JP2003298056A - Organic thin-film field effect transistor and its manufacturing method - Google Patents

Organic thin-film field effect transistor and its manufacturing method

Info

Publication number
JP2003298056A
JP2003298056A JP2002092708A JP2002092708A JP2003298056A JP 2003298056 A JP2003298056 A JP 2003298056A JP 2002092708 A JP2002092708 A JP 2002092708A JP 2002092708 A JP2002092708 A JP 2002092708A JP 2003298056 A JP2003298056 A JP 2003298056A
Authority
JP
Japan
Prior art keywords
thin film
field effect
effect transistor
organic
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002092708A
Other languages
Japanese (ja)
Inventor
Kiyoshi Yatsuse
清志 八瀬
Satoshi Hoshino
聰 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2002092708A priority Critical patent/JP2003298056A/en
Publication of JP2003298056A publication Critical patent/JP2003298056A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an organic thin-film field effect transistor that can be improved in operating characteristic by improving the supplying efficiency of electrons from a source electrode to an organic active layer and the discharging efficiency of electrons from the organic active layer to a drain electrode. <P>SOLUTION: This organic thin-film field effect transistor is composed at least of the source electrode, the drain electrode, a gate insulating film, a gate electrode, and a thin film of an organic compound formed between the source and drain electrodes and the gate insulating film. Since the source and drain electrodes are formed in laminated structures of extremely thin films of an alkali metal fluoride and aluminum, the supplying efficiency of electrons from the source electrode to the organic active layer and the discharging efficiency of electrons from the organic active layer to the drain electrode are improved. Consequently, the operating characteristic of this transistor can be improved. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、新規な電界効果ト
ランジスターに関するもので、さらに詳しくは電子が電
荷輸送担体となる有機薄膜電界効果トランジスターに関
する。
TECHNICAL FIELD The present invention relates to a novel field effect transistor, and more particularly to an organic thin film field effect transistor in which electrons serve as charge transport carriers.

【0002】[0002]

【従来の技術】情報技術の進展により、ノート型パーソ
ナルコンピューターや携帯型情報ツール、携帯電話等を
用いた時間と場所に限定されない、モバイル型の情報の
送受信が盛んに行われるようになってきている。通信速
度が高速化するに従い静止画や動画など大容量の情報が
容易に受信できるようになってきており、それらの表示
を担うディスプレイに関しても、その性能の向上が望ま
れている。上述した携行可能な端末に適したディスプレ
イとしては、高い精細性が必要であることに加えて、消
費電力が小さく、薄型、軽量であることが望まれてお
り、現在では液晶素子を利用したディスプレイが広く用
いられている。液晶素子を利用したディスプレイにおい
ては、個々の画素を薄膜トランジスターを集積した基板
上に形成し、この薄膜トランジスターによって各画素の
階調等を制御し表示を行わせる、いわゆるアクティブマ
トリックス方式が主流になりつつある。
2. Description of the Related Art Due to the progress of information technology, mobile type information transmission and reception has become popular, which is not limited to time and place using a notebook personal computer, a portable information tool, a mobile phone or the like. There is. As the communication speed increases, it becomes possible to easily receive a large amount of information such as still images and moving images, and it is desired to improve the performance of a display that handles such information. As a display suitable for the portable terminal described above, in addition to requiring high definition, it is desired to have low power consumption, thinness, and lightness. Currently, a display using a liquid crystal element is required. Is widely used. In displays using liquid crystal elements, the so-called active matrix method, in which individual pixels are formed on a substrate on which thin film transistors are integrated, and the gradation of each pixel is controlled by this thin film transistor to perform display, has become mainstream. It's starting.

【0003】通常は、ガラス板上にアモルファスシリコ
ンやポリシリコンなどの無機の半導体薄膜電界効果トラ
ンジスターを集積させたものが広く用いられている。こ
の薄膜トランジスターの作製に対して半導体活性層に有
機物を用いると、比較的低温度での蒸着や、溶液などの
キャスト等により活性層薄膜が作製できるため、ガラス
基板のみならずプラスチックなど、無機半導体を堆積さ
せる温度において熱的耐久性が小さい基板上にも原理的
には電界効果トランジスターを作製できるという利点が
ある。薄膜トランジスターを集積したプラスッチク基板
上にディスプレイが製造できれば、上述した携行可能な
情報端末に、より軽量なディスプレイを搭載できるとい
う利点がある。
In general, the one in which an inorganic semiconductor thin film field effect transistor such as amorphous silicon or polysilicon is integrated on a glass plate is widely used. When an organic material is used for the semiconductor active layer for the production of this thin film transistor, the active layer thin film can be produced by vapor deposition at a relatively low temperature, casting of a solution, etc. In principle, there is an advantage that a field effect transistor can be manufactured even on a substrate that has low thermal durability at the temperature at which is deposited. If a display can be manufactured on a plastic substrate on which thin film transistors are integrated, there is an advantage that a lighter display can be mounted on the portable information terminal described above.

【0004】また、有機薄膜電界効果トランジスターで
パターニングしたフレキシブルなプラスチック基板上
に、近年その性能が著しく向上した有機電界発光素子を
画素として集積させたアクティブマトリックス型ディス
プレイが作製できるようになると、薄型、軽量であるこ
とに加えて、曲げたり折り畳んだりが可能な柔軟性のあ
るディスプレイを提供できる可能性も指摘されている。
こうしたことから、近年、優れた性能を示す有機薄膜電
界効果トランジスターの開発が活発に行われるようにな
ってきており、有機低分子蒸着薄膜〔例えばアイトリプ
ルイー エレクトロン デバイス レターズ(IEEE Ele
ctron Device Letters)第18巻、第606頁(199
7)〕や、立体規則性の高い共役高分子薄膜〔例えばサ
イエンス(Science)第280巻、第1741頁(19
98)〕を用いた薄膜電界効果トランジスターが作製さ
れ、正孔の輸送に基づく電流が電界効果によって制御さ
れる、いわゆるPチャンネル型の優れたトランジスター
特性を示すことが報告されている。
Further, when it becomes possible to fabricate an active matrix type display in which organic electroluminescent elements whose performance has been remarkably improved in recent years are integrated on a flexible plastic substrate patterned with an organic thin film field effect transistor, it becomes possible to produce a thin, In addition to being lightweight, it has also been pointed out that it can provide a flexible display that can be bent and folded.
For these reasons, organic thin-film field-effect transistors exhibiting excellent performance have been actively developed in recent years, and organic low-molecular-weight vapor-deposited thin films (for example, Eye Triple E Electron Device Letters (IEEE Ele
ctron Device Letters, Vol. 18, p. 606 (199
7)] or a conjugated polymer thin film having high stereoregularity [for example, Science (280), page 1741 (19).
It has been reported that a thin-film field effect transistor using the above [98]] is produced and exhibits excellent so-called P-channel type transistor characteristics in which a current based on hole transport is controlled by the field effect.

【0005】一方、電子に基づく電流が電界効果によっ
て制御される、いわゆるNチャンネル型トランジスター
特性を示す材料とそれを用いた薄膜電界効果トランジス
ターの開発は立ち遅れている。Nチャンネル型の電界効
果トランジスターは、上記のPチャンネル型のトランジ
スターと同様に、補償回路を形成する上で必要不可欠で
ある。このため、優れた性能を示すNチャンネル型の有
機薄膜電界効果トランジスターの開発が急務となってい
た。
On the other hand, the development of a material exhibiting so-called N-channel type transistor characteristics in which a current based on electrons is controlled by a field effect and a thin film field effect transistor using the same have been delayed. The N-channel type field effect transistor is indispensable for forming a compensation circuit, like the P-channel type transistor described above. Therefore, there has been an urgent need to develop an N-channel type organic thin film field effect transistor exhibiting excellent performance.

【0006】[0006]

【発明が解決しようとする課題】本発明は、前記実情に
鑑み提案されたもので、電子に基づく電流が電界効果に
よって制御される、いわゆるNチャンネル型の優れた特
性を示す有機薄膜電界効果トランジスターおよびその製
造方法を提供することを目的とする。
DISCLOSURE OF THE INVENTION The present invention has been proposed in view of the above circumstances, and is an organic thin film field effect transistor exhibiting excellent characteristics of so-called N-channel type in which an electron-based current is controlled by a field effect. And a method for manufacturing the same.

【0007】[0007]

【課題を解決するための手段】前記目的を達成するため
に、請求項1に記載の発明は、少なくともソース電極、
ドレイン電極、ゲート絶縁膜、及びゲート電極とソー
ス、ドレイン及びゲート絶縁層間に形成される有機化合
物の薄膜からなる有機薄膜電界効果トランジスターにお
いて、前記ソース及びドレイン電極をアルカリ金属弗化
物の極薄膜とアルミニウムの積層構造としたことを特徴
としている。
In order to achieve the above object, the invention according to claim 1 provides at least a source electrode,
In an organic thin film field effect transistor comprising a drain electrode, a gate insulating film, and a thin film of an organic compound formed between a gate electrode and a source, a drain and a gate insulating layer, the source and drain electrodes are made of an extremely thin film of alkali metal fluoride and aluminum. It is characterized by having a laminated structure of.

【0008】また、請求項2に記載の発明において、前
記積層構造からなるソース電極及びドレイン電極は、ア
ルカリ金属弗化物を有機化合物の薄膜側に配置したこと
を特徴とするものである。
Further, in the invention described in claim 2, the source electrode and the drain electrode having the laminated structure are characterized in that the alkali metal fluoride is arranged on the thin film side of the organic compound.

【0009】また、請求項3に記載の発明において、前
記アルカリ金属弗化物は、弗化リチウムであることを特
徴とするものである。
The invention according to claim 3 is characterized in that the alkali metal fluoride is lithium fluoride.

【0010】また、請求項4に記載の発明において、前
記アルカリ金属弗化物の膜厚は、数nm以下であること
を特徴とするものである。
The invention according to claim 4 is characterized in that the film thickness of the alkali metal fluoride is several nm or less.

【0011】また、請求項5に記載の発明において、酸
化絶縁膜を形成した導電性基板上に電子輸送性、電界効
果によって電子密度が変調され得る有機化合物の薄膜を
形成すると共に、ソース電極及びドレイン電極を所定の
間隔を有して配置した有機薄膜電界効果トランジスター
の製造方法は、前記ソース電極及びドレイン電極を作製
するに際し、アルカリ金属弗化物の極薄膜を先ず形成
し、その上にアルミニウムでソース電極及びドレイン電
極を形成することを特徴とするものである。
Further, in the invention according to claim 5, a thin film of an organic compound whose electron density can be modulated by an electron transport property and a field effect is formed on a conductive substrate on which an oxide insulating film is formed, and a source electrode and In the method of manufacturing an organic thin film field effect transistor in which drain electrodes are arranged with a predetermined interval, an extremely thin film of an alkali metal fluoride is first formed and then aluminum is formed on the source and drain electrodes. It is characterized in that a source electrode and a drain electrode are formed.

【0012】[0012]

【発明の実施の形態】以下、本発明の一実施の形態を詳
細に説明する。有機薄膜電界効果トランジスターにおい
て、電子に基づく電流が電界効果によって制御される、
いわゆるNチャンネル型トランジスター特性が現われる
ためには、活性層となる有機材料の薄膜が電子輸送性を
示し、かつ有機層の電子密度が電界効果によって変調さ
れなければならない。加えてソース電極から有機層への
電子の供給と、有機層からドレイン電極への電子の排出
が効率よく起こる必要がある。ところが、一般にイオン
化ポテンシャルが高く、最高被占軌道と最低空軌道間の
エネルギーギャップが大きい有機化合物の場合には、電
極金属として空気中でも比較的安定な金やアルミニウム
など、さらにはこれらよりも仕事関数の小さいマグネシ
ウムなどから、有機化合物への電子の供給は、金属のフ
ェルミ準位と有機化合物の最高被占軌道とのエネルギー
差が大きいため、効率良く起こらないことがわかってい
る。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of the present invention will be described in detail below. In an organic thin film field effect transistor, the electron-based current is controlled by the field effect,
In order for the so-called N-channel type transistor characteristics to appear, the thin film of the organic material that becomes the active layer must exhibit an electron transport property, and the electron density of the organic layer must be modulated by the electric field effect. In addition, it is necessary that the supply of electrons from the source electrode to the organic layer and the discharge of electrons from the organic layer to the drain electrode occur efficiently. However, in general, in the case of an organic compound having a high ionization potential and a large energy gap between the highest occupied molecular orbital and the lowest unoccupied molecular orbital, gold or aluminum, which is relatively stable in air as an electrode metal, and a work function It is known that the supply of electrons from a small amount of magnesium or the like to an organic compound does not occur efficiently because the energy difference between the Fermi level of the metal and the highest occupied molecular orbital of the organic compound is large.

【0013】このことは、Nチャンネル型の有機薄膜電
界効果トランジスターの特性を制限する一つの要因とな
っていた。本発明者らは、アルミニウムをソース及びド
レイン電極の電極金属として用いた場合に、電極金属と
有機活性層との間に電子メディエーターとして、アルカ
リ金属弗化物の極薄膜層を挿入することによって、Nチ
ャンネル型有機薄膜トランジスターの有機活性層へのソ
ース電極からの電子の供給、さらには有機活性層からド
レイン電極への電子の排出が効率よく起こり、トランジ
スターの特性が著しく向上することを見い出した。
This has been one of the factors limiting the characteristics of the N-channel type organic thin film field effect transistor. When the aluminum is used as the electrode metal of the source and drain electrodes, the inventors of the present invention insert an extremely thin layer of alkali metal fluoride as an electron mediator between the electrode metal and the organic active layer. It has been found that the supply of electrons from the source electrode to the organic active layer of the channel type organic thin film transistor and the discharge of electrons from the organic active layer to the drain electrode occur efficiently, and the characteristics of the transistor are significantly improved.

【0014】次に、本発明を図面を参照しつつ具体的に
説明する。本発明の有機薄膜電界効果トランジスター
は、図1に示すように、絶縁膜1aを形成させた導電性
基板1上に電子輸送性を示し、かつ電子密度が電界効果
によって変調を受ける性質を持つ有機材料の薄膜2、さ
らに薄膜2上にソース電極3及びドレイン電極4が間隔
を持って形成された構造を有している。絶縁膜1aを形
成させた導電性基板1としては、導電性があり、かつ電
気抵抗の小さい基板上に誘電体等の絶縁性の高い膜を形
成させたもので、表面酸化膜を形成させた高ドープ結晶
シリコン、絶縁性高分子でコートした金属基板等を使用
することができる。絶縁膜1aの厚さはいくらでも構わ
ないが好ましくは数百nmの範囲で選ばれる。
Next, the present invention will be specifically described with reference to the drawings. As shown in FIG. 1, the organic thin film field effect transistor of the present invention is an organic thin film field effect transistor having an electron transporting property on a conductive substrate 1 on which an insulating film 1a is formed and having a property that electron density is modulated by a field effect. It has a structure in which a thin film 2 of a material and further a source electrode 3 and a drain electrode 4 are formed on the thin film 2 with a space. As the conductive substrate 1 on which the insulating film 1a is formed, a highly insulating film such as a dielectric is formed on a substrate which is conductive and has low electric resistance, and a surface oxide film is formed on the substrate. Highly doped crystalline silicon, a metal substrate coated with an insulating polymer, or the like can be used. The insulating film 1a may have any thickness, but is preferably selected in the range of several hundreds nm.

【0015】薄膜2は電子輸送性があり、かつ電界効果
により電子密度の変調が起こりうる有機材料の薄膜であ
れば何でもよく、ペリレンテトラカルボン酸無水物及び
その誘導体、ペリレンテトラカルボキシジイミド誘導
体、金属フタロシアニン誘導体、フラーレン類の蒸着薄
膜などが挙げられる。薄膜2の厚さは、いくらでも構わ
ないが、好ましくは数十nmから数百nmの厚さで形成
される。
The thin film 2 may be any thin film made of an organic material having an electron transporting property and capable of modulating the electron density by the electric field effect, such as perylene tetracarboxylic acid anhydride and its derivative, perylene tetracarboxydiimide derivative and metal. Examples include phthalocyanine derivatives and vapor-deposited thin films of fullerenes. The thin film 2 may have any thickness, but is preferably formed with a thickness of several tens nm to several hundreds nm.

【0016】ソース電極3及びドレイン電極4は、アル
ミニウムが使用され、真空蒸着やスパッタ蒸着などの方
法によって製造される。各電極3、4はシャドウマスク
等を介して任意の線形状に形成する。このアルミニウム
を用いたソース、ドレイン電極3、4の製造に際して、
アルミニウムの蒸着作業の事前にアルカリ金属弗化物5
である弗化リチウムの極薄膜を真空蒸着などの方法によ
り予め形成する。弗化リチウム極薄膜(アルカリ金属弗
化物)5は上述したソース、ドレイン電極3、4の直下
であれば良いが、薄膜製造の都合によっては、図1に示
す有機薄膜2の上全面に亘って形成させても良い。弗化
リチウム極薄膜5の厚さは数nm程度、好ましくは1n
m以下の極薄膜であることが望ましい。なお、ソース電
極3とドレイン電極4の間隔はできるだけ短い方がトラ
ンジスターの動作上好ましく、数ミクロンから数十ミク
ロン以下の範囲で適宜選ばれる。
The source electrode 3 and the drain electrode 4 are made of aluminum and are manufactured by a method such as vacuum deposition or sputter deposition. Each of the electrodes 3 and 4 is formed in an arbitrary line shape through a shadow mask or the like. When manufacturing the source and drain electrodes 3 and 4 using this aluminum,
Alkali metal fluoride 5 prior to aluminum deposition work
An extremely thin film of lithium fluoride is formed in advance by a method such as vacuum deposition. The lithium fluoride ultra-thin film (alkali metal fluoride) 5 may be provided directly under the source / drain electrodes 3 and 4 described above, but depending on the circumstances of thin film production, it may be formed over the entire upper surface of the organic thin film 2 shown in FIG. It may be formed. The thickness of the lithium fluoride thin film 5 is about several nm, preferably 1 n.
It is desirable that the film is an ultrathin film of m or less. It is preferable that the distance between the source electrode 3 and the drain electrode 4 is as short as possible in terms of the operation of the transistor, and it is appropriately selected within the range of several microns to several tens of microns or less.

【0017】[0017]

【実施例】本発明の有機薄膜電界効果トランジスターを
下記の実施例により更に具体的に説明するが、本発明は
これらの実施例に何ら限定されるものではない。 実施例1 片側に酸化絶縁膜(300nm)を形成させたりんドー
プのシリコン基板をゲート絶縁膜付のゲート電極とし
た。この基板のシリコン酸化膜上にヘキサデカフルオロ
フタロシアニン銅(以下F16CuPcと略す)を真空
度1×10−6トールで加熱真空蒸着を行い、50nm
の厚さのF16CuPc薄膜を作製した。薄膜の厚さは
水晶振動子式の薄厚計でモニターした。作製した薄膜は
紫色透明の均一な薄膜であった。
EXAMPLES The organic thin film field effect transistor of the present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples. Example 1 A phosphorus-doped silicon substrate having an oxide insulating film (300 nm) formed on one side was used as a gate electrode with a gate insulating film. Hexadecafluorophthalocyanine copper (hereinafter abbreviated as F 16 CuPc) was vacuum-deposited on the silicon oxide film of this substrate by heating at a vacuum degree of 1 × 10 −6 Torr to obtain 50 nm.
An F 16 CuPc thin film having a thickness of 4 was prepared. The thickness of the thin film was monitored by a quartz oscillator type thin gauge. The produced thin film was a purple transparent uniform thin film.

【0018】実施例2 実施例1で作製したF16CuPc薄膜上にソース、及
びドレイン電極の形状にパターンを切ったメタルマスク
を配し、アルミニウムを真空度1×10−6トールで1
00nmの厚みになるように加熱真空蒸着を行い、ソー
ス、及びドレイン電極形成し、薄膜電界効果トランジス
ターを作製した。アルミニウム膜の厚さは水晶振動子式
の膜厚計にてモニターした。
Example 2 On the F 16 CuPc thin film prepared in Example 1, a metal mask having a pattern cut into the shape of source and drain electrodes was arranged, and aluminum was vacuumed at 1 × 10 −6 torr to 1
Vacuum evaporation was performed by heating so as to have a thickness of 00 nm, source and drain electrodes were formed, and a thin film field effect transistor was produced. The thickness of the aluminum film was monitored by a crystal oscillator type film thickness meter.

【0019】実施例3 実施例2で作製した薄膜電界効果トランジスターの、り
んドープシリコン基板を金配線でオーム性接触させゲー
ト電極として作用させた。ゲート電極に正の電圧を印加
し段階的に上昇させ、それぞれのゲート電極電圧でソー
ス、及びドレイン電極間の電圧を走引した結果、ある正
のゲート電圧以上で、典型的なNチャンネル型の電界効
果トランジスター特性を示すことを確認した。
Example 3 The phosphorus-doped silicon substrate of the thin film field effect transistor produced in Example 2 was brought into ohmic contact with a gold wiring to act as a gate electrode. As a result of applying a positive voltage to the gate electrode and gradually increasing it, and sweeping the voltage between the source and drain electrodes at each gate electrode voltage, a voltage of a certain positive gate voltage or more It was confirmed that the device exhibited field effect transistor characteristics.

【0020】実施例4 実施例1と同様に片側に酸化絶縁膜を形成させたりんド
ープのシリコン基板上にF16CuPcを真空度1×1
−6トールで加熱真空蒸着を行い、50nmの厚さの
16CuPc薄膜を作製した。作製したF16CuP
c薄膜上にソース、及びドレイン電極の形状にパターン
を切ったメタルマスクを配し、弗化リチウムを真空度1
×10−6トールで1nmの厚さに蒸着した。引き続き
アルミニウムを真空度1×10−6トールで100nm
の厚みに蒸着し、幅100ミクロン、長さ5mm、電極
間隔20ミクロンで、ソース、及びドレイン電極形成
し、薄膜電界効果トランジスターを作製した。F16
uPc、弗化リチウム、及びアルミニウム膜それぞれの
厚さは水晶振動子式の膜厚計にてモニターした。
Example 4 Similar to Example 1, F 16 CuPc was vacuumed on a phosphorus-doped silicon substrate having an oxide insulating film formed on one side to a vacuum degree of 1 × 1.
0 -6 subjected to heat vacuum deposition torr, to produce a F 16 CuPc thin film having a thickness of 50nm. The prepared F 16 CuP
c Place a metal mask with a pattern cut into the shape of the source and drain electrodes on the thin film, and apply lithium fluoride to a vacuum degree of 1
It was vapor-deposited at a thickness of 1 nm at × 10 −6 Torr. Subsequently, aluminum is vacuumed at 100 nm at a vacuum degree of 1 × 10 −6 Torr
To form a thin film field effect transistor by forming a source electrode and a drain electrode with a width of 100 μm, a length of 5 mm and an electrode interval of 20 μm. F 16 C
The thickness of each of uPc, lithium fluoride, and aluminum film was monitored by a crystal oscillator type film thickness meter.

【0021】実施例5 実施例4で作製したりんドープシリコン基板を金配線で
オーム性接触させゲート電極として作用させた。ゲート
電極に正の電圧を印加し段階的に上昇させ、それぞれの
ゲート電極電圧でソース、及びドレイン電極間の電圧を
走引した結果、ある正のゲート電圧以上で、典型的なN
チャンネル型の電界効果トランジスター特性を示すこと
を確認した。実施例3で作製した、ソース、及びドレイ
ン電極に弗化リチウム極薄膜層を形成しなかった薄膜電
界効果トランジスターの動作特性と比較した結果、電界
効果トランジスター特性を示すゲート電極電圧が4.7
(V)と低くなり、同じゲート電極電圧で比較した伝達コ
ンダクタンスは、およそ3×10−5−1)の値が得
られ、数桁程度大きくなることがわかった。
Example 5 The phosphorus-doped silicon substrate produced in Example 4 was brought into ohmic contact with gold wiring to act as a gate electrode. As a result of applying a positive voltage to the gate electrode and raising it stepwise, and sweeping the voltage between the source and drain electrodes at each gate electrode voltage, a typical N
It was confirmed that the characteristics of the channel type field effect transistor were exhibited. As a result of comparison with the operating characteristics of the thin film field effect transistor prepared in Example 3 in which an extremely thin lithium fluoride film was not formed on the source and drain electrodes, the gate electrode voltage showing the field effect transistor characteristic was 4.7.
It became low (V), and the transfer conductance compared with the same gate electrode voltage was about 3 × 10 −5−1 ), which was found to increase by several orders of magnitude.

【0022】なお、本発明は、以上の実施例に限定され
ることなく、本発明の技術範囲にしたがって種々の設計
変更をすることができる。
The present invention is not limited to the above embodiments, and various design changes can be made according to the technical scope of the present invention.

【0023】[0023]

【発明の効果】この発明は前記した構成からなるので、
以下に説明するような効果を奏することができる。
Since the present invention has the above-mentioned structure,
The effects described below can be achieved.

【0024】以上述べたように、本発明によれば、Nチ
ャンネル型有機薄膜電界効果トランジスターにおいて、
ソース、及びドレイン電極に電子メディエーターとなる
アルカリ金属弗化物の極薄膜とアルミニウムを積層した
電極を用いることによって、トランジスター動作の閾値
ゲート電極電圧を低下、及び伝達コンダクタンスの上昇
をもたらし、有機薄膜電界効果トランジスターの動作特
性を向上させることができる。
As described above, according to the present invention, in the N-channel type organic thin film field effect transistor,
By using an electrode in which an extremely thin film of an alkali metal fluoride serving as an electron mediator and aluminum are stacked for the source and drain electrodes, the threshold gate electrode voltage for transistor operation is lowered and the transfer conductance is increased, and the organic thin film electric field effect is produced. The operating characteristics of the transistor can be improved.

【0025】また、本発明の有機薄膜電界効果トランジ
スターの製造方法は、酸化絶縁膜を形成した導電性基板
上に電子輸送性、電界効果によって電子密度が変調され
得る有機化合物の薄膜を形成すると共に、ソース電極及
びドレイン電極を所定の間隔を有して配置した有機薄膜
電界効果トランジスターの製造方法であって、前記ソー
ス電極及びドレイン電極を作製するに際し、アルカリ金
属弗化物の極薄膜を先ず形成し、その上にアルミニウム
でソース電極及びドレイン電極を形成するので、ソース
電極からの有機活性層への電子の供給、及び有機活性層
からドレイン電極への電子の排出効率を改善し、トラン
ジスターの動作特性を向上させることのできる有機薄膜
電界効果トランジスターを得ることができる。
In the method for manufacturing an organic thin film field effect transistor of the present invention, a thin film of an organic compound whose electron density can be modulated by an electron transport property and a field effect is formed on a conductive substrate on which an oxide insulating film is formed. A method of manufacturing an organic thin film field effect transistor in which a source electrode and a drain electrode are arranged at a predetermined interval, wherein an extremely thin film of an alkali metal fluoride is first formed when manufacturing the source electrode and the drain electrode. , The source electrode and the drain electrode are formed on the aluminum, so that the electron supply efficiency from the source electrode to the organic active layer and the electron discharge efficiency from the organic active layer to the drain electrode are improved, and the operating characteristics of the transistor are improved. It is possible to obtain an organic thin film field effect transistor capable of improving the above.

【図面の簡単な説明】[Brief description of drawings]

【図1】アルカリ金属弗化物の極薄膜とアルミニウムを
積層したソース、及びドレイン電極を有する有機機薄膜
電界効果トランジスターの構成図である。
FIG. 1 is a configuration diagram of an organic thin film field effect transistor having a source and drain electrodes in which an ultrathin film of an alkali metal fluoride and aluminum are laminated.

【符号の説明】[Explanation of symbols]

1 導電性基板 1a 絶縁膜 2 有機材料の薄膜 3 ソース電極 4 ドレイン電極 5 アルカリ金属弗化物(弗化リチウム薄膜) 1 Conductive substrate 1a insulating film 2 Thin film of organic material 3 Source electrode 4 drain electrode 5 Alkali metal fluoride (lithium fluoride thin film)

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 少なくともソース電極、ドレイン電極、
ゲート絶縁膜、及びゲート電極とソース、ドレイン及び
ゲート絶縁層間に形成される有機化合物の薄膜からなる
有機薄膜電界効果トランジスターにおいて、前記ソース
及びドレイン電極をアルカリ金属弗化物の極薄膜とアル
ミニウムの積層構造としたことを特徴とする有機薄膜電
界効果トランジスター。
1. At least a source electrode, a drain electrode,
In an organic thin film field effect transistor comprising a gate insulating film and a thin film of an organic compound formed between a gate electrode and a source / drain / gate insulating layer, the source and drain electrodes have a laminated structure of an extremely thin film of alkali metal fluoride and aluminum. The organic thin film field effect transistor characterized in that
【請求項2】 前記積層構造からなるソース電極及びド
レイン電極は、アルカリ金属弗化物を有機化合物の薄膜
側に配置したことを特徴とする請求項1に記載の有機薄
膜電界効果トランジスター。
2. The organic thin film field effect transistor according to claim 1, wherein the source electrode and the drain electrode having the laminated structure have an alkali metal fluoride arranged on the thin film side of the organic compound.
【請求項3】 前記アルカリ金属弗化物は、弗化リチウ
ムであることを特徴とする請求項1に記載の有機薄膜電
界効果トランジスター。
3. The organic thin film field effect transistor according to claim 1, wherein the alkali metal fluoride is lithium fluoride.
【請求項4】 前記アルカリ金属弗化物の膜厚は、数n
m以下であることを特徴とする請求項1〜3の何れか1
に記載の有機薄膜電界効果トランジスター。
4. The thickness of the alkali metal fluoride is several n
It is m or less, Any one of Claims 1-3 characterized by the above-mentioned.
The organic thin-film field effect transistor described in.
【請求項5】 酸化絶縁膜を形成した導電性基板上に電
子輸送性、電界効果によって電子密度が変調され得る有
機化合物の薄膜を形成すると共に、ソース電極及びドレ
イン電極を所定の間隔を有して配置した有機薄膜電界効
果トランジスターの製造方法において、 前記ソース電極及びドレイン電極を作製するに際し、ア
ルカリ金属弗化物の極薄膜を先ず形成し、その上にアル
ミニウムでソース電極及びドレイン電極を形成すること
を特徴とする有機薄膜電界効果トランジスターの製造方
法。
5. A thin film of an organic compound whose electron density can be modulated by an electron transport property and an electric field effect is formed on a conductive substrate on which an oxide insulating film is formed, and a source electrode and a drain electrode are provided with a predetermined interval. In the method for manufacturing an organic thin film field effect transistor arranged as described above, when producing the source electrode and the drain electrode, an ultrathin film of alkali metal fluoride is first formed, and then the source electrode and the drain electrode are formed of aluminum on the ultrathin film. A method for manufacturing an organic thin film field effect transistor, comprising:
JP2002092708A 2002-03-28 2002-03-28 Organic thin-film field effect transistor and its manufacturing method Pending JP2003298056A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002092708A JP2003298056A (en) 2002-03-28 2002-03-28 Organic thin-film field effect transistor and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002092708A JP2003298056A (en) 2002-03-28 2002-03-28 Organic thin-film field effect transistor and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2003298056A true JP2003298056A (en) 2003-10-17

Family

ID=29386684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002092708A Pending JP2003298056A (en) 2002-03-28 2002-03-28 Organic thin-film field effect transistor and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2003298056A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005327793A (en) * 2004-05-12 2005-11-24 Matsushita Electric Ind Co Ltd Organic field effect transistor and its fabrication process
JP2005327797A (en) * 2004-05-12 2005-11-24 Matsushita Electric Ind Co Ltd Organic field effect transistor and its fabrication process
JP2006253675A (en) * 2005-03-08 2006-09-21 Samsung Sdi Co Ltd Organic thin film transistor and flat panel display device comprising it
JP2007027326A (en) * 2005-07-14 2007-02-01 Niigata Univ Organic field-effect transistor
EP1820218A1 (en) * 2004-12-06 2007-08-22 Semiconductor Energy Laboratory Co., Ltd. Organic field-effect transistor and semiconductor device including the same
JP2008243911A (en) * 2007-03-26 2008-10-09 Nippon Hoso Kyokai <Nhk> Organic thin-film transistor and display
US7842943B2 (en) 2005-08-11 2010-11-30 Samsung Mobile Display Co., Ltd. Organic thin film transistor and flat panel display device using the same
US8049206B2 (en) 2006-01-26 2011-11-01 Semiconductor Energy Laboratory Co., Ltd. Organic field effect transistor and semiconductor device
US8049208B2 (en) 2005-04-22 2011-11-01 Semiconductor Energy Laboratory Co., Ltd. Organic semiconductor device having composite electrode

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005327793A (en) * 2004-05-12 2005-11-24 Matsushita Electric Ind Co Ltd Organic field effect transistor and its fabrication process
JP2005327797A (en) * 2004-05-12 2005-11-24 Matsushita Electric Ind Co Ltd Organic field effect transistor and its fabrication process
US8569742B2 (en) 2004-12-06 2013-10-29 Semiconductor Energy Laboratory Co., Ltd. Organic field-effect transistor and semiconductor device including the same
EP1820218A1 (en) * 2004-12-06 2007-08-22 Semiconductor Energy Laboratory Co., Ltd. Organic field-effect transistor and semiconductor device including the same
EP1820218A4 (en) * 2004-12-06 2010-03-24 Semiconductor Energy Lab Organic field-effect transistor and semiconductor device including the same
JP2006253675A (en) * 2005-03-08 2006-09-21 Samsung Sdi Co Ltd Organic thin film transistor and flat panel display device comprising it
US8193527B2 (en) 2005-03-08 2012-06-05 Samsung Mobile Display Co., Ltd. Organic thin film transistor and flat panel display device including the same
US8049208B2 (en) 2005-04-22 2011-11-01 Semiconductor Energy Laboratory Co., Ltd. Organic semiconductor device having composite electrode
JP2007027326A (en) * 2005-07-14 2007-02-01 Niigata Univ Organic field-effect transistor
US7842943B2 (en) 2005-08-11 2010-11-30 Samsung Mobile Display Co., Ltd. Organic thin film transistor and flat panel display device using the same
US8049206B2 (en) 2006-01-26 2011-11-01 Semiconductor Energy Laboratory Co., Ltd. Organic field effect transistor and semiconductor device
US8362474B2 (en) 2006-01-26 2013-01-29 Semiconductor Energy Laboratory Co., Ltd. Organic field effect transistor and semiconductor device
JP2008243911A (en) * 2007-03-26 2008-10-09 Nippon Hoso Kyokai <Nhk> Organic thin-film transistor and display

Similar Documents

Publication Publication Date Title
CA2334862C (en) An integrated inorganic/organic complementary thin-film transistor circuit and a method for its production
JP3667842B2 (en) TFT-EL pixel manufacturing method
Sazonov et al. Low-temperature materials and thin film transistors for flexible electronics
JP3694078B2 (en) TFT-EL display panel using organic electroluminescence medium
TWI514473B (en) Method for manufacturing semiconductor device
US7285795B2 (en) Vertical field-effect transistor, method of manufacturing the same, and display device having the same
US7879678B2 (en) Methods of enhancing performance of field-effect transistors and field-effect transistors made thereby
TW200816489A (en) Manufacturing of flexible display device panel
TW200415787A (en) Method of creating a high performance organic semiconductor device
JP2006191044A (en) Vertical organic thin-film transistor, vertical organic light-emitting transistor, and display element
US11869945B2 (en) Graphene-based TFT comprising nitrogen-doped graphene layer as active layer
TW200843118A (en) Ambipolar transistor design
JP4224578B2 (en) Organic thin film transistor
JP2003298056A (en) Organic thin-film field effect transistor and its manufacturing method
JP2003301116A (en) Organic semiconductor material, field-effects transistor using the same, and switching element
JP2004158709A (en) Semiconductor device
US20090117686A1 (en) Method of fabricating organic semiconductor device
JP4700976B2 (en) Manufacturing method of field effect organic transistor
JP2006060169A (en) Field effect transistor and method for manufacturing same
JP2004079623A (en) Organic thin film field effect transistor
Zhu et al. Efficient organic light-emitting diodes using polycrystalline silicon thin films as semitransparent anode
JP2003086805A (en) Thin film transistor and electrical insulation film and method of manufacturing these
JP2006049578A (en) Organic semiconductor device
JP2006190998A (en) Organic field effect transistor and semiconductor device
KR101315560B1 (en) Organic transistor and manufacturing method thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041228

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050628