JP2003295158A - Liquid crystal display device - Google Patents

Liquid crystal display device

Info

Publication number
JP2003295158A
JP2003295158A JP2002096466A JP2002096466A JP2003295158A JP 2003295158 A JP2003295158 A JP 2003295158A JP 2002096466 A JP2002096466 A JP 2002096466A JP 2002096466 A JP2002096466 A JP 2002096466A JP 2003295158 A JP2003295158 A JP 2003295158A
Authority
JP
Japan
Prior art keywords
liquid crystal
crystal display
voltage
display device
pixel electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002096466A
Other languages
Japanese (ja)
Other versions
JP4023192B2 (en
Inventor
Haruyasu Hirakawa
晴康 平川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2002096466A priority Critical patent/JP4023192B2/en
Publication of JP2003295158A publication Critical patent/JP2003295158A/en
Application granted granted Critical
Publication of JP4023192B2 publication Critical patent/JP4023192B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve a display unevenness arising from temperature difference in the vertical direction of a liquid crystal panel using an edge light system. <P>SOLUTION: The liquid crystal display device is arranged so a to modulate a gamma correction voltage or a compensation potential difference Vepp in capacitance coupling driving by a vertical cycle control voltage generated according to the temperature of at least one point in the liquid crystal device and the expected temperature distribution in the vertical direction of the liquid crystal panel. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、薄膜トランジスタ
(以下TFTとする)等のスイッチング素子を画素電極
ごとに配置したアクティブマトリクス液晶表示装置に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an active matrix liquid crystal display device in which switching elements such as thin film transistors (hereinafter referred to as TFTs) are arranged for each pixel electrode.

【0002】[0002]

【従来の技術】近年、TFT液晶表示装置は、大型化、
高画質化が進み、PC用のディスプレイモニタの他、家
庭用の大型テレビへも採用されるようになってきてい
る。一般に液晶表示パネルにおける、液晶材料の印加電
圧に対する透過率特性は温度依存性を有している。図2
は液晶の印加電圧−透過率特性の温度依存を示すグラフ
である。例えばノーマリーホワイトモードの液晶表示パ
ネルでは図2に示す様に、温度が高くなるのに伴い、透
過率は低下する。この液晶材料の温度特性の影響を抑
え、より高い表示品位が要求される場合に対応するた
め、温度補償手段を有する表示装置が提案されている。
例えば特開平7−295518や特開平2000−89
192では温度センサをパネル近傍に取り付け、その出
力により液晶表示装置の駆動条件の制御を行っている。
2. Description of the Related Art In recent years, TFT liquid crystal display devices have become larger,
As the image quality has been improved, it has come to be used not only in display monitors for PCs but also in large-sized televisions for home use. Generally, in a liquid crystal display panel, the transmittance characteristic of a liquid crystal material with respect to an applied voltage has temperature dependence. Figure 2
3 is a graph showing temperature dependence of applied voltage-transmittance characteristic of liquid crystal. For example, in a normally white mode liquid crystal display panel, as shown in FIG. 2, the transmittance decreases as the temperature rises. A display device having a temperature compensating means has been proposed in order to suppress the influence of the temperature characteristic of the liquid crystal material and to cope with a case where higher display quality is required.
For example, JP-A-7-295518 and JP-A-2000-89.
In 192, a temperature sensor is attached near the panel, and its output controls the driving conditions of the liquid crystal display device.

【0003】[0003]

【発明が解決しようとする課題】しかしながら従来の技
術においては、液晶表示装置の一部の温度を検出するも
のであるため、液晶表示パネルに温度分布が存在する場
合には、表示画面全面において適切な駆動条件が与えら
れない。例えばエッジライト方式のバックライトを用い
たTFT液晶表示装置では、発熱の主要因である冷陰極
線管がパネルの上部、下部のいずれか、もしくは上下の
両端に配置されるので、液晶パネルの上部、中央部、下
部などで温度の差異を生じる。図3はエッジライト方式
を採用した液晶表示装置のパネルモジュールの断面図と
液晶パネル表面の温度分布を示すものである。上下2本
ずつ配置された冷陰極線管31から発せられた光は、導
光板32によりTFT液晶パネルにほぼ均等に照射され
る。TFT液晶表示パネル33は、画素毎に印加された
電圧に応じて透過率が変化し、各画素の輝度が決定され
る。ここで冷陰極線管の発光には発熱を伴うから、冷陰
極線管に近いほど液晶表示パネルの温度が高くなる。例
えば15インチの液晶パネルでは画面中央の温度に対し
て、上部、下部は5℃程度の温度差を生じる。近年は特
に大画面化、高輝度化が進んでいるため、エッジライト
方式の液晶表示装置においては液晶パネルの垂直方向に
おける温度差は大きくなる傾向にある。
However, in the prior art, since the temperature of a part of the liquid crystal display device is detected, when the temperature distribution exists in the liquid crystal display panel, it is suitable for the entire display screen. Driving conditions are not given. For example, in a TFT liquid crystal display device using an edge light type backlight, a cold cathode ray tube, which is a main cause of heat generation, is arranged at either the upper part or the lower part of the panel, or at both upper and lower ends. Differences in temperature occur at the center and bottom. FIG. 3 shows a cross-sectional view of a panel module of a liquid crystal display device adopting the edge light method and a temperature distribution on the surface of the liquid crystal panel. The light emitted from the cold cathode ray tubes 31 arranged two by two above and below is evenly applied to the TFT liquid crystal panel by the light guide plate 32. In the TFT liquid crystal display panel 33, the transmittance changes depending on the voltage applied to each pixel, and the brightness of each pixel is determined. Here, since light emission of the cold cathode ray tube is accompanied by heat generation, the temperature of the liquid crystal display panel becomes higher as it approaches the cold cathode ray tube. For example, in a 15-inch liquid crystal panel, a temperature difference of about 5 ° C. occurs between the upper part and the lower part with respect to the temperature at the center of the screen. In recent years, in particular, as the screen size and brightness have been increased, the temperature difference in the vertical direction of the liquid crystal panel tends to increase in the edge light type liquid crystal display device.

【0004】これは、従来の温度補償では、液晶表示装
置の上下方向の位置によっては透過率特性が変化し、画
面の均一性が得られない事を意味する。
This means that in the conventional temperature compensation, the transmittance characteristics change depending on the vertical position of the liquid crystal display device, and the uniformity of the screen cannot be obtained.

【0005】この温度分布の影響は、人間の視覚特性か
ら特に輝度の低い部分で目立ちやすい。図4に透過率を
最小とするための液晶への印加電圧、すなわち黒を表示
するのに最適な印加電圧と温度の関係を示す。図4のグ
ラフから、例えば表示装置全面に黒を表示する場合、液
晶パネル上端等に取り付けた温度センサで液晶へ印加さ
れる電圧の制御を行うことで、画面の上部ではほぼ理想
に近い黒を表示することが可能であるが、温度の低い画
面中央部では黒浮きが発生したりすることになる。
The influence of this temperature distribution tends to be noticeable particularly in a portion having low luminance due to human visual characteristics. FIG. 4 shows the relationship between the applied voltage to the liquid crystal for minimizing the transmittance, that is, the optimum applied voltage for displaying black and the temperature. From the graph of FIG. 4, for example, when displaying black on the entire surface of the display device, by controlling the voltage applied to the liquid crystal with a temperature sensor attached to the upper end of the liquid crystal panel or the like, black that is almost ideal at the top of the screen is displayed. Although it can be displayed, black floating occurs at the center of the screen where the temperature is low.

