JP2003299488A - Fusion protein having glucuronic acid transferase activity - Google Patents

Fusion protein having glucuronic acid transferase activity

Info

Publication number
JP2003299488A
JP2003299488A JP2003030398A JP2003030398A JP2003299488A JP 2003299488 A JP2003299488 A JP 2003299488A JP 2003030398 A JP2003030398 A JP 2003030398A JP 2003030398 A JP2003030398 A JP 2003030398A JP 2003299488 A JP2003299488 A JP 2003299488A
Authority
JP
Japan
Prior art keywords
leu
ala
arg
gly
pro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003030398A
Other languages
Japanese (ja)
Other versions
JP4275960B2 (en
Inventor
Hisashi Narimatsu
久 成松
Hiroharu Kimata
弘治 木全
Masashiki Goto
雅式 後藤
Toshikazu Yada
俊量 矢田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kazusa DNA Research Institute Foundation
Seikagaku Corp
Original Assignee
Kazusa DNA Research Institute Foundation
Seikagaku Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kazusa DNA Research Institute Foundation, Seikagaku Corp filed Critical Kazusa DNA Research Institute Foundation
Priority to JP2003030398A priority Critical patent/JP4275960B2/en
Publication of JP2003299488A publication Critical patent/JP2003299488A/en
Application granted granted Critical
Publication of JP4275960B2 publication Critical patent/JP4275960B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fusion protein useful in obtaining in a genetically engineering way an enzyme substantially having no N-galactosamine transferase activity but having glucuronic acid transferase activity among enzymes involved in the synthesis of chondroitin skeleton, to provide a vector for obtaining such a fused protein, and to provide a transformant obtained by introducing the vector into a host cell. <P>SOLUTION: The fusion protein is such one that a discriminant peptide and a polypeptide are fused together, wherein the polypeptide is constituted of an amino acid sequence described in the sequence No.4 (See the Specification) or an amino acid sequence where at least one constituent amino acid is substituted, deleted, inserted or translocated in the said amino acid sequence. This fusion protein has the activity of transferring glucuronic acid onto the N-acetylgalactosamine residue on a nonreduced terminal present in a chondroitin fundamental skeleton. The vector containing a nucleic acid encoding this fusion protein, and the transformant are also provided respectively. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、酵素活性を有する
融合タンパク質に関し、より詳細にはコンドロイチン骨
格中に存在する非還元末端のN-アセチルガラクトサミン
残基にグルクロン酸を転移する酵素活性を有する融合タ
ンパク質に関する。
TECHNICAL FIELD The present invention relates to a fusion protein having an enzymatic activity, more specifically, a fusion protein having an enzymatic activity of transferring glucuronic acid to an N-acetylgalactosamine residue at the non-reducing end present in the chondroitin skeleton. Regarding proteins.

【0002】[0002]

【従来の技術】コンドロイチン硫酸及びコンドロイチン
はD-グルクロン酸(以下単に「グルクロン酸」又は「Gl
cA」とも記載する)残基とN-アセチルガラクトサミン
(以下単に「N-アセチルガラクトサミン」又は「GalNA
c」とも記載する)残基の二糖の繰り返し構造(すなわ
ち、-[GlcAβ(1,3)-GalNAcβ(1,4)-]n:nは2以上の整数
を示す)を基本骨格とするグリコサミノグリカンの一種
である。
BACKGROUND OF THE INVENTION Chondroitin sulfate and chondroitin are D-glucuronic acids (hereinafter simply referred to as "glucuronic acid" or "Gl
cA) residue and N-acetylgalactosamine (hereinafter simply “N-acetylgalactosamine” or “GalNA”).
(also referred to as “c”) residue disaccharide repeating structure (ie,-[GlcAβ (1,3) -GalNAcβ (1,4)-] n : n is an integer of 2 or more) It is a type of glycosaminoglycan.

【0003】近年、グリコサミノグリカン、特にコンド
ロイチンやコンドロイチン硫酸は従来、動物の臓器等か
ら抽出・精製されていたが、原料の不足から、コンドロ
イチンやコンドロイチン硫酸に共通する前記二糖の繰り
返し構造からなる基本骨格(コンドロイチン骨格とも称
される)を人工的に合成する手法が模索されている。特
に、ヒト由来の酵素であれば、人工的に合成したコンド
ロイチン又はコンドロイチン硫酸に当該酵素が混入して
いても、抗原抗体反応などの生体防御機構が強く作用す
ることもないが、現時点においてこのような基本骨格を
合成するための酵素、その中でも特にヒト由来であって
グルクロン酸転移酵素活性を有していて、N-アセチルガ
ラクトサミン転移酵素活性は有していない酵素は未だに
発見されていない。
In recent years, glycosaminoglycans, particularly chondroitin and chondroitin sulfate, have been conventionally extracted and purified from animal organs and the like, but due to lack of raw materials, due to the repeating structure of the above disaccharide common to chondroitin and chondroitin sulfate. A method for artificially synthesizing a basic skeleton (also called a chondroitin skeleton) is being sought. In particular, if it is a human-derived enzyme, even if artificially synthesized chondroitin or chondroitin sulfate is contaminated with the enzyme, a biological defense mechanism such as an antigen-antibody reaction does not act strongly. An enzyme for synthesizing such a basic skeleton, among them, an enzyme derived from human, having glucuronosyltransferase activity, and not having N-acetylgalactosaminyltransferase activity has not been found yet.

【非特許文献】 J. Biol. Chem.,277(2002), pp.38179
-38188
[Non-patent document] J. Biol. Chem., 277 (2002), pp.38179.
-38188

【0004】[0004]

【発明が解決しようとする課題】コンドロイチン骨格の
合成に関わるヒト由来の酵素のうち、グルクロン酸転移
酵素活性を有しているが、N-アセチルガラクトサミン転
移酵素活性を実質的に有しない酵素の大量合成のために
その酵素をコードする遺伝子が必要とされており、また
遺伝子治療の可能性を模索するためにもそのような遺伝
子が必要とされていたにも関わらず、そのような酵素の
遺伝子は得られていなかった。
Among human-derived enzymes involved in the synthesis of chondroitin skeleton, a large amount of enzymes having glucuronosyltransferase activity but substantially no N-acetylgalactosaminyltransferase activity. Although a gene encoding the enzyme was needed for synthesis, and such a gene was also needed to explore the possibility of gene therapy, the gene for such enzyme was required. Was not obtained.

【0005】従って、本発明の目的はコンドロイチン骨
格の合成に関与する酵素のうち、N-アセチルガラクトサ
ミン転移酵素活性を実質的に有さず、グルクロン酸転移
酵素活性を有する酵素(以下「GlcAT」とも略記する)
と識別ペプチドとの融合タンパク質及びその遺伝子工学
的な製造法並びにコンドロイチン骨格を有する糖鎖の製
造方法を提供することに存する。
Therefore, an object of the present invention is, among enzymes involved in the synthesis of chondroitin skeleton, an enzyme having substantially no N-acetylgalactosaminyltransferase activity but having glucuronosyltransferase activity (hereinafter also referred to as "GlcAT"). (Abbreviated)
It is intended to provide a fusion protein of a peptide and a discriminating peptide, a method for producing the same by genetic engineering and a method for producing a sugar chain having a chondroitin skeleton.

【0006】[0006]

【課題を解決するための手段】本発明者は上記目的を達
成するために鋭意検討した結果、ヒトのGlcATのcDNAを
見つけだし、ヒトのGlcATの大量合成を可能として、本
発明を完成した。
Means for Solving the Problems As a result of extensive studies to achieve the above object, the present inventor found a cDNA for human GlcAT and completed the present invention by enabling large-scale synthesis of human GlcAT.

【0007】すなわち、本発明は以下の通りである。 (1) 配列番号4記載のアミノ酸配列又は配列番号4
記載のアミノ酸配列に1以上の構成アミノ酸の置換、欠
失、挿入、又は転位を有するアミノ酸配列からなるポリ
ペプチドと、識別ペプチドとが融合してなり、グルクロ
ン酸供与体からコンドロイチン骨格中に存在する非還元
末端のN-アセチルガラクトサミン残基にグルクロン酸を
転移する酵素活性を有することを特徴とする融合タンパ
ク質。 (2) グルクロン酸供与体から、非還元末端がN-アセ
チルガラクトサミン残基であり、コンドロイチン骨格を
有する7糖からなるオリゴ糖の該N-アセチルガラクトサ
ミンに対してグルクロン酸残基を転移するが、N-アセチ
ルガラクトサミン供与体から、非還元末端がグルクロン
酸残基であり、コンドロイチン骨格を有する6糖からな
るオリゴ糖の該グルクロン酸に対しては実質的にN-アセ
チルガラクトサミン残基を転移する活性を有しないこと
を特徴とする(1)記載の融合タンパク質。 (3) 識別ペプチドがシグナルペプチド、プロテイン
キナーゼA、プロテインA、グルタチオンS転移酵素、His
タグ、mycタグ、FLAGタンパク質、T7タグ、Sタグ、HSV
タグ、pelB、HAタグ、Trxタグ、CBPタグ、CBDタグ、CBR
タグ、β-lac/blu、β-gal、luc、HP-Thio、HSP、Ln
γ、Fn、GFP、YFP、CFP、BFP、DsRed、DsRed2、MBP、La
cZ、IgG、アビジン、及びプロテインGからなる群から選
択されるいずれか一のペプチドであることを特徴とする
(1)又は(2)記載の融合タンパク質。 (4) (1)〜(3)いずれか記載の融合タンパク質
をコードするDNA。 (5) (4)記載のDNAを含むベクター。 (6) (5)記載のベクターが宿主細胞に導入されて
なる形質転換体。 (7) (6)記載の形質転換体を生育させ、生育物か
ら融合タンパク質を単離することを特徴とする(1)〜
(3)いずれか記載の融合タンパク質の製造方法。 (8) (1)〜(3)何れか記載の融合タンパク質を
特異的に認識することを特徴とする抗体。 (9) 下記性質を有するグルクロン酸転移酵素。 (a)作用 グルクロン酸供与体から、受容体であるN-アセチルガラ
クトサミン残基にグルクロン酸残基を転移する。 (b)基質特異性 グルクロン酸供与体から、非還元末端がN-アセチルガラ
クトサミン残基であり、コンドロイチン骨格を有する7
糖からなるオリゴ糖の該N-アセチルガラクトサミンに対
してグルクロン酸残基を転移するが、N-アセチルガラク
トサミン供与体から、非還元末端がグルクロン酸残基で
あり、コンドロイチン骨格を有する6糖からなるオリゴ
糖の該グルクロン酸に対しては実質的にN-アセチルガラ
クトサミン残基を転移する活性を有しない。 (c)活性の阻害 エチレンジアミン四酢酸共存下では酵素活性を実質的に
示さない。 (10) 配列番号4記載のアミノ酸配列又は配列番号
4記載のアミノ酸配列に1以上の構成アミノ酸の置換、
欠失、挿入、又は転位を有するアミノ酸配列を含むこと
を特徴とする(9)記載のグルクロン酸転移酵素。 (11) 非還元末端にN-アセチルガラクトサミン残基
を有するとともにコンドロイチン骨格を有する糖鎖に対
し、(1)〜(3)いずれか記載の融合タンパク質或い
は(9)又は(10)記載のグルクロン酸転移酵素を作
用させ、グルクロン酸供与体から該糖鎖の非還元末端の
N-アセチルガラクトサミン残基にグルクロン酸を転移す
ることを特徴とする、コンドロイチン骨格を有する糖鎖
の製造方法。 (12) 配列番号4記載のアミノ酸配列又は配列番号
4記載のアミノ酸配列に1以上の構成アミノ酸の置換、
欠失、挿入、又は転位を有するアミノ酸配列からなるポ
リペプチドを含むタンパク質を含有し、非還元末端にN-
アセチルガラクトサミン残基を有するコンドロイチン骨
格からなる糖鎖にグルクロン酸供与体からグルクロン酸
を転移する活性を有する糖鎖合成剤。 (13) タンパク質が配列番号4記載のアミノ酸配列
又は配列番号4記載のアミノ酸配列に1以上の構成アミ
ノ酸の置換、欠失、挿入、又は転位を有するアミノ酸配
列からなるポリペプチドと識別ペプチドとの融合タンパ
ク質を含むことを特徴とする(12)記載の糖鎖合成
剤。
That is, the present invention is as follows. (1) The amino acid sequence of SEQ ID NO: 4 or SEQ ID NO: 4
A polypeptide consisting of an amino acid sequence having one or more constituent amino acid substitutions, deletions, insertions, or transpositions in the described amino acid sequence, and a discriminant peptide fused to each other and present in the chondroitin skeleton from the glucuronic acid donor. A fusion protein having an enzyme activity of transferring glucuronic acid to an N-acetylgalactosamine residue at a non-reducing end. (2) The non-reducing terminal is an N-acetylgalactosamine residue from the glucuronic acid donor, and the glucuronic acid residue is transferred to the N-acetylgalactosamine of the oligosaccharide consisting of 7 sugars having a chondroitin skeleton, Activity of transferring an N-acetylgalactosamine residue from an N-acetylgalactosamine donor to a glucuronic acid of an oligosaccharide consisting of a hexasaccharide having a chondroitin skeleton and having a non-reducing end as a glucuronic acid residue The fusion protein according to (1), which does not have: (3) Discrimination peptide is signal peptide, protein kinase A, protein A, glutathione S transferase, His
Tag, myc tag, FLAG protein, T7 tag, S tag, HSV
Tags, pelB, HA tags, Trx tags, CBP tags, CBD tags, CBR
Tags, β-lac / blu, β-gal, luc, HP-Thio, HSP, Ln
γ, Fn, GFP, YFP, CFP, BFP, DsRed, DsRed2, MBP, La
The fusion protein according to (1) or (2), which is any one peptide selected from the group consisting of cZ, IgG, avidin, and protein G. (4) A DNA encoding the fusion protein according to any one of (1) to (3). (5) A vector containing the DNA according to (4). (6) A transformant obtained by introducing the vector according to (5) into a host cell. (7) The transformant according to (6) is grown, and the fusion protein is isolated from the grown product (1) to
(3) The method for producing the fusion protein according to any one of the above. (8) An antibody which specifically recognizes the fusion protein according to any one of (1) to (3). (9) A glucuronosyltransferase having the following properties. (A) Action The glucuronic acid residue is transferred from the glucuronic acid donor to the acceptor N-acetylgalactosamine residue. (B) From the substrate-specific glucuronic acid donor, the non-reducing end is an N-acetylgalactosamine residue and has a chondroitin skeleton 7
It transfers a glucuronic acid residue to the N-acetylgalactosamine of the oligosaccharide consisting of sugar, but from the N-acetylgalactosamine donor, the non-reducing end is a glucuronic acid residue and consists of a hexasaccharide having a chondroitin skeleton. The oligosaccharide has substantially no activity to transfer the N-acetylgalactosamine residue to the glucuronic acid. (C) Inhibition of activity In the coexistence of ethylenediaminetetraacetic acid, it exhibits substantially no enzyme activity. (10) Substitution of one or more constituent amino acids in the amino acid sequence of SEQ ID NO: 4 or the amino acid sequence of SEQ ID NO: 4,
The glucuronosyltransferase according to (9), which comprises an amino acid sequence having a deletion, an insertion, or a transposition. (11) The fusion protein according to any one of (1) to (3) or the glucuronic acid according to (9) or (10) for a sugar chain having an N-acetylgalactosamine residue at a non-reducing end and a chondroitin skeleton. The glucuronic acid donor is allowed to act on the transferase and the non-reducing end of the sugar chain
A method for producing a sugar chain having a chondroitin skeleton, which comprises transferring glucuronic acid to an N-acetylgalactosamine residue. (12) Substitution of one or more constituent amino acids in the amino acid sequence of SEQ ID NO: 4 or the amino acid sequence of SEQ ID NO: 4,
It contains a protein containing a polypeptide consisting of an amino acid sequence having a deletion, insertion, or rearrangement, and has an N-terminal at the non-reducing end.
A sugar chain synthesizing agent having an activity of transferring glucuronic acid from a glucuronic acid donor to a sugar chain having a chondroitin skeleton having an acetylgalactosamine residue. (13) A fusion of a polypeptide consisting of an amino acid sequence of SEQ ID NO: 4 or an amino acid sequence of SEQ ID NO: 4 having one or more constituent amino acid substitutions, deletions, insertions, or transpositions with a discriminating peptide The sugar chain synthesizing agent according to (12), which contains a protein.

【0008】[0008]

【発明の実施の形態】以下、発明の実施の形態により本
発明を詳説する。 (1)本発明酵素 本発明酵素は下記性質を有する。 (a)作用 グルクロン酸供与体から、受容体であるN-アセチルガラ
クトサミン残基にグルクロン酸残基を転移する。 (b)基質特異性 グルクロン酸供与体から、非還元末端がN-アセチルガラ
クトサミン残基であり、コンドロイチン骨格を有する7
糖からなるオリゴ糖の該N-アセチルガラクトサミンに対
してグルクロン酸残基を転移するが、N-アセチルガラク
トサミン供与体から、非還元末端がグルクロン酸残基で
あり、コンドロイチン骨格を有する6糖からなるオリゴ
糖の該グルクロン酸に対しては実質的にN-アセチルガラ
クトサミン残基を転移する活性を有しない。 (c)活性の阻害 二価金属陽イオン非存在下では酵素活性を実質的に示さ
ない。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below with reference to embodiments of the invention. (1) Enzyme of the present invention The enzyme of the present invention has the following properties. (A) Action The glucuronic acid residue is transferred from the glucuronic acid donor to the acceptor N-acetylgalactosamine residue. (B) From the substrate-specific glucuronic acid donor, the non-reducing end is an N-acetylgalactosamine residue and has a chondroitin skeleton 7
It transfers a glucuronic acid residue to the N-acetylgalactosamine of the oligosaccharide consisting of sugar, but from the N-acetylgalactosamine donor, the non-reducing end is a glucuronic acid residue and consists of a hexasaccharide having a chondroitin skeleton. The oligosaccharide has substantially no activity to transfer the N-acetylgalactosamine residue to the glucuronic acid. (C) Inhibition of activity In the absence of a divalent metal cation, it exhibits substantially no enzyme activity.

【0009】本発明酵素におけるグルクロン酸供与体と
しては、グルクロン酸ヌクレオチドが例示され、例えば
ADP(アデノシン二リン酸)-GlcA、UDP(ウリジン二リ
ン酸)-GlcA、CDP(シチジン二リン酸)-GlcA、GDP(グ
アノシン二リン酸)-GlcA等が例示されるが、その中で
も生体内で一般的にグルクロン酸供与体として働くUDP-
GlcAが最も好ましい。
Examples of the glucuronic acid donor in the enzyme of the present invention include glucuronic acid nucleotides.
ADP (adenosine diphosphate) -GlcA, UDP (uridine diphosphate) -GlcA, CDP (cytidine diphosphate) -GlcA, GDP (guanosine diphosphate) -GlcA, etc. are exemplified. UDP- which generally acts as a glucuronic acid donor in
GlcA is most preferred.

【0010】非還元末端がN-アセチルガラクトサミン残
基であり、コンドロイチン骨格を有する7糖からなるオ
リゴ糖とは、例えば実施例に記載された様に睾丸ヒアル
ロニダーゼによりクジラ軟骨由来又はサメ軟骨由来のコ
ンドロイチン硫酸を限定分解して精製したコンドロイチ
ン硫酸6糖を基質とし、N-アセチルガラクトサミン供与
体存在下において、大腸菌K4株由来のコンドロイチン合
成酵素を作用させてN-アセチルガラクトサミンを非還元
末端に転移して調製することができる。
An oligosaccharide consisting of 7 sugars having a non-reducing end as an N-acetylgalactosamine residue and having a chondroitin skeleton means, for example, chondroitin derived from whale cartilage or shark cartilage by testicular hyaluronidase as described in Examples. Using chondroitin sulfate hexasaccharide purified by limited decomposition of sulfuric acid as a substrate, in the presence of an N-acetylgalactosamine donor, a chondroitin synthase derived from Escherichia coli K4 was allowed to act to transfer N-acetylgalactosamine to a non-reducing end. It can be prepared.

【0011】N-アセチルガラクトサミン供与体とは、N-
アセチルガラクトサミンヌクレオチド例えばADP-GalNA
c、UDP-GalNAc、CDP-GalNAc、GDP-GalNAc等が例示され
るが、その中でも生体内で一般的にN-アセチルガラクト
サミン供与体として働くUDP-GalNAcが最も好ましく例示
される。非還元末端がグルクロン酸残基であり、コンド
ロイチン骨格を有する6糖からなるオリゴ糖とは、実施
例に記載された様に睾丸ヒアルロニダーゼによりクジラ
軟骨由来又はサメ軟骨由来のコンドロイチン硫酸を限定
分解して精製することで得られるコンドロイチン硫酸6
糖が例示される。
The N-acetylgalactosamine donor is N-
Acetylgalactosamine nucleotides such as ADP-GalNA
c, UDP-GalNAc, CDP-GalNAc, GDP-GalNAc and the like are exemplified, and among them, UDP-GalNAc which generally acts as an N-acetylgalactosamine donor in vivo is most preferably exemplified. The non-reducing end is a glucuronic acid residue, and an oligosaccharide consisting of 6 sugars having a chondroitin skeleton, and as described in Examples, whale cartilage-derived or shark cartilage-derived chondroitin sulfate is limitedly decomposed by testicular hyaluronidase. Chondroitin sulfate 6 obtained by purification
A sugar is illustrated.

【0012】グルクロン酸残基を転移する活性や、N-ア
セチルガラクトサミン残基を転移する活性は、例えば各
供与体を放射能(好ましくは炭素同位体:14C、3H(ト
リチウム)等)や蛍光物質(基質に立体障害などを起こ
さないことから放射能が好ましい)でラベルし、この供
与体を使用して酵素を反応させ、反応生成物を液体シン
チレーションカウンター、又はオートラジオグラフィ
等、ラベルした物質を検出するための方法で解析するこ
とで酵素活性を検出することが可能である。これらの活
性の測定は、実施例1中<4>記載の方法に従って行う
ことができる。なお、「実質的に活性を有しない」と
は、実施例1の<4>に記載された方法に従って測定し
ても、陰性対照と同程度の活性しか観察されないことを
指して使用する。
The activity of transferring a glucuronic acid residue and the activity of transferring an N-acetylgalactosamine residue are determined by, for example, the activity of each donor (preferably carbon isotope: 14 C, 3 H (tritium), etc.) Labeled with a fluorescent substance (radioactivity is preferable because it does not cause steric hindrance to the substrate), the enzyme is reacted using this donor, and the reaction product is labeled with a liquid scintillation counter, autoradiography, or the like. It is possible to detect the enzyme activity by analyzing with a method for detecting a substance. These activities can be measured according to the method described in <4> in Example 1. The term "substantially free of activity" is used to mean that even when the measurement is performed according to the method described in <4> of Example 1, only the same level of activity as that of the negative control is observed.

【0013】二価金属陽イオンによる酵素反応への影響
は、例えば実施例記載の様に、反応系に二価金属陽イオ
ン、好ましくはマンガンイオン(Mn2+)を共存させた際
の酵素反応と、その反応系にさらにエチレンジアミン四
酢酸(以下「EDTA」とも記載する)などの金属イオンに
対するキレート剤を添加した反応系での酵素反応とを比
較することで容易に対比することが可能である。
The effect of the divalent metal cation on the enzymatic reaction is, for example, as described in Examples, the enzymatic reaction when a divalent metal cation, preferably manganese ion (Mn 2+ ) coexists in the reaction system. It can be easily compared by comparing the reaction system with an enzyme reaction in a reaction system in which a chelating agent for a metal ion such as ethylenediaminetetraacetic acid (hereinafter also referred to as “EDTA”) is added to the reaction system. .

【0014】配列番号4記載のアミノ酸配列が融合タン
パク質とした際に同様の酵素活性を有することが後述の
実施例から明かとなっているため、本発明酵素は配列番
号4記載のアミノ酸配列を含むことが好ましく、配列番
号4記載のアミノ酸配列にさらに10〜20の疎水性アミノ
酸残基からなる膜貫通領域などを有していても良い。し
かし、遺伝子工学的手法で本発明酵素を調製する際に
は、疎水性アミノ酸領域からなる膜貫通領域は、本発明
酵素の精製・単離を煩雑な作業をするため、最も好まし
い本発明酵素は、配列番号4記載のアミノ酸配列のみか
らなるポリペプチド或いはそれに糖鎖が結合した糖ポリ
ペプチドである。
The enzyme of the present invention comprises the amino acid sequence of SEQ ID NO: 4, since it is clear from the examples below that the amino acid sequence of SEQ ID NO: 4 has the same enzymatic activity when it is used as a fusion protein. Preferably, the amino acid sequence of SEQ ID NO: 4 may further have a transmembrane region composed of 10 to 20 hydrophobic amino acid residues. However, when the enzyme of the present invention is prepared by a genetic engineering technique, the transmembrane region consisting of a hydrophobic amino acid region requires complicated work for purification / isolation of the enzyme of the present invention. , A polypeptide consisting only of the amino acid sequence set forth in SEQ ID NO: 4 or a sugar polypeptide having a sugar chain bonded thereto.

【0015】(2)本発明物質 本発明物質は配列番号4記載のアミノ酸配列からなるポ
リペプチドと、識別ペプチドとが融合してなり、コンド
ロイチン骨格中に存在する非還元末端のN-アセチルガラ
クトサミン残基にグルクロン酸残基を転移する活性を有
することを特徴とする融合タンパク質である。
(2) Substance of the present invention The substance of the present invention is a fusion of the polypeptide consisting of the amino acid sequence of SEQ ID NO: 4 and the discriminating peptide, and the residue of N-acetylgalactosamine at the non-reducing end present in the chondroitin skeleton It is a fusion protein having an activity of transferring a glucuronic acid residue to a base.

【0016】ここで、識別ペプチドとは、融合タンパク
質を遺伝子組み換えによって調製する場合に、形質転換
体の生育物から融合タンパク質の分泌、分離、精製、検
出を容易とするために用いられるペプチドであり、例え
ばシグナルペプチド(多くのタンパク質のN末端に存在
し、タンパク質の選別のために細胞内では機能している
15〜30アミノ酸残基からなるペプチド:例えばOmpA、Om
pT、Dsb等)、プロテインキナーゼA、プロテインA(黄
色ブドウ球菌細胞壁の構成成分で分子量約42,000のタン
パク質)、グルタチオンS転移酵素、Hisタグ(ヒスチジ
ン残基を6〜10個並べて配した配列)、mycタグ(cMycタ
ンパク質由来の13アミノ酸配列)、FLAGペプチド(8ア
ミノ酸配列からなる分析用マーカー)、T7タグ(gene10
タンパク質の最初の11アミノ酸配列)、Sタグ(膵臓RNa
seA由来の15アミノ酸配列)、HSVタグ、pelB(大腸菌外
膜タンパク質pelBの22アミノ酸配列)、HAタグ(ヘマグ
ルチニン由来の10アミノ酸配列)、Trxタグ(チオレド
キシン配列)、CBPタグ(カルモジュリン結合ペプチ
ド)、CBDタグ(セルロース結合ドメイン)、CBRタグ
(コラーゲン結合ドメイン)、β-lac/blu(βラクタマ
ーゼ)、β-gal(βガラクトシダーゼ)、luc(ルシフ
ェラーゼ)、HP-Thio(His-patchチオレドキシン)、HS
P(熱ショックペプチド)、Lnγ(ラミニンγペプチ
ド)、Fn(フィブロネクチン部分ペプチド)、GFP(緑
色蛍光ペプチド)、YFP(黄色蛍光ペプチド)、CFP(シ
アン蛍光ペプチド)、BFP(青色蛍光ペプチド)、DsRe
d、DsRed2(赤色蛍光ペプチド)、MBP(マルトース結合
ペプチド)、LacZ(ラクトースオペレーター)、IgG
(免疫グロブリンG)、アビジン、プロテインGからなる
群から選択されるいずれかのペプチドを指称し、何れの
識別ペプチドであっても使用することが可能である。そ
の中でも特にシグナルペプチド、プロテインキナーゼ
A、プロテインA、グルタチオンS転移酵素、Hisタグ、my
cタグ、FLAGペプチド、T7タグ、Sタグ、HSVタグ、pelB
又はHAタグが、遺伝子工学的手法による本発明物質の発
現、精製がより容易となることから好ましい。
Here, the discriminating peptide is a peptide used for facilitating the secretion, separation, purification and detection of the fusion protein from the growth product of the transformant when the fusion protein is prepared by gene recombination. , Eg signal peptides (present at the N-terminus of many proteins and functioning intracellularly for protein selection)
Peptides consisting of 15 to 30 amino acid residues: eg OmpA, Om
pT, Dsb, etc.), protein kinase A, protein A (a component of Staphylococcus aureus cell wall and having a molecular weight of about 42,000), glutathione S-transferase, His tag (6 to 10 histidine residues arranged side by side), myc tag (13 amino acid sequence derived from cMyc protein), FLAG peptide (analytical marker consisting of 8 amino acid sequence), T7 tag (gene10
First 11 amino acid sequence of protein), S tag (pancreatic RNa
seA-derived 15 amino acid sequence), HSV tag, pelB (22 amino acid sequence of Escherichia coli outer membrane protein pelB), HA tag (10-amino acid sequence derived from hemagglutinin), Trx tag (thioredoxin sequence), CBP tag (calmodulin-binding peptide), CBD tag (cellulose binding domain), CBR tag (collagen binding domain), β-lac / blu (β lactamase), β-gal (β galactosidase), luc (luciferase), HP-Thio (His-patch thioredoxin), HS
P (heat shock peptide), Lnγ (laminin γ peptide), Fn (fibronectin partial peptide), GFP (green fluorescent peptide), YFP (yellow fluorescent peptide), CFP (cyan fluorescent peptide), BFP (blue fluorescent peptide), DsRe
d, DsRed2 (red fluorescent peptide), MBP (maltose binding peptide), LacZ (lactose operator), IgG
Any peptide selected from the group consisting of (immunoglobulin G), avidin, and protein G is referred to, and any discriminating peptide can be used. Among them, especially signal peptides and protein kinases
A, protein A, glutathione S transferase, His tag, my
c tag, FLAG peptide, T7 tag, S tag, HSV tag, pelB
Alternatively, the HA tag is preferable because it facilitates expression and purification of the substance of the present invention by a genetic engineering method.

【0017】本発明物質中での配列番号4記載のアミノ
酸配列からなるポリペプチドと識別ペプチドとの配置
は、識別ペプチドが配列番号4記載のアミノ酸配列から
なるポリペプチドのC末端側に結合していても或いはN末
端側に結合していてもよい。またこのような結合は、何
ら生理活性を有しないアミノ酸配列(2〜10個程度の
アミノ酸配列からなるペプチド)からなるスペーサーを
介してなされていても、本発明物質がコンドロイチンの
基本骨格中に存在するN-アセチルガラクトサミン残基に
グルクロン酸残基を転移する活性(以下、「GlcAT活
性」とも記載する)を有する限りにおいて制限はされな
い。
The arrangement of the polypeptide consisting of the amino acid sequence of SEQ ID NO: 4 and the discriminating peptide in the substance of the present invention is such that the discriminating peptide is bound to the C-terminal side of the polypeptide consisting of the amino acid sequence of SEQ ID NO: 4. Alternatively, it may be bound to the N-terminal side. Even if such a bond is made through a spacer composed of an amino acid sequence having no physiological activity (a peptide consisting of about 2 to 10 amino acid sequences), the substance of the present invention is present in the basic skeleton of chondroitin. There is no limitation as long as it has an activity of transferring a glucuronic acid residue to an N-acetylgalactosamine residue (hereinafter, also referred to as “GlcAT activity”).

【0018】ここで、GlcAT活性は、例えばKitagawa et
al., J. Biol. Chem.,276(2001),38721-38726を改変し
た方法(後述の実施例に記載)を用いることにより検出
することが可能である。かかる方法によって本発明物質
のGlcAT活性を測定した際に得られるミカエリス定数(K
m値)は、後述の実施例記載の「コンドロイチン硫酸由
来の11糖(CS11)」に対しては100μmol/l以下であるこ
とが好ましく、特に90μmol/l以下であることが好まし
く、特に80μmol/l以下であることが好ましい。また、
更にグルクロン酸供与体の好ましい例であるUDP-GlcUA
に対するKm値は、100μmol/l以下であることが好まし
く、95μmol/lであることがより好ましく、90μmol/l以
下であることが最も好ましい。このような極めて特異性
の高いGlcAT活性は本発明物質が配列番号4記載のアミ
ノ酸配列という特定のアミノ酸配列を融合タンパク質と
した形態であることによる驚くべき効果の一つと考えら
れる。
Here, the GlcAT activity is, for example, Kitagawa et al.
It is possible to detect by using a method (described in Examples below) in which al., J. Biol. Chem., 276 (2001), 38721-38726 is modified. When the GlcAT activity of the substance of the present invention is measured by such a method, the Michaelis constant (K
m value) is preferably 100 μmol / l or less, particularly preferably 90 μmol / l or less, particularly 80 μmol / l with respect to “11-sugar derived from chondroitin sulfate (CS11)” described in Examples below. It is preferably 1 or less. Also,
Furthermore, UDP-GlcUA, which is a preferred example of a glucuronic acid donor,
The Km value for is preferably 100 μmol / l or less, more preferably 95 μmol / l, most preferably 90 μmol / l or less. Such extremely highly specific GlcAT activity is considered to be one of the surprising effects due to the fact that the substance of the present invention has a form in which the specific amino acid sequence of SEQ ID NO: 4 is a fusion protein.

【0019】本発明物質が有する「N-アセチルガラクト
サミン残基へのグルクロン酸残基の転移活性」における
グルクロン酸の結合様式は、コンドロイチン骨格のN-ア
セチルガラクトサミン残基の3位ヒドロキシル基とグル
クロン酸残基の1位ヒドロキシル基とのβ1-3グリコシド
結合であることから、特に限定はされないが、β1-3グ
リコシド結合であることが好ましい。
The binding mode of glucuronic acid in the “transfer activity of glucuronic acid residue to N-acetylgalactosamine residue” possessed by the substance of the present invention is as follows: the 3-position hydroxyl group of N-acetylgalactosamine residue of the chondroitin skeleton and glucuronic acid. Since it is a β1-3 glycoside bond with the 1-position hydroxyl group of the residue, it is not particularly limited, but is preferably a β1-3 glycoside bond.

【0020】一般に、酵素タンパク質のアミノ酸配列の
うち、1又は複数(通常は2以上50以下)の構成アミノ
酸が置換、欠失、挿入、及び/又は転位しても酵素活性
が維持されることが知られ、同一酵素のバリアントであ
るということができるが、本発明物質においても配列番
号4記載のアミノ酸配列に1又は複数(2以上50以下)
の構成アミノ酸の置換、欠失、挿入、及び/又は転位等
の部分的な変異が起こっていても融合タンパク質がGlcA
T活性を保持している限りにおいて、本発明物質と実質
的に同一の物質であるということができる(このような
配列番号4記載のアミノ酸配列からなるポリペプチドに
部分的な変異を有するポリペプチドを便宜的に「修飾ポ
リペプチド」と記載する)。このような修飾ポリペプチ
ドのアミノ酸配列は、配列番号4に示されるアミノ酸配
列と93%以上、好ましくは95%以上、さらに97%以上の
相同性を有することを好ましい(すなわちアミノ酸の変
異の数は最大50個、36個以下が好ましく、22個以下であ
ることが最も好ましい)。アミノ酸配列の相同性は、FA
STAのような周知のコンピュータソフトウェアを用いて
容易に算出することができ、このようなソフトウェアは
インターネットによっても利用に供されている。
In general, the enzymatic activity can be maintained even if one or more (usually 2 or more and 50 or less) constituent amino acids in the amino acid sequence of the enzyme protein are substituted, deleted, inserted, and / or transposed. It is known and can be said to be a variant of the same enzyme, but also in the substance of the present invention, one or more (2 or more and 50 or less) in the amino acid sequence of SEQ ID NO:
Even if a partial mutation such as substitution, deletion, insertion, and / or rearrangement of the constituent amino acids of GlcA
It can be said that the substance is substantially the same as the substance of the present invention as long as it retains T activity (such a polypeptide having a partial mutation in the polypeptide consisting of the amino acid sequence of SEQ ID NO: 4). Is referred to as a "modified polypeptide" for convenience). It is preferable that the amino acid sequence of such a modified polypeptide has a homology of 93% or more, preferably 95% or more, further 97% or more with the amino acid sequence shown in SEQ ID NO: 4 (that is, the number of amino acid mutations is A maximum of 50, 36 or less is preferable, and 22 or less is most preferable. The amino acid sequence homology is FA
It can be easily calculated using a well-known computer software such as STA, and such software is also available on the Internet.

【0021】なお、上記融合タンパク質は、そのアミノ
酸配列が上記した通りのものであり、上記した酵素活性
を有するものであればタンパク質に糖鎖が結合していて
も良い。すなわち本発明物質の融合タンパク質には糖タ
ンパク質の形態の融合タンパク質も包含する。
The above-mentioned fusion protein has the amino acid sequence as described above, and a sugar chain may be bound to the protein as long as it has the above-mentioned enzymatic activity. That is, the fusion protein of the substance of the present invention includes a fusion protein in the form of glycoprotein.

【0022】このような本発明物質は、コンドロイチン
骨格を有するグリコサミノグリカンを基質とし、グルク
ロン酸供与体存在下、非還元末端のガラクトサミン残基
に対して、グルクロン酸残基を転移する後述の「本発明
糖鎖合成剤」の有効成分として使用することが可能であ
る。
Such a substance of the present invention uses a glycosaminoglycan having a chondroitin skeleton as a substrate and transfers a glucuronic acid residue to a galactosamine residue at the non-reducing end in the presence of a glucuronic acid donor, which will be described later. It can be used as an active ingredient of the "glycan synthesizer of the present invention".

【0023】また、更に本発明物質は後述の実施例に記
載の方法に従って、その酵素活性を容易に測定できるた
め、例えばかかる酵素活性の測定系に、被験物質を添加
し、被験物質が「本発明物質が有する酵素活性」を制御
(促進又は抑制)するか否かを測定・判定し、酵素活性
を制御する働きを有する被験物質を選択する方法、すな
わち「グルクロン酸転移酵素活性を制御する物質をスク
リーニングする方法」に本発明物質を使用することが可
能である。
Further, since the enzyme activity of the substance of the present invention can be easily measured according to the method described in Examples below, for example, a test substance is added to the assay system for the enzyme activity, and A method of measuring / determining whether or not to control (enhance or suppress) the enzyme activity of the invented substance, and selecting a test substance having a function of controlling the enzyme activity, that is, "a substance that controls glucuronosyltransferase activity" It is possible to use the substance of the present invention in a "screening method".

【0024】(3)本発明物質の調製法 本発明物質は、配列番号4記載のアミノ酸配列又は配列
番号4記載のアミノ酸配列に1以上の構成アミノ酸の置
換、欠失、挿入、又は転位を有するアミノ酸配列をコー
ドするDNAと識別ペプチドをコードするDNAとを同一読み
出し領域に配置してなり、且つ配列番号4記載のアミノ
酸配列又は配列番号4記載のアミノ酸配列に1以上の構
成アミノ酸の置換、欠失、挿入、又は転位を有するアミ
ノ酸配列からなるポリペプチドと識別ペプチドとが発現
しうるようなプロモーター領域を有するベクターでトラ
ンスフェクトした適当な宿主細胞を生育させることで、
GlcAT遺伝子を発現させ生育物中に蓄積させて調製を行
うことが可能である。なお、ここで宿主細胞は上記遺伝
子が発現しうるものであれば原核細胞(例えば大腸菌、
枯草菌等)であると真核細胞(例えば酵母、哺乳動物由
来の細胞又は昆虫由来の細胞等)であると限定はされな
い。特に配列番号4記載のアミノ酸配列を有するポリペ
プチドは本来真核細胞中で発現しているポリペプチドで
あることから、真核細胞が宿主細胞として好ましく、特
にほ乳類由来の細胞が好ましい。
(3) Method for Preparing Substance of the Present Invention The substance of the present invention has a substitution, deletion, insertion, or transposition of one or more constituent amino acids in the amino acid sequence of SEQ ID NO: 4 or the amino acid sequence of SEQ ID NO: 4. The DNA encoding the amino acid sequence and the DNA encoding the discriminating peptide are arranged in the same reading region, and the amino acid sequence of SEQ ID NO: 4 or the amino acid sequence of SEQ ID NO: 4 has one or more constituent amino acids substituted or deleted. Loss, insertion, or by transposing a suitable host cell transfected with a vector having a promoter region capable of expressing a polypeptide consisting of an amino acid sequence having transposition and a discrimination peptide,
It is possible to carry out the preparation by expressing the GlcAT gene and allowing it to accumulate in the growth product. The host cell here is a prokaryotic cell (for example, E. coli, if it can express the above gene).
Bacillus subtilis and the like) are not limited to eukaryotic cells (eg yeast, cells of mammalian origin, cells of insect origin, etc.). In particular, since the polypeptide having the amino acid sequence of SEQ ID NO: 4 is a polypeptide originally expressed in eukaryotic cells, eukaryotic cells are preferred as host cells, and mammalian cells are particularly preferred.

【0025】ここで、宿主細胞の生育とは、宿主細胞を
培養することの他、宿主細胞を生体などに投与し、その
生体内で宿主細胞を生育させることも含む。また、生育
物とは、培養された宿主細胞、培養上清の他、宿主細胞
を生体内で生育させた場合には、その生体の排泄物、分
泌物なども含む。
Here, the growth of the host cell includes culturing the host cell as well as administering the host cell to a living body or the like and growing the host cell in the living body. In addition to the cultured host cells and culture supernatant, the growth product also includes excrements and secretions of the living body when the host cells are grown in vivo.

【0026】本発明者らは実施例記載の方法により、Ge
nBank受け入れ番号AB037823のcDNA(配列番号1記載の
塩基配列からなる)が、ヒトのGlcATをコードするDNAで
あることを明らかとしたため、当該cDNAを基に本発明物
質を調製することが可能である。上記cDNAは、pBluescr
iptII SK(+)プラスミドに挿入された形態でかずさDNA研
究所(千葉県木更津市かずさ鎌足)に保管され、分譲を
受けることができる。
The present inventors have conducted Ge
Since it has been clarified that the cDNA of nBank Accession No. AB037823 (consisting of the nucleotide sequence of SEQ ID NO: 1) is a DNA encoding human GlcAT, the substance of the present invention can be prepared based on the cDNA. . The above cDNA is pBluescr
It is stored in the Kazusa DNA Research Institute (Kazusa Kamafoot, Kisarazu City, Chiba Prefecture) in the form of being inserted into the iptII SK (+) plasmid and can be sold.

【0027】本発明物質の識別ペプチドとして例えばFL
AGペプチドを使用し、宿主細胞として哺乳動物由来の細
胞を使用する場合には、例えばpFLAG-CMV-3ベクター
(シグマ社製)などを発現ベクターとして使用すること
ができる。
As the identification peptide of the substance of the present invention, for example, FL
When AG peptides are used and mammalian cells are used as host cells, for example, pFLAG-CMV-3 vector (manufactured by Sigma) can be used as an expression vector.

【0028】pBluescriptII SK(+)プラスミドに挿入さ
れている上記cDNAをpFLAG-CMV-3ベクターに挿入するた
めには、pBluescriptII SK(+)プラスミドベクターから
例えばNarI及びBamHIなどの適当な制限酵素を用いてcDN
Aを切り出して、cDNAの粘着末端を平滑化してcDNA断片
を得(配列番号3記載の塩基配列からなる)、pFLAG-CM
V-3ベクターに挿入するために例えばHindIIIの様な適当
な制限末端を連結させて、適当な制限酵素で処理したpF
LAG-CMV-3ベクターに挿入することが可能である。
In order to insert the above cDNA inserted into pBluescriptII SK (+) plasmid into pFLAG-CMV-3 vector, appropriate restriction enzymes such as NarI and BamHI are used from pBluescriptII SK (+) plasmid vector. CDN
A is cut out and the sticky ends of the cDNA are blunted to obtain a cDNA fragment (consisting of the nucleotide sequence of SEQ ID NO: 3), pFLAG-CM
PF treated with an appropriate restriction enzyme by ligating an appropriate restriction end such as HindIII for insertion into a V-3 vector
It can be inserted into the LAG-CMV-3 vector.

【0029】このようにして調製したpFLAG-CMV-3ベク
ター(pFLAGGlcAT)を、例えばpFLAG-CMV-3ベクターの
宿主細胞として機能するCOS-1細胞やCOS-7細胞にエレク
トロポレーション法などの常法を用いて導入して形質転
換体を得ることができる。
The pFLAG-CMV-3 vector (pFLAGGlcAT) thus prepared is used in COS-1 cells or COS-7 cells functioning as host cells for the pFLAG-CMV-3 vector by electroporation or the like. A transformant can be obtained by using the method.

【0030】形質転換体はその基となった宿主細胞が生
育するのに適した条件下で生育させて、その生育物から
本発明物質を調製することができる。例えばCOS-7細胞
を宿主細胞として選択した場合には、in vitroで形質転
換体を培養し、その培養物(培養後の形質転換体及び培
養上清)から本発明物質を単離して精製することが可能
である。上記pFLAG-CMV-3ベクターを用いた場合には本
発明物質はFLAGペプチドを含むことになるので、本発明
物質は例えば抗FLAG抗体や後述の本発明抗体を用いて、
例えばアフィニティー精製などの方法で本発明物質を単
離、精製することが可能である。単離、精製の方法は、
本発明物質における識別ペプチドによって適宜、適当な
方法を常套的に選択することが可能である。
The transformant can be grown under conditions suitable for growing the host cell on which it is based, and the substance of the present invention can be prepared from the grown product. For example, when COS-7 cells are selected as host cells, the transformant is cultured in vitro, and the substance of the present invention is isolated and purified from the culture (the transformant and the culture supernatant after the culture). It is possible. When the pFLAG-CMV-3 vector is used, the substance of the present invention will contain a FLAG peptide, so the substance of the present invention uses, for example, an anti-FLAG antibody or the antibody of the present invention described below,
For example, the substance of the present invention can be isolated and purified by a method such as affinity purification. The method of isolation and purification is
Depending on the discriminating peptide in the substance of the present invention, an appropriate method can be routinely selected.

【0031】また、識別ペプチドは例えばコラゲナーゼ
などによって特異的に認識されるアミノ酸配列(例えば
特開平11−137256号公報の配列番号3記載のア
ミノ酸配列等)を使用することにより、配列番号4記載
のアミノ酸配列又は配列番号4記載のアミノ酸配列に1
以上の構成アミノ酸の置換、欠失、挿入、又は転位を有
するアミノ酸配列を含む(1)で記載した本発明酵素を
得ることができる。
The discriminating peptide has the amino acid sequence specifically recognized by collagenase or the like (for example, the amino acid sequence described in SEQ ID NO: 3 of JP-A No. 11-137256, etc.), and thus the sequence described in SEQ ID NO: 4 is obtained. 1 in the amino acid sequence or the amino acid sequence of SEQ ID NO: 4
It is possible to obtain the enzyme of the present invention described in (1), which contains an amino acid sequence having the substitution, deletion, insertion, or transposition of the above constituent amino acids.

【0032】(4)本発明抗体 本発明抗体は、本発明物質に特異的に結合することを特
徴とする抗体である。本発明抗体は、抗体の抗原結合部
位を介して、本発明物質に特異的に結合する。したがっ
て、本発明抗体を製造は、本発明物質を「免疫原」とし
て使用し、公知の方法を用いることが可能である。より
具体的には、本発明物質を用いて、ウサギ、マウス、ラ
ット、ヤギ、ヒツジ、イヌ、ネコ、ウマ、サルなどの動
物を免疫し、これらの動物の血清を採取して抗血清(ポ
リクローナル抗体)を得るが、これらの動物から抗体産
生細胞(脾臓細胞など)を採取し、これと骨髄腫細胞株
(ミエローマ細胞)などの持続的な増殖能を有する細胞
とを融合させ、融合細胞(ハイブリドーマ)を得て、こ
れらを培養するか又は動物の腹腔内で増殖させることに
よりモノクローナル抗体を効率よく製造することができ
る。かかるハイブリドーマは、当業者であれば本明細書
を基に容易に調製することが可能である。
(4) Antibody of the Present Invention The antibody of the present invention is an antibody characterized by specifically binding to the substance of the present invention. The antibody of the present invention specifically binds to the substance of the present invention via the antigen-binding site of the antibody. Therefore, in producing the antibody of the present invention, it is possible to use a known method using the substance of the present invention as an "immunogen". More specifically, the substance of the present invention is used to immunize animals such as rabbits, mice, rats, goats, sheep, dogs, cats, horses and monkeys, and sera of these animals are collected to obtain antiserum (polyclonal Antibodies), antibody-producing cells (spleen cells, etc.) are collected from these animals and fused with cells having a continuous proliferation ability such as myeloma cell lines (myeloma cells) to obtain fused cells ( A monoclonal antibody can be efficiently produced by obtaining a hybridoma) and culturing them or proliferating them in the abdominal cavity of an animal. Such hybridoma can be easily prepared by those skilled in the art based on the present specification.

【0033】本発明抗体は、本発明物質又はその一部を
抗原決定基又はエピトープ(これらを総合して「エピト
ープ等」とも記載する)とし、本発明物質を特異的に認
識して結合する能力を有する。したがって本発明抗体
は、in vitro又はin vivoのいずれかにおいて、前記エ
ピトープ等を含む本発明物質の断片又は本発明物質の検
出を行なうアッセイで使用することが可能である。ま
た、本発明抗体は、免疫アフィニティークロマトグラフ
ィーによって、エピトープ等を含む本発明物質の断片又
は本発明物質を精製する際にも使用することが可能であ
る。
The antibody of the present invention has the ability to specifically recognize and bind to the substance of the present invention, using the substance of the present invention or a part thereof as an antigenic determinant or an epitope (these are collectively referred to as “epitope etc.”). Have. Therefore, the antibody of the present invention can be used in an in vitro or in vivo assay in which a fragment of the substance of the present invention containing the above-mentioned epitope or the like or a substance of the present invention is detected. Further, the antibody of the present invention can also be used when purifying a fragment of the substance of the present invention containing an epitope or the like or a substance of the present invention by immunoaffinity chromatography.

【0034】上述のエピトープ等は、直鎖でも高次構造
的(conformational)(断続的)でもどちらでもよい。
なお、エピトープ等は、当該技術分野に知られる常法に
よって同定することができる。したがって、本発明の1
つの側面は、本発明のグルクロン酸転移酵素のタンパク
質と識別ペプチドとの融合タンパク質の抗原性エピトー
プに関する。このようなエピトープは、以下により詳細
に記載されるように、抗体、特にモノクローナル抗体を
作成するのに有用である。さらに、本発明物質に含まれ
るエピトープの部分は本発明抗体に特異的に結合するの
で、本発明抗体の生体中又は試料中における存在量を測
定するためのアッセイにおいて使用することが可能であ
る。
The above-mentioned epitope or the like may be linear or conformational (intermittent).
The epitope and the like can be identified by a conventional method known in the art. Therefore, one of the
One aspect relates to an antigenic epitope of a fusion protein of the glucuronosyltransferase protein of the present invention and a discriminating peptide. Such epitopes are useful in raising antibodies, particularly monoclonal antibodies, as described in more detail below. Furthermore, since the part of the epitope contained in the substance of the present invention specifically binds to the antibody of the present invention, it can be used in an assay for measuring the abundance of the antibody of the present invention in a living body or in a sample.

【0035】本発明抗体は、本発明物質若しくはその一
部、又は上述のエピトープの部分を用いて調製すること
ができる。本発明抗体は、ポリクローナル抗体、モノク
ローナル抗体の何れであっても良く、何れも慣用的技術
によって調製することが可能である。例えば、Kennetら
(監修), Monoclonal Antibodies, Hybridomas: A New
Dimension in Biological Analyses, Plenum Press, N
ew York, 1980を参照すると当業者であれば容易に本発
明抗体を調製することができる。しかし、用途の多様性
からモノクローナル抗体であることが好ましい。
The antibody of the present invention can be prepared using the substance of the present invention or a part thereof, or the above-mentioned epitope portion. The antibody of the present invention may be either a polyclonal antibody or a monoclonal antibody, and both can be prepared by a conventional technique. For example, Kennet et al. (Supervised), Monoclonal Antibodies, Hybridomas: A New
Dimension in Biological Analyses, Plenum Press, N
With reference to ew York, 1980, those skilled in the art can easily prepare the antibody of the present invention. However, it is preferably a monoclonal antibody because of its versatility.

【0036】モノクローナル抗体である本発明抗体は、
キメラ抗体(ネズミモノクローナル抗体のヒト化型抗体
や、サルモノクローナル抗体のヒト化型抗体などが例示
される)が含まれる。このようなヒト化抗体を既知の技
術によって調製すると、抗体をヒトに投与した際に、免
疫原性が少ないという利点が存在する。慣用的技術によ
って産生可能な、抗体の抗原結合断片も、本発明に含ま
れる。このような断片の例は、特に限定されるわけでは
ないが、例えばFabおよびF(ab')断片が含まれる。ま
た遺伝子工学技術によって産生される抗体断片および誘
導体も例示される。
The antibody of the present invention which is a monoclonal antibody is
Chimeric antibodies (such as humanized antibodies of murine monoclonal antibodies and humanized antibodies of monkey monoclonal antibodies are exemplified) are included. The preparation of such humanized antibodies by known techniques has the advantage of being less immunogenic when administered to humans. Also included in the invention are antigen binding fragments of antibodies that can be produced by conventional techniques. Examples of such fragments include, but are not limited to, Fab and F (ab ′) 2 fragments, for example. In addition, antibody fragments and derivatives produced by genetic engineering techniques are also exemplified.

【0037】(5)本発明糖鎖合成剤 本発明糖鎖合成剤は、配列番号4記載のアミノ酸配列か
らなるポリペプチドを含むタンパク質を含有し、非還元
末端にN-アセチルガラクトサミン残基を有するコンドロ
イチン骨格からなる糖鎖にグルクロン酸供与体からグル
クロン酸を転移する活性を有する。
(5) Sugar chain synthesizing agent of the present invention The sugar chain synthesizing agent of the present invention contains a protein containing a polypeptide consisting of the amino acid sequence of SEQ ID NO: 4, and has an N-acetylgalactosamine residue at the non-reducing end. It has an activity of transferring glucuronic acid from a glucuronic acid donor to a sugar chain composed of a chondroitin skeleton.

【0038】本発明糖鎖合成剤に含有されるタンパク質
は、配列番号4記載のアミノ酸配列からなるポリペプチ
ドと識別ペプチドとの融合タンパク質であることが好ま
しく、前記本発明物質によってなることが最も好まし
い。
The protein contained in the sugar chain synthesizing agent of the present invention is preferably a fusion protein of a polypeptide having the amino acid sequence of SEQ ID NO: 4 and a discriminating peptide, and most preferably the above-mentioned substance of the present invention. .

【0039】本発明糖鎖合成剤は、コンドロイチン骨格
の非還元末端に存在するN-アセチルガラクトサミン残基
に対してグルクロン酸を転移する試薬として使用するこ
とが可能である。また、本発明糖鎖合成剤を構成する目
的酵素活性を有する部分である配列番号4記載のアミノ
酸配列がヒト由来のアミノ酸配列であるため、本発明糖
鎖合成剤をヒトに投与したとしても抗原性が低いことが
期待され、また培養軟骨などを本発明糖鎖合成剤で修飾
した後に生体に対して移植したとしても、本発明糖鎖合
成剤に起因する抗原抗体反応や炎症は惹起されないこと
が期待される。
The sugar chain synthesizing agent of the present invention can be used as a reagent for transferring glucuronic acid to an N-acetylgalactosamine residue present at the non-reducing end of the chondroitin skeleton. Further, since the amino acid sequence of SEQ ID NO: 4 which is a portion having the desired enzymatic activity constituting the sugar chain synthesizing agent of the present invention is a human-derived amino acid sequence, even if the sugar chain synthesizing agent of the present invention is administered to a human, it is an antigen. Is expected to have low activity, and that even if cultured cartilage or the like is transplanted to a living body after being modified with the sugar chain synthesizing agent of the present invention, no antigen-antibody reaction or inflammation caused by the sugar chain synthesizing agent of the present invention is induced. There is expected.

【0040】[0040]

【実施例】以下、本発明を実施例により具体的に説明す
る。 実施例1 <1>ヒトGlcATを発現させるためのベクターの調製 GenBank受け入れ番号AB037823のcDNA(配列番号1記載
の塩基配列からなる)を含むpBluescriptII SK(+)プラ
スミド(かずさDNA研究所:KIAA1402)を常法に従って
制限酵素NarI及びBamHIにより消化した。この消化産物
をアガロースゲル電気泳動に供し、5.4kbpのバンドをGe
l Extraction Kit(QIAGEN社製)を用いて回収した。回
収した消化産物をTaKaRa Blunting Kit(宝酒造株式会
社製)を用いて平滑化した後、HindIIIリンカー(宝酒
造株式会社製)を結合させ、セルフライゲーションさせ
た。
EXAMPLES The present invention will be specifically described below with reference to examples. Example 1 <1> Preparation of vector for expressing human GlcAT A pBluescriptII SK (+) plasmid (Kazusa DNA Research Institute: KIAA1402) containing the cDNA of GenBank Accession No. AB037823 (consisting of the nucleotide sequence of SEQ ID NO: 1) was prepared. It was digested with restriction enzymes NarI and BamHI according to a conventional method. This digestion product was subjected to agarose gel electrophoresis and the 5.4 kbp band was separated by Ge
l Extraction Kit (manufactured by QIAGEN) was used for recovery. The recovered digestion product was blunted using TaKaRa Blunting Kit (Takara Shuzo Co., Ltd.), and then HindIII linker (Takara Shuzo Co., Ltd.) was bound thereto for self-ligation.

【0041】このようにして調製したDNA断片を、制限
酵素HindIIIおよびNotIによって消化し、消化産物をア
ガロースゲル電気泳動に供し、2.3kbpの断片を回収し
た。このDNA断片を、常法に従って制限酵素HindIIIおよ
びNotIで消化したpFLAG-CMV-3に連結させた。得られた
プラスミドの塩基配列を、常法に従ってシークエンス
し、配列番号3記載の塩基配列からなるGlcATcDNAをFLA
Gタンパク質との融合タンパク質として発現するように
構築されたベクターをpFLAGGlcATとした。
The DNA fragment thus prepared was digested with restriction enzymes HindIII and NotI, and the digested product was subjected to agarose gel electrophoresis to recover a 2.3 kbp fragment. This DNA fragment was ligated to pFLAG-CMV-3 digested with restriction enzymes HindIII and NotI according to a conventional method. The base sequence of the obtained plasmid was sequenced according to a conventional method, and the GlcAT cDNA consisting of the base sequence of SEQ ID NO: 3 was FLA.
The vector constructed so as to be expressed as a fusion protein with the G protein was designated as pFLAGGlcAT.

【0042】<2>組換体の調製 組換体を調製するための宿主細胞としては、サル腎臓由
来の培養細胞COS-7細胞(ダルベッコの調整最小培地:
以下「DMEM」とも記載する)を使用した。上記で調製し
たpFLAGGlcAT(2μg)をTransFast(商標名:プロメガ
社製)を用いて、添付されたプロトコールに従ってCOS-
7細胞(サル腎臓由来の培養細胞)に導入し、一過性発
現細胞を常法に従って回収するととも(transient:K
2)、600μg/mlの濃度の抗生物質G418を培地に添加する
ことにより、薬剤耐性スクリーニングを行って安定株を
回収した(stable:K2-2〜K2-21)。
<2> Preparation of Recombinant As host cells for preparing the recombinant, monkey kidney-derived cultured cells COS-7 cells (Dulbecco's adjusted minimum medium:
Hereinafter, also referred to as "DMEM") was used. Using the above-prepared pFLAGGlcAT (2 μg), TransFast (trade name: manufactured by Promega Co.) was analyzed according to the attached protocol.
It was introduced into 7 cells (cultured cells derived from monkey kidney), and transiently expressed cells were collected by a conventional method (transient: K
2) By adding antibiotic G418 at a concentration of 600 μg / ml to the medium, drug resistance screening was performed to recover stable strains (stable: K2-2 to K2-21).

【0043】得られた各クローンの培養物を、細胞と培
養上清に遠心分離を用いて分離し、細胞溶解液及び培養
上清から、抗FLAG抗体アフィニティゲル(M2アフィニテ
ィゲル:シグマ社製)を用いて融合タンパク質を回収
し、抗FLAG抗体(M2:シグマ社製)を一次抗体、二次抗
体としてペルオキシダーゼ標識抗マウスIgG抗体(ザイ
メッド社製)を用いてウエスタンブロッティング法(To
wbin et al., PNAS U.S.A., (1979),76:4350-4354)を
行った(図1)。その結果、K2-5の細胞株が培地中に特
に高濃度でFLAGタンパク質とGlcATとの融合タンパク質
を発現することが明らかとなった。
The obtained culture of each clone was separated into cells and culture supernatant by centrifugation, and the anti-FLAG antibody affinity gel (M 2 affinity gel: Sigma) was separated from the cell lysate and the culture supernatant. ) Is used to collect the fusion protein, and the anti-FLAG antibody (M 2 : manufactured by Sigma) is used as a primary antibody and the secondary antibody is a peroxidase-labeled anti-mouse IgG antibody (manufactured by Zymed) as a Western blotting method (To.
wbin et al., PNAS USA, (1979), 76: 4350-4354) (Fig. 1). As a result, it was revealed that the K2-5 cell line expresses a fusion protein of FLAG protein and GlcAT in the medium at a particularly high concentration.

【0044】<3>FLAGタンパク質とGlcATとの融合タ
ンパク質の精製 上記で得られたK2-5株を150mm培養皿を用いて、20mlのD
MEM(10%牛胎児血清、100U/mlペニシリンGカリウム、10
0μg/mlストレプトマイシン硫酸塩、600μg/mlG418を含
む)で培養し、コンフルエントになった後、培地を交換
してさらに3日間培養して得られた培養上清を回収し
た。
<3> Purification of fusion protein of FLAG protein and GlcAT The K2-5 strain obtained above was used in a 150 mm culture dish to prepare 20 ml of D
MEM (10% fetal bovine serum, 100 U / ml penicillin G potassium, 10
After culture at 0 μg / ml streptomycin sulfate and 600 μg / ml G418) to reach confluence, the medium was exchanged and the culture supernatant was obtained by further culturing for 3 days.

【0045】この培養上清に1mol/l Tris-HCl、 pH7.
4、グリセロールをそれぞれ終濃度50mmol/l、20%になる
ように加え、使用するまで-80℃で保存した。保存した
培地を融解後、Anti-FLAG M2-Agarose Affinity Gel (S
IGMA社)を加え、4℃、一晩、転倒混和した。反応後、ゲ
ルをトリス緩衝生理的食塩水(以下「TBS」とも記載す
る)/0.05% Tween20(商標名:ICN社製)で、3回、つ
づいてTBSで1回洗浄した後、27Gの注射針をつけたシリ
ンジを用い余分な洗浄液を除き、融合タンパク質を精製
した。
[0045] 1 mol / l Tris-HCl, pH7.
4. Glycerol and glycerol were added to final concentrations of 50 mmol / l and 20%, respectively, and stored at -80 ° C until use. After thawing the stored medium, Anti-FLAG M2-Agarose Affinity Gel (S
(IGMA) was added and mixed by inversion at 4 ° C. overnight. After the reaction, the gel was washed 3 times with Tris-buffered physiological saline (hereinafter also referred to as "TBS") / 0.05% Tween20 (trade name: manufactured by ICN), then once with TBS, and then injected with 27G. The fusion protein was purified by removing excess washing solution using a syringe with a needle.

【0046】<4>精製した融合タンパク質の活性測定 (1)N-アセチルガラクトサミン転移酵素(GalNAcT)
活性の測定 10mmol/lのMnCl2、171μmol/lのアデノシン三リン酸(A
TP)ナトリウム塩を含む50mmol/lのMES緩衝液(pH6.
5)に、培養上清10ml相当の上記<3>で得られた融合
タンパク質を添加し、N-アセチルガラクトサミン残基供
与体としてトリチウムラベルしたUDP(ウリジン二リン
酸)-GalNAc(9×105cpm:NEN社製)、ガラクトサミン
残基受容体としてコンドロイチン(0.28μg:生化学工
業株式会社製)を添加して、全量を100μlとなるように
蒸留水で調整した。この反応液を37℃で3時間反応させ
た。その後、100℃で5分加熱することで酵素を失活させ
て反応を停止した。反応液をポアサイズ0.22μmのマイ
クロフィルター(ミリポア社製)で濾過した後、流速0.
5ml/分の0.2mol/lのNaClを移動相とするSuperdex pept
ideカラム(30×10mm:ファルマシア社製)に通筒して
0.5ml毎の画分として溶出液を回収した。そして各画分
の放射能をシンチレーションカウンターにより計数した
(図2)。尚、陽性対照としては、大腸菌K4株由来の
コンドロイチン合成酵素標品(J. Biol. Chem., 277(20
02), 21567-21575:生化学工業株式会社二宮氏より恵
与)3μUを使用した。その結果、陽性対象はコンドロイ
チンに対してN-アセチルガラクトサミン残基を転移して
いるのに対し、本発明の融合タンパク質は、コンドロイ
チンに対してはN-アセチルガラクトサミン残基を転移し
ないことが明かとなった。
<4> Activity measurement of purified fusion protein (1) N-acetylgalactosamine transferase (GalNAcT)
Measurement of activity 10 mmol / l MnCl 2 , 171 μmol / l adenosine triphosphate (A
50 mmol / l MES buffer (pH 6.
To 5), 10 ml of the culture supernatant was added to the fusion protein obtained in the above <3>, and tritium-labeled UDP (uridine diphosphate) -GalNAc (9 × 10 5 as an N-acetylgalactosamine residue donor was added. cpm: manufactured by NEN) and chondroitin (0.28 μg: manufactured by Seikagaku Corporation) as a galactosamine residue receptor were added, and the total amount was adjusted to 100 μl with distilled water. This reaction solution was reacted at 37 ° C for 3 hours. Then, the enzyme was inactivated by heating at 100 ° C. for 5 minutes to stop the reaction. After the reaction solution was filtered through a microfilter (Millipore) with a pore size of 0.22 μm, the flow rate was 0.
Superdex pept with 0.2 mol / l NaCl as mobile phase at 5 ml / min
ide column (30 × 10mm: made by Pharmacia)
The eluate was collected as fractions every 0.5 ml. Then, the radioactivity of each fraction was counted by a scintillation counter (Fig. 2). As a positive control, a chondroitin synthase preparation derived from Escherichia coli K4 strain (J. Biol. Chem., 277 (20
02), 21567-21575: given by Mr. Ninomiya, Seikagaku Corporation) 3 μU was used. As a result, while the positive subject transferred N-acetylgalactosamine residues to chondroitin, the fusion protein of the present invention revealed that it did not transfer N-acetylgalactosamine residues to chondroitin. became.

【0047】さらに、睾丸ヒアルロニダーゼにより限定
分解して精製したコンドロイチン硫酸6糖(1nmol:生化
学工業株式会社多和田氏より恵与)を受容体として同様
の測定を行った(図3)。その結果、このようなオリゴ
糖に対しても本発明の融合タンパク質は、N-アセチルガ
ラクトサミン残基を転移しないことが明らかとなった。
Further, the same measurement was carried out using chondroitin sulfate hexasaccharide (1 nmol: gifted from Mr. Tawada, Seikagaku Corporation) purified by limited decomposition with testicular hyaluronidase (FIG. 3). As a result, it was revealed that the fusion protein of the present invention does not transfer N-acetylgalactosamine residues to such oligosaccharides.

【0048】(2)グルクロン酸転移酵素(GlcAT)活
性の測定 10mmol/lのMnCl2を含む50mmol/lの酢酸ナトリウム緩衝
液(pH5.6)に、培養上清10ml相当の上記<3>で得ら
れた融合タンパク質を添加し、グルクロン酸残基供与体
として14CでラベルしたUDP-GlcA(9×105cpm:ICN社
製)、グルクロン酸残基受容体としてコンドロイチン
(0.28μg:生化学工業株式会社製)を添加して、全量
を100μlとなるように蒸留水で調整した。この反応液を
37℃で3時間反応させた。その後、100℃で5分加熱する
ことで酵素を失活させて反応を停止した。反応液をポア
サイズ0.22μmのマイクロフィルター(ミリポア社製)
で濾過した後、流速0.5ml/分の0.2mol/lのNaClを移動
相とするSuperdex peptideカラム(30×10mm:ファルマ
シア社製)に通筒して0.5ml毎の画分として溶出液を回
収した。そして各画分の放射能をシンチレーションカウ
ンターにより計数した(図4)。尚、陽性対象として
は、大腸菌K4株由来のコンドロイチン合成酵素標品(J.
Biol. Chem., 277(2002), 21567-21575:生化学工業株
式会社二宮氏より恵与)3μUを使用した。その結果、陽
性対象においてはコンドロイチンに対してグルクロン酸
残基の転移活性が観察されたのに対し、本発明の融合タ
ンパク質は、コンドロイチンに対してはグルクロン酸残
基を転移しないことが明かとなった。
(2) Measurement of glucuronosyltransferase (GlcAT) activity In 50 mmol / l sodium acetate buffer (pH 5.6) containing 10 mmol / l MnCl 2 , the above <3> corresponding to 10 ml of culture supernatant. The obtained fusion protein was added, and UDP-GlcA labeled with 14 C as a glucuronic acid residue donor (9 × 10 5 cpm: manufactured by ICN), chondroitin (0.28 μg: biochemical) as a glucuronic acid residue acceptor. (Manufactured by Kogyo Co., Ltd.) was added, and the total amount was adjusted to 100 μl with distilled water. This reaction solution
The reaction was carried out at 37 ° C for 3 hours. Then, the enzyme was inactivated by heating at 100 ° C. for 5 minutes to stop the reaction. Microfilter with a pore size of 0.22 μm (Millipore)
After filtration through a column, it is passed through a Superdex peptide column (30 x 10 mm: Pharmacia) with a mobile phase of 0.2 mol / l NaCl at a flow rate of 0.5 ml / min, and the eluate is collected as 0.5 ml fractions. did. Then, the radioactivity of each fraction was counted by a scintillation counter (Fig. 4). In addition, as a positive target, a chondroitin synthase preparation (J.
Biol. Chem., 277 (2002), 21567-21575: gifted from Mr. Ninomiya, Seikagaku Corporation) 3 μU was used. As a result, it was revealed that the glucuronic acid residue-transferring activity to chondroitin was observed in the positive subjects, whereas the fusion protein of the present invention did not transfer the glucuronic acid residue to chondroitin. It was

【0049】さらに、睾丸ヒアルロニダーゼにより限定
分解して精製したコンドロイチン硫酸6糖(1nmol:生化
学工業株式会社多和田氏より恵与)に、その非還元末端
に大腸菌K4株由来のコンドロイチン合成酵素(J. Biol.
Chem., 277(2002), 21567-21575:生化学工業株式会社
二宮氏より恵与)によりN-アセチルガラクトサミンを転
移して調製したコンドロイチン硫酸7糖を受容体として
同様の測定を行った(図5)。その結果、このようなオ
リゴ糖に対して、本発明の融合タンパク質はグルクロン
酸残基を転移してコンドロイチン硫酸8糖が得られるこ
とが明かとなった。
Further, chondroitin sulfate hexasaccharide (1 nmol: bestowed by Mr. Tawada, Seikagaku Corporation) purified by limited decomposition with testicular hyaluronidase was added to the chondroitin synthase (J. Biol.
Chem., 277 (2002), 21567-21575: Seikagaku Kogyo Co., Ltd., presented by Mr. Ninomiya. Similar measurements were carried out using chondroitin sulfate 7-sugar prepared by transferring N-acetylgalactosamine (Fig. 5). As a result, it was revealed that the fusion protein of the present invention transfers a glucuronic acid residue to such an oligosaccharide to obtain a chondroitin sulfate octasaccharide.

【0050】なお、上記受容体としてのコンドロイチン
硫酸7糖は、20mmol/lのMnCl2、0.1mol/lの(NH4)2SO4、1
mol/lのエチレングリコールを含む50mmol/lのTris-HCl
緩衝液(pH7.2)に大腸菌K4株由来のコンドロイチン
合成酵素12μUを用い、N-アセチルガラクトサミン受容
体として睾丸ヒアルロニダーゼにより限定分解して精製
したコンドロイチン硫酸6糖(50μg:生化学工業株式会
社多和田氏より恵与)を使用して調製した。この反応に
おいてN-アセチルガラクトサミン供与体としては1.5mmo
l/lのUDP-GalNAc(シグマ社製)を加えて、全量を蒸留
水により500μlに調整した。この反応液を30℃で1時間
反応させ、その後100℃で5分間加熱して酵素を失活させ
ることで反応を停止した。この反応液を流速2ml/分の0.
2mol/l NH4HCO3を移動相とするSuperdex 30カラム(60
×16mm:ファルマシア社製)で精製し、溶出液を215nm
でモニターしながら2ml毎に分画した。そしてコンドロ
イチン硫酸7糖相当画分をプールし、凍結乾燥後、50μ
lの蒸留水に溶解して調製した。
The chondroitin sulfate 7-sugar as the above-mentioned acceptor is 20 mmol / l of MnCl 2 , 0.1 mol / l of (NH 4 ) 2 SO 4 , 1
50 mmol / l Tris-HCl containing mol / l ethylene glycol
Chondroitin sulfate hexasaccharide (50 μg: Mr. Tawada, Seikagaku Corporation) using 12 μU of chondroitin synthase derived from Escherichia coli K4 strain as a buffer (pH 7.2) and limited decomposition by testis hyaluronidase as N-acetylgalactosamine receptor More favorable) was used. In this reaction, 1.5 mmo as N-acetylgalactosamine donor
l / l UDP-GalNAc (manufactured by Sigma) was added, and the total amount was adjusted to 500 μl with distilled water. This reaction solution was reacted at 30 ° C for 1 hour and then heated at 100 ° C for 5 minutes to inactivate the enzyme to stop the reaction. Flow the reaction mixture at a flow rate of 2 ml / min.
Superdex 30 column with mobile phase of 2 mol / l NH 4 HCO 3 (60
X16 mm: manufactured by Pharmacia) and the eluate is 215 nm
It was fractionated every 2 ml while being monitored by. Fractions corresponding to chondroitin sulfate 7-sugar were pooled, lyophilized, and
It was prepared by dissolving in 1 l of distilled water.

【0051】さらに、本発明の融合タンパク質を10mmol
/lのEDTA存在下で、Mn2+をキレートして上記7糖へのGlc
AT活性の測定を行ったところ、活性が完全に失われるこ
とが明らかとなった(図6)。このことは、少なくとも
本発明の融合タンパク質は二価陽イオンを反応に必要と
していることを示している。
Furthermore, 10 mmol of the fusion protein of the present invention is added.
chelate Mn 2+ in the presence of 1 / l EDTA
When AT activity was measured, it became clear that the activity was completely lost (FIG. 6). This indicates that at least the fusion protein of the present invention requires a divalent cation for the reaction.

【0052】(3)本発明の融合タンパク質の反応生成
物の解析 (2)で、コンドロイチン硫酸7糖に本発明の融合タン
パク質を反応させて得たコンドロイチン硫酸8糖の構造
を解析するために、生成した前記8糖をコンドロイチナ
ーゼABCで消化して、どの様な消化産物が得られるかを
解析した。
(3) Analysis of reaction product of fusion protein of the present invention In order to analyze the structure of chondroitin sulfate octasaccharide obtained by reacting chondroitin sulfate 7-saccharide with the fusion protein of the present invention in (2), The produced octasaccharide was digested with chondroitinase ABC to analyze what kind of digestion product was obtained.

【0053】すなわち、上記8糖の放射能が観察された2
3〜27番目の画分を回収し凍結乾燥した後、流速1ml/分
の0.2mol/l NH4HCO3を移動相として用いた脱塩カラム
(FastDesalting Column:ファルマシア社製)により脱
塩し、さらに溶出液を二分して凍結乾燥した。一方(対
照群)を30mmol/lの酢酸ナトリウムを含む0.1mol/lのTr
is-HCl緩衝液(pH8.0)200μlに溶解し、他方(試験
群)は100mUのコンドロイチナーゼABC(生化学工業株式
会社製)、30mmol/lの酢酸ナトリウムを含む0.1mol/lの
Tris-HCl緩衝液(pH8.0)200μlに溶解した。各々を37
℃で30分間反応させ、その後100℃で5分間加熱してコン
ドロイチナーゼABCを失活させて酵素反応を停止した。
この反応液をポアサイズ0.22μmのマイクロフィルター
(ミリポア社製)で濾過した後、流速0.5ml/分の0.2mol
/l NaClを移動相とするSuperdex peptideカラム(30×1
0mm:ファルマシア社製)により溶出し、溶出液を0.5ml
毎に分画した。そして各画分の放射能をシンチレーショ
ンカウンターにより計数した(図7)。
That is, the radioactivity of the above octasaccharide was observed 2
The 3rd to 27th fractions were collected and lyophilized, and then desalted with a desalting column (Fast Desalting Column: Pharmacia) using 0.2 mol / l NH 4 HCO 3 as a mobile phase at a flow rate of 1 ml / min, Further, the eluate was divided into two and freeze-dried. On the other hand (control group), 0.1 mol / l Tr containing 30 mmol / l sodium acetate
It is dissolved in 200 μl of is-HCl buffer (pH 8.0), while the other (test group) is 100 mU of chondroitinase ABC (manufactured by Seikagaku Corporation), 0.1 mol / l containing 30 mmol / l sodium acetate.
It was dissolved in 200 μl of Tris-HCl buffer (pH 8.0). 37 each
The reaction was allowed to proceed at 30 ° C. for 30 minutes and then heated at 100 ° C. for 5 minutes to inactivate chondroitinase ABC and stop the enzymatic reaction.
The reaction solution was filtered through a microfilter (made by Millipore) having a pore size of 0.22 μm, and the flow rate was 0.5 ml / min of 0.2 mol.
Superdex peptide column (30 x 1 with / l NaCl as mobile phase)
(0 mm: Pharmacia) to elute with 0.5 ml of eluate
It fractionated every time. Then, the radioactivity of each fraction was counted by a scintillation counter (Fig. 7).

【0054】その結果、対照群はコンドロイチナーゼAB
Cで消化しない元の状態と同じパターンで溶出される
が、試験群ではΔdi-0S(不飽和ウロン酸−N-アセチル
ガラクトサミンからなる硫酸基を有しない二糖)とほぼ
同じ位置にピークがシフトした。このことから本発明の
融合タンパク質は、コンドロイチン骨格の非還元末端の
N-アセチルガラクトサミン残基に対してβ1,3結合でグ
ルクロン酸残基を転移することが明かとなった。
As a result, the control group was chondroitinase AB.
It is eluted with the same pattern as the original state without digestion with C, but in the test group, the peak shifts to almost the same position as Δdi-0S (a disaccharide with unsaturated group consisting of unsaturated uronic acid-N-acetylgalactosamine) did. From this fact, the fusion protein of the present invention has a non-reducing end of the chondroitin skeleton.
It was revealed that the glucuronic acid residue was transferred by β1,3 bond to N-acetylgalactosamine residue.

【0055】(4)基質の鎖長による酵素反応の変化 サメ由来コンドロイチン硫酸(コンドロイチン硫酸C:
生化学工業株式会社製)及びコンドロイチン(上記サメ
由来コンドロイチン硫酸を化学的に脱硫酸化したもの:
生化学工業株式会社製)とを使用してJ. Biochem. , 11
1(1992), pp.91-98に記載された方法に従ってこれらを
分解、精製し、それぞれ5糖、7糖、9糖、11糖、及び13
糖からなるオリゴ糖を調製した(コンドロイチン硫酸由
来のこれらオリゴ糖はそれぞれCS5、CS7、CS9、CS11、
及びCS13と表記し、同様にコンドロイチン由来のこれら
オリゴ糖はそれぞれCH5、CH7、CH9、CH11、及びCH13と
表記する)。
(4) Change in enzymatic reaction depending on substrate chain length Chondroitin sulfate derived from shark (chondroitin sulfate C:
Seikagaku Corporation and chondroitin (the above shark-derived chondroitin sulfate is chemically desulfated):
Seikagaku Corporation) and using J. Biochem., 11
1 (1992), pp.91-98, these were decomposed and purified to obtain pentasaccharide, heptose, heptose, 9-sugar, 11-sugar, and 13-sugar, respectively.
Oligosaccharides composed of sugars were prepared (these oligosaccharides derived from chondroitin sulfate were CS5, CS7, CS9, CS11,
And CS13, and similarly, these oligosaccharides derived from chondroitin are denoted as CH5, CH7, CH9, CH11, and CH13, respectively).

【0056】これらをグルクロン酸残基受容体として用
いて、(2)と同様の方法でそれぞれのオリゴ糖の「グ
ルクロン酸残基受容体としての働き」を測定した(表
1)。その結果、特に9糖以上のオリゴ糖がグルクロン
酸残基受容体として好ましいことが明らかとなった。
Using these as glucuronic acid residue receptors, the "function as glucuronic acid residue acceptor" of each oligosaccharide was measured in the same manner as in (2) (Table 1). As a result, it was revealed that oligosaccharides having 9 or more sugars are particularly preferable as the glucuronic acid residue receptor.

【0057】[0057]

【表1】 [Table 1]

【0058】上記(2)の条件下で、上記CS11の濃度を
変化させた場合と、UDP-GlcUAの濃度を変化させた場合
のGlcAT活性の変化を測定した(CS11の濃度を変化させ
た場合:図8、UDP-GlcUAの濃度を変化させた場合:図
9)。その結果、何れも濃度を上げていくと反応速度が
飽和する傾向を示すことが明かとなった。これらを使用
してCS11とUDP-GlcUAに対するミカエリス定数(Km)値
を算出したところ、CS11のKm値は65.3μmol/l、UDP-Glc
UAのKm値は82.4μmol/lであった。この値を見る限りに
おいて、本発明物質の基質への親和性は極めて高いこと
が明かである。
Under the above condition (2), changes in GlcAT activity were measured when the CS11 concentration was changed and when the UDP-GlcUA concentration was changed (when the CS11 concentration was changed. : Fig. 8, when the concentration of UDP-GlcUA was changed: Fig. 9). As a result, it became clear that the reaction rate tended to be saturated with increasing concentration. Using these, the Michaelis constant (Km) value for CS11 and UDP-GlcUA was calculated. The Km value for CS11 was 65.3 μmol / l, UDP-Glc
The Km value of UA was 82.4 μmol / l. As far as this value is seen, it is clear that the substance of the present invention has a very high affinity for the substrate.

【0059】<5>ヒト健常組織及び株化細胞における
GlcATの発現の定量 ヒト正常組織及び株化細胞のcDNAを用いて、定量的ポリ
メラーゼチェイン反応(PCR)によりGlcAT遺伝子の発現
量を定量した。cDNAとしてはMarathon Ready cDNA(ク
ロンテック社製)を使用した。GlcATの定量的PCRにはプ
ライマーとしてK2-Fw(配列番号5記載)及びK2-Rv(配列
番号6記載)を使用し、プローブとしてはアプライドバ
イオシステムズ社のマイナーグルーブバインダーを結合
したK2-MGB(配列番号7記載)を使用した。酵素及び反
応液としてUniversal PCR MasterMix(アプライドバイ
オシステムズ社製)を使用し、ABI PRISM 770 Sequence
Detection System(アプライドバイオシステムズ社
製)により反応液量25μlで定量を行った。定量の標準
遺伝子としてはグリセルアルデヒド-3-リン酸脱水素酵
素(GAPDH)遺伝子を使用し、既知濃度の鋳型DNAにより
定量の検量線を作成し該遺伝子の発現量の標準化を行っ
た。反応温度は50℃2分、95℃10分のあと、95℃15秒・6
0℃1分を50サイクル行った(図10)。その結果、GlcA
Tは、ほぼ全ての健常組織、株化細胞で発現が観察され
たものの、胎盤、小腸、膵臓および脾臓、特に胎盤にお
いて大量に発現していることが明かとなった。
<5> Human Normal Tissue and Cell Line
Quantification of GlcAT expression The expression level of the GlcAT gene was quantified by quantitative polymerase chain reaction (PCR) using human normal tissue and cell line cDNA. Marathon Ready cDNA (manufactured by Clontech) was used as the cDNA. For quantitative PCR of GlcAT, K2-Fw (described in SEQ ID NO: 5) and K2-Rv (described in SEQ ID NO: 6) were used as primers, and K2-MGB (a minor groove binder of Applied Biosystems) was used as a probe ( Sequence number 7 description) was used. Universal PCR MasterMix (manufactured by Applied Biosystems) is used as an enzyme and a reaction solution, and ABI PRISM 770 Sequence is used.
Quantitation was performed using a detection system (manufactured by Applied Biosystems) with a reaction solution volume of 25 μl. The glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene was used as a standard gene for quantification, and a standard curve for quantification was prepared using a template DNA of known concentration to standardize the expression level of the gene. Reaction temperature is 50 ℃ for 2 minutes, 95 ℃ for 10 minutes, then 95 ℃ for 15 seconds ・ 6
50 cycles of 1 minute at 0 ° C were performed (Fig. 10). As a result, GlcA
Although expression of T was observed in almost all healthy tissues and cell lines, it was revealed that T was highly expressed in placenta, small intestine, pancreas and spleen, particularly placenta.

【0060】[0060]

【発明の効果】本発明により、コンドロイチン骨格の合
成に関与する酵素のうち、N-アセチルガラクトサミン転
移酵素活性を実質的に有さず、グルクロン酸転移酵素活
性を有する酵素を遺伝子工学的に得る際に有用である融
合タンパク質及びその製造が提供される。
INDUSTRIAL APPLICABILITY According to the present invention, among enzymes involved in the synthesis of chondroitin skeleton, an enzyme having substantially no N-acetylgalactosamine transferase activity and having glucuronosyltransferase activity can be obtained by genetic engineering. Fusion proteins and their manufacture are provided.

【0061】[0061]

【配列表】 SEQUENCE LISTING <110> Kazusa DNA Research Institute Seikagaku Corporation <120> A fusion protein having glucronic acid transferase activity <140> <141> <160> 7 <210> 1 <211> 3970 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (1466)..(3832) <400> 1 aggggctgtg aggtggcagc ggctgcagcg gcggagccgg cgcctcagcg ggcactgggg 60 tctgttcccc cttccccgtc cctgctccct gccaggcgcg tgcgggacgc cgctcttggt 120 ccccacgcct ccgccccgcc ccctcccggg acgccgggag accccggccg tcctttatcc 180 ggtgtccgcc ggcccccggc cctgaaaccc gggcctcctc cccgagggcc ttgggcgtcc 240 ctcctggtcc tgcgctcgcg gcctcgatgc tgtctctggc gcggcctccg ctcccgccga 300 ctggcctgag aacgaggtct gtgccccagt ctcccagccg cgacctccga ccccgcctcg 360 cagaacgacc cgagctggtc tcccgagccc ccttctcagc agcccggtga cgtggccagt 420 ttatttctgt tttgagacga acggcgaaga ctcgcgtcgg gtcttcgttc tagggctaga 480 cttggtctct gatcgccgag aggtagcgca ggggctgtgg gcccccggca ggggtcctgt 540 cggaagctgg ccgcgcttct gtttgcgttc ccaggaccct ggcattgtct ctagttgctg 600 cttgtgctct ctctttgctt ttggtttgct tcatttggcc cctggggccc tggtaaaacc 660 aggcaccgaa tcgctcgcac acagagttcc agtccccgcc tgctgtctcc tcagcagctg 720 gggttccgag gagaatgccc tgcaagatgg ctccatcggc catggcgctc ctgagaggct 780 gtcagtgctg agtcaccgat ctacctcatt cgggtgggca gaacttatgt gtgccatgcg 840 agtggctcca gaccgctcct gagtgggagg aggggttcct gtagccgttg cgtcttctca 900 aacacgggga gcagagtaga aagaggctct ggccccttcc cttgtgccca ccgggcctgc 960 cgcagtggct cagcagcccc ttcagtagcc cgcctgagga ccgatgccag aggcaggcat 1020 tcttccggaa aggcccactg aggcaggctc cggctcctct ggttggggct gttgttttga 1080 tggatcgtgt gcttttccct tacctcttat cacttgctgt catctgttga cttaggccca 1140 gtctgcagat gtgtgtagtg ttcctttttg ggttagcttt ggcagtattg agttttactt 1200 cctcctcttt ttagtggaag acagaccata atcccagtgt gagtgaaatt gattgtttca 1260 tttattaccg ttttggctgg gggttagttc cgacaccttc acagttgaag agcaggcaga 1320 aggagttgtg aagacaggac aatcttcttg gggatgctgg tcctggaagc cagcgggcct 1380 cgctctgtct ttggcctcat tgaccccagg ttctctggtt aaaactgaaa gcctactact 1440 ggcctggtgc ccatcaatcc attga tcc ttg agg ctg tgc ccc tgg ggc acc 1492 Ser Leu Arg Leu Cys Pro Trp Gly Thr 1 5 cac ctg gca ggg cct acc acc atg cga ctg agc tcc ctg ttg gct ctg 1540 His Leu Ala Gly Pro Thr Thr Met Arg Leu Ser Ser Leu Leu Ala Leu 10 15 20 25 ctg cgg cca gcg ctt ccc ctc atc tta ggg ctg tct ctg ggg tgc agc 1588 Leu Arg Pro Ala Leu Pro Leu Ile Leu Gly Leu Ser Leu Gly Cys Ser 30 35 40 ctg agc ctc ctg cgg gtt tcc tgg atc cag ggg gag gga gaa gat ccc 1636 Leu Ser Leu Leu Arg Val Ser Trp Ile Gln Gly Glu Gly Glu Asp Pro 45 50 55 tgt gtc gag gct gta ggg gag cga gga ggg cca cag aat cca gat tcc 1684 Cys Val Glu Ala Val Gly Glu Arg Gly Gly Pro Gln Asn Pro Asp Ser 60 65 70 aga gct cgg cta gac caa agt gat gaa gac ttc aaa ccc cgg att gtc 1732 Arg Ala Arg Leu Asp Gln Ser Asp Glu Asp Phe Lys Pro Arg Ile Val 75 80 85 ccc tac tac agg gac ccc aac aag ccc tac aag aag gtg ctc agg act 1780 Pro Tyr Tyr Arg Asp Pro Asn Lys Pro Tyr Lys Lys Val Leu Arg Thr 90 95 100 105 cgg tac atc cag aca gag ctg ggc tcc cgt gag cgg ttg ctg gtg gct 1828 Arg Tyr Ile Gln Thr Glu Leu Gly Ser Arg Glu Arg Leu Leu Val Ala 110 115 120 gtc ctg acc tcc cga gct aca ctg tcc act ttg gcc gtg gct gtg aac 1876 Val Leu Thr Ser Arg Ala Thr Leu Ser Thr Leu Ala Val Ala Val Asn 125 130 135 cgt acg gtg gcc cat cac ttc cct cgg tta ctc tac ttc act ggg cag 1924 Arg Thr Val Ala His His Phe Pro Arg Leu Leu Tyr Phe Thr Gly Gln 140 145 150 cgg ggg gcc cgg gct cca gca ggg atg cag gtg gtg tct cat ggg gat 1972 Arg Gly Ala Arg Ala Pro Ala Gly Met Gln Val Val Ser His Gly Asp 155 160 165 gag cgg ccc gcc tgg ctc atg tca gag acc ctg cgc cac ctt cac aca 2020 Glu Arg Pro Ala Trp Leu Met Ser Glu Thr Leu Arg His Leu His Thr 170 175 180 185 cac ttt ggg gcc gac tac gac tgg ttc ttc atc atg cag gat gac aca 2068 His Phe Gly Ala Asp Tyr Asp Trp Phe Phe Ile Met Gln Asp Asp Thr 190 195 200 tat gtg cag gcc ccc cgc ctg gca gcc ctt gct ggc cac ctc agc atc 2116 Tyr Val Gln Ala Pro Arg Leu Ala Ala Leu Ala Gly His Leu Ser Ile 205 210 215 aac caa gac ctg tac tta ggc cgg gca gag gag ttc att ggc gca ggc 2164 Asn Gln Asp Leu Tyr Leu Gly Arg Ala Glu Glu Phe Ile Gly Ala Gly 220 225 230 gag cag gcc cgg tac tgt cat ggg ggc ttt ggc tac ctg ttg tca cgg 2212 Glu Gln Ala Arg Tyr Cys His Gly Gly Phe Gly Tyr Leu Leu Ser Arg 235 240 245 agt ctc ctg ctt cgt ctg cgg cca cat ctg gat ggc tgc cga gga gac 2260 Ser Leu Leu Leu Arg Leu Arg Pro His Leu Asp Gly Cys Arg Gly Asp 250 255 260 265 att ctc agt gcc cgt cct gac gag tgg ctt gga cgc tgc ctc att gac 2308 Ile Leu Ser Ala Arg Pro Asp Glu Trp Leu Gly Arg Cys Leu Ile Asp 270 275 280 tct ctg ggc gtc ggc tgt gtc tca cag cac cag ggg cag cag tat cgc 2356 Ser Leu Gly Val Gly Cys Val Ser Gln His Gln Gly Gln Gln Tyr Arg 285 290 295 tca ttt gaa ctg gcc aaa aat agg gac cct gag aag gaa ggg agc tcg 2404 Ser Phe Glu Leu Ala Lys Asn Arg Asp Pro Glu Lys Glu Gly Ser Ser 300 305 310 gct ttc ctg agt gcc ttc gcc gtg cac cct gtc tcc gaa ggt acc ctc 2452 Ala Phe Leu Ser Ala Phe Ala Val His Pro Val Ser Glu Gly Thr Leu 315 320 325 atg tac cgg ctc cac aaa cgc ttc agc gct ctg gag ttg gag cgg gct 2500 Met Tyr Arg Leu His Lys Arg Phe Ser Ala Leu Glu Leu Glu Arg Ala 330 335 340 345 tac agt gaa ata gaa caa ctg cag gct cag atc cgg aac ctg acc gtg 2548 Tyr Ser Glu Ile Glu Gln Leu Gln Ala Gln Ile Arg Asn Leu Thr Val 350 355 360 ctg acc ccc gaa ggg gag gca ggg ctg agc tgg ccc gtt ggg ctc cct 2596 Leu Thr Pro Glu Gly Glu Ala Gly Leu Ser Trp Pro Val Gly Leu Pro 365 370 375 gct cct ttc aca cca cac tct cgc ttt gag gtg ctg ggc tgg gac tac 2644 Ala Pro Phe Thr Pro His Ser Arg Phe Glu Val Leu Gly Trp Asp Tyr 380 385 390 ttc aca gag cag cac acc ttc tcc tgt gca gat ggg gct ccc aag tgc 2692 Phe Thr Glu Gln His Thr Phe Ser Cys Ala Asp Gly Ala Pro Lys Cys 395 400 405 cca cta cag ggg gct agc agg gcg gac gtg ggt gat gcg ttg gag act 2740 Pro Leu Gln Gly Ala Ser Arg Ala Asp Val Gly Asp Ala Leu Glu Thr 410 415 420 425 gcc ctg gag cag ctc aat cgg cgc tat cag ccc cgc ctg cgc ttc cag 2788 Ala Leu Glu Gln Leu Asn Arg Arg Tyr Gln Pro Arg Leu Arg Phe Gln 430 435 440 aag cag cga ctg ctc aac ggc tat cgg cgc ttc gac cca gca cgg ggc 2836 Lys Gln Arg Leu Leu Asn Gly Tyr Arg Arg Phe Asp Pro Ala Arg Gly 445 450 455 atg gag tac acc ctg gac ctg ctg ttg gaa tgt gtg aca cag cgt ggg 2884 Met Glu Tyr Thr Leu Asp Leu Leu Leu Glu Cys Val Thr Gln Arg Gly 460 465 470 cac cgg cgg gcc ctg gct cgc agg gtc agc ctg ctg cgg cca ctg agc 2932 His Arg Arg Ala Leu Ala Arg Arg Val Ser Leu Leu Arg Pro Leu Ser 475 480 485 cgg gtg gaa atc cta cct atg ccc tat gtc act gag gcc acc cga gtg 2980 Arg Val Glu Ile Leu Pro Met Pro Tyr Val Thr Glu Ala Thr Arg Val 490 495 500 505 cag ctg gtg ctg cca ctc ctg gtg gct gaa gct gct gca gcc ccg gct 3028 Gln Leu Val Leu Pro Leu Leu Val Ala Glu Ala Ala Ala Ala Pro Ala 510 515 520 ttc ctc gag gcc ttt gca gcc aat gtc ctg gag cca cga gaa cat gca 3076 Phe Leu Glu Ala Phe Ala Ala Asn Val Leu Glu Pro Arg Glu His Ala 525 530 535 ttg ctc acc ctg ttg ctg gtc tac ggg cca cga gaa ggt ggc cgt gga 3124 Leu Leu Thr Leu Leu Leu Val Tyr Gly Pro Arg Glu Gly Gly Arg Gly 540 545 550 gct cca gac cca ttt ctt ggg gtg aag gct gca gca gcg gag tta gag 3172 Ala Pro Asp Pro Phe Leu Gly Val Lys Ala Ala Ala Ala Glu Leu Glu 555 560 565 cga cgg tac cct ggg acg agg ctg gcc tgg ctc gct gtg cga gca gag 3220 Arg Arg Tyr Pro Gly Thr Arg Leu Ala Trp Leu Ala Val Arg Ala Glu 570 575 580 585 gcc cct tcc cag gtg cga ctc atg gac gtg gtc tcg aag aag cac cct 3268 Ala Pro Ser Gln Val Arg Leu Met Asp Val Val Ser Lys Lys His Pro 590 595 600 gtg gac act ctc ttc ttc ctt acc acc gtg tgg aca agg cct ggg ccc 3316 Val Asp Thr Leu Phe Phe Leu Thr Thr Val Trp Thr Arg Pro Gly Pro 605 610 615 gaa gtc ctc aac cgc tgt cgc atg aat gcc atc tct ggc tgg cag gcc 3364 Glu Val Leu Asn Arg Cys Arg Met Asn Ala Ile Ser Gly Trp Gln Ala 620 625 630 ttc ttt cca gtc cat ttc cag gag ttc aat cct gcc ctg tca cca cag 3412 Phe Phe Pro Val His Phe Gln Glu Phe Asn Pro Ala Leu Ser Pro Gln 635 640 645 aga tca ccc cca ggg ccc ccg ggg gct ggc cct gac ccc ccc tcc cct 3460 Arg Ser Pro Pro Gly Pro Pro Gly Ala Gly Pro Asp Pro Pro Ser Pro 650 655 660 665 cct ggt gct gac ccc tcc cgg ggg gct cct ata ggg ggg aga ttt gac 3508 Pro Gly Ala Asp Pro Ser Arg Gly Ala Pro Ile Gly Gly Arg Phe Asp 670 675 680 cgg cag gct tct gcg gag ggc tgc ttc tac aac gct gac tac ctg gcg 3556 Arg Gln Ala Ser Ala Glu Gly Cys Phe Tyr Asn Ala Asp Tyr Leu Ala 685 690 695 gcc cga gcc cgg ctg gca ggt gaa ctg gca ggc cag gaa gag gag gaa 3604 Ala Arg Ala Arg Leu Ala Gly Glu Leu Ala Gly Gln Glu Glu Glu Glu 700 705 710 gcc ctg gag ggg ctg gag gtg atg gat gtt ttc ctc cgg ttc tca ggg 3652 Ala Leu Glu Gly Leu Glu Val Met Asp Val Phe Leu Arg Phe Ser Gly 715 720 725 ctc cac ctc ttt cgg gcc gta gag cca ggg ctg gtg cag aag ttc tcc 3700 Leu His Leu Phe Arg Ala Val Glu Pro Gly Leu Val Gln Lys Phe Ser 730 735 740 745 ctg cga gac tgc agc cca cgg ctc agt gaa gaa ctc tac cac cgc tgc 3748 Leu Arg Asp Cys Ser Pro Arg Leu Ser Glu Glu Leu Tyr His Arg Cys 750 755 760 cgc ctc agc aac ctg gag ggg cta ggg ggc cgt gcc cag ctg gct atg 3796 Arg Leu Ser Asn Leu Glu Gly Leu Gly Gly Arg Ala Gln Leu Ala Met 765 770 775 gct ctc ttt gag cag gag cag gcc aat agc act tag cccgcctggg 3842 Ala Leu Phe Glu Gln Glu Gln Ala Asn Ser Thr 780 785 ggccctaacc tcattacctt tcctttgtct gcctcagccc caggaagggc aaggcaagat 3902 ggtggacaga tagagaattg ttgctgtatt ttttaaatat gaaaatgtta ttaaacatgt 3962 cttctgcc 3970 <210> 2 <211> 788 <212> PRT <213> Homo sapiens <400> 2 Ser Leu Arg Leu Cys Pro Trp Gly Thr His Leu Ala Gly Pro Thr Thr 1 5 10 15 Met Arg Leu Ser Ser Leu Leu Ala Leu Leu Arg Pro Ala Leu Pro Leu 20 25 30 Ile Leu Gly Leu Ser Leu Gly Cys Ser Leu Ser Leu Leu Arg Val Ser 35 40 45 Trp Ile Gln Gly Glu Gly Glu Asp Pro Cys Val Glu Ala Val Gly Glu 50 55 60 Arg Gly Gly Pro Gln Asn Pro Asp Ser Arg Ala Arg Leu Asp Gln Ser 65 70 75 80 Asp Glu Asp Phe Lys Pro Arg Ile Val Pro Tyr Tyr Arg Asp Pro Asn 85 90 95 Lys Pro Tyr Lys Lys Val Leu Arg Thr Arg Tyr Ile Gln Thr Glu Leu 100 105 110 Gly Ser Arg Glu Arg Leu Leu Val Ala Val Leu Thr Ser Arg Ala Thr 115 120 125 Leu Ser Thr Leu Ala Val Ala Val Asn Arg Thr Val Ala His His Phe 130 135 140 Pro Arg Leu Leu Tyr Phe Thr Gly Gln Arg Gly Ala Arg Ala Pro Ala 145 150 155 160 Gly Met Gln Val Val Ser His Gly Asp Glu Arg Pro Ala Trp Leu Met 165 170 175 Ser Glu Thr Leu Arg His Leu His Thr His Phe Gly Ala Asp Tyr Asp 180 185 190 Trp Phe Phe Ile Met Gln Asp Asp Thr Tyr Val Gln Ala Pro Arg Leu 195 200 205 Ala Ala Leu Ala Gly His Leu Ser Ile Asn Gln Asp Leu Tyr Leu Gly 210 215 220 Arg Ala Glu Glu Phe Ile Gly Ala Gly Glu Gln Ala Arg Tyr Cys His 225 230 235 240 Gly Gly Phe Gly Tyr Leu Leu Ser Arg Ser Leu Leu Leu Arg Leu Arg 245 250 255 Pro His Leu Asp Gly Cys Arg Gly Asp Ile Leu Ser Ala Arg Pro Asp 260 265 270 Glu Trp Leu Gly Arg Cys Leu Ile Asp Ser Leu Gly Val Gly Cys Val 275 280 285 Ser Gln His Gln Gly Gln Gln Tyr Arg Ser Phe Glu Leu Ala Lys Asn 290 295 300 Arg Asp Pro Glu Lys Glu Gly Ser Ser Ala Phe Leu Ser Ala Phe Ala 305 310 315 320 Val His Pro Val Ser Glu Gly Thr Leu Met Tyr Arg Leu His Lys Arg 325 330 335 Phe Ser Ala Leu Glu Leu Glu Arg Ala Tyr Ser Glu Ile Glu Gln Leu 340 345 350 Gln Ala Gln Ile Arg Asn Leu Thr Val Leu Thr Pro Glu Gly Glu Ala 355 360 365 Gly Leu Ser Trp Pro Val Gly Leu Pro Ala Pro Phe Thr Pro His Ser 370 375 380 Arg Phe Glu Val Leu Gly Trp Asp Tyr Phe Thr Glu Gln His Thr Phe 385 390 395 400 Ser Cys Ala Asp Gly Ala Pro Lys Cys Pro Leu Gln Gly Ala Ser Arg 405 410 415 Ala Asp Val Gly Asp Ala Leu Glu Thr Ala Leu Glu Gln Leu Asn Arg 420 425 430 Arg Tyr Gln Pro Arg Leu Arg Phe Gln Lys Gln Arg Leu Leu Asn Gly 435 440 445 Tyr Arg Arg Phe Asp Pro Ala Arg Gly Met Glu Tyr Thr Leu Asp Leu 450 455 460 Leu Leu Glu Cys Val Thr Gln Arg Gly His Arg Arg Ala Leu Ala Arg 465 470 475 480 Arg Val Ser Leu Leu Arg Pro Leu Ser Arg Val Glu Ile Leu Pro Met 485 490 495 Pro Tyr Val Thr Glu Ala Thr Arg Val Gln Leu Val Leu Pro Leu Leu 500 505 510 Val Ala Glu Ala Ala Ala Ala Pro Ala Phe Leu Glu Ala Phe Ala Ala 515 520 525 Asn Val Leu Glu Pro Arg Glu His Ala Leu Leu Thr Leu Leu Leu Val 530 535 540 Tyr Gly Pro Arg Glu Gly Gly Arg Gly Ala Pro Asp Pro Phe Leu Gly 545 550 555 560 Val Lys Ala Ala Ala Ala Glu Leu Glu Arg Arg Tyr Pro Gly Thr Arg 565 570 575 Leu Ala Trp Leu Ala Val Arg Ala Glu Ala Pro Ser Gln Val Arg Leu 580 585 590 Met Asp Val Val Ser Lys Lys His Pro Val Asp Thr Leu Phe Phe Leu 595 600 605 Thr Thr Val Trp Thr Arg Pro Gly Pro Glu Val Leu Asn Arg Cys Arg 610 615 620 Met Asn Ala Ile Ser Gly Trp Gln Ala Phe Phe Pro Val His Phe Gln 625 630 635 640 Glu Phe Asn Pro Ala Leu Ser Pro Gln Arg Ser Pro Pro Gly Pro Pro 645 650 655 Gly Ala Gly Pro Asp Pro Pro Ser Pro Pro Gly Ala Asp Pro Ser Arg 660 665 670 Gly Ala Pro Ile Gly Gly Arg Phe Asp Arg Gln Ala Ser Ala Glu Gly 675 680 685 Cys Phe Tyr Asn Ala Asp Tyr Leu Ala Ala Arg Ala Arg Leu Ala Gly 690 695 700 Glu Leu Ala Gly Gln Glu Glu Glu Glu Ala Leu Glu Gly Leu Glu Val 705 710 715 720 Met Asp Val Phe Leu Arg Phe Ser Gly Leu His Leu Phe Arg Ala Val 725 730 735 Glu Pro Gly Leu Val Gln Lys Phe Ser Leu Arg Asp Cys Ser Pro Arg 740 745 750 Leu Ser Glu Glu Leu Tyr His Arg Cys Arg Leu Ser Asn Leu Glu Gly 755 760 765 Leu Gly Gly Arg Ala Gln Leu Ala Met Ala Leu Phe Glu Gln Glu Gln 770 775 780 Ala Asn Ser Thr 785 <210> 3 <211> 2222 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: fragment from cDNA of KIAA1402 <220> <221> CDS <222> (3)..(2222) <400> 3 gg atc cag ggg gag gga gaa gat ccc tgt gtc gag gct gta ggg gag 47 Ile Gln Gly Glu Gly Glu Asp Pro Cys Val Glu Ala Val Gly Glu 1 5 10 15 cga gga ggg cca cag aat cca gat tcc aga gct cgg cta gac caa agt 95 Arg Gly Gly Pro Gln Asn Pro Asp Ser Arg Ala Arg Leu Asp Gln Ser 20 25 30 gat gaa gac ttc aaa ccc cgg att gtc ccc tac tac agg gac ccc aac 143 Asp Glu Asp Phe Lys Pro Arg Ile Val Pro Tyr Tyr Arg Asp Pro Asn 35 40 45 aag ccc tac aag aag gtg ctc agg act cgg tac atc cag aca gag ctg 191 Lys Pro Tyr Lys Lys Val Leu Arg Thr Arg Tyr Ile Gln Thr Glu Leu 50 55 60 ggc tcc cgt gag cgg ttg ctg gtg gct gtc ctg acc tcc cga gct aca 239 Gly Ser Arg Glu Arg Leu Leu Val Ala Val Leu Thr Ser Arg Ala Thr 65 70 75 ctg tcc act ttg gcc gtg gct gtg aac cgt acg gtg gcc cat cac ttc 287 Leu Ser Thr Leu Ala Val Ala Val Asn Arg Thr Val Ala His His Phe 80 85 90 95 cct cgg tta ctc tac ttc act ggg cag cgg ggg gcc cgg gct cca gca 335 Pro Arg Leu Leu Tyr Phe Thr Gly Gln Arg Gly Ala Arg Ala Pro Ala 100 105 110 ggg atg cag gtg gtg tct cat ggg gat gag cgg ccc gcc tgg ctc atg 383 Gly Met Gln Val Val Ser His Gly Asp Glu Arg Pro Ala Trp Leu Met 115 120 125 tca gag acc ctg cgc cac ctt cac aca cac ttt ggg gcc gac tac gac 431 Ser Glu Thr Leu Arg His Leu His Thr His Phe Gly Ala Asp Tyr Asp 130 135 140 tgg ttc ttc atc atg cag gat gac aca tat gtg cag gcc ccc cgc ctg 479 Trp Phe Phe Ile Met Gln Asp Asp Thr Tyr Val Gln Ala Pro Arg Leu 145 150 155 gca gcc ctt gct ggc cac ctc agc atc aac caa gac ctg tac tta ggc 527 Ala Ala Leu Ala Gly His Leu Ser Ile Asn Gln Asp Leu Tyr Leu Gly 160 165 170 175 cgg gca gag gag ttc att ggc gca ggc gag cag gcc cgg tac tgt cat 575 Arg Ala Glu Glu Phe Ile Gly Ala Gly Glu Gln Ala Arg Tyr Cys His 180 185 190 ggg ggc ttt ggc tac ctg ttg tca cgg agt ctc ctg ctt cgt ctg cgg 623 Gly Gly Phe Gly Tyr Leu Leu Ser Arg Ser Leu Leu Leu Arg Leu Arg 195 200 205 cca cat ctg gat ggc tgc cga gga gac att ctc agt gcc cgt cct gac 671 Pro His Leu Asp Gly Cys Arg Gly Asp Ile Leu Ser Ala Arg Pro Asp 210 215 220 gag tgg ctt gga cgc tgc ctc att gac tct ctg ggc gtc ggc tgt gtc 719 Glu Trp Leu Gly Arg Cys Leu Ile Asp Ser Leu Gly Val Gly Cys Val 225 230 235 tca cag cac cag ggg cag cag tat cgc tca ttt gaa ctg gcc aaa aat 767 Ser Gln His Gln Gly Gln Gln Tyr Arg Ser Phe Glu Leu Ala Lys Asn 240 245 250 255 agg gac cct gag aag gaa ggg agc tcg gct ttc ctg agt gcc ttc gcc 815 Arg Asp Pro Glu Lys Glu Gly Ser Ser Ala Phe Leu Ser Ala Phe Ala 260 265 270 gtg cac cct gtc tcc gaa ggt acc ctc atg tac cgg ctc cac aaa cgc 863 Val His Pro Val Ser Glu Gly Thr Leu Met Tyr Arg Leu His Lys Arg 275 280 285 ttc agc gct ctg gag ttg gag cgg gct tac agt gaa ata gaa caa ctg 911 Phe Ser Ala Leu Glu Leu Glu Arg Ala Tyr Ser Glu Ile Glu Gln Leu 290 295 300 cag gct cag atc cgg aac ctg acc gtg ctg acc ccc gaa ggg gag gca 959 Gln Ala Gln Ile Arg Asn Leu Thr Val Leu Thr Pro Glu Gly Glu Ala 305 310 315 ggg ctg agc tgg ccc gtt ggg ctc cct gct cct ttc aca cca cac tct 1007 Gly Leu Ser Trp Pro Val Gly Leu Pro Ala Pro Phe Thr Pro His Ser 320 325 330 335 cgc ttt gag gtg ctg ggc tgg gac tac ttc aca gag cag cac acc ttc 1055 Arg Phe Glu Val Leu Gly Trp Asp Tyr Phe Thr Glu Gln His Thr Phe 340 345 350 tcc tgt gca gat ggg gct ccc aag tgc cca cta cag ggg gct agc agg 1103 Ser Cys Ala Asp Gly Ala Pro Lys Cys Pro Leu Gln Gly Ala Ser Arg 355 360 365 gcg gac gtg ggt gat gcg ttg gag act gcc ctg gag cag ctc aat cgg 1151 Ala Asp Val Gly Asp Ala Leu Glu Thr Ala Leu Glu Gln Leu Asn Arg 370 375 380 cgc tat cag ccc cgc ctg cgc ttc cag aag cag cga ctg ctc aac ggc 1199 Arg Tyr Gln Pro Arg Leu Arg Phe Gln Lys Gln Arg Leu Leu Asn Gly 385 390 395 tat cgg cgc ttc gac cca gca cgg ggc atg gag tac acc ctg gac ctg 1247 Tyr Arg Arg Phe Asp Pro Ala Arg Gly Met Glu Tyr Thr Leu Asp Leu 400 405 410 415 ctg ttg gaa tgt gtg aca cag cgt ggg cac cgg cgg gcc ctg gct cgc 1295 Leu Leu Glu Cys Val Thr Gln Arg Gly His Arg Arg Ala Leu Ala Arg 420 425 430 agg gtc agc ctg ctg cgg cca ctg agc cgg gtg gaa atc cta cct atg 1343 Arg Val Ser Leu Leu Arg Pro Leu Ser Arg Val Glu Ile Leu Pro Met 435 440 445 ccc tat gtc act gag gcc acc cga gtg cag ctg gtg ctg cca ctc ctg 1391 Pro Tyr Val Thr Glu Ala Thr Arg Val Gln Leu Val Leu Pro Leu Leu 450 455 460 gtg gct gaa gct gct gca gcc ccg gct ttc ctc gag gcc ttt gca gcc 1439 Val Ala Glu Ala Ala Ala Ala Pro Ala Phe Leu Glu Ala Phe Ala Ala 465 470 475 aat gtc ctg gag cca cga gaa cat gca ttg ctc acc ctg ttg ctg gtc 1487 Asn Val Leu Glu Pro Arg Glu His Ala Leu Leu Thr Leu Leu Leu Val 480 485 490 495 tac ggg cca cga gaa ggt ggc cgt gga gct cca gac cca ttt ctt ggg 1535 Tyr Gly Pro Arg Glu Gly Gly Arg Gly Ala Pro Asp Pro Phe Leu Gly 500 505 510 gtg aag gct gca gca gcg gag tta gag cga cgg tac cct ggg acg agg 1583 Val Lys Ala Ala Ala Ala Glu Leu Glu Arg Arg Tyr Pro Gly Thr Arg 515 520 525 ctg gcc tgg ctc gct gtg cga gca gag gcc cct tcc cag gtg cga ctc 1631 Leu Ala Trp Leu Ala Val Arg Ala Glu Ala Pro Ser Gln Val Arg Leu 530 535 540 atg gac gtg gtc tcg aag aag cac cct gtg gac act ctc ttc ttc ctt 1679 Met Asp Val Val Ser Lys Lys His Pro Val Asp Thr Leu Phe Phe Leu 545 550 555 acc acc gtg tgg aca agg cct ggg ccc gaa gtc ctc aac cgc tgt cgc 1727 Thr Thr Val Trp Thr Arg Pro Gly Pro Glu Val Leu Asn Arg Cys Arg 560 565 570 575 atg aat gcc atc tct ggc tgg cag gcc ttc ttt cca gtc cat ttc cag 1775 Met Asn Ala Ile Ser Gly Trp Gln Ala Phe Phe Pro Val His Phe Gln 580 585 590 gag ttc aat cct gcc ctg tca cca cag aga tca ccc cca ggg ccc ccg 1823 Glu Phe Asn Pro Ala Leu Ser Pro Gln Arg Ser Pro Pro Gly Pro Pro 595 600 605 ggg gct ggc cct gac ccc ccc tcc cct cct ggt gct gac ccc tcc cgg 1871 Gly Ala Gly Pro Asp Pro Pro Ser Pro Pro Gly Ala Asp Pro Ser Arg 610 615 620 ggg gct cct ata ggg ggg aga ttt gac cgg cag gct tct gcg gag ggc 1919 Gly Ala Pro Ile Gly Gly Arg Phe Asp Arg Gln Ala Ser Ala Glu Gly 625 630 635 tgc ttc tac aac gct gac tac ctg gcg gcc cga gcc cgg ctg gca ggt 1967 Cys Phe Tyr Asn Ala Asp Tyr Leu Ala Ala Arg Ala Arg Leu Ala Gly 640 645 650 655 gaa ctg gca ggc cag gaa gag gag gaa gcc ctg gag ggg ctg gag gtg 2015 Glu Leu Ala Gly Gln Glu Glu Glu Glu Ala Leu Glu Gly Leu Glu Val 660 665 670 atg gat gtt ttc ctc cgg ttc tca ggg ctc cac ctc ttt cgg gcc gta 2063 Met Asp Val Phe Leu Arg Phe Ser Gly Leu His Leu Phe Arg Ala Val 675 680 685 gag cca ggg ctg gtg cag aag ttc tcc ctg cga gac tgc agc cca cgg 2111 Glu Pro Gly Leu Val Gln Lys Phe Ser Leu Arg Asp Cys Ser Pro Arg 690 695 700 ctc agt gaa gaa ctc tac cac cgc tgc cgc ctc agc aac ctg gag ggg 2159 Leu Ser Glu Glu Leu Tyr His Arg Cys Arg Leu Ser Asn Leu Glu Gly 705 710 715 cta ggg ggc cgt gcc cag ctg gct atg gct ctc ttt gag cag gag cag 2207 Leu Gly Gly Arg Ala Gln Leu Ala Met Ala Leu Phe Glu Gln Glu Gln 720 725 730 735 gcc aat agc act tag 2222 Ala Asn Ser Thr 740 <210> 4 <211> 739 <212> PRT <213> Artificial Sequence <223> Description of Artificial Sequence: fragment from cDNA of KIAA1402 <400> 4 Ile Gln Gly Glu Gly Glu Asp Pro Cys Val Glu Ala Val Gly Glu Arg 1 5 10 15 Gly Gly Pro Gln Asn Pro Asp Ser Arg Ala Arg Leu Asp Gln Ser Asp 20 25 30 Glu Asp Phe Lys Pro Arg Ile Val Pro Tyr Tyr Arg Asp Pro Asn Lys 35 40 45 Pro Tyr Lys Lys Val Leu Arg Thr Arg Tyr Ile Gln Thr Glu Leu Gly 50 55 60 Ser Arg Glu Arg Leu Leu Val Ala Val Leu Thr Ser Arg Ala Thr Leu 65 70 75 80 Ser Thr Leu Ala Val Ala Val Asn Arg Thr Val Ala His His Phe Pro 85 90 95 Arg Leu Leu Tyr Phe Thr Gly Gln Arg Gly Ala Arg Ala Pro Ala Gly 100 105 110 Met Gln Val Val Ser His Gly Asp Glu Arg Pro Ala Trp Leu Met Ser 115 120 125 Glu Thr Leu Arg His Leu His Thr His Phe Gly Ala Asp Tyr Asp Trp 130 135 140 Phe Phe Ile Met Gln Asp Asp Thr Tyr Val Gln Ala Pro Arg Leu Ala 145 150 155 160 Ala Leu Ala Gly His Leu Ser Ile Asn Gln Asp Leu Tyr Leu Gly Arg 165 170 175 Ala Glu Glu Phe Ile Gly Ala Gly Glu Gln Ala Arg Tyr Cys His Gly 180 185 190 Gly Phe Gly Tyr Leu Leu Ser Arg Ser Leu Leu Leu Arg Leu Arg Pro 195 200 205 His Leu Asp Gly Cys Arg Gly Asp Ile Leu Ser Ala Arg Pro Asp Glu 210 215 220 Trp Leu Gly Arg Cys Leu Ile Asp Ser Leu Gly Val Gly Cys Val Ser 225 230 235 240 Gln His Gln Gly Gln Gln Tyr Arg Ser Phe Glu Leu Ala Lys Asn Arg 245 250 255 Asp Pro Glu Lys Glu Gly Ser Ser Ala Phe Leu Ser Ala Phe Ala Val 260 265 270 His Pro Val Ser Glu Gly Thr Leu Met Tyr Arg Leu His Lys Arg Phe 275 280 285 Ser Ala Leu Glu Leu Glu Arg Ala Tyr Ser Glu Ile Glu Gln Leu Gln 290 295 300 Ala Gln Ile Arg Asn Leu Thr Val Leu Thr Pro Glu Gly Glu Ala Gly 305 310 315 320 Leu Ser Trp Pro Val Gly Leu Pro Ala Pro Phe Thr Pro His Ser Arg 325 330 335 Phe Glu Val Leu Gly Trp Asp Tyr Phe Thr Glu Gln His Thr Phe Ser 340 345 350 Cys Ala Asp Gly Ala Pro Lys Cys Pro Leu Gln Gly Ala Ser Arg Ala 355 360 365 Asp Val Gly Asp Ala Leu Glu Thr Ala Leu Glu Gln Leu Asn Arg Arg 370 375 380 Tyr Gln Pro Arg Leu Arg Phe Gln Lys Gln Arg Leu Leu Asn Gly Tyr 385 390 395 400 Arg Arg Phe Asp Pro Ala Arg Gly Met Glu Tyr Thr Leu Asp Leu Leu 405 410 415 Leu Glu Cys Val Thr Gln Arg Gly His Arg Arg Ala Leu Ala Arg Arg 420 425 430 Val Ser Leu Leu Arg Pro Leu Ser Arg Val Glu Ile Leu Pro Met Pro 435 440 445 Tyr Val Thr Glu Ala Thr Arg Val Gln Leu Val Leu Pro Leu Leu Val 450 455 460 Ala Glu Ala Ala Ala Ala Pro Ala Phe Leu Glu Ala Phe Ala Ala Asn 465 470 475 480 Val Leu Glu Pro Arg Glu His Ala Leu Leu Thr Leu Leu Leu Val Tyr 485 490 495 Gly Pro Arg Glu Gly Gly Arg Gly Ala Pro Asp Pro Phe Leu Gly Val 500 505 510 Lys Ala Ala Ala Ala Glu Leu Glu Arg Arg Tyr Pro Gly Thr Arg Leu 515 520 525 Ala Trp Leu Ala Val Arg Ala Glu Ala Pro Ser Gln Val Arg Leu Met 530 535 540 Asp Val Val Ser Lys Lys His Pro Val Asp Thr Leu Phe Phe Leu Thr 545 550 555 560 Thr Val Trp Thr Arg Pro Gly Pro Glu Val Leu Asn Arg Cys Arg Met 565 570 575 Asn Ala Ile Ser Gly Trp Gln Ala Phe Phe Pro Val His Phe Gln Glu 580 585 590 Phe Asn Pro Ala Leu Ser Pro Gln Arg Ser Pro Pro Gly Pro Pro Gly 595 600 605 Ala Gly Pro Asp Pro Pro Ser Pro Pro Gly Ala Asp Pro Ser Arg Gly 610 615 620 Ala Pro Ile Gly Gly Arg Phe Asp Arg Gln Ala Ser Ala Glu Gly Cys 625 630 635 640 Phe Tyr Asn Ala Asp Tyr Leu Ala Ala Arg Ala Arg Leu Ala Gly Glu 645 650 655 Leu Ala Gly Gln Glu Glu Glu Glu Ala Leu Glu Gly Leu Glu Val Met 660 665 670 Asp Val Phe Leu Arg Phe Ser Gly Leu His Leu Phe Arg Ala Val Glu 675 680 685 Pro Gly Leu Val Gln Lys Phe Ser Leu Arg Asp Cys Ser Pro Arg Leu 690 695 700 Ser Glu Glu Leu Tyr His Arg Cys Arg Leu Ser Asn Leu Glu Gly Leu 705 710 715 720 Gly Gly Arg Ala Gln Leu Ala Met Ala Leu Phe Glu Gln Glu Gln Ala 725 730 735 Asn Ser Thr <210> 5 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: 5' primer for quantitative PCR method <400> 5 gtgaaataga acaactgcag gctc 24 <210> 6 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: 3' primer for quantitative PCR method <400> 6 gagaaggtgt gctgctctgt ga 22 <210> 7 <211> 16 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Probe for quantitative PCR method <400> 7 cggaacctga ccgtgc 16 [Sequence list]                                SEQUENCE LISTING        <110> Kazusa DNA Research Institute       Seikagaku Corporation <120> A fusion protein having glucronic acid transferase activity <140> <141> <160> 7 <210> 1 <211> 3970 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (1466) .. (3832) <400> 1 aggggctgtg aggtggcagc ggctgcagcg gcggagccgg cgcctcagcg ggcactgggg 60 tctgttcccc cttccccgtc cctgctccct gccaggcgcg tgcgggacgc cgctcttggt 120 ccccacgcct ccgccccgcc ccctcccggg acgccgggag accccggccg tcctttatcc 180 ggtgtccgcc ggcccccggc cctgaaaccc gggcctcctc cccgagggcc ttgggcgtcc 240 ctcctggtcc tgcgctcgcg gcctcgatgc tgtctctggc gcggcctccg ctcccgccga 300 ctggcctgag aacgaggtct gtgccccagt ctcccagccg cgacctccga ccccgcctcg 360 cagaacgacc cgagctggtc tcccgagccc ccttctcagc agcccggtga cgtggccagt 420 ttatttctgt tttgagacga acggcgaaga ctcgcgtcgg gtcttcgttc tagggctaga 480 cttggtctct gatcgccgag aggtagcgca ggggctgtgg gcccccggca ggggtcctgt 540 cggaagctgg ccgcgcttct gtttgcgttc ccaggaccct ggcattgtct ctagttgctg 600 cttgtgctct ctctttgctt ttggtttgct tcatttggcc cctggggccc tggtaaaacc 660 aggcaccgaa tcgctcgcac acagagttcc agtccccgcc tgctgtctcc tcagcagctg 720 gggttccgag gagaatgccc tgcaagatgg ctccatcggc catggcgctc ctgagaggct 780 gtcagtgctg agtcaccgat ctacctcatt cgggtgggca gaacttatgt gtgccatgcg 840 agtggctcca gaccgctcct gagtgggagg aggggttcct gtagccgttg cgtcttctca 900 aacacgggga gcagagtaga aagaggctct ggccccttcc cttgtgccca ccgggcctgc 960 cgcagtggct cagcagcccc ttcagtagcc cgcctgagga ccgatgccag aggcaggcat 1020 tcttccggaa aggcccactg aggcaggctc cggctcctct ggttggggct gttgttttga 1080 tggatcgtgt gcttttccct tacctcttat cacttgctgt catctgttga cttaggccca 1140 gtctgcagat gtgtgtagtg ttcctttttg ggttagcttt ggcagtattg agttttactt 1200 cctcctcttt ttagtggaag acagaccata atcccagtgt gagtgaaatt gattgtttca 1260 tttattaccg ttttggctgg gggttagttc cgacaccttc acagttgaag agcaggcaga 1320 aggagttgtg aagacaggac aatcttcttg gggatgctgg tcctggaagc cagcgggcct 1380 cgctctgtct ttggcctcat tgaccccagg ttctctggtt aaaactgaaa gcctactact 1440 ggcctggtgc ccatcaatcc attga tcc ttg agg ctg tgc ccc tgg ggc acc 1492                             Ser Leu Arg Leu Cys Pro Trp Gly Thr                               1 5 cac ctg gca ggg cct acc acc atg cga ctg agc tcc ctg ttg gct ctg 1540 His Leu Ala Gly Pro Thr Thr Met Arg Leu Ser Ser Leu Leu Ala Leu  10 15 20 25 ctg cgg cca gcg ctt ccc ctc atc tta ggg ctg tct ctg ggg tgc agc 1588 Leu Arg Pro Ala Leu Pro Leu Ile Leu Gly Leu Ser Leu Gly Cys Ser                  30 35 40 ctg agc ctc ctg cgg gtt tcc tgg atc cag ggg gag gga gaa gat ccc 1636 Leu Ser Leu Leu Arg Val Ser Trp Ile Gln Gly Glu Gly Glu Asp Pro              45 50 55 tgt gtc gag gct gta ggg gag cga gga ggg cca cag aat cca gat tcc 1684 Cys Val Glu Ala Val Gly Glu Arg Gly Gly Pro Gln Asn Pro Asp Ser          60 65 70 aga gct cgg cta gac caa agt gat gaa gac ttc aaa ccc cgg att gtc 1732 Arg Ala Arg Leu Asp Gln Ser Asp Glu Asp Phe Lys Pro Arg Ile Val      75 80 85 ccc tac tac agg gac ccc aac aag ccc tac aag aag gtg ctc agg act 1780 Pro Tyr Tyr Arg Asp Pro Asn Lys Pro Tyr Lys Lys Val Leu Arg Thr  90 95 100 105 cgg tac atc cag aca gag ctg ggc tcc cgt gag cgg ttg ctg gtg gct 1828 Arg Tyr Ile Gln Thr Glu Leu Gly Ser Arg Glu Arg Leu Leu Val Ala                 110 115 120 gtc ctg acc tcc cga gct aca ctg tcc act ttg gcc gtg gct gtg aac 1876 Val Leu Thr Ser Arg Ala Thr Leu Ser Thr Leu Ala Val Ala Val Asn             125 130 135 cgt acg gtg gcc cat cac ttc cct cgg tta ctc tac ttc act ggg cag 1924 Arg Thr Val Ala His His Phe Pro Arg Leu Leu Tyr Phe Thr Gly Gln         140 145 150 cgg ggg gcc cgg gct cca gca ggg atg cag gtg gtg tct cat ggg gat 1972 Arg Gly Ala Arg Ala Pro Ala Gly Met Gln Val Val Ser His Gly Asp     155 160 165 gag cgg ccc gcc tgg ctc atg tca gag acc ctg cgc cac ctt cac aca 2020 Glu Arg Pro Ala Trp Leu Met Ser Glu Thr Leu Arg His Leu His Thr 170 175 180 185 cac ttt ggg gcc gac tac gac tgg ttc ttc atc atg cag gat gac aca 2068 His Phe Gly Ala Asp Tyr Asp Trp Phe Phe Ile Met Gln Asp Asp Thr                 190 195 200 tat gtg cag gcc ccc cgc ctg gca gcc ctt gct ggc cac ctc agc atc 2116 Tyr Val Gln Ala Pro Arg Leu Ala Ala Leu Ala Gly His Leu Ser Ile             205 210 215 aac caa gac ctg tac tta ggc cgg gca gag gag ttc att ggc gca ggc 2164 Asn Gln Asp Leu Tyr Leu Gly Arg Ala Glu Glu Phe Ile Gly Ala Gly         220 225 230 gag cag gcc cgg tac tgt cat ggg ggc ttt ggc tac ctg ttg tca cgg 2212 Glu Gln Ala Arg Tyr Cys His Gly Gly Phe Gly Tyr Leu Leu Ser Arg     235 240 245 agt ctc ctg ctt cgt ctg cgg cca cat ctg gat ggc tgc cga gga gac 2260 Ser Leu Leu Leu Arg Leu Arg Pro His Leu Asp Gly Cys Arg Gly Asp 250 255 260 265 att ctc agt gcc cgt cct gac gag tgg ctt gga cgc tgc ctc att gac 2308 Ile Leu Ser Ala Arg Pro Asp Glu Trp Leu Gly Arg Cys Leu Ile Asp                 270 275 280 tct ctg ggc gtc ggc tgt gtc tca cag cac cag ggg cag cag tat cgc 2356 Ser Leu Gly Val Gly Cys Val Ser Gln His Gln Gly Gln Gln Tyr Arg             285 290 295 tca ttt gaa ctg gcc aaa aat agg gac cct gag aag gaa ggg agc tcg 2404 Ser Phe Glu Leu Ala Lys Asn Arg Asp Pro Glu Lys Glu Gly Ser Ser         300 305 310 gct ttc ctg agt gcc ttc gcc gtg cac cct gtc tcc gaa ggt acc ctc 2452 Ala Phe Leu Ser Ala Phe Ala Val His Pro Val Ser Glu Gly Thr Leu     315 320 325 atg tac cgg ctc cac aaa cgc ttc agc gct ctg gag ttg gag cgg gct 2500 Met Tyr Arg Leu His Lys Arg Phe Ser Ala Leu Glu Leu Glu Arg Ala 330 335 340 345 tac agt gaa ata gaa caa ctg cag gct cag atc cgg aac ctg acc gtg 2548 Tyr Ser Glu Ile Glu Gln Leu Gln Ala Gln Ile Arg Asn Leu Thr Val                 350 355 360 ctg acc ccc gaa ggg gag gca ggg ctg agc tgg ccc gtt ggg ctc cct 2596 Leu Thr Pro Glu Gly Glu Ala Gly Leu Ser Trp Pro Val Gly Leu Pro             365 370 375 gct cct ttc aca cca cac tct cgc ttt gag gtg ctg ggc tgg gac tac 2644 Ala Pro Phe Thr Pro His Ser Arg Phe Glu Val Leu Gly Trp Asp Tyr         380 385 390 ttc aca gag cag cac acc ttc tcc tgt gca gat ggg gct ccc aag tgc 2692 Phe Thr Glu Gln His Thr Phe Ser Cys Ala Asp Gly Ala Pro Lys Cys     395 400 405 cca cta cag ggg gct agc agg gcg gac gtg ggt gat gcg ttg gag act 2740 Pro Leu Gln Gly Ala Ser Arg Ala Asp Val Gly Asp Ala Leu Glu Thr 410 415 420 425 gcc ctg gag cag ctc aat cgg cgc tat cag ccc cgc ctg cgc ttc cag 2788 Ala Leu Glu Gln Leu Asn Arg Arg Tyr Gln Pro Arg Leu Arg Phe Gln                 430 435 440 aag cag cga ctg ctc aac ggc tat cgg cgc ttc gac cca gca cgg ggc 2836 Lys Gln Arg Leu Leu Asn Gly Tyr Arg Arg Phe Asp Pro Ala Arg Gly             445 450 455 atg gag tac acc ctg gac ctg ctg ttg gaa tgt gtg aca cag cgt ggg 2884 Met Glu Tyr Thr Leu Asp Leu Leu Leu Glu Cys Val Thr Gln Arg Gly         460 465 470 cac cgg cgg gcc ctg gct cgc agg gtc agc ctg ctg cgg cca ctg agc 2932 His Arg Arg Ala Leu Ala Arg Arg Val Ser Leu Leu Arg Pro Leu Ser     475 480 485 cgg gtg gaa atc cta cct atg ccc tat gtc act gag gcc acc cga gtg 2980 Arg Val Glu Ile Leu Pro Met Pro Tyr Val Thr Glu Ala Thr Arg Val 490 495 500 505 cag ctg gtg ctg cca ctc ctg gtg gct gaa gct gct gca gcc ccg gct 3028 Gln Leu Val Leu Pro Leu Leu Val Ala Glu Ala Ala Ala Ala Pro Ala                 510 515 520 ttc ctc gag gcc ttt gca gcc aat gtc ctg gag cca cga gaa cat gca 3076 Phe Leu Glu Ala Phe Ala Ala Asn Val Leu Glu Pro Arg Glu His Ala             525 530 535 ttg ctc acc ctg ttg ctg gtc tac ggg cca cga gaa ggt ggc cgt gga 3124 Leu Leu Thr Leu Leu Leu Val Tyr Gly Pro Arg Glu Gly Gly Arg Gly         540 545 550 gct cca gac cca ttt ctt ggg gtg aag gct gca gca gcg gag tta gag 3172 Ala Pro Asp Pro Phe Leu Gly Val Lys Ala Ala Ala Ala Glu Leu Glu     555 560 565 cga cgg tac cct ggg acg agg ctg gcc tgg ctc gct gtg cga gca gag 3220 Arg Arg Tyr Pro Gly Thr Arg Leu Ala Trp Leu Ala Val Arg Ala Glu 570 575 580 585 gcc cct tcc cag gtg cga ctc atg gac gtg gtc tcg aag aag cac cct 3268 Ala Pro Ser Gln Val Arg Leu Met Asp Val Val Ser Lys Lys His Pro                 590 595 600 gtg gac act ctc ttc ttc ctt acc acc gtg tgg aca agg cct ggg ccc 3316 Val Asp Thr Leu Phe Phe Leu Thr Thr Val Trp Thr Arg Pro Gly Pro             605 610 615 gaa gtc ctc aac cgc tgt cgc atg aat gcc atc tct ggc tgg cag gcc 3364 Glu Val Leu Asn Arg Cys Arg Met Asn Ala Ile Ser Gly Trp Gln Ala         620 625 630 ttc ttt cca gtc cat ttc cag gag ttc aat cct gcc ctg tca cca cag 3412 Phe Phe Pro Val His Phe Gln Glu Phe Asn Pro Ala Leu Ser Pro Gln     635 640 645 aga tca ccc cca ggg ccc ccg ggg gct ggc cct gac ccc ccc tcc cct 3460 Arg Ser Pro Pro Gly Pro Pro Gly Ala Gly Pro Asp Pro Pro Ser Pro 650 655 660 665 cct ggt gct gac ccc tcc cgg ggg gct cct ata ggg ggg aga ttt gac 3508 Pro Gly Ala Asp Pro Ser Arg Gly Ala Pro Ile Gly Gly Arg Phe Asp                 670 675 680 cgg cag gct tct gcg gag ggc tgc ttc tac aac gct gac tac ctg gcg 3556 Arg Gln Ala Ser Ala Glu Gly Cys Phe Tyr Asn Ala Asp Tyr Leu Ala             685 690 695 gcc cga gcc cgg ctg gca ggt gaa ctg gca ggc cag gaa gag gag gaa 3604 Ala Arg Ala Arg Leu Ala Gly Glu Leu Ala Gly Gln Glu Glu Glu Glu         700 705 710 gcc ctg gag ggg ctg gag gtg atg gat gtt ttc ctc cgg ttc tca ggg 3652 Ala Leu Glu Gly Leu Glu Val Met Asp Val Phe Leu Arg Phe Ser Gly     715 720 725 ctc cac ctc ttt cgg gcc gta gag cca ggg ctg gtg cag aag ttc tcc 3700 Leu His Leu Phe Arg Ala Val Glu Pro Gly Leu Val Gln Lys Phe Ser 730 735 740 745 ctg cga gac tgc agc cca cgg ctc agt gaa gaa ctc tac cac cgc tgc 3748 Leu Arg Asp Cys Ser Pro Arg Leu Ser Glu Glu Leu Tyr His Arg Cys                 750 755 760 cgc ctc agc aac ctg gag ggg cta ggg ggc cgt gcc cag ctg gct atg 3796 Arg Leu Ser Asn Leu Glu Gly Leu Gly Gly Arg Ala Gln Leu Ala Met             765 770 775 gct ctc ttt gag cag gag cag gcc aat agc act tag cccgcctggg 3842 Ala Leu Phe Glu Gln Glu Gln Ala Asn Ser Thr         780 785 ggccctaacc tcattacctt tcctttgtct gcctcagccc caggaagggc aaggcaagat 3902 ggtggacaga tagagaattg ttgctgtatt ttttaaatat gaaaatgtta ttaaacatgt 3962 cttctgcc 3970 <210> 2 <211> 788 <212> PRT <213> Homo sapiens <400> 2 Ser Leu Arg Leu Cys Pro Trp Gly Thr His Leu Ala Gly Pro Thr Thr   1 5 10 15 Met Arg Leu Ser Ser Leu Leu Ala Leu Leu Arg Pro Ala Leu Pro Leu              20 25 30 Ile Leu Gly Leu Ser Leu Gly Cys Ser Leu Ser Leu Leu Arg Val Ser          35 40 45 Trp Ile Gln Gly Glu Gly Glu Asp Pro Cys Val Glu Ala Val Gly Glu      50 55 60 Arg Gly Gly Pro Gln Asn Pro Asp Ser Arg Ala Arg Leu Asp Gln Ser  65 70 75 80 Asp Glu Asp Phe Lys Pro Arg Ile Val Pro Tyr Tyr Arg Asp Pro Asn                  85 90 95 Lys Pro Tyr Lys Lys Val Leu Arg Thr Arg Tyr Ile Gln Thr Glu Leu             100 105 110 Gly Ser Arg Glu Arg Leu Leu Val Ala Val Leu Thr Ser Arg Ala Thr         115 120 125 Leu Ser Thr Leu Ala Val Ala Val Asn Arg Thr Val Ala His His Phe     130 135 140 Pro Arg Leu Leu Tyr Phe Thr Gly Gln Arg Gly Ala Arg Ala Pro Ala 145 150 155 160 Gly Met Gln Val Val Ser His Gly Asp Glu Arg Pro Ala Trp Leu Met                 165 170 175 Ser Glu Thr Leu Arg His Leu His Thr His Phe Gly Ala Asp Tyr Asp             180 185 190 Trp Phe Phe Ile Met Gln Asp Asp Thr Tyr Val Gln Ala Pro Arg Leu         195 200 205 Ala Ala Leu Ala Gly His Leu Ser Ile Asn Gln Asp Leu Tyr Leu Gly     210 215 220 Arg Ala Glu Glu Phe Ile Gly Ala Gly Glu Gln Ala Arg Tyr Cys His 225 230 235 240 Gly Gly Phe Gly Tyr Leu Leu Seru Arg Ser Leu Leu Leu Arg Leu Arg                 245 250 255 Pro His Leu Asp Gly Cys Arg Gly Asp Ile Leu Ser Ala Arg Pro Asp             260 265 270 Glu Trp Leu Gly Arg Cys Leu Ile Asp Ser Leu Gly Val Gly Cys Val         275 280 285 Ser Gln His Gln Gly Gln Gln Tyr Arg Ser Phe Glu Leu Ala Lys Asn     290 295 300 Arg Asp Pro Glu Lys Glu Gly Ser Ser Ala Phe Leu Ser Ala Phe Ala 305 310 315 320 Val His Pro Val Ser Glu Gly Thr Leu Met Tyr Arg Leu His Lys Arg                 325 330 335 Phe Ser Ala Leu Glu Leu Glu Arg Ala Tyr Ser Glu Ile Glu Gln Leu             340 345 350 Gln Ala Gln Ile Arg Asn Leu Thr Val Leu Thr Pro Glu Gly Glu Ala         355 360 365 Gly Leu Ser Trp Pro Val Gly Leu Pro Ala Pro Phe Thr Pro His Ser     370 375 380 Arg Phe Glu Val Leu Gly Trp Asp Tyr Phe Thr Glu Gln His Thr Phe 385 390 395 400 Ser Cys Ala Asp Gly Ala Pro Lys Cys Pro Leu Gln Gly Ala Ser Arg                 405 410 415 Ala Asp Val Gly Asp Ala Leu Glu Thr Ala Leu Glu Gln Leu Asn Arg             420 425 430 Arg Tyr Gln Pro Arg Leu Arg Phe Gln Lys Gln Arg Leu Leu Asn Gly         435 440 445 Tyr Arg Arg Phe Asp Pro Ala Arg Gly Met Glu Tyr Thr Leu Asp Leu     450 455 460 Leu Leu Glu Cys Val Thr Gln Arg Gly His Arg Arg Ala Leu Ala Arg 465 470 475 480 Arg Val Ser Leu Leu Arg Pro Leu Ser Arg Val Glu Ile Leu Pro Met                 485 490 495 Pro Tyr Val Thr Glu Ala Thr Arg Val Gln Leu Val Leu Pro Leu Leu             500 505 510 Val Ala Glu Ala Ala Ala Ala Pro Ala Phe Leu Glu Ala Phe Ala Ala         515 520 525 Asn Val Leu Glu Pro Arg Glu His Ala Leu Leu Thr Leu Leu Leu Val     530 535 540 Tyr Gly Pro Arg Glu Gly Gly Arg Gly Ala Pro Asp Pro Phe Leu Gly 545 550 555 560 Val Lys Ala Ala Ala Ala Glu Leu Glu Arg Arg Tyr Pro Gly Thr Arg                 565 570 575 Leu Ala Trp Leu Ala Val Arg Ala Glu Ala Pro Ser Gln Val Arg Leu             580 585 590 Met Asp Val Val Ser Lys Lys His Pro Val Asp Thr Leu Phe Phe Leu         595 600 605 Thr Thr Val Trp Thr Arg Pro Gly Pro Glu Val Leu Asn Arg Cys Arg     610 615 620 Met Asn Ala Ile Ser Gly Trp Gln Ala Phe Phe Pro Val His Phe Gln 625 630 635 640 Glu Phe Asn Pro Ala Leu Ser Pro Gln Arg Ser Pro Pro Gly Pro Pro                 645 650 655 Gly Ala Gly Pro Asp Pro Pro Ser Pro Pro Gly Ala Asp Pro Ser Arg             660 665 670 Gly Ala Pro Ile Gly Gly Arg Phe Asp Arg Gln Ala Ser Ala Glu Gly         675 680 685 Cys Phe Tyr Asn Ala Asp Tyr Leu Ala Ala Arg Ala Arg Leu Ala Gly     690 695 700 Glu Leu Ala Gly Gln Glu Glu Glu Glu Ala Leu Glu Gly Leu Glu Val 705 710 715 720 Met Asp Val Phe Leu Arg Phe Ser Gly Leu His Leu Phe Arg Ala Val                 725 730 735 Glu Pro Gly Leu Val Gln Lys Phe Ser Leu Arg Asp Cys Ser Pro Arg             740 745 750 Leu Ser Glu Glu Leu Tyr His Arg Cys Arg Leu Ser Asn Leu Glu Gly         755 760 765 Leu Gly Gly Arg Ala Gln Leu Ala Met Ala Leu Phe Glu Gln Glu Gln     770 775 780 Ala Asn Ser Thr 785 <210> 3 <211> 2222 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: fragment from       cDNA of KIAA1402 <220> <221> CDS <222> (3) .. (2222) <400> 3 gg atc cag ggg gag gga gaa gat ccc tgt gtc gag gct gta ggg gag 47    Ile Gln Gly Glu Gly Glu Asp Pro Cys Val Glu Ala Val Gly Glu      1 5 10 15 cga gga ggg cca cag aat cca gat tcc aga gct cgg cta gac caa agt 95 Arg Gly Gly Pro Gln Asn Pro Asp Ser Arg Ala Arg Leu Asp Gln Ser                  20 25 30 gat gaa gac ttc aaa ccc cgg att gtc ccc tac tac agg gac ccc aac 143 Asp Glu Asp Phe Lys Pro Arg Ile Val Pro Tyr Tyr Arg Asp Pro Asn              35 40 45 aag ccc tac aag aag gtg ctc agg act cgg tac atc cag aca gag ctg 191 Lys Pro Tyr Lys Lys Val Leu Arg Thr Arg Tyr Ile Gln Thr Glu Leu          50 55 60 ggc tcc cgt gag cgg ttg ctg gtg gct gtc ctg acc tcc cga gct aca 239 Gly Ser Arg Glu Arg Leu Leu Val Ala Val Leu Thr Ser Arg Ala Thr      65 70 75 ctg tcc act ttg gcc gtg gct gtg aac cgt acg gtg gcc cat cac ttc 287 Leu Ser Thr Leu Ala Val Ala Val Asn Arg Thr Val Ala His His Phe  80 85 90 95 cct cgg tta ctc tac ttc act ggg cag cgg ggg gcc cgg gct cca gca 335 Pro Arg Leu Leu Tyr Phe Thr Gly Gln Arg Gly Ala Arg Ala Pro Ala                 100 105 110 ggg atg cag gtg gtg tct cat ggg gat gag cgg ccc gcc tgg ctc atg 383 Gly Met Gln Val Val Ser His Gly Asp Glu Arg Pro Ala Trp Leu Met             115 120 125 tca gag acc ctg cgc cac ctt cac aca cac ttt ggg gcc gac tac gac 431 Ser Glu Thr Leu Arg His Leu His Thr His Phe Gly Ala Asp Tyr Asp         130 135 140 tgg ttc ttc atc atg cag gat gac aca tat gtg cag gcc ccc cgc ctg 479 Trp Phe Phe Ile Met Gln Asp Asp Thr Tyr Val Gln Ala Pro Arg Leu     145 150 155 gca gcc ctt gct ggc cac ctc agc atc aac caa gac ctg tac tta ggc 527 Ala Ala Leu Ala Gly His Leu Ser Ile Asn Gln Asp Leu Tyr Leu Gly 160 165 170 175 cgg gca gag gag ttc att ggc gca ggc gag cag gcc cgg tac tgt cat 575 Arg Ala Glu Glu Phe Ile Gly Ala Gly Glu Gln Ala Arg Tyr Cys His                 180 185 190 ggg ggc ttt ggc tac ctg ttg tca cgg agt ctc ctg ctt cgt ctg cgg 623 Gly Gly Phe Gly Tyr Leu Leu Seru Arg Ser Leu Leu Leu Arg Leu Arg             195 200 205 cca cat ctg gat ggc tgc cga gga gac att ctc agt gcc cgt cct gac 671 Pro His Leu Asp Gly Cys Arg Gly Asp Ile Leu Ser Ala Arg Pro Asp         210 215 220 gag tgg ctt gga cgc tgc ctc att gac tct ctg ggc gtc ggc tgt gtc 719 Glu Trp Leu Gly Arg Cys Leu Ile Asp Ser Leu Gly Val Gly Cys Val     225 230 235 tca cag cac cag ggg cag cag tat cgc tca ttt gaa ctg gcc aaa aat 767 Ser Gln His Gln Gly Gln Gln Tyr Arg Ser Phe Glu Leu Ala Lys Asn 240 245 250 255 agg gac cct gag aag gaa ggg agc tcg gct ttc ctg agt gcc ttc gcc 815 Arg Asp Pro Glu Lys Glu Gly Ser Ser Ala Phe Leu Ser Ala Phe Ala                 260 265 270 gtg cac cct gtc tcc gaa ggt acc ctc atg tac cgg ctc cac aaa cgc 863 Val His Pro Val Ser Glu Gly Thr Leu Met Tyr Arg Leu His Lys Arg             275 280 285 ttc agc gct ctg gag ttg gag cgg gct tac agt gaa ata gaa caa ctg 911 Phe Ser Ala Leu Glu Leu Glu Arg Ala Tyr Ser Glu Ile Glu Gln Leu         290 295 300 cag gct cag atc cgg aac ctg acc gtg ctg acc ccc gaa ggg gag gca 959 Gln Ala Gln Ile Arg Asn Leu Thr Val Leu Thr Pro Glu Gly Glu Ala     305 310 315 ggg ctg agc tgg ccc gtt ggg ctc cct gct cct ttc aca cca cac tct 1007 Gly Leu Ser Trp Pro Val Gly Leu Pro Ala Pro Phe Thr Pro His Ser 320 325 330 335 cgc ttt gag gtg ctg ggc tgg gac tac ttc aca gag cag cac acc ttc 1055 Arg Phe Glu Val Leu Gly Trp Asp Tyr Phe Thr Glu Gln His Thr Phe                 340 345 350 tcc tgt gca gat ggg gct ccc aag tgc cca cta cag ggg gct agc agg 1103 Ser Cys Ala Asp Gly Ala Pro Lys Cys Pro Leu Gln Gly Ala Ser Arg             355 360 365 gcg gac gtg ggt gat gcg ttg gag act gcc ctg gag cag ctc aat cgg 1151 Ala Asp Val Gly Asp Ala Leu Glu Thr Ala Leu Glu Gln Leu Asn Arg         370 375 380 cgc tat cag ccc cgc ctg cgc ttc cag aag cag cga ctg ctc aac ggc 1199 Arg Tyr Gln Pro Arg Leu Arg Phe Gln Lys Gln Arg Leu Leu Asn Gly     385 390 395 tat cgg cgc ttc gac cca gca cgg ggc atg gag tac acc ctg gac ctg 1247 Tyr Arg Arg Phe Asp Pro Ala Arg Gly Met Glu Tyr Thr Leu Asp Leu 400 405 410 415 ctg ttg gaa tgt gtg aca cag cgt ggg cac cgg cgg gcc ctg gct cgc 1295 Leu Leu Glu Cys Val Thr Gln Arg Gly His Arg Arg Ala Leu Ala Arg                 420 425 430 agg gtc agc ctg ctg cgg cca ctg agc cgg gtg gaa atc cta cct atg 1343 Arg Val Ser Leu Leu Arg Pro Leu Ser Arg Val Glu Ile Leu Pro Met             435 440 445 ccc tat gtc act gag gcc acc cga gtg cag ctg gtg ctg cca ctc ctg 1391 Pro Tyr Val Thr Glu Ala Thr Arg Val Gln Leu Val Leu Pro Leu Leu         450 455 460 gtg gct gaa gct gct gca gcc ccg gct ttc ctc gag gcc ttt gca gcc 1439 Val Ala Glu Ala Ala Ala Ala Pro Ala Phe Leu Glu Ala Phe Ala Ala     465 470 475 aat gtc ctg gag cca cga gaa cat gca ttg ctc acc ctg ttg ctg gtc 1487 Asn Val Leu Glu Pro Arg Glu His Ala Leu Leu Thr Leu Leu Leu Val 480 485 490 495 tac ggg cca cga gaa ggt ggc cgt gga gct cca gac cca ttt ctt ggg 1535 Tyr Gly Pro Arg Glu Gly Gly Arg Gly Ala Pro Asp Pro Phe Leu Gly                 500 505 510 gtg aag gct gca gca gcg gag tta gag cga cgg tac cct ggg acg agg 1583 Val Lys Ala Ala Ala Ala Glu Leu Glu Arg Arg Tyr Pro Gly Thr Arg             515 520 525 ctg gcc tgg ctc gct gtg cga gca gag gcc cct tcc cag gtg cga ctc 1631 Leu Ala Trp Leu Ala Val Arg Ala Glu Ala Pro Ser Gln Val Arg Leu         530 535 540 atg gac gtg gtc tcg aag aag cac cct gtg gac act ctc ttc ttc ctt 1679 Met Asp Val Val Ser Lys Lys His Pro Val Asp Thr Leu Phe Phe Leu     545 550 555 acc acc gtg tgg aca agg cct ggg ccc gaa gtc ctc aac cgc tgt cgc 1727 Thr Thr Val Trp Thr Arg Pro Gly Pro Glu Val Leu Asn Arg Cys Arg 560 565 570 575 atg aat gcc atc tct ggc tgg cag gcc ttc ttt cca gtc cat ttc cag 1775 Met Asn Ala Ile Ser Gly Trp Gln Ala Phe Phe Pro Val His Phe Gln                 580 585 590 gag ttc aat cct gcc ctg tca cca cag aga tca ccc cca ggg ccc ccg 1823 Glu Phe Asn Pro Ala Leu Ser Pro Gln Arg Ser Pro Pro Gly Pro Pro             595 600 605 ggg gct ggc cct gac ccc ccc tcc cct cct ggt gct gac ccc tcc cgg 1871 Gly Ala Gly Pro Asp Pro Pro Ser Pro Pro Gly Ala Asp Pro Ser Arg         610 615 620 ggg gct cct ata ggg ggg aga ttt gac cgg cag gct tct gcg gag ggc 1919 Gly Ala Pro Ile Gly Gly Arg Phe Asp Arg Gln Ala Ser Ala Glu Gly     625 630 635 tgc ttc tac aac gct gac tac ctg gcg gcc cga gcc cgg ctg gca ggt 1967 Cys Phe Tyr Asn Ala Asp Tyr Leu Ala Ala Arg Ala Arg Leu Ala Gly 640 645 650 655 gaa ctg gca ggc cag gaa gag gag gaa gcc ctg gag ggg ctg gag gtg 2015 Glu Leu Ala Gly Gln Glu Glu Glu Glu Ala Leu Glu Gly Leu Glu Val                 660 665 670 atg gat gtt ttc ctc cgg ttc tca ggg ctc cac ctc ttt cgg gcc gta 2063 Met Asp Val Phe Leu Arg Phe Ser Gly Leu His Leu Phe Arg Ala Val             675 680 685 gag cca ggg ctg gtg cag aag ttc tcc ctg cga gac tgc agc cca cgg 2111 Glu Pro Gly Leu Val Gln Lys Phe Ser Leu Arg Asp Cys Ser Pro Arg         690 695 700 ctc agt gaa gaa ctc tac cac cgc tgc cgc ctc agc aac ctg gag ggg 2159 Leu Ser Glu Glu Leu Tyr His Arg Cys Arg Leu Ser Asn Leu Glu Gly     705 710 715 cta ggg ggc cgt gcc cag ctg gct atg gct ctc ttt gag cag gag cag 2207 Leu Gly Gly Arg Ala Gln Leu Ala Met Ala Leu Phe Glu Gln Glu Gln 720 725 730 735 gcc aat agc act tag 2222 Ala Asn Ser Thr                 740 <210> 4 <211> 739 <212> PRT <213> Artificial Sequence <223> Description of Artificial Sequence: fragment from       cDNA of KIAA1402 <400> 4 Ile Gln Gly Glu Gly Glu Asp Pro Cys Val Glu Ala Val Gly Glu Arg   1 5 10 15 Gly Gly Pro Gln Asn Pro Asp Ser Arg Ala Arg Leu Asp Gln Ser Asp              20 25 30 Glu Asp Phe Lys Pro Arg Ile Val Pro Tyr Tyr Arg Asp Pro Asn Lys          35 40 45 Pro Tyr Lys Lys Val Leu Arg Thr Arg Tyr Ile Gln Thr Glu Leu Gly      50 55 60 Ser Arg Glu Arg Leu Leu Val Ala Val Leu Thr Ser Arg Ala Thr Leu  65 70 75 80 Ser Thr Leu Ala Val Ala Val Asn Arg Thr Val Ala His His Phe Pro                  85 90 95 Arg Leu Leu Tyr Phe Thr Gly Gln Arg Gly Ala Arg Ala Pro Ala Gly             100 105 110 Met Gln Val Val Ser His Gly Asp Glu Arg Pro Ala Trp Leu Met Ser         115 120 125 Glu Thr Leu Arg His Leu His Thr His Phe Gly Ala Asp Tyr Asp Trp     130 135 140 Phe Phe Ile Met Gln Asp Asp Thr Tyr Val Gln Ala Pro Arg Leu Ala 145 150 155 160 Ala Leu Ala Gly His Leu Ser Ile Asn Gln Asp Leu Tyr Leu Gly Arg                 165 170 175 Ala Glu Glu Phe Ile Gly Ala Gly Glu Gln Ala Arg Tyr Cys His Gly             180 185 190 Gly Phe Gly Tyr Leu Leu Ser Arg Ser Leu Leu Leu Arg Leu Arg Pro         195 200 205 His Leu Asp Gly Cys Arg Gly Asp Ile Leu Ser Ala Arg Pro Asp Glu     210 215 220 Trp Leu Gly Arg Cys Leu Ile Asp Ser Leu Gly Val Gly Cys Val Ser 225 230 235 240 Gln His Gln Gly Gln Gln Tyr Arg Ser Phe Glu Leu Ala Lys Asn Arg                 245 250 255 Asp Pro Glu Lys Glu Gly Ser Ser Ala Phe Leu Ser Ala Phe Ala Val             260 265 270 His Pro Val Ser Glu Gly Thr Leu Met Tyr Arg Leu His Lys Arg Phe         275 280 285 Ser Ala Leu Glu Leu Glu Arg Ala Tyr Ser Glu Ile Glu Gln Leu Gln     290 295 300 Ala Gln Ile Arg Asn Leu Thr Val Leu Thr Pro Glu Gly Glu Ala Gly 305 310 315 320 Leu Ser Trp Pro Val Gly Leu Pro Ala Pro Phe Thr Pro His Ser Arg                 325 330 335 Phe Glu Val Leu Gly Trp Asp Tyr Phe Thr Glu Gln His Thr Phe Ser             340 345 350 Cys Ala Asp Gly Ala Pro Lys Cys Pro Leu Gln Gly Ala Ser Arg Ala         355 360 365 Asp Val Gly Asp Ala Leu Glu Thr Ala Leu Glu Gln Leu Asn Arg Arg     370 375 380 Tyr Gln Pro Arg Leu Arg Phe Gln Lys Gln Arg Leu Leu Asn Gly Tyr 385 390 395 400 Arg Arg Phe Asp Pro Ala Arg Gly Met Glu Tyr Thr Leu Asp Leu Leu                 405 410 415 Leu Glu Cys Val Thr Gln Arg Gly His Arg Arg Ala Leu Ala Arg Arg             420 425 430 Val Ser Leu Leu Arg Pro Leu Ser Arg Val Glu Ile Leu Pro Met Pro         435 440 445 Tyr Val Thr Glu Ala Thr Arg Val Gln Leu Val Leu Pro Leu Leu Val     450 455 460 Ala Glu Ala Ala Ala Ala Pro Ala Phe Leu Glu Ala Phe Ala Ala Asn 465 470 475 480 Val Leu Glu Pro Arg Glu His Ala Leu Leu Thr Leu Leu Leu Val Tyr                 485 490 495 Gly Pro Arg Glu Gly Gly Arg Gly Ala Pro Asp Pro Phe Leu Gly Val             500 505 510 Lys Ala Ala Ala Ala Glu Leu Glu Arg Arg Tyr Pro Gly Thr Arg Leu         515 520 525 Ala Trp Leu Ala Val Arg Ala Glu Ala Pro Ser Gln Val Arg Leu Met     530 535 540 Asp Val Val Ser Lys Lys His Pro Val Asp Thr Leu Phe Phe Leu Thr 545 550 555 560 Thr Val Trp Thr Arg Pro Gly Pro Glu Val Leu Asn Arg Cys Arg Met                 565 570 575 Asn Ala Ile Ser Gly Trp Gln Ala Phe Phe Pro Val His Phe Gln Glu             580 585 590 Phe Asn Pro Ala Leu Ser Pro Gln Arg Ser Pro Pro Gly Pro Pro Gly         595 600 605 Ala Gly Pro Asp Pro Pro Ser Pro Pro Gly Ala Asp Pro Ser Arg Gly     610 615 620 Ala Pro Ile Gly Gly Arg Phe Asp Arg Gln Ala Ser Ala Glu Gly Cys 625 630 635 640 Phe Tyr Asn Ala Asp Tyr Leu Ala Ala Arg Ala Arg Leu Ala Gly Glu                 645 650 655 Leu Ala Gly Gln Glu Glu Glu Glu Ala Leu Glu Gly Leu Glu Val Met             660 665 670 Asp Val Phe Leu Arg Phe Ser Gly Leu His Leu Phe Arg Ala Val Glu         675 680 685 Pro Gly Leu Val Gln Lys Phe Ser Leu Arg Asp Cys Ser Pro Arg Leu     690 695 700 Ser Glu Glu Leu Tyr His Arg Cys Arg Leu Ser Asn Leu Glu Gly Leu 705 710 715 720 Gly Gly Arg Ala Gln Leu Ala Met Ala Leu Phe Glu Gln Glu Gln Ala                 725 730 735 Asn Ser Thr <210> 5 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: 5'primer for       quantitative PCR method <400> 5 gtgaaataga acaactgcag gctc 24 <210> 6 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: 3'primer for       quantitative PCR method <400> 6 gagaaggtgt gctgctctgt ga 22 <210> 7 <211> 16 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Probe for       quantitative PCR method <400> 7 cggaacctga ccgtgc 16

【0062】[0062]

【図面の簡単な説明】[Brief description of drawings]

【図1】 各形質転換体の培養物をウエスタンブロッテ
ィング法により解析した写真である。矢印は本発明物質
のバンドを示す。図中「Transient」は一時的導入株、
「Stable」は安定導入株、「Mock」は陰性対照、「K2」
〜「2-21」は本発明物質をコードする遺伝子を導入した
株を示す。また「Medium」は培養上清を示し、「Cell l
ayer」は細胞溶解液を示す。
FIG. 1 is a photograph showing a culture of each transformant analyzed by Western blotting. The arrow indicates the band of the substance of the present invention. In the figure, "Transient" is a temporarily introduced strain,
"Stable" is a stably introduced strain, "Mock" is a negative control, and "K2"
~ "2-21" indicates a strain into which a gene encoding the substance of the present invention has been introduced. "Medium" indicates the culture supernatant, and "Cell l"
“Ayer” indicates cell lysate.

【図2】 コンドロイチンに対するN-アセチルガラクト
サミン転移活性を示す図である。縦軸はN-アセチルガラ
クトサミン転移酵素活性を試験チューブあたりの放射能
により示し、横軸は画分番号を示す。白丸は本発明物質
を、黒丸は陽性対照を示す。
FIG. 2 is a diagram showing N-acetylgalactosamine transfer activity for chondroitin. The vertical axis represents N-acetylgalactosaminyltransferase activity by radioactivity per test tube, and the horizontal axis represents fraction number. White circles represent the substance of the present invention, and black circles represent the positive control.

【図3】 コンドロイチン硫酸6糖に対するN-アセチル
ガラクトサミン転移酵素活性を示す図である。縦軸はN-
アセチルガラクトサミン転移酵素活性を試験チューブあ
たりの放射能により示し、横軸は画分番号を示す。白丸
は本発明物質を、黒丸は陽性対照を示す。
FIG. 3 is a diagram showing N-acetylgalactosaminyltransferase activity against chondroitin sulfate hexasaccharide. The vertical axis is N-
The acetylgalactosamine transferase activity is shown by the radioactivity per test tube, and the horizontal axis shows the fraction number. White circles represent the substance of the present invention, and black circles represent the positive control.

【図4】 コンドロイチンに対するグルクロン酸転移活
性を示す図である。縦軸はグルクロン酸転移酵素活性を
試験チューブあたりの放射能により示し、横軸は画分番
号を示す。白丸は本発明物質を、黒丸は陽性対照を示
す。
FIG. 4 is a diagram showing glucuronosyl transfer activity for chondroitin. The vertical axis represents glucuronosyltransferase activity by radioactivity per test tube, and the horizontal axis represents fraction number. White circles represent the substance of the present invention, and black circles represent the positive control.

【図5】 コンドロイチン硫酸7糖に対するグルクロン
酸転移活性を示す図である。縦軸はグルクロン酸転移酵
素活性を試験チューブあたりの放射能により示し、横軸
は画分番号を示す。白丸は本発明物質を、黒丸は陽性対
照を示す。
FIG. 5 is a graph showing glucuronic acid transfer activity for chondroitin sulfate 7-sugar. The vertical axis represents glucuronosyltransferase activity by radioactivity per test tube, and the horizontal axis represents fraction number. White circles represent the substance of the present invention, and black circles represent the positive control.

【図6】 エチレンジアミン四酢酸によるグルクロン酸
転移活性の阻害を示す図である。縦軸はグルクロン酸転
移酵素活性を試験チューブあたりの放射能により示し、
横軸は画分番号を示す。白丸はエチレンジアミン四酢酸
非存在下での本発明物質を、黒丸はエチレンジアミン四
酢酸存在下での本発明物質を、白い四角は陰性対照を示
す。
FIG. 6 shows the inhibition of glucuronic acid transfer activity by ethylenediaminetetraacetic acid. The vertical axis shows the glucuronosyltransferase activity by the radioactivity per test tube,
The horizontal axis represents the fraction number. White circles represent the substance of the present invention in the absence of ethylenediaminetetraacetic acid, black circles represent the substance of the present invention in the presence of ethylenediaminetetraacetic acid, and white squares represent a negative control.

【図7】 コンドロイチン硫酸7糖にグルクロン酸が転
移されて生じたコンドロイチン硫酸8糖とその酵素分解
による影響を示す図である。縦軸は試験チューブあたり
14Cによる放射能により示し、横軸は画分番号を示
す。白丸は本発明物質によって調製したコンドロイチン
硫酸8糖を、黒丸は前記コンドロイチン硫酸8糖をコンド
ロイチナーゼABCで消化した産物を示す。
FIG. 7 is a diagram showing chondroitin sulfate octasaccharide produced by transferring glucuronic acid to chondroitin sulfate heptsaccharide and the effect of enzymatic degradation thereof. The vertical axis represents radioactivity due to 14 C per test tube, and the horizontal axis represents fraction number. White circles represent the chondroitin sulfate octasaccharide prepared by the substance of the present invention, and black circles represent the product obtained by digesting the chondroitin sulfate octasaccharide with chondroitinase ABC.

【図8】 コンドロイチン硫酸11糖の濃度を変化させた
場合に現れるグルクロン酸転移活性への影響を示す図で
ある。縦軸はグルクロン酸転移酵素活性を示し、横軸は
コンドロイチン硫酸11糖の濃度を示す。
FIG. 8 is a graph showing the effect on glucuronosyl transfer activity that appears when the concentration of chondroitin sulfate 11 sugar is changed. The vertical axis represents glucuronosyltransferase activity, and the horizontal axis represents the concentration of chondroitin sulfate 11 sugar.

【図9】 UDP-GlcUAの濃度を変化させた場合に現れる
グルクロン酸転移活性への影響を示す図である。縦軸は
グルクロン酸転移酵素活性を示し、横軸はUDP-GlcUAの
濃度を示す。
FIG. 9 is a diagram showing the effect on glucuronosyl transfer activity that appears when the concentration of UDP-GlcUA is changed. The vertical axis represents glucuronosyltransferase activity, and the horizontal axis represents UDP-GlcUA concentration.

【図10】 ヒト健常組織及び株化細胞における本発明
酵素の発現を定量的PCR反応で測定した図である。縦軸
はグリセルアルデヒド-3-リン酸脱水素酵素の発現量
(対照)に対するグルクロン酸転移酵素遺伝子発現量の
割合を示し、横軸は被験ヒト正常組織名及び被験株化細
胞名を示す。
FIG. 10 is a diagram in which the expression of the enzyme of the present invention in human healthy tissues and cell lines was measured by a quantitative PCR reaction. The vertical axis represents the ratio of the glucuronosyltransferase gene expression level to the glyceraldehyde-3-phosphate dehydrogenase expression level (control), and the horizontal axis represents the test human normal tissue name and test cell line name.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C12N 1/19 C12N 1/21 1/21 9/00 5/10 9/10 9/00 C12P 19/26 9/10 C12N 15/00 ZNAA C12P 19/26 5/00 A (72)発明者 木全 弘治 愛知県名古屋市名東区社口2−102−1 エスポア社口1201 (72)発明者 後藤 雅式 茨城県つくば市梅園1−1−1 独立行政 法人産業技術総合研究所内 (72)発明者 矢田 俊量 三重県桑名市西矢田町27−2 Fターム(参考) 4B024 AA20 BA07 BA10 BA80 CA01 CA07 DA02 EA04 GA11 HA01 HA03 4B050 CC04 CC05 DD11 FF14E LL05 4B064 AF21 CA10 CA21 CB30 CE10 DA01 4B065 AA90X AA93Y AB01 AC14 AC15 BA02 BA25 BD14 CA24 CA29 CA44 CA60 4H045 AA10 AA11 AA20 BA10 BA41 CA40 DA75 DA89 EA20 EA60 FA72 FA74 GA26 ─────────────────────────────────────────────────── ─── Continued Front Page (51) Int.Cl. 7 Identification Code FI Theme Coat (Reference) C12N 1/19 C12N 1/21 1/21 9/00 5/10 9/10 9/00 C12P 19/26 9/10 C12N 15/00 ZNAA C12P 19/26 5/00 A (72) Inventor Koji Kizen 2-102-1, Meito-ku, Nagoya City, Aichi Prefecture Espasha Corporation 1201 (72) Inventor Masatoshi Goto Ibaraki 1-1-1 Umezono, Tsukuba, Japan Independent administrative agency, National Institute of Advanced Industrial Science and Technology (72) Inventor Toshinori Yada 27-2 Nishiyata-cho, Kuwana-shi, Mie F-term (reference) 4B024 AA20 BA07 BA10 BA80 CA01 CA07 DA02 EA04 GA11 HA01 HA03 4B050 CC04 CC05 DD11 FF14E LL05 4B064 AF21 CA10 CA21 CB30 CE10 DA01 4B065 AA90X AA93Y AB01 AC14 AC15 BA02 BA25 BD14 CA24 CA29 CA44 CA60 4H045 AA10 AA11 AA20 BA10 BA41 CA40 DA75 DA89 FA72EA74 GA20 FA72 FA20 GA74 FA72 FA20 GA74

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】 配列番号4記載のアミノ酸配列又は配列
番号4記載のアミノ酸配列に1以上の構成アミノ酸の置
換、欠失、挿入、又は転位を有するアミノ酸配列からな
るポリペプチドと、識別ペプチドとが融合してなり、グ
ルクロン酸供与体からコンドロイチン骨格中に存在する
非還元末端のN-アセチルガラクトサミン残基にグルクロ
ン酸を転移する酵素活性を有することを特徴とする融合
タンパク質。
1. A polypeptide comprising an amino acid sequence represented by SEQ ID NO: 4 or an amino acid sequence having one or more constituent amino acid substitutions, deletions, insertions or transpositions in the amino acid sequence represented by SEQ ID NO: 4, and a discriminating peptide. 1. A fusion protein which is fused and has an enzymatic activity of transferring glucuronic acid from a glucuronic acid donor to an N-acetylgalactosamine residue at the non-reducing end present in the chondroitin skeleton.
【請求項2】 グルクロン酸供与体から、非還元末端が
N-アセチルガラクトサミン残基であり、コンドロイチン
骨格を有する7糖からなるオリゴ糖の該N-アセチルガラ
クトサミンに対してグルクロン酸残基を転移するが、N-
アセチルガラクトサミン供与体から、非還元末端がグル
クロン酸残基であり、コンドロイチン骨格を有する6糖
からなるオリゴ糖の該グルクロン酸に対しては実質的に
N-アセチルガラクトサミン残基を転移する活性を有しな
いことを特徴とする請求項1記載の融合タンパク質。
2. A non-reducing terminal from a glucuronic acid donor
N-acetylgalactosamine residue, which transfers a glucuronic acid residue to the N-acetylgalactosamine oligosaccharide consisting of 7 sugars having a chondroitin skeleton.
From the acetylgalactosamine donor, the non-reducing end is a glucuronic acid residue, and the oligosaccharide consisting of a hexasaccharide having a chondroitin skeleton is substantially
The fusion protein according to claim 1, which has no activity of transferring an N-acetylgalactosamine residue.
【請求項3】 識別ペプチドがシグナルペプチド、プロ
テインキナーゼA、プロテインA、グルタチオンS転移酵
素、Hisタグ、mycタグ、FLAGタンパク質、T7タグ、Sタ
グ、HSVタグ、pelB、HAタグ、Trxタグ、CBPタグ、CBDタ
グ、CBRタグ、β-lac/blu、β-gal、luc、HP-Thio、HS
P、Lnγ、Fn、GFP、YFP、CFP、BFP、DsRed、DsRed2、MB
P、LacZ、IgG、アビジン、及びプロテインGからなる群
から選択されるいずれか一のペプチドであることを特徴
とする請求項1又は2記載の融合タンパク質。
3. The discriminating peptide is a signal peptide, protein kinase A, protein A, glutathione S-transferase, His tag, myc tag, FLAG protein, T7 tag, S tag, HSV tag, pelB, HA tag, Trx tag, CBP. Tags, CBD tags, CBR tags, β-lac / blu, β-gal, luc, HP-Thio, HS
P, Lnγ, Fn, GFP, YFP, CFP, BFP, DsRed, DsRed2, MB
The fusion protein according to claim 1 or 2, which is any one peptide selected from the group consisting of P, LacZ, IgG, avidin, and protein G.
【請求項4】 請求項1〜3いずれか一項記載の融合タ
ンパク質をコードするDNA。
4. A DNA encoding the fusion protein according to claim 1.
【請求項5】 請求項4記載のDNAを含むベクター。5. A vector containing the DNA according to claim 4. 【請求項6】 請求項5記載のベクターが宿主細胞に導
入されてなる形質転換体。
6. A transformant obtained by introducing the vector according to claim 5 into a host cell.
【請求項7】 請求項6記載の形質転換体を生育させ、
生育物から融合タンパク質を単離することを特徴とする
請求項1〜3いずれか一項記載の融合タンパク質の製造
方法。
7. Growing the transformant according to claim 6,
The method for producing a fusion protein according to claim 1, wherein the fusion protein is isolated from the grown product.
【請求項8】 請求項1〜3何れか一項記載の融合タン
パク質を特異的に認識することを特徴とする抗体。
8. An antibody which specifically recognizes the fusion protein according to any one of claims 1 to 3.
【請求項9】 下記性質を有するグルクロン酸転移酵
素。 (a)作用 グルクロン酸供与体から、受容体であるN-アセチルガラ
クトサミン残基にグルクロン酸残基を転移する。 (b)基質特異性 グルクロン酸供与体から、非還元末端がN-アセチルガラ
クトサミン残基であり、コンドロイチン骨格を有する7
糖からなるオリゴ糖の該N-アセチルガラクトサミンに対
してグルクロン酸残基を転移するが、N-アセチルガラク
トサミン供与体から、非還元末端がグルクロン酸残基で
あり、コンドロイチン骨格を有する6糖からなるオリゴ
糖の該グルクロン酸に対しては実質的にN-アセチルガラ
クトサミン残基を転移する活性を有しない。 (c)活性の阻害 エチレンジアミン四酢酸共存下では酵素活性を実質的に
示さない。
9. A glucuronosyltransferase having the following properties. (A) Action The glucuronic acid residue is transferred from the glucuronic acid donor to the acceptor N-acetylgalactosamine residue. (B) From the substrate-specific glucuronic acid donor, the non-reducing end is an N-acetylgalactosamine residue and has a chondroitin skeleton 7
It transfers a glucuronic acid residue to the N-acetylgalactosamine of the oligosaccharide consisting of sugar, but from the N-acetylgalactosamine donor, the non-reducing end is a glucuronic acid residue and consists of a hexasaccharide having a chondroitin skeleton. The oligosaccharide has substantially no activity to transfer the N-acetylgalactosamine residue to the glucuronic acid. (C) Inhibition of activity In the coexistence of ethylenediaminetetraacetic acid, it exhibits substantially no enzyme activity.
【請求項10】 配列番号4記載のアミノ酸配列又は配
列番号4記載のアミノ酸配列に1以上の構成アミノ酸の
置換、欠失、挿入、又は転位を有するアミノ酸配列を含
むことを特徴とする請求項9記載のグルクロン酸転移酵
素。
10. The amino acid sequence of SEQ ID NO: 4 or the amino acid sequence of SEQ ID NO: 4 contains an amino acid sequence having substitution, deletion, insertion, or transposition of one or more constituent amino acids. The glucuronosyltransferase described.
【請求項11】 非還元末端にN-アセチルガラクトサミ
ン残基を有するとともにコンドロイチン骨格を有する糖
鎖に対し、請求項1〜3いずれか一項記載の融合タンパ
ク質或いは請求項9又は10記載のグルクロン酸転移酵
素を作用させ、グルクロン酸供与体から該糖鎖の非還元
末端のN-アセチルガラクトサミン残基にグルクロン酸を
転移することを特徴とする、コンドロイチン骨格を有す
る糖鎖の製造方法。
11. The fusion protein according to any one of claims 1 to 3 or the glucuronic acid according to claim 9 or 10 for a sugar chain having an N-acetylgalactosamine residue at a non-reducing end and a chondroitin skeleton. A method for producing a sugar chain having a chondroitin skeleton, which comprises transferring a glucuronic acid from a glucuronic acid donor to an N-acetylgalactosamine residue at the non-reducing end of the sugar chain by causing a transferase to act.
【請求項12】 配列番号4記載のアミノ酸配列又は配
列番号4記載のアミノ酸配列に1以上の構成アミノ酸の
置換、欠失、挿入、又は転位を有するアミノ酸配列から
なるポリペプチドを含むタンパク質を含有し、非還元末
端にN-アセチルガラクトサミン残基を有するコンドロイ
チン骨格からなる糖鎖にグルクロン酸供与体からグルク
ロン酸を転移する活性を有する糖鎖合成剤。
12. A protein comprising a protein comprising an amino acid sequence of SEQ ID NO: 4 or a polypeptide consisting of an amino acid sequence having one or more constituent amino acid substitutions, deletions, insertions or transpositions in the amino acid sequence of SEQ ID NO: 4. , A sugar chain synthesizing agent having an activity of transferring glucuronic acid from a glucuronic acid donor to a sugar chain having a chondroitin skeleton having an N-acetylgalactosamine residue at a non-reducing end.
【請求項13】 タンパク質が配列番号4記載のアミノ
酸配列又は配列番号4記載のアミノ酸配列に1以上の構
成アミノ酸の置換、欠失、挿入、又は転位を有するアミ
ノ酸配列からなるポリペプチドと識別ペプチドとの融合
タンパク質を含むことを特徴とする請求項12記載の糖
鎖合成剤。
13. A polypeptide comprising an amino acid sequence represented by SEQ ID NO: 4 or an amino acid sequence having one or more constituent amino acid substitutions, deletions, insertions or transpositions in the amino acid sequence represented by SEQ ID NO: 4, and a discriminating peptide. 13. The sugar chain synthesizing agent according to claim 12, comprising the fusion protein of.
JP2003030398A 2002-02-08 2003-02-07 Fusion protein having glucuronyltransferase activity Expired - Fee Related JP4275960B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003030398A JP4275960B2 (en) 2002-02-08 2003-02-07 Fusion protein having glucuronyltransferase activity

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002-33042 2002-02-08
JP2002033042 2002-02-08
JP2003030398A JP4275960B2 (en) 2002-02-08 2003-02-07 Fusion protein having glucuronyltransferase activity

Publications (2)

Publication Number Publication Date
JP2003299488A true JP2003299488A (en) 2003-10-21
JP4275960B2 JP4275960B2 (en) 2009-06-10

Family

ID=29405030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003030398A Expired - Fee Related JP4275960B2 (en) 2002-02-08 2003-02-07 Fusion protein having glucuronyltransferase activity

Country Status (1)

Country Link
JP (1) JP4275960B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022227880A1 (en) * 2021-04-29 2022-11-03 温州医科大学 Novel phosphorylated adenylase, and preparation method therefor and application thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022227880A1 (en) * 2021-04-29 2022-11-03 温州医科大学 Novel phosphorylated adenylase, and preparation method therefor and application thereof

Also Published As

Publication number Publication date
JP4275960B2 (en) 2009-06-10

Similar Documents

Publication Publication Date Title
AU706747B2 (en) Antibody specific for beta1-&gt;6N- acetylglucosamininyltransferase
JPH09503905A (en) Method for synthesizing sugar composition
JP2002543787A (en) A family of immunomodulators termed leukocyte immunoglobulin-like receptors (LIRs)
JP2002530071A (en) UDP galactose: β-N-acetyl-glucosamine β1,3 galactosyltransferase, β3Gal-T5
US7470529B2 (en) Chondroitin synthase and nucleic acid encoding the enzyme
JP4333880B2 (en) Chondroitin synthase and DNA encoding the enzyme
US6783966B1 (en) Alpha1, 4-galactosyltransferase and DNA encoding thereof
JP2003047467A (en) Chondroitin synthetase
JP3921271B2 (en) DNA encoding glucuronyltransferase
CN114369584B (en) Recombinant human source fucosyltransferase variant and application thereof
JP4275960B2 (en) Fusion protein having glucuronyltransferase activity
JP4155779B2 (en) Glycosulfating agent
JP2942813B2 (en) Novel hyaluronic acid synthase polypeptide and DNA encoding the same
WO2003072773A1 (en) Fused protein having glucuronyl transferase activity
JP2002503082A (en) Nucleic acid encoding GDP-fucose pyrophosphorylase
JP4288327B2 (en) Sulfyltransferase, polypeptide thereof and DNA encoding the same
JP4629214B2 (en) N-acetylglucosamine transferase
US7232675B2 (en) Sulfotransferase, its polypeptide and DNA encoding the same
Day et al. Eph/Ephrin membrane proteins: a mammalian expression vector pTIg-BOS-Fc allowing rapid protein purification
JPH10295371A (en) Lactosylceramide synthetase and its gene
JP3889863B2 (en) Glycosyltransferase gene
JP2839837B2 (en) DNA encoding the ligand-binding domain protein of granulocyte colony-stimulating factor receptor
JP2003164291A (en) New chondroitin synthetase
JP2002209586A (en) Dna encoding transmembrane domain-lacking type n- acetylglucosamine deacetylation enzyme

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080711

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090224

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090305

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120313

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140313

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313118

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

Free format text: JAPANESE INTERMEDIATE CODE: R313118

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees