
ている。配管1内には同心円状に内管2が仕切りとして
挿入され、配管1の内面と内管2の外面との間は環状空
間3になっている。内管2には陽極4と陰極5が対をな
して対向配置されており、図1(b)に示したように各
々の陽極4と陰極5の下方には磁石6が配置されてい
る。
In FIG. 1A, reference numeral 1 is a pipe, and this pipe 1
Is shown as an example of the separation water tank, and only the main part is shown. An inner pipe 2 is concentrically inserted into the pipe 1 as a partition, and an annular space 3 is formed between the inner surface of the pipe 1 and the outer surface of the inner pipe 2. An anode 4 and a cathode 5 are arranged in pairs in the inner tube 2 so as to face each other, and a magnet 6 is arranged below each of the anode 4 and the cathode 5 as shown in FIG. 1B.

【0024】ここで、図1(a)に示すように内管2内
に原水を流し、原水中に陽極4と陰極5に電圧を印加し
て直角方向に電場を与え、磁石6により磁場を直角方向
に与えると、図1(c)に示したようにその直角方向に
ローレンツ力(電磁力:F)が発生する。 F=eE+evB ここで、e:粒子の電荷、E:電場、v:粒子の移動速
度、B:磁束密度である。
Here, as shown in FIG. 1 (a), raw water is made to flow in the inner tube 2, a voltage is applied to the anode 4 and the cathode 5 in the raw water to give an electric field in a right angle direction, and a magnetic field is generated by the magnet 6. When applied in the perpendicular direction, a Lorentz force (electromagnetic force: F) is generated in the perpendicular direction as shown in FIG. 1 (c). F = eE + evB Here, e: electric charge of particles, E: electric field, v: moving speed of particles, B: magnetic flux density.

【0025】このローレンツ力Fにより不純物質として
の荷電粒子体7はその力Fに移動する。この水中の電荷
を帯びた荷電粒子体は図1(a)、(b)に示したよう
に内管2に形成された孔から環状空間3に移動し濃縮さ
れて濃縮水となって排出され、内管2からは系外へ浄化
された処理水が流出する。このようにして電磁場の働き
により不純物質の荷電粒子体7を除去することができ
る。本実施の形態によれば、化学的な吸着材や物理的な
ろ過などを用いることなく、電磁場の働きによって不純
物質の荷電粒子体を除去することができる。
Due to this Lorentz force F, the charged particle bodies 7 as impurities move to the force F. The charged charged particles in the water move from the holes formed in the inner tube 2 to the annular space 3 as shown in FIGS. 1 (a) and 1 (b), and are concentrated and discharged as concentrated water. Purified treated water flows out of the system from the inner pipe 2. In this way, the charged particles 7 having impurities can be removed by the action of the electromagnetic field. According to the present embodiment, it is possible to remove the charged particle bodies of impurities by the action of the electromagnetic field without using a chemical adsorbent or physical filtration.

【0026】つぎに図2により本発明に係る水処理装置
の第1の実施の形態を説明する。本実施の形態に係る水
処理装置は不純物質8を含む原水9の流れに対して水平
方向に電場11と磁場12をそれぞれ垂直に印加できる配置
とした分離水槽10と、この分離水槽に接続され電場11と
磁場12の交差面を通過する流路管13と、この流路管13に
接続する濃縮槽14とから構成されている。そして、この
分離水槽10と濃縮槽14は非電気電導性材量または非磁性
材料で構成されている。
Next, a first embodiment of the water treatment device according to the present invention will be described with reference to FIG. The water treatment device according to the present embodiment is connected to a separation water tank 10 arranged so that an electric field 11 and a magnetic field 12 can be applied vertically to the flow of raw water 9 containing impurities 8, respectively. It is composed of a flow path pipe 13 passing through the intersection of the electric field 11 and the magnetic field 12, and a concentrating tank 14 connected to the flow path pipe 13. The separation water tank 10 and the concentration tank 14 are made of non-electrically conductive material or non-magnetic material.

【0027】本実施の形態に係る水処理装置において、
電場11と磁場12の印加によってその交差面ではそれと垂
直方向の電磁力が生じ、原水9中に含まれる電荷を帯び
た溶解成分および微小固形分などの不純物質8は流路管
13を通して電磁力にしたがって電場と磁場の交差面を通
過して濃縮槽14へと泳動する。このため、原水9中の不
純物質8は濃縮槽14へと分離されて濃縮され、濃縮水15
となって濃縮槽14から排出され、浄化された処理水16は
分離水槽10から流出されることになる。よって、化学的
な吸着材、物理的なろ過装置を使用せずに水中の微小固
形分や溶解成分を除去することができる。また、分離水
槽10と濃縮槽14は非電気導体または非磁性体で構成され
ているので、分離水槽10と濃縮槽14で起こり得る電場、
磁場損失を低減することができる。
In the water treatment device according to this embodiment,
When an electric field 11 and a magnetic field 12 are applied, an electromagnetic force in a direction perpendicular to the electric field 11 and the magnetic field 12 is generated at the intersecting surface, and the charged dissolved components contained in the raw water 9 and the impurities 8 such as minute solids are removed from the passage tube.
Electrophoretic force through 13 passes through the intersection of the electric field and the magnetic field and migrates to the concentration tank 14. Therefore, the impurities 8 in the raw water 9 are separated and concentrated in the concentration tank 14, and the concentrated water 15
Then, the treated water 16 that has been discharged from the concentration tank 14 and has been purified flows out from the separation water tank 10. Therefore, it is possible to remove minute solids and dissolved components in water without using a chemical adsorbent or a physical filtration device. Further, since the separation water tank 10 and the concentration tank 14 are composed of a non-electrical conductor or a non-magnetic material, an electric field that can occur in the separation water tank 10 and the concentration tank 14,
The magnetic field loss can be reduced.

【0028】つぎに上記実施の形態の具体化例を説明す
る。まず、長方形状のアクリル製容器に仕切り板を配置
し、その仕切り板とアクリル製容器壁面との空間に電場
と磁場をそれぞれ垂直に配置し、図2に示すように分離
水槽10及び濃縮槽14とした。電場11の印加体には陽極に
不溶性電極、陰極にSUS電極、磁場12の印加体にはフェ
ライト磁石を使用した。
Next, a concrete example of the above embodiment will be described. First, a partition plate is arranged in a rectangular acrylic container, and an electric field and a magnetic field are vertically arranged in the space between the partition plate and the acrylic container wall surface. As shown in FIG. And An insoluble electrode was used for the anode, a SUS electrode was used for the cathode, and a ferrite magnet was used for the body to which the magnetic field 12 was applied.

【0029】原水9中の不純物質8を模擬した赤茶色の
陽イオン交換樹脂の溶出物を純水に添加し、これを原水
9として前記分離水槽10及び濃縮槽14に均一に入れた。
不純物質8として用いる陽イオン交換樹脂溶出物は、樹
脂分解物にイオン交換基が結合した形態であり、溶解成
分と微小固形分の両方の性質を有している。
The eluate of a reddish brown cation exchange resin simulating the impurities 8 in the raw water 9 was added to pure water, and the pure water 9 was uniformly added to the separation water tank 10 and the concentration tank 14.
The cation-exchange resin eluate used as the impurity 8 is in a form in which an ion-exchange group is bonded to the resin decomposition product, and has properties of both a dissolved component and a minute solid content.

【0030】この具体化例において、原水9中の不純物
質8の挙動を調べるために、経時的に分離水槽10および
濃縮槽14水中の全有機性炭素(TOC)濃度および電気電
導度を調べた。TOC濃度によって不純物質8の固形分的
性質を調べ、電気電導度では不純物質8の溶解的性質を
調べる。また、目視によっても挙動を確認した。試験条
件は液量を全体で1L、液量比を分離槽0.66:濃縮槽0.3
4、分離水槽10はポンプによる循環、濃縮槽14は静置と
し、印加電圧を50V、水温を15℃とした。
In this embodiment, in order to investigate the behavior of the impurities 8 in the raw water 9, the total organic carbon (TOC) concentration and the electric conductivity in the separated water tank 10 and the enrichment tank 14 water were examined over time. . The solid content property of the impurity 8 is examined by the TOC concentration, and the dissolution property of the impurity 8 is examined by the electric conductivity. The behavior was also confirmed by visual observation. The test conditions were such that the total liquid volume was 1 L, and the liquid volume ratio was separation tank 0.66: concentration tank 0.3.
4. The separation water tank 10 was circulated by a pump, the concentration tank 14 was left stationary, the applied voltage was 50 V, and the water temperature was 15 ° C.

【0031】試験前の分離水槽10および濃縮槽14のTOC
濃度は7.8ppm、電気電導度は465μS/cmであった。これ
に電場と磁場を印加して試験を開始したところ、試験開
始330min後には分離水槽10のTOC濃度が5.1ppm、電気電
導度が270μS/cmに減少し、逆に濃縮槽14のTOC濃度が1
0.4ppm、電気電導率が741μS/cmに増加した。また、目
視では分離水槽10が淡色、濃縮槽14が濃色となる色の違
いを確認した。この試験結果から明らかなように、本実
施の形態によれば、原水9中の不純物質8を原水9から
分離できることが認められた。
TOC of separation water tank 10 and concentration tank 14 before the test
The concentration was 7.8 ppm, and the electric conductivity was 465 μS / cm. When the test was started by applying an electric field and a magnetic field to this, the TOC concentration of the separation water tank 10 decreased to 5.1 ppm and the electric conductivity decreased to 270 μS / cm after 330 minutes from the start of the test, and conversely the TOC concentration of the concentration tank 14 decreased. 1
0.4ppm, electric conductivity increased to 741μS / cm. Further, visually, the difference in color between the separation water tank 10 and the concentrating tank 14 was confirmed. As is clear from this test result, according to the present embodiment, it was confirmed that the impurities 8 in the raw water 9 can be separated from the raw water 9.

【0032】つぎに、図3(a)により本発明に係る水
処理方法の第2の実施の形態を説明する。なお、図3
(a)は水処理方法の実施の形態を説明するために分離
水槽10を透視的かつ斜視的に示す模式図で、図3(a)
中、図2と同一部分には同一符号を付して重複する部分
の説明は省略する。
Next, a second embodiment of the water treatment method according to the present invention will be described with reference to FIG. Note that FIG.
FIG. 3A is a schematic view showing a separation water tank 10 in a perspective and perspective view for explaining an embodiment of a water treatment method, and FIG.
2, those parts that are the same as those corresponding parts in FIG. 2 are designated by the same reference numerals, and a description of the overlapping parts will be omitted.

【0033】図3(a)において、分離水槽10の側面直
角方向に流路管13を接続し、図2に示したように分離水
槽10内にイオンまたは荷電粒子を不純物質8として含む
原水9を流入し、流路管13に取り付けた電極と磁石(図
示せず)の電磁力18によって電磁力作用部位17からイオ
ンまたは荷電粒子の不純物質8のみを分離する。電磁力
作用部位17では電場と磁場を垂直に印加することで発生
する電磁力18によってイオンまたは荷電荷粒子の不純物
質8が泳動する。
In FIG. 3 (a), a flow pipe 13 is connected in a direction perpendicular to the side surface of the separation water tank 10, and raw water 9 containing ions or charged particles as impurities 8 is contained in the separation water tank 10 as shown in FIG. And the impurities 8 of the ions or charged particles are separated from the electromagnetic force acting part 17 by the electromagnetic force 18 of the electrode and magnet (not shown) attached to the flow path tube 13. At the electromagnetic force acting portion 17, the electromagnetic force 18 generated by vertically applying an electric field and a magnetic field causes the impurities 8 of ions or charged particles to migrate.

【0034】本実施の形態によれば、従来の温度などの
使用条件に対する制限や、二次的な廃棄物の発生、定常
的な薬剤等の添加を必要としない。また、電磁力の作用
は原水と接触する必要が必ずしもないため、従来例にな
い非接触水処理技術を提供することができる。
According to this embodiment, it is not necessary to limit the conventional use conditions such as temperature, generate secondary waste, and constantly add chemicals. Further, since the action of electromagnetic force does not necessarily have to come into contact with raw water, it is possible to provide a non-contact water treatment technology that has not been found in the prior art.

【0035】つぎに図3(b)により上記第2の実施の
形態に係る水処理方法を適用した水処理装置の第2の実
施の形態を説明する。本実施の形態に係る水処理装置は
図3(b)に示したように、分離水槽10と、この分離水
槽10に不純物質8を含む原水9の流れに対して水平方向
に接続した流路管13と、この流路管13に設けた電場11と
磁場12がそれぞれ垂直に印加できるようにした電極およ
び磁石と、この分離水槽10から前記流路管13を通過して
設置された左側濃縮槽19及び右側濃縮槽20とから構成さ
れている。
Next, a second embodiment of the water treatment apparatus to which the water treatment method according to the second embodiment is applied will be described with reference to FIG. 3 (b). As shown in FIG. 3B, the water treatment apparatus according to the present embodiment has a separation water tank 10 and a flow path that is connected to the separation water tank 10 in a horizontal direction with respect to a flow of raw water 9 containing impurities 8. A tube 13, an electrode and a magnet provided in the flow path tube 13 so that an electric field 11 and a magnetic field 12 can be applied vertically respectively, and a left-side concentrator installed from the separation water tank 10 through the flow path tube 13. It is composed of a tank 19 and a right-side concentration tank 20.

【0036】ここで、分離水槽10の左右に設置された一
対の流路管13に対して垂直方向から印加される電場11と
磁場12により生じる電磁力が原水9中に含まれる電荷を
帯びた溶解成分および微小固形分の不純物質8を流路管
13から左側濃縮槽19または右側濃縮槽20へと泳動させる
ため、分離水槽10の原水9中に含まれる不純物質8は左
側濃縮槽19または右側濃縮槽20へと分離される。不純物
質8が濃縮された濃縮水21は各々の濃縮槽19、20から排
出され、浄化された処理水16は分離水槽10から流出す
る。
Here, the electromagnetic force generated by the electric field 11 and the magnetic field 12 vertically applied to the pair of flow path pipes 13 installed on the left and right of the separation water tank 10 is charged with the electric charge contained in the raw water 9. Flow path pipe for impurities 8 of dissolved components and minute solids
In order to migrate from 13 to the left side concentration tank 19 or the right side concentration tank 20, the impurities 8 contained in the raw water 9 of the separation water tank 10 are separated into the left side concentration tank 19 or the right side concentration tank 20. The concentrated water 21 in which the impurities 8 are concentrated is discharged from each of the concentration tanks 19 and 20, and the purified treated water 16 flows out from the separation water tank 10.

【0037】上記実施の形態に基づいて、長方形水槽内
の左右に流路を持つスペーサを設置して分離水槽10と左
側濃縮槽19及び右側濃縮槽20とし、その流路管13の側方
向部位に電場、底方向部位に磁場を印加する装置を設置
し、この分離水槽10に500mlの25ppm塩化ナトリウム溶液
を満たし0.2Aの電流を与えたところ、120min処理後にお
いて分離水槽10内の塩素イオン濃度が約12%減少し、pH
が約0.7上昇した。この結果から本実施の形態によれば
水処理装置として有効であることが証明された。
Based on the above-described embodiment, spacers having channels on the left and right sides are installed in a rectangular water tank to form a separation water tank 10, a left-side concentration tank 19 and a right-side concentration tank 20. An electric field and a device for applying a magnetic field to the bottom direction were installed in this separation water tank, and when this separation water tank 10 was filled with 500 ml of 25 ppm sodium chloride solution and a current of 0.2 A was applied, the chloride ion concentration in the separation water tank 10 after 120 min treatment Decrease by about 12%, pH
Increased by about 0.7. From this result, it is proved that the present embodiment is effective as a water treatment device.

【0038】つぎに、図4により本発明に係る水処理装
置の第3の実施の形態を説明する。なお、図4中、図3
(b)と同一部分には同一符号を付している。本実施の
形態に係る水処理装置は図4に示したように、分離水槽
10と、この分離水槽10に原水9の流れに対して左右方向
にそれぞれ流路管13が接続され、これらの流路管13には
電場11と磁場12がそれぞれ垂直に印加できるようにした
電場および磁場印加装置(図示せず)が設置されてい
る。前記流路管13のそれぞれには左側濃縮槽19及び右側
濃縮槽20が接続され、左側濃縮槽19と右室濃縮槽19の間
に電場を印加できるように各々の濃縮槽19、20内に電極
22が配置されている。
Next, a third embodiment of the water treatment apparatus according to the present invention will be described with reference to FIG. In addition, in FIG.
The same parts as those in (b) are designated by the same reference numerals. As shown in FIG. 4, the water treatment device according to the present embodiment has a separation water tank.
An electric field 10 is connected to the separation water tank 10 in the left-right direction with respect to the flow of the raw water 9, and an electric field 11 and a magnetic field 12 can be vertically applied to the flow path tubes 13. And a magnetic field applying device (not shown) is installed. A left-side concentrating tank 19 and a right-side concentrating tank 20 are connected to each of the flow path pipes 13, and inside the respective concentrating tanks 19 and 20 so that an electric field can be applied between the left-side concentrating tank 19 and the right-side concentrating tank 19. electrode
22 are arranged.

【0039】ここで、分離水槽10の左右に接続された流
路管13に対して垂直方向から印加される電場11と磁場12
により生じる電磁力が、原水9中に含まれる電荷を帯び
た溶解成分および微小固形分を流路から左側濃縮槽19ま
たは右側濃縮槽20へと泳動させる。これと同時に、左側
濃縮室槽19と右側濃縮槽20の間に電極22に電圧を印加し
て生じる電場による泳動を加えるため、分離水槽10内の
原水9中に含まれる不純物質8は左側濃縮槽19または右
側濃縮槽20へと分離され、濃縮水21となって排出され、
浄化された処理水16は分離水槽10から流出する。
Here, an electric field 11 and a magnetic field 12 applied in a vertical direction to the flow path pipes 13 connected to the left and right of the separation water tank 10.
The electromagnetic force generated by this causes the charged dissolved components and minute solids contained in the raw water 9 to migrate from the flow path to the left concentrating tank 19 or the right concentrating tank 20. At the same time, since migration is applied between the left-side concentration chamber tank 19 and the right-side concentration tank 20 by an electric field generated by applying a voltage to the electrode 22, the impurities 8 contained in the raw water 9 in the separation water tank 10 are concentrated on the left side. It is separated into tank 19 or right-side concentration tank 20 and discharged as concentrated water 21,
The purified treated water 16 flows out of the separation water tank 10.

【0040】上記実施の形態に基づいて、長方形水槽内
の左右に流路管13を有するスペーサを設置して三区画に
形成し、各々の区画を分離水槽10と左側濃縮槽19及び右
側濃縮槽20とし、その流路管13の側方向部位に電場、底
方向部位に磁場を印加し、同時に左側濃縮槽19と右側濃
縮槽20内に各々電極22を設置した。
Based on the above-mentioned embodiment, spacers having flow pipes 13 are installed on the left and right sides in a rectangular water tank to form three compartments, and each compartment is divided into a separation water tank 10, a left-side concentration tank 19 and a right-side concentration tank. 20, an electric field was applied to the lateral portion of the flow channel tube 13, and a magnetic field was applied to the bottom portion thereof, and at the same time, electrodes 22 were installed in the left concentrating tank 19 and the right concentrating tank 20, respectively.

【0041】この分離水槽10に500mlの25ppm塩化ナトリ
ウム溶液を満たし流路管13に対する電場を印加するため
に0.2Aの電流を流し、左側濃縮槽19と右側濃縮槽20間に
電場を与えるために電極22、22間に約60Vの電圧を付与
した。120分間処理後において分離水槽10内の塩素イオ
ン濃度が約16%減少し、pHが約2.4上昇した。この結果か
ら本実施の形態によれば、水処理装置として有効である
ことが証明された。
The separated water tank 10 was filled with 500 ml of a 25 ppm sodium chloride solution, a current of 0.2 A was applied to apply an electric field to the flow channel tube 13, and an electric field was applied between the left concentrating tank 19 and the right concentrating tank 20. A voltage of about 60 V was applied between the electrodes 22 and 22. After 120 minutes of treatment, the chloride ion concentration in the separated water tank 10 decreased by about 16%, and the pH increased by about 2.4. From this result, it was proved that the present embodiment is effective as a water treatment device.

【0042】つぎに図5により本発明に係る水処理装置
の第4の実施の形態を説明する。本実施の形態が第3の
実施の形態と異なる点は、流路管13における電場11と磁
場12を削除したことにある。すなわち、本実施の形態に
係る水処理装置は図5に示したように、分離水槽10と、
この分離水槽10に原水9の流れに対して左右方向に接続
した左右一対の流路管13と、この左右一対の流路管13に
接続した左側濃縮槽19及び右側濃縮槽20と、前記左側濃
縮槽19及び右側濃縮槽20の間に電場を印加できるように
前記各々の濃縮槽19、20内に配置した電極22とから構成
されいる。
Next, a fourth embodiment of the water treatment apparatus according to the present invention will be described with reference to FIG. The difference of this embodiment from the third embodiment is that the electric field 11 and the magnetic field 12 in the flow channel tube 13 are deleted. That is, the water treatment device according to the present embodiment, as shown in FIG.
A pair of left and right flow pipes 13 connected to the separation water tank 10 in the left-right direction with respect to the flow of the raw water 9, a left-side concentration tank 19 and a right-side concentration tank 20 connected to the pair of left and right flow pipes 13, and the left side. An electrode 22 is arranged in each of the concentration tanks 19 and 20 so that an electric field can be applied between the concentration tank 19 and the right concentration tank 20.

【0043】ここで、分離水槽10の左右に接続された流
路管13に対して左側濃縮槽19と右側濃縮槽20の間に印加
される電場により生じる電気力が原水9中に含まれる電
荷を帯びた溶解成分および微小固形分を流路管13から左
側濃縮槽19または右側濃縮槽20へと泳動させるため、分
離水槽10の原水9中に含まれる不純物質8は左側濃縮槽
19または右側濃縮槽20へと分離される。
Here, the electric force generated by the electric field applied between the left concentrating tank 19 and the right concentrating tank 20 with respect to the flow path pipes 13 connected to the left and right of the separation water tank 10 is the charge contained in the raw water 9. Impurities 8 contained in the raw water 9 of the separation water tank 10 are left-side concentrating tanks in order to migrate the charged components and fine solids from the flow path pipe 13 to the left-side concentrating tank 19 or the right-side concentrating tank 20.
19 or the right-side concentration tank 20 is separated.

【0044】この実施の形態に基づく具体的な実施例と
して、単一の長方形水槽内の左右に流路を持つスペーサ
を設置して分離水槽10と左側濃縮槽19及び右側濃縮槽20
を構成し、その左側濃縮槽19と右側濃縮槽20内に電極22
を配置して電場を印加する電場印加装置を設けて水処理
装置を構成した。
As a concrete example based on this embodiment, spacers having flow paths on the left and right sides are installed in a single rectangular water tank, and a separation water tank 10, a left concentration tank 19 and a right concentration tank 20 are provided.
And the electrodes 22 in the left concentration tank 19 and the right concentration tank 20.
A water treatment device was configured by arranging the above to provide an electric field applying device for applying an electric field.

【0045】そして、上記水処理装置の分離水槽10に50
0mlの25ppm塩化ナトリウム溶液を満たし左側濃縮槽19と
右側濃縮槽20間に約100Vの電圧を印加したところ、120
分間処理後において分離水槽10の塩素イオン濃度は約4
%減少し、pHが約0.4上昇した。この結果から本実施の形
態によれば、水処理装置として有効であることが証明さ
れた。
Then, 50 is added to the separation water tank 10 of the water treatment device.
Filling 0 ml of 25 ppm sodium chloride solution and applying a voltage of about 100 V between the left concentrator 19 and the right concentrator 20, 120
The chlorine ion concentration in the separated water tank 10 is about 4 after the minute treatment.
% And the pH increased by about 0.4. From this result, it was proved that the present embodiment is effective as a water treatment device.

【0046】[0046]

【発明の効果】本発明によれば、水中に微小固形成分や
溶解成分として存在する不純物質を、簡便な機構により
分離することができる。また、化学的な吸着材や物理的
なろ過装置を使用する必要がなく、二次的廃棄物の発生
量を減少できる。
EFFECTS OF THE INVENTION According to the present invention, impurities existing in water as minute solid components or dissolved components can be separated by a simple mechanism. Further, it is not necessary to use a chemical adsorbent or a physical filtration device, and the amount of secondary waste generated can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)は本発明に係る水処理方法の第1の実施
の形態を説明するための装置を部分的に示す透視図、
(b)は(a)の“A”部拡大図、(c)は不純物質の
分離作用を説明するための模式図。
1A is a perspective view partially showing an apparatus for explaining a first embodiment of a water treatment method according to the present invention, FIG.
(B) is an enlarged view of the “A” part in (a), and (c) is a schematic diagram for explaining the separating action of impurities.

【図2】本発明に係る水処理装置の第1の実施の形態を
説明するための概略構成図。
FIG. 2 is a schematic configuration diagram for explaining a first embodiment of a water treatment device according to the present invention.

【図3】(a)は本発明に係る水処理方法の第2の実施
の形態を説明するための模式図、(b)は本発明に係る
水処理装置の第2の実施の形態を説明するための概略構
成図。
3A is a schematic diagram for explaining a second embodiment of a water treatment method according to the present invention, and FIG. 3B is a schematic view for explaining a second embodiment of a water treatment apparatus according to the present invention. FIG.

【図4】本発明に係る水処理装置の第3の実施の形態を
説明するための概略構成図。
FIG. 4 is a schematic configuration diagram for explaining a third embodiment of a water treatment device according to the present invention.

【図5】本発明に係る水処理装置の第4の実施の形態を
説明するための概略構成図。
FIG. 5 is a schematic configuration diagram for explaining a fourth embodiment of a water treatment device according to the present invention.

【符号の説明】[Explanation of symbols]

1…配管(分離水槽)、2…仕切り(内管)、3…環状
空間、4…陽極、5…陰極、6…磁石、7…荷電粒子
体、8…不純物質、9…原水、10…分離水槽、11…電
場、12…磁場、13…流路管、14…濃縮槽、15…濃縮水、
16…処理水、17…電磁力作用部位、18…電磁力、19…左
側濃縮槽、20…右側濃縮槽、21…濃縮水、22…電極。
1 ... Piping (separation water tank), 2 ... Partition (inner tube), 3 ... Annular space, 4 ... Anode, 5 ... Cathode, 6 ... Magnet, 7 ... Charged particle body, 8 ... Impurity, 9 ... Raw water, 10 ... Separation water tank, 11 ... Electric field, 12 ... Magnetic field, 13 ... Flow tube, 14 ... Concentration tank, 15 ... Concentrated water,
16 ... Treated water, 17 ... Electromagnetic force acting part, 18 ... Electromagnetic force, 19 ... Left concentrating tank, 20 ... Right concentrating tank, 21 ... Concentrated water, 22 ... Electrode.

フロントページの続き (72)発明者 関 秀司 神奈川県川崎市川崎区浮島町2番1号 株 式会社東芝浜川崎工場内 Fターム(参考) 4D054 FA08 FB18 FB20 4D061 DA01 DB15 DB18 DC06 EA10 EA18 EB01 EB28 EB37 EC01 EC05 EC19 GA30 Continued front page    (72) Inventor Shuji Seki             2-1, Ukishima-cho, Kawasaki-ku, Kawasaki-shi, Kanagawa             Ceremony Company Toshiba Hamakawasaki Factory F term (reference) 4D054 FA08 FB18 FB20                 4D061 DA01 DB15 DB18 DC06 EA10                       EA18 EB01 EB28 EB37 EC01                       EC05 EC19 GA30

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 イオンまたは荷電粒子を含む原水中に電
場と磁場を直角に与え、その直角方向にローレンツ力を
発生させることで、前記イオンまたは荷電粒子を前記ロ
ーレンツ力方向に移動させることを特徴とする水処理方
法。
1. An electric field and a magnetic field are applied at a right angle to raw water containing ions or charged particles, and a Lorentz force is generated in the right direction, whereby the ions or charged particles are moved in the Lorentz force direction. And water treatment method.
【請求項2】 イオンまたは荷電粒子を含む原水を分離
水槽に入れ、前記分離水槽に電磁力作用部位を取り付
け、前記電磁力作用部位で電場と磁場を垂直に印加する
ことで発生する電磁力によって前記イオンまたは荷電粒
子を泳動させて分離することを特徴とする水処理方法。
2. Raw water containing ions or charged particles is put in a separation water tank, an electromagnetic force acting portion is attached to the separation water tank, and an electromagnetic force generated by vertically applying an electric field and a magnetic field at the electromagnetic force acting portion is used. A water treatment method characterized in that the ions or charged particles are electrophoresed and separated.
【請求項3】 原水を流入する分離水槽と、この分離水
槽に前記原水の流れに対して水平方向に接続された濃縮
槽と、前記分離水槽内に配置され前記原水の流れに対し
て水平方向に電場と磁場をそれぞれ垂直に印加する電極
および磁石とを具備したことを特徴とする水処理装置。
3. A separation water tank into which raw water flows, a concentration tank connected to the separation water tank in a horizontal direction with respect to the flow of the raw water, and a separation tank arranged in the separation water tank in a horizontal direction with respect to the flow of the raw water. A water treatment device comprising: an electrode and a magnet for vertically applying an electric field and a magnetic field to each other.
【請求項4】 原水を流入する分離水槽と、この分離水
槽に前記原水の流れに対して左右方向に接続された左右
一対の流路管と、この左右一対の流路管に接続された左
右一対の濃縮槽と、前記左右一対の流路管にそれぞれ設
けられ前記原水の流れに対して水平方向に電場と磁場を
それぞれ垂直に印加する電極および磁石とを具備したこ
とを特徴とする水処理装置。
4. A separation water tank into which raw water flows, a pair of left and right flow pipes connected to the separation water tank in the left-right direction with respect to the flow of the raw water, and left and right connected to the pair of left and right flow pipes. Water treatment characterized by comprising a pair of concentrating tanks, and electrodes and magnets which are respectively provided in the pair of left and right flow passage tubes and which vertically apply an electric field and a magnetic field to the flow of the raw water, respectively. apparatus.
【請求項5】 前記左右一対の濃縮槽の間に電場を印加
できるように前記各々の濃縮槽内に第2の電極を配置し
てなることを特徴とする請求項4記載の水処理装置。
5. The water treatment apparatus according to claim 4, wherein a second electrode is arranged in each of the concentrating tanks so that an electric field can be applied between the pair of left and right concentrating tanks.
【請求項6】 原水を流入する分離水槽と、この分離水
槽に前記原水の流れに対して左右方向に接続された左右
一対の流路管と、この左右一対の流路管にそれぞれ接続
された左側濃縮槽及び右側濃縮槽と、この左側濃縮槽及
び右側濃縮槽間に電場を印加できるように前記左側濃縮
槽及び右側濃縮槽内に配置された電極とを具備したこと
を特徴とする水処理装置。
6. A separation water tank for inflowing raw water, a pair of left and right flow pipes connected to the separation water tank in the left-right direction with respect to the flow of the raw water, and a pair of left and right flow pipes respectively connected to the separation water tank. A water treatment characterized by comprising a left-side concentration tank and a right-side concentration tank, and electrodes arranged in the left-side concentration tank and the right-side concentration tank so that an electric field can be applied between the left-side concentration tank and the right-side concentration tank. apparatus.
【請求項7】 前記分離水槽および前記濃縮槽の材質は
非電気電導性材料であることを特徴とする請求項3、4
ないし6記載の水処理装置。
7. The material of the separation water tank and the concentration tank is a non-electrically conductive material.
7. The water treatment device according to item 6.
【請求項8】 前記分離水槽および前記濃縮槽の材質は
非磁性材料であることを特徴とする請求項3、4ないし
6記載の水処理装置。
8. The water treatment device according to claim 3, 4 or 6, wherein the material of the separation water tank and the material of the concentration tank are non-magnetic materials.
JP2002104761A 2002-04-08 2002-04-08 Water treatment method and apparatus for the same Withdrawn JP2003300076A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002104761A JP2003300076A (en) 2002-04-08 2002-04-08 Water treatment method and apparatus for the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002104761A JP2003300076A (en) 2002-04-08 2002-04-08 Water treatment method and apparatus for the same

Publications (1)

Publication Number Publication Date
JP2003300076A true JP2003300076A (en) 2003-10-21

Family

ID=29389801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002104761A Withdrawn JP2003300076A (en) 2002-04-08 2002-04-08 Water treatment method and apparatus for the same

Country Status (1)

Country Link
JP (1) JP2003300076A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005342661A (en) * 2004-06-04 2005-12-15 Canon Inc Mass transfer device and mass transfer method
CN100390083C (en) * 2004-04-16 2008-05-28 沈友福 Technique for producing super oxyanion water in steady state

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100390083C (en) * 2004-04-16 2008-05-28 沈友福 Technique for producing super oxyanion water in steady state
JP2005342661A (en) * 2004-06-04 2005-12-15 Canon Inc Mass transfer device and mass transfer method

Similar Documents

Publication Publication Date Title
JP3009221B2 (en) Electrodeionization equipment
Arar et al. Various applications of electrodeionization (EDI) method for water treatment—A short review
US3291713A (en) Removal of weakly basic substances from solution by electrodeionization
Walters et al. Concentration of radioactive aqueous wastes. Electromigration through ion-exchange membranes
US8926818B2 (en) Layered electrodeionization device with discreet cation chamber
Li et al. Removal of Pb (II), Cd (II) and Cr (III) from sand by electromigration
US4148708A (en) Combination ion exchange and electrodialysis fluid purification apparatus
Yu et al. Modelling of transport and reaction processes in a porous medium in an electrical field
Arar et al. Demineralization of geothermal water reverse osmosis (RO) permeate by electrodeionization (EDI) with mixed bed configuration
JPS62501033A (en) Improvement of separation electrophoresis method and equipment
EP0421702A2 (en) Interfacial purifying apparatus using tourmaline, method thereof and tourmaline granular material
US3827961A (en) Method for purifying ionically conducting solutions
JP6365292B2 (en) Ion chromatograph apparatus, ion chromatograph, ion component analysis method and electrolyte solution generation method
TW200414922A (en) Electrodeionization apparatus
JP3227921B2 (en) Apparatus and method for treating wastewater containing oil composed of ester
TW201240731A (en) Electrical deionization apparatus
JP2003300076A (en) Water treatment method and apparatus for the same
KR100767339B1 (en) Electrokinetic remediation of fluorine-contaminated soil
WO2011132518A1 (en) Device for generating highly pure electrolyte solution
Li et al. Removal of Cu (II) and Cr (III) from naturally contaminated loam by electromigration
CN106653131A (en) Method for separating boron and radionuclides from radioactive wastewater by lengthening flow channels
Yuan et al. Effect of the composition of anodic purging solutions on electroosmosis
Lindheimer et al. Electrodialysis of hydrochloric acid
Mahendra et al. Investigation of bivalve molluscan seashells for the removal of cadmium, lead and zinc Metal ions from wastewater streams
US20160145125A1 (en) Layered electrodeionization device with discreet anion chamber

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050705