【0006】以上のような問題に鑑み、本発明は画面上
の垂直方向の温度差による影響を抑えた液晶表示装置を
提供することを目的とする。
In view of the above problems, it is an object of the present invention to provide a liquid crystal display device in which the influence of the temperature difference in the vertical direction on the screen is suppressed.

【0007】[0007]

【課題を解決するための手段】この課題を解決するため
に第1の発明は、画素電極をマトリクス状に有し、映像
信号配線と走査信号配線に電気的に接続されたスイッチ
ング素子が画素電極に接続される液晶表示パネルと、液
晶パネルの走査信号配線を駆動する走査配線駆動手段
と、ガンマ補正用電圧を参照電圧にして、デジタル映像
信号を映像信号配線駆動電圧に変換するデジタル−アナ
ログコンバータを具備した映像信号配線駆動手段を備え
た液晶表示装置であって、液晶表示装置内の少なくとも
1ヶ所の部位の温度と、予め予想される液晶表示パネル
の垂直方向の温度分布とに応じて、ガンマ補正用電圧を
変化させるものである。これにより液晶材料へ印加され
る電圧が走査ライン毎に温度補償され、画面の垂直方向
に温度の差異が生じる液晶表示パネルにおいて、全画面
均一で高品位な表示が可能となる。
In order to solve this problem, a first aspect of the present invention has pixel electrodes arranged in a matrix, and a switching element electrically connected to a video signal line and a scanning signal line has a pixel electrode. Connected to the liquid crystal display panel, a scanning wiring driving means for driving the scanning signal wiring of the liquid crystal panel, and a digital-analog converter for converting a digital video signal into a video signal wiring driving voltage using a gamma correction voltage as a reference voltage. A liquid crystal display device comprising a video signal wiring driving means comprising: a liquid crystal display device according to a temperature of at least one portion in the liquid crystal display device and a temperature distribution in a vertical direction of a liquid crystal display panel which is predicted in advance. The gamma correction voltage is changed. As a result, the voltage applied to the liquid crystal material is temperature-compensated for each scanning line, and a liquid crystal display panel in which a temperature difference occurs in the vertical direction of the screen enables uniform display over the entire screen and high-quality display.

【0008】また第2の発明においては、容量を介して
走査信号配線に接続された画素電極をマトリクス状に有
し、映像信号配線と走査信号配線に電気的に接続された
スイッチング素子が画素電極に接続され、スイッチング
素子のオン期間に映像信号電圧を画素電極に伝達し、奇
数フィールドのスイッチング素子のオフ期間に走査信号
配線に変調信号Ve(+)を与え、偶数フィールドのス
イッチング素子のオフ期間に走査信号配線に変調信号V
e(−)を与えることにより、画素電極の電位を変化さ
せ、画素電極の電位の変化と映像信号電圧とを相互に重
畳させて表示材料に電圧を印加する液晶表示装置であっ
て、変調信号振幅Vepp=|Ve(+)−Ve(−)
|と定義するとき、液晶表示装置内の少なくとも1ヶ所
の部位の温度と、予め予想される液晶パネルの垂直方向
の温度分布とに応じて、各走査信号配線におけるVep
pを変化させるようにした。
According to the second aspect of the invention, the pixel electrodes connected to the scanning signal lines via capacitors are arranged in a matrix, and the switching elements electrically connected to the video signal lines and the scanning signal lines are pixel electrodes. The video signal voltage is transmitted to the pixel electrode during the ON period of the switching element, the modulation signal Ve (+) is applied to the scanning signal line during the OFF period of the switching element in the odd field, and the OFF period of the switching element in the even field is connected. Modulation signal V on the scanning signal wiring
A liquid crystal display device for applying a voltage to a display material by changing the electric potential of the pixel electrode by applying e (-), and superimposing the change of the electric potential of the pixel electrode and the video signal voltage on each other. Amplitude Vepp = | Ve (+) − Ve (−)
Is defined as |, the Vep in each scanning signal wiring is determined according to the temperature of at least one portion in the liquid crystal display device and the temperature distribution in the vertical direction of the liquid crystal panel which is predicted in advance.
It was made to change p.

【0009】これにより液晶材料へ印加される電圧が走
査ライン毎に温度補償され、画面の垂直方向に温度の差
異が生じる液晶表示パネルにおいて、全画面均一で高品
位な表示が可能となる。
As a result, the voltage applied to the liquid crystal material is temperature-compensated for each scanning line, and in the liquid crystal display panel in which a difference in temperature occurs in the vertical direction of the screen, it is possible to perform uniform display on the entire screen and high quality display.

【0010】また容量を介して補助容量配線に接続され
た画素電極をマトリクス状に有し、映像信号配線と走査
信号配線に電気的に接続されたスイッチング素子が画素
電極に接続され、スイッチング素子のオン期間に映像信
号電圧を画素電極に伝達し、奇数フィールドのスイッチ
ング素子のオン期間に補助容量配線に変調信号Ve
(+)を与え、偶数フィールドのスイッチング素子のオ
ン期間に補助容量配線に変調信号Ve(−)を与えるこ
とにより、画素電極の電位を変化させ、画素電極の電位
の変化と映像信号電圧とを相互に重畳させて表示材料に
電圧を印加する液晶表示装置であって、変調信号振幅V
epp=|Ve(+)−Ve(−)|と定義するとき、
液晶表示装置内の少なくとも1ヶ所の部位の温度と、予
め予想される液晶パネルの垂直方向の温度分布とに応じ
て、各走査信号配線におけるVeppを変化させるよう
にした。
Further, the pixel electrodes connected to the auxiliary capacitance wiring via the capacitance are arranged in a matrix, and the switching elements electrically connected to the video signal wiring and the scanning signal wiring are connected to the pixel electrodes, The video signal voltage is transmitted to the pixel electrode during the ON period, and the modulation signal Ve is supplied to the auxiliary capacitance line during the ON period of the switching element in the odd field.
(+) Is applied, and the modulation signal Ve (-) is applied to the auxiliary capacitance line during the ON period of the switching element in the even field, thereby changing the potential of the pixel electrode, and changing the potential of the pixel electrode and the video signal voltage. A liquid crystal display device for applying a voltage to a display material by superposing them on each other, wherein a modulation signal amplitude V
When defining as epp = | Ve (+) − Ve (−) |
Vepp in each scanning signal wiring is changed in accordance with the temperature of at least one portion in the liquid crystal display device and the expected temperature distribution in the vertical direction of the liquid crystal panel.

【0011】これにより液晶材料へ印加される電圧が走
査ライン毎に温度補償され、画面の垂直方向に温度の差
異が生じる液晶表示パネルにおいて、全画面均一で高品
位な表示が可能となる。
As a result, the voltage applied to the liquid crystal material is temperature-compensated for each scanning line, and a liquid crystal display panel in which a temperature difference occurs in the vertical direction of the screen enables uniform display on the entire screen and high-quality display.

【0012】[0012]

【発明の実施の形態】本発明の請求項1に記載の発明
は、画素電極をマトリクス状に有し、映像信号配線と走
査信号配線に電気的に接続されたスイッチング素子が画
素電極に接続される液晶表示パネルと、液晶パネルの走
査信号配線を駆動する走査配線駆動手段と、ガンマ補正
用電圧を参照電圧にして、デジタル映像信号を映像信号
配線駆動電圧に変換するデジタル−アナログコンバータ
を具備した映像信号配線駆動手段を備えた液晶表示装置
であって、液晶表示装置内の少なくとも1ヶ所の部位の
温度と、予め予想される液晶表示パネルの垂直方向の温
度分布に応じて、ガンマ補正用電圧を変化させることを
特徴とする液晶表示装置である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The invention according to claim 1 of the present invention has pixel electrodes in a matrix, and a switching element electrically connected to a video signal line and a scanning signal line is connected to the pixel electrode. A liquid crystal display panel, a scanning wiring driving means for driving the scanning signal wiring of the liquid crystal panel, and a digital-analog converter for converting a digital video signal into a video signal wiring driving voltage using a gamma correction voltage as a reference voltage. A liquid crystal display device equipped with a video signal wiring driving means, wherein a gamma correction voltage is applied in accordance with a temperature of at least one portion in the liquid crystal display device and a predicted temperature distribution in the vertical direction of the liquid crystal display panel. Is a liquid crystal display device.

【0013】本発明の請求項2に記載の発明は、容量を
介して走査信号配線に接続された画素電極をマトリクス
状に有し、映像信号配線と走査信号配線に電気的に接続
されたスイッチング素子が画素電極に接続され、スイッ
チング素子のオン期間に映像信号電圧を画素電極に伝達
し、奇数フィールドのスイッチング素子のオフ期間に走
査信号配線に変調信号Ve(+)を与え、偶数フィール
ドのスイッチング素子のオフ期間に走査信号配線に変調
信号Ve(−)を与えることにより、画素電極の電位を
変化させ、画素電極の電位の変化と映像信号電圧とを相
互に重畳させて表示材料に電圧を印加する液晶表示装置
であって、変調信号振幅Vepp=|Ve(+)−Ve
(−)|と定義するとき、液晶表示装置内の少なくとも
1ヶ所の部位の温度と、予め予想される液晶パネルの垂
直方向の温度分布とに応じて、各走査信号配線における
Veppを変化させることを特徴とする液晶表示装置で
ある。
According to a second aspect of the present invention, there is provided a matrix of pixel electrodes connected to the scanning signal wirings via capacitors, and the switching is electrically connected to the video signal wirings and the scanning signal wirings. The element is connected to the pixel electrode, the video signal voltage is transmitted to the pixel electrode during the ON period of the switching element, the modulation signal Ve (+) is applied to the scanning signal line during the OFF period of the switching element in the odd field, and the even field switching is performed. By applying the modulation signal Ve (−) to the scanning signal wiring during the off period of the element, the potential of the pixel electrode is changed, and the change of the potential of the pixel electrode and the video signal voltage are superimposed on each other to apply a voltage to the display material. A liquid crystal display device for applying a modulation signal amplitude Vepp = | Ve (+) − Ve
When defined as (−) |, changing Vepp in each scanning signal wiring in accordance with the temperature of at least one portion in the liquid crystal display device and the expected temperature distribution in the vertical direction of the liquid crystal panel. Is a liquid crystal display device.

【0014】本発明の請求項3に記載の発明は、容量を
介して補助容量配線に接続された画素電極をマトリクス
状に有し、映像信号配線と走査信号配線に電気的に接続
されたスイッチング素子が画素電極に接続され、スイッ
チング素子のオン期間に映像信号電圧を画素電極に伝達
し、奇数フィールドのスイッチング素子のオン期間に補
助容量配線に変調信号Ve(+)を与え、偶数フィール
ドのスイッチング素子のオン期間に補助容量配線に変調
信号Ve(−)を与えることにより、画素電極の電位を
変化させ、画素電極の電位の変化と映像信号電圧とを相
互に重畳させて表示材料に電圧を印加する液晶表示装置
であって、変調信号振幅Vepp=|Ve(+)−Ve
(−)|と定義するとき、液晶表示装置内の少なくとも
1ヶ所の部位の温度と、予め予想される液晶パネルの垂
直方向の温度分布とに応じて、各走査信号配線における
Veppを変化させることを特徴とする液晶表示装置で
ある。
According to a third aspect of the present invention, the switching is electrically connected to the video signal line and the scanning signal line by having the pixel electrodes connected to the auxiliary capacitance line via the capacitance in a matrix form. The element is connected to the pixel electrode, the video signal voltage is transmitted to the pixel electrode during the ON period of the switching element, the modulation signal Ve (+) is applied to the auxiliary capacitance line during the ON period of the switching element in the odd field, and the even field switching is performed. By applying the modulation signal Ve (−) to the auxiliary capacitance line during the ON period of the element, the potential of the pixel electrode is changed, and the change in the potential of the pixel electrode and the video signal voltage are superimposed on each other to apply a voltage to the display material. A liquid crystal display device for applying a modulation signal amplitude Vepp = | Ve (+) − Ve
When defined as (−) |, changing Vepp in each scanning signal wiring in accordance with the temperature of at least one portion in the liquid crystal display device and the expected temperature distribution in the vertical direction of the liquid crystal panel. Is a liquid crystal display device.

【0015】(実施の形態1)以下に、本発明の請求項
1に記載された発明の実施の形態について、図1、図
4、図5、図6、図7を用いて説明する。
(Embodiment 1) Hereinafter, an embodiment of the invention described in claim 1 of the present invention will be described with reference to FIGS. 1, 4, 5, 6, and 7.

【0016】図5(a)は液晶表示装置の構成図であ
る。図5(a)の表示装置は、液晶表示パネル51、映
像信号配線駆動手段52、走査配線駆動手段53、ガン
マ補正用電圧発生手段54、垂直周期制御信号発生手段
11、温度検出手段12から構成される。液晶表示パネ
ル51は走査配線(X1〜XN)と映像信号配線(Y1
〜YN)とがマトリクス状に配線され、その交点を画素
としてN×M個のTFTが配置されている。図5(b)
は1画素の等価手段を表しており、TFT4のゲートは
走査配線1に、ソースは映像信号配線3に、またドレイ
ンは画素電極に接続されている。画素電極と第2の共通
電極(対向電極ともいう)9の間には液晶が封入されて
おり液晶容量Clc7が形成される。また画素電極と第
1の共通電極10間には補助容量(蓄積容量ともいう)
Cs8が形成される。
FIG. 5A is a block diagram of a liquid crystal display device. The display device of FIG. 5A includes a liquid crystal display panel 51, a video signal wiring driving means 52, a scanning wiring driving means 53, a gamma correction voltage generating means 54, a vertical cycle control signal generating means 11, and a temperature detecting means 12. To be done. The liquid crystal display panel 51 includes scanning lines (X1 to XN) and video signal lines (Y1).
To YN) are arranged in a matrix, and N × M TFTs are arranged with the intersections as pixels. Figure 5 (b)
Represents the equivalent means of one pixel, the gate of the TFT 4 is connected to the scanning wiring 1, the source is connected to the video signal wiring 3, and the drain is connected to the pixel electrode. A liquid crystal is filled between the pixel electrode and the second common electrode (also referred to as a counter electrode) 9 to form a liquid crystal capacitor Clc7. An auxiliary capacitance (also called a storage capacitance) is provided between the pixel electrode and the first common electrode 10.
Cs8 is formed.

【0017】走査配線駆動手段53は走査配線1を駆動
しTFTのゲートをON/OFFするものである。映像
信号配線駆動手段52は、ガンマ補正用電圧を参照電圧
として、入力されるデジタル映像信号を映像信号配線駆
動電圧に変換するデジタル−アナログコンバータを具備
しており、映像信号配線3を駆動し、入力されるデジタ
ル映像信号に応じた駆動電圧をTFTのON期間に印加
するものである。
The scanning wiring driving means 53 drives the scanning wiring 1 to turn ON / OFF the gate of the TFT. The video signal wiring driving means 52 includes a digital-analog converter that converts an input digital video signal into a video signal wiring driving voltage using the gamma correction voltage as a reference voltage, and drives the video signal wiring 3. A drive voltage corresponding to the input digital video signal is applied during the ON period of the TFT.

【0018】図6にガンマ補正用電圧発生手段を示す。
第1の基準電圧と第2の基準電圧間に複数の抵抗が直列
され、抵抗比により2つの基準電圧間の複数の電圧を取
り出すものである。
FIG. 6 shows a gamma correction voltage generating means.
A plurality of resistors are connected in series between the first reference voltage and the second reference voltage, and a plurality of voltages between the two reference voltages are taken out by a resistance ratio.

【0019】図7に映像信号配線駆動手段の入出力特性
を示す。映像信号配線駆動手段52は、図7(a)に示
す様に、入力されるガンマ補正用電圧を参照しつつアナ
ログ電圧に変換し、映像信号配線を駆動する。
FIG. 7 shows the input / output characteristics of the video signal wiring driving means. As shown in FIG. 7A, the video signal wiring driving unit 52 converts the input gamma correction voltage into an analog voltage and drives the video signal wiring.

【0020】ここでガンマ補正用電圧発生手段の抵抗値
の調整により、液晶表示装置のガンマ特性の変更が可能
となる。
By adjusting the resistance value of the gamma correction voltage generating means, the gamma characteristic of the liquid crystal display device can be changed.

【0021】液晶はDC成分の電界が定常的に印加され
ないよう、交流で駆動する必要があるので、図7(a)
で示される映像信号配線駆動電圧と、図7(b)に示す
ような反転側のガンマ補正用電圧を参照した映像信号配
線駆動電圧とが1フレーム毎交互に印加されるが、本発
明の実施の形態の説明においては、複雑となるため、反
転側の動作には触れないこととする。
Since the liquid crystal needs to be driven by an alternating current so that the electric field of the DC component is not constantly applied, FIG.
The video signal wiring drive voltage shown by and the video signal wiring drive voltage referring to the inversion side gamma correction voltage as shown in FIG. 7B are alternately applied for each frame. In the description of the above form, the operation on the inversion side will not be touched because it is complicated.

【0022】ここで温度による液晶の透過率変化による
黒レベル変動の補償を考えた場合、図6において黒側の
基準電圧にあたる第1基準電圧を温度に応じて変更すれ
ば良いのは明白である。その際、図4に示した様に、温
度が低い場合は液晶への印加電圧を高くすれば良く、パ
ネルの温度分布による温度変化ΔTに対して変化させる
べき印加電圧ΔVも温度の低い場合の方が大きくなる。
Here, in the case of compensating for the black level fluctuation due to the change of the liquid crystal transmittance due to the temperature, it is obvious that the first reference voltage corresponding to the black side reference voltage in FIG. 6 may be changed according to the temperature. . At this time, as shown in FIG. 4, when the temperature is low, the applied voltage to the liquid crystal may be increased, and the applied voltage ΔV to be changed with respect to the temperature change ΔT due to the temperature distribution of the panel is also low when the temperature is low. It becomes bigger.

【0023】図1は本発明の実施の形態1及び2におけ
る垂直周期制御電圧発生手段の構成を示すブロック図で
ある。図1に垂直周期制御電圧発生手段11、と温度検
出手段12を示す。垂直周期制御電圧発生手段11は垂
直周期発生手段13、温度検出手段12の出力により垂
直周期波形発生手段3から得られる波形のゲインを調整
するゲイン調整手段14、同じく温度検出手段12の出
力により、ゲイン制御された波形のDCレベルをシフト
し制御電圧として出力するレベルシフタ15から構成さ
れる。温度検出手段12は液晶表示パネルの上端近傍に
取り付けられた温度センサである。ここで垂直周期発生
手段13は予め予測したパネルの垂直方向の温度分布に
相似な波形を出力する物である。表示パネル毎に走査配
線数は固定であり、任意の波形を発生するものではない
ので、水平パルスで動作する簡単なロジック手段とデジ
タル−アナログコンバータで形成している。ゲイン調整
手段14はパネルの垂直方向の温度変化に対応して変調
すべき電圧の振幅を温度検出手段12の出力により制御
する。すなわち図4におけるΔVを調整するものであ
り、温度が高ければ波形の振幅を抑える方向で動作す
る。レベルシフタ15は温度検出手段12のパネルの上
部の温度を検出結果から、温度が高くなると波形のDC
レベルを下げる方向で動作し、垂直周期制御電圧として
出力する。
FIG. 1 is a block diagram showing the structure of vertical period control voltage generating means in the first and second embodiments of the present invention. FIG. 1 shows the vertical cycle control voltage generating means 11 and the temperature detecting means 12. The vertical cycle control voltage generating means 11 is a gain adjusting means 14 for adjusting the gain of the waveform obtained from the vertical cycle waveform generating means 3 by the outputs of the vertical cycle generating means 13 and the temperature detecting means 12, and also the output of the temperature detecting means 12, It is composed of a level shifter 15 that shifts the DC level of the gain-controlled waveform and outputs it as a control voltage. The temperature detecting means 12 is a temperature sensor attached near the upper end of the liquid crystal display panel. Here, the vertical cycle generating means 13 outputs a waveform similar to the vertical temperature distribution of the panel predicted in advance. Since the number of scanning wirings is fixed for each display panel and does not generate an arbitrary waveform, it is formed by a simple logic means operating with horizontal pulse and a digital-analog converter. The gain adjusting means 14 controls the amplitude of the voltage to be modulated according to the vertical temperature change of the panel by the output of the temperature detecting means 12. That is, ΔV in FIG. 4 is adjusted, and when the temperature is high, the waveform amplitude is suppressed. The level shifter 15 detects the temperature of the upper part of the panel of the temperature detecting means 12 and, as the temperature rises, a DC waveform is generated.
It operates in the direction of lowering the level and outputs it as a vertical cycle control voltage.

【0024】上記のように制御された垂直周期制御電圧
を、図6に示すガンマ補正用電圧発生手段の黒側の基準
電圧である第1の基準電圧とする、もしくは垂直周期制
御電圧で第1の基準電圧を変調することにより、液晶表
示装置の黒レベルの変動に対する温度補償をパネルの温
度分布をも加味して実現できる。
The vertical cycle control voltage controlled as described above is used as the first reference voltage which is the black side reference voltage of the gamma correction voltage generating means shown in FIG. 6, or the vertical cycle control voltage is the first reference voltage. By modulating the reference voltage of, the temperature compensation for the fluctuation of the black level of the liquid crystal display device can be realized in consideration of the temperature distribution of the panel.

【0025】なお温度検出手段12はサーミスタ等を用
いても良いし、垂直周期制御電圧発生手段11もゲイン
調整やレベルシフトの機能までデジタル手段で構成する
などしても良い。また温度検出を行う場所は、パネルの
いずれかの部位の温度を直接測るもので無くても、パネ
ルのいずれかの部位の温度と相関が取れる場所であれ
ば、当然ながら問題無い。
The temperature detecting means 12 may use a thermistor or the like, and the vertical cycle control voltage generating means 11 may also be constituted by digital means up to the functions of gain adjustment and level shift. Further, the place where the temperature is detected does not need to directly measure the temperature of any part of the panel, but naturally there is no problem as long as the temperature can be correlated with the temperature of any part of the panel.

【0026】(実施の形態2)次に、本発明の請求項2
に記載された発明の実施の形態について図8を用いて説
明する。
(Embodiment 2) Next, claim 2 of the present invention
An embodiment of the invention described in 1. will be described with reference to FIG.

【0027】図8(a)は液晶表示装置の構成図であ
る。実施の形態1と構成はほぼ等しいが、駆動方法の違
いによりVepp調整手段81を有しており、V
(+)、V(−)の2つの信号変調電圧を発生し、走査
配線駆動手段53に与える。
FIG. 8A is a block diagram of a liquid crystal display device. Although the configuration is almost the same as that of the first embodiment, it has a Vep adjusting means 81 due to the difference in the driving method.
Two signal modulation voltages of (+) and V (-) are generated and given to the scanning wiring driving means 53.

【0028】図8(b)に、液晶表示装置の画素レベル
で見た電気的等価手段を示す。n番目の走査信号配線
1、n−1番目の走査信号配線2、映像信号配線3、T
FT4を有し、TFT4には寄生容量であるゲート・ド
レイン間容量Cgd5、ソース・ドレイン間容量Csd6が
存在する。また意図的に形成された容量として、液晶容
量Clc*7、蓄積容量Cs8がある。
FIG. 8 (b) shows an electrical equivalent means seen at the pixel level of the liquid crystal display device. nth scanning signal wiring 1, n-1th scanning signal wiring 2, video signal wiring 3, T
The TFT 4 has an FT 4 and has a gate-drain capacitance Cgd 5 and a source-drain capacitance Csd 6 which are parasitic capacitances. Further, as the capacitances intentionally formed, there are a liquid crystal capacitance Clc * 7 and a storage capacitance Cs8.

【0029】これらの各要素電極には外部から駆動電圧
として、n番目の走査信号配線1には走査信号Vg
(n)を、n−1番目の走査信号配線2には走査信号V
g(n−1)を、画像信号配線3には画像信号電圧Vsig
を、液晶容量Clc*の対向電極には一定の電圧をそれぞ
れ印加する。上記の各容量を通じて駆動電圧の影響が画
素電極(同図A点)に現われる。図9は本発明の実施の
形態2の液晶表示装置の駆動波形を示す図である。図9
に示すVg,Ve(+),Ve(−),Vt及びVsigを図
2の各点にそれぞれ印加すると、容量結合による画素電
極の電位変化ΔV*は、偶,奇それぞれのフィールドで
式(1),(2)で表わされる。
A driving voltage is externally applied to each of these element electrodes, and a scanning signal Vg is applied to the n-th scanning signal wiring 1.
(N) is the scanning signal V on the (n-1) th scanning signal wiring 2.
g (n-1) is applied to the image signal wiring 3 by the image signal voltage Vsig
A constant voltage is applied to the counter electrode of the liquid crystal capacitance Clc *. The influence of the driving voltage appears on the pixel electrode (point A in the same figure) through each of the above capacitors. FIG. 9 is a diagram showing drive waveforms of the liquid crystal display device according to the second embodiment of the present invention. Figure 9
When Vg, Ve (+), Ve (-), Vt, and Vsig shown in FIG. 2 are applied to the respective points in FIG. 2, the potential change ΔV * of the pixel electrode due to capacitive coupling is expressed by equation (1) in each of the even and odd fields. ), (2).

【0030】[0030]

【数1】 [Equation 1]

【0031】[0031]

【数2】 [Equation 2]

【0032】[0032]

【数3】 [Equation 3]

【0033】式(1),(2)の第1項は変調信号によ
る電位変化である。第2項は走査信号VgがTFT4の
寄生容量Cgdを通じて画素電極に誘起する電位変化であ
る。第3項は画素信号電圧が寄生容量を通じて画素電極
に誘起する電位変化を示す。Clc*は、信号電圧(Vsi
g)の大小により液晶の配向状態が変化するに連れて、
その誘電異方性の影響を受けて変化する液晶の容量であ
る。従って、Clc*及びΔV*は液晶容量の大(Clc
(h))小(Clc(l))に各々対応する。偶,奇フィ
ールドでの電位変化ΔV*+,ΔV*−が等しくなれば
液晶に直流電圧がかからず対称な交流駆動が可能であ
る。即ち次式を満足することである。
The first term in equations (1) and (2) is the potential change due to the modulation signal. The second term is a potential change induced in the pixel electrode by the scanning signal Vg through the parasitic capacitance Cgd of the TFT 4. The third term shows a potential change that the pixel signal voltage induces in the pixel electrode through the parasitic capacitance. Clc * is the signal voltage (Vsi
As the liquid crystal orientation changes depending on the size of g),
It is the capacitance of the liquid crystal that changes under the influence of its dielectric anisotropy. Therefore, Clc * and ΔV * are large liquid crystal capacitances (Clc
(H)) Corresponds to small (Clc (l)). If the potential changes ΔV * + and ΔV * − in the even and odd fields are equal, a symmetrical AC drive can be performed without applying a DC voltage to the liquid crystal. That is, the following formula should be satisfied.

【0034】[0034]

【数4】 [Equation 4]

【0035】Vsigは各フィールド毎に反転する信号を
あたえるので各フィールドで第3項CsdVsigの効果は
相殺される。従って式(3)は
Since Vsig gives a signal which is inverted in each field, the effect of the third term CsdVsig is canceled in each field. Therefore, equation (3) is

【0036】[0036]

【数5】 [Equation 5]

【0037】と簡単化される。It is simplified as follows.

【0038】ここで、式(4)を書き換えるとHere, if the equation (4) is rewritten,

【0039】[0039]

【数6】 [Equation 6]

【0040】となる。It becomes

【0041】画素電極に誘起される電位ΔV*は、偶,
奇各フィールドで対向電極に対して液晶容量に無関係に
正負等しくすることができる。このため正負両極性の電
圧が等しく液晶に印加されフリッカーは本質的に減少す
る。また、式(3),(4)にClc*が現われないた
め、式(3),(4)が満たされる条件で駆動すれば液
晶の誘電異率方性の影響は消失し、Clc*に起因するD
C電圧は表示装置内部に発生しない。さらに式(3),
(4)を満たした駆動条件では、走査信号Vgが寄生容
量Cgdを通じて画像信号配線と表示電極間に誘起する直
流電位をも相殺し零とすることができる。本実施例の駆
動法では、各フィールド毎に対向電極の電位に対して正
負逆極性の信号を与えるので2フィールドを見れば画素
電極,信号電極,対向電極の各電位間には直流電界は生
じないため、液晶に直流電圧を与えることがない。
The potential ΔV * induced in the pixel electrode is even,
In each odd field, the positive and negative can be made equal to the counter electrode regardless of the liquid crystal capacitance. Therefore, positive and negative polarities are equally applied to the liquid crystal, and flicker is essentially reduced. In addition, since Clc * does not appear in equations (3) and (4), the influence of the dielectric anisotropy of the liquid crystal disappears when driving under the condition that equations (3) and (4) are satisfied, and Clc * appears. Due D
The C voltage is not generated inside the display device. Furthermore, equation (3),
Under the driving condition satisfying (4), the DC potential induced between the image signal wiring and the display electrode by the scanning signal Vg through the parasitic capacitance Cgd can be canceled to be zero. In the driving method of this embodiment, since signals of positive and negative reverse polarities are applied to the potential of the counter electrode for each field, a DC electric field is generated between the potentials of the pixel electrode, the signal electrode and the counter electrode when viewing two fields. Therefore, no DC voltage is applied to the liquid crystal.

【0042】ここで条件式(3),(4)は表示装置側
で任意設定可能な2つの電圧パラメータVe(+)とVe
(−)を有している。このため、Ve(+)とVe(−)
を式(3),(4)に合わせて制御すれば、画素電極に
現われる電位変動ΔV*を任意の大きさに設定でき、こ
のΔV*を変化させる、つまりVeppを変化させること
により、液晶材料へ印加される電圧をを変えることがで
きる。
The conditional expressions (3) and (4) are two voltage parameters Ve (+) and Ve which can be arbitrarily set on the display device side.
It has (-). Therefore, Ve (+) and Ve (-)
Can be set to an arbitrary magnitude by controlling in accordance with equations (3) and (4), and by changing this ΔV *, that is, Vepp, the liquid crystal material can be changed. The voltage applied to can be varied.

【0043】図10にVepp調整手段を示す。出力さ
れるV(+)、V(−)は走査配線駆動手段53が図9
に示す走査配線駆動信号におけるVe(+)、Ve
(−)を出力する際の参照電位とされるものである。V
(+)はVepp調整端への入力電圧がボルテージフォ
ロアにより直接出力され、V(−)は別途決定されてい
る中心電位(Vcenter)に対しV(+)と対称な
電圧となる。
FIG. 10 shows Vepp adjusting means. The output V (+) and V (-) are output by the scanning wiring driving means 53 shown in FIG.
Ve (+), Ve in the scanning wiring drive signal shown in
It is used as a reference potential when (-) is output. V
In (+), the voltage input to the Vepp adjusting terminal is directly output by the voltage follower, and V (-) is a voltage symmetrical to V (+) with respect to the separately determined central potential (Vcenter).

【0044】前述したようにVeppを制御すること
は、液晶材料への印加電圧を制御することと等価である
ので、ここで実施の形態1に示した垂直周期制御電圧に
対応してV(+)を発生させる、言いかえればVepp
を垂直周期制御電圧で変調することにより、液晶表示パ
ネルの温度分布に応じた適切な印加電圧を与えることが
出来る。
As described above, controlling Vepp is equivalent to controlling the voltage applied to the liquid crystal material, and therefore V (+) corresponds to the vertical period control voltage shown in the first embodiment. ) Is generated, in other words, Vepp
Is modulated by the vertical cycle control voltage, it is possible to apply an appropriate applied voltage according to the temperature distribution of the liquid crystal display panel.

【0045】以上のように本発明に依れば、画面の垂直
方向に温度差を生じている場合においても、画面全域に
て適切に黒レベルが温度補償された、高品位な液晶表示
装置を実現できる。
As described above, according to the present invention, it is possible to provide a high-quality liquid crystal display device in which the black level is appropriately temperature-compensated in the entire screen even when there is a temperature difference in the vertical direction of the screen. realizable.

【0046】(実施の形態3)次に、本発明の請求項3
に記載された発明の実施の形態について図11を用いて
説明する。
(Embodiment 3) Next, claim 3 of the present invention
An embodiment of the invention described in 1. will be described with reference to FIG.

【0047】本実施の形態は実施の形態2で示した作用
と同一であるが、液晶表示パネルの駆動方式の違いによ
り若干構成が異なるので、異なる部分についてのみ説明
する。
Although the present embodiment has the same operation as that shown in the second embodiment, the configuration is slightly different due to the difference in the driving method of the liquid crystal display panel, and only different parts will be described.

【0048】図11は本発明の実施の形態3の液晶表示
装置の構成図である。図11(a)において液晶表示パ
ネル56は走査配線X1〜XNの他、補助容量配線C1
〜CNを有し、それらは補助容量駆動手段55により駆
動される。但し、交流駆動の方式により補助容量配線は
N+1本の場合もある。
FIG. 11 is a block diagram of a liquid crystal display device according to the third embodiment of the present invention. In FIG. 11A, the liquid crystal display panel 56 includes the auxiliary capacitance line C1 in addition to the scanning lines X1 to XN.
To CN, which are driven by the storage capacitor drive means 55. However, there may be N + 1 auxiliary capacitance lines depending on the AC drive method.

【0049】図11(b)において、補助容量Cs8は
補助容量配線16に接続されている。図8において補助
容量はTFT4のゲートの接続される走査配線の前段の
走査配線に接続されており、前段の走査配線に与えられ
るVe(+)、Ve(−)に応じて自段の画素電極が変
調されるが、図11における液晶表示装置においてはV
e(+)、Ve(−)を与えるための補助容量配線を走
査配線と独立で持っている。
In FIG. 11B, the auxiliary capacitance Cs8 is connected to the auxiliary capacitance line 16. In FIG. 8, the auxiliary capacitance is connected to the scanning wiring in the preceding stage of the scanning wiring to which the gate of the TFT 4 is connected, and the pixel electrode of the self-stage according to Ve (+) and Ve (−) given to the scanning wiring in the preceding stage. Is modulated, but in the liquid crystal display device in FIG.
It has an auxiliary capacitance line for supplying e (+) and Ve (-) independently of the scanning line.

【0050】図12は本発明の実施の形態3の液晶表示
装置の駆動波形の例であるが、図9と比較して駆動波形
の振幅を抑えることが出来るため、図8に示す表示装置
と比較して耐圧の低いプロセスにおいて駆動手段を構成
可能である。
FIG. 12 shows an example of the drive waveform of the liquid crystal display device according to the third embodiment of the present invention. Since the amplitude of the drive waveform can be suppressed as compared with FIG. 9, the display device shown in FIG. By comparison, the driving means can be configured in a process having a low breakdown voltage.

【0051】Ve(+)、V(−)が補助容量Cs8を
介して画素電極に変調を与える構成は同様であるので、
本構成においてもVeppを実施の形態2同様に制御す
ることで画面の垂直方向に温度差を生じている場合にお
いても、画面全域にて適切に黒レベルが温度補償され
た、高品位な液晶表示装置をを実現できる。
Since Ve (+) and V (-) apply the modulation to the pixel electrode via the auxiliary capacitance Cs8, they are the same.
Also in this configuration, even when a temperature difference is generated in the vertical direction of the screen by controlling Vepp as in the second embodiment, a high-quality liquid crystal display in which the black level is appropriately temperature-compensated in the entire screen is displayed. The device can be realized.

【発明の効果】以上のように第1の発明では、液晶表示
装置内の少なくとも1ヶ所の部位の温度と、予め予想さ
せる液晶表示パネルの垂直方向の温度分布とに応じて、
ガンマ補正用電圧や各走査信号配線におけるVeppを
変化させるようにしたので、液晶材料へ印加される電圧
が走査ライン毎に温度補償されるため、画面の垂直方向
に温度の差異が生じる液晶パネルの全画面で均一で高品
位な表示が可能となる。
As described above, according to the first aspect of the invention, the temperature of at least one part in the liquid crystal display device and the temperature distribution in the vertical direction of the liquid crystal display panel to be predicted in advance are set in accordance with
Since the voltage for gamma correction and Vepp in each scanning signal wiring are changed, the voltage applied to the liquid crystal material is temperature-compensated for each scanning line, so that a temperature difference occurs in the vertical direction of the screen of the liquid crystal panel. A uniform and high-quality display is possible on all screens.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の形態1、2における垂直周期制
御電圧発生手段の構成を示すブロック図
FIG. 1 is a block diagram showing a configuration of vertical period control voltage generating means according to first and second embodiments of the present invention.

【図2】液晶の印加電圧−透過率特性の温度依存を示す
グラフ
FIG. 2 is a graph showing temperature dependence of applied voltage-transmittance characteristic of liquid crystal.

【図3】液晶パネルの上下方向の温度分布の例を示す図FIG. 3 is a diagram showing an example of vertical temperature distribution of a liquid crystal panel.

【図4】透過率が最小となる液晶への印加電圧の温度依
存を示すグラフ
FIG. 4 is a graph showing temperature dependence of an applied voltage to a liquid crystal having a minimum transmittance.

【図5】本発明の実施の形態1の液晶表示装置の構成図FIG. 5 is a configuration diagram of the liquid crystal display device according to the first embodiment of the present invention.

【図6】ガンマ補正用電圧発生手段を示す図FIG. 6 is a diagram showing gamma correction voltage generating means.

【図7】映像信号配線駆動手段の入出力特性を示す図FIG. 7 is a diagram showing input / output characteristics of video signal wiring driving means.

【図8】本発明の実施の形態2の液晶表示装置の構成図FIG. 8 is a configuration diagram of a liquid crystal display device according to a second embodiment of the present invention.

【図9】本発明の実施の形態2の液晶表示装置の駆動波
形を示す図
FIG. 9 is a diagram showing drive waveforms of the liquid crystal display device according to the second embodiment of the present invention.

【図10】本発明の実施の形態2におけるVepp調整
手段の例を示す図
FIG. 10 is a diagram showing an example of Vepp adjusting means according to the second embodiment of the present invention.

【図11】本発明の実施の形態3の液晶表示装置の構成
FIG. 11 is a configuration diagram of a liquid crystal display device according to a third embodiment of the present invention.

【図12】本発明の実施の形態3の液晶表示装置の駆動
波形を示す図
FIG. 12 is a diagram showing drive waveforms of the liquid crystal display device according to the third embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 n番目の走査信信号配線 2 n+1番目の走査信号配線 3 映像信号配線 4 TFT 5 ゲート−ドレイン間容量 6 ソース−ドレイン間容量 7 液晶容量 8 補助容量 9 第2の共通電極 10 第1の共通電極 11 垂直周期制御電圧発生手段 12 温度検出手段 13 垂直周期波形発生手段 14 ゲイン調整手段 15 レベルシフタ 16 n番目の補助容量配線 31 例陰極線管 32 導光板 33、51、56 液晶表示パネル 52 信号配線駆動手段 53 走査配線駆動手段 54 ガンマ補正用電圧発生手段 55 容量配線駆動手段 81 Vepp調整手段 1 nth scan signal wiring 2n + 1st scan signal wiring 3 video signal wiring 4 TFT 5 Gate-drain capacitance 6 Source-drain capacitance 7 Liquid crystal capacity 8 auxiliary capacity 9 Second common electrode 10 First common electrode 11 Vertical cycle control voltage generating means 12 Temperature detection means 13 Vertical period waveform generating means 14 Gain adjustment means 15 level shifter 16 nth auxiliary capacitance wiring 31 Example Cathode ray tube 32 light guide plate 33, 51, 56 Liquid crystal display panel 52 signal wiring driving means 53 Scanning wiring driving means 54 Gamma correction voltage generation means 55 Capacitance wiring driving means 81 Veppe adjustment means

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G09G 3/20 G09G 3/20 642P 3/36 3/36 Fターム(参考) 2H093 NA16 NA31 NA41 NC47 NC57 ND10 ND44 ND60 5C006 AC22 AF42 AF44 AF46 AF51 AF54 AF62 AF82 BB16 BC03 BF25 BF38 BF43 BF46 FA19 FA22 5C080 AA10 BB05 DD05 EE28 FF11 JJ02 JJ03 JJ04 JJ05 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) G09G 3/20 G09G 3/20 642P 3/36 3/36 F term (reference) 2H093 NA16 NA31 NA41 NC47 NC57 ND10 ND44 ND60 5C006 AC22 AF42 AF44 AF46 AF51 AF54 AF62 AF82 BB16 BC03 BF25 BF38 BF43 BF46 FA19 FA22 5C080 AA10 BB05 DD05 EE28 FF11 JJ02 JJ03 JJ04 JJ05

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 画素電極をマトリクス状に有し、映像信
号配線と走査信号配線に電気的に接続されたスイッチン
グ素子が前記画素電極に接続される液晶表示パネルと、
前記液晶パネルの走査信号配線を駆動する走査配線駆動
手段と、ガンマ補正用電圧を参照電圧にして、デジタル
映像信号を映像信号配線駆動電圧に変換するデジタル−
アナログコンバータを具備した映像信号配線駆動手段を
備えた液晶表示装置であって、液晶表示装置内の少なく
とも1ヶ所の部位の温度と、予め予想される前記液晶表
示パネルの垂直方向の温度分布とに応じて、前記ガンマ
補正用電圧を変化させることを特徴とする液晶表示装
置。
1. A liquid crystal display panel having pixel electrodes in a matrix, wherein switching elements electrically connected to video signal wirings and scanning signal wirings are connected to the pixel electrodes.
A scanning wiring driving means for driving the scanning signal wiring of the liquid crystal panel, and a digital-converting digital video signal into a video signal wiring driving voltage by using a gamma correction voltage as a reference voltage.
A liquid crystal display device having a video signal wiring driving means having an analog converter, wherein the temperature of at least one portion in the liquid crystal display device and the expected temperature distribution in the vertical direction of the liquid crystal display panel are calculated. A liquid crystal display device, characterized in that the gamma correction voltage is changed in accordance therewith.
【請求項2】 容量を介して走査信号配線に接続された
画素電極をマトリクス状に有し、映像信号配線と前記走
査信号配線に電気的に接続されたスイッチング素子が前
記画素電極に接続され、前記スイッチング素子のオン期
間に映像信号電圧を画素電極に伝達し、奇数フィールド
の前記スイッチング素子のオフ期間に前記走査信号配線
に変調信号Ve(+)を与え、偶数フィールドの前記ス
イッチング素子のオフ期間に前記走査信号配線に変調信
号Ve(−)を与えることにより、前記画素電極の電位
を変化させ、前記画素電極の電位の変化と前記映像信号
電圧とを相互に重畳させて表示材料に電圧を印加する液
晶表示装置であって、変調信号振幅Vepp=|Ve
(+)−Ve(−)|と定義するとき、液晶表示装置内
の少なくとも1ヶ所の部位の温度と、予め予想される液
晶パネルの垂直方向の温度分布とに応じて、各走査信号
配線におけるVeppを変化させることを特徴とする液
晶表示装置。
2. A pixel electrode connected to a scanning signal line through a capacitor is arranged in a matrix, and a switching element electrically connected to a video signal line and the scanning signal line is connected to the pixel electrode, A video signal voltage is transmitted to a pixel electrode during an ON period of the switching element, a modulation signal Ve (+) is applied to the scan signal line during an OFF period of the switching element in an odd field, and an OFF period of the switching element in an even field. By applying a modulation signal Ve (-) to the scanning signal wiring, the potential of the pixel electrode is changed, and the change in the potential of the pixel electrode and the video signal voltage are superimposed on each other to apply a voltage to the display material. A liquid crystal display device for applying a modulation signal amplitude Vepp = | Ve
When defined as (+) − Ve (−) |, in each scan signal wiring, the temperature of at least one portion in the liquid crystal display device and the expected temperature distribution in the vertical direction of the liquid crystal panel are determined. A liquid crystal display device, characterized in that Vepp is changed.
【請求項3】 容量を介して補助容量配線に接続された
画素電極をマトリクス状に有し、映像信号配線と前記走
査信号配線に電気的に接続されたスイッチング素子が前
記画素電極に接続され、前記スイッチング素子のオン期
間に映像信号電圧を画素電極に伝達し、奇数フィールド
の前記スイッチング素子のオン期間に前記補助容量配線
に変調信号Ve(+)を与え、偶数フィールドの前記ス
イッチング素子のオン期間に前記補助容量配線に変調信
号Ve(−)を与えることにより、前記画素電極の電位
を変化させ、前記画素電極の電位の変化と前記映像信号
電圧とを相互に重畳させて表示材料に電圧を印加する液
晶表示装置であって、変調信号振幅Vepp=|Ve
(+)−Ve(−)|と定義するとき、液晶表示装置内
の少なくとも1ヶ所の部位の温度と、予め予想される液
晶パネルの垂直方向の温度分布とに応じて、各走査信号
配線におけるVeppを変化させることを特徴とする液
晶表示装置。
3. A pixel electrode connected to an auxiliary capacitance line via a capacitance in a matrix form, and a switching element electrically connected to a video signal line and the scanning signal line is connected to the pixel electrode, The video signal voltage is transmitted to the pixel electrode during the ON period of the switching element, the modulation signal Ve (+) is applied to the auxiliary capacitance line during the ON period of the switching element in the odd field, and the ON period of the switching element in the even field is applied. By applying a modulation signal Ve (-) to the auxiliary capacitance line, the potential of the pixel electrode is changed, and the change in the potential of the pixel electrode and the video signal voltage are superimposed on each other to apply a voltage to the display material. A liquid crystal display device for applying a modulation signal amplitude Vepp = | Ve
When defined as (+) − Ve (−) |, in each scan signal wiring, the temperature of at least one portion in the liquid crystal display device and the expected temperature distribution in the vertical direction of the liquid crystal panel are determined. A liquid crystal display device, characterized in that Vepp is changed.
JP2002096466A 2002-03-29 2002-03-29 Liquid crystal display Expired - Fee Related JP4023192B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002096466A JP4023192B2 (en) 2002-03-29 2002-03-29 Liquid crystal display

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002096466A JP4023192B2 (en) 2002-03-29 2002-03-29 Liquid crystal display

Publications (2)

Publication Number Publication Date
JP2003295158A true JP2003295158A (en) 2003-10-15
JP4023192B2 JP4023192B2 (en) 2007-12-19

Family

ID=29239501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002096466A Expired - Fee Related JP4023192B2 (en) 2002-03-29 2002-03-29 Liquid crystal display

Country Status (1)

Country Link
JP (1) JP4023192B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005173245A (en) * 2003-12-11 2005-06-30 Toshiba Matsushita Display Technology Co Ltd Power unit and liquid crystal display device
JP2006284973A (en) * 2005-04-01 2006-10-19 Sony Corp Method of determining temperature irregularity compensation amount, display device, temperature irregularity amount compensation determining system, temperature irregularity compensating system, and program
JP2007522498A (en) * 2004-01-29 2007-08-09 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Active matrix display device
CN100442331C (en) * 2005-09-07 2008-12-10 中华映管股份有限公司 Two-dimensional display and its image calibrating circuit and method
JP2011128336A (en) * 2009-12-17 2011-06-30 Seiko Epson Corp Temperature characteristic compensation circuit, adjustment method of the same, and electronic equipment
WO2013002200A1 (en) * 2011-06-28 2013-01-03 シャープ株式会社 Liquid crystal display device
KR101250787B1 (en) 2006-06-30 2013-04-08 엘지디스플레이 주식회사 Liquid crystal display device having gamma voltage generator of register type in data driver integrated circuit
WO2013058260A1 (en) * 2011-10-18 2013-04-25 シャープ株式会社 Display device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005173245A (en) * 2003-12-11 2005-06-30 Toshiba Matsushita Display Technology Co Ltd Power unit and liquid crystal display device
JP2007522498A (en) * 2004-01-29 2007-08-09 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Active matrix display device
JP2006284973A (en) * 2005-04-01 2006-10-19 Sony Corp Method of determining temperature irregularity compensation amount, display device, temperature irregularity amount compensation determining system, temperature irregularity compensating system, and program
CN100442331C (en) * 2005-09-07 2008-12-10 中华映管股份有限公司 Two-dimensional display and its image calibrating circuit and method
KR101250787B1 (en) 2006-06-30 2013-04-08 엘지디스플레이 주식회사 Liquid crystal display device having gamma voltage generator of register type in data driver integrated circuit
JP2011128336A (en) * 2009-12-17 2011-06-30 Seiko Epson Corp Temperature characteristic compensation circuit, adjustment method of the same, and electronic equipment
WO2013002200A1 (en) * 2011-06-28 2013-01-03 シャープ株式会社 Liquid crystal display device
WO2013058260A1 (en) * 2011-10-18 2013-04-25 シャープ株式会社 Display device

Also Published As

Publication number Publication date
JP4023192B2 (en) 2007-12-19

Similar Documents

Publication Publication Date Title
US6760059B2 (en) Method and apparatus for driving liquid crystal display
US7978170B2 (en) Driving apparatus of backlight and method of driving backlight using the same
US7864155B2 (en) Display control circuit, display control method, and liquid crystal display device
US9218791B2 (en) Liquid crystal display device and method for driving a liquid crystal display device
KR0176295B1 (en) Liquid crystal display device
KR100870006B1 (en) A liquid crystal display apparatus and a driving method thereof
US20080158267A1 (en) Liquid crystal display
JP2007538268A (en) LIQUID CRYSTAL DISPLAY DEVICE, ITS DRIVING METHOD, LIQUID CRYSTAL TV WITH LIQUID CRYSTAL DISPLAY DEVICE, AND LIQUID CRYSTAL MONITOR
US20070146299A1 (en) Liquid crystal display and method for driving the same
JP2007304325A (en) Liquid crystal display device and liquid crystal panel driving method
US7136037B2 (en) Method and apparatus for driving liquid crystal display
JP2002055662A (en) Liquid crystal display device and its drive method
US20060092111A1 (en) Liquid crystal display device
JP4023192B2 (en) Liquid crystal display
JP2002358056A (en) Image display device and common signal supplying method
JP2002149117A (en) Liquid crystal display
JP2003295843A (en) Liquid crystal display device and its driving method
US20110292017A1 (en) Display device and method of driving thereof
KR20010055986A (en) Apparatus For Driving LCD with a Brief Response time and Method therefor
JP3140088B2 (en) Driving method of liquid crystal display device
JP3431260B2 (en) Driving method of display device
JP3437866B2 (en) Driving method of display device
KR20010026325A (en) Apparatus For Compensating Gamma Voltage in Liquid Crystal Display
KR20180047328A (en) Display device
JPH06214213A (en) Liquid crystal diplay device and its common electrode voltage setting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050224

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050706

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070911

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070924

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101012

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111012

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121012

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131012

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees