JP2003294969A - Photonic crystal fiber and method for manufacturing the same - Google Patents

Photonic crystal fiber and method for manufacturing the same

Info

Publication number
JP2003294969A
JP2003294969A JP2002100774A JP2002100774A JP2003294969A JP 2003294969 A JP2003294969 A JP 2003294969A JP 2002100774 A JP2002100774 A JP 2002100774A JP 2002100774 A JP2002100774 A JP 2002100774A JP 2003294969 A JP2003294969 A JP 2003294969A
Authority
JP
Japan
Prior art keywords
pcf
preform
photonic crystal
crystal fiber
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002100774A
Other languages
Japanese (ja)
Inventor
Nobuyuki Yoshizawa
信幸 吉澤
Katsusuke Tajima
克介 田嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2002100774A priority Critical patent/JP2003294969A/en
Publication of JP2003294969A publication Critical patent/JP2003294969A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02295Microstructured optical fibre
    • G02B6/02314Plurality of longitudinal structures extending along optical fibre axis, e.g. holes
    • G02B6/02342Plurality of longitudinal structures extending along optical fibre axis, e.g. holes characterised by cladding features, i.e. light confining region
    • G02B6/02376Longitudinal variation along fibre axis direction, e.g. tapered holes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01211Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube
    • C03B37/0122Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube for making preforms of photonic crystal, microstructured or holey optical fibres
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01225Means for changing or stabilising the shape, e.g. diameter, of tubes or rods in general, e.g. collapsing
    • C03B37/0124Means for reducing the diameter of rods or tubes by drawing, e.g. for preform draw-down
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/10Internal structure or shape details
    • C03B2203/14Non-solid, i.e. hollow products, e.g. hollow clad or with core-clad interface
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/10Internal structure or shape details
    • C03B2203/14Non-solid, i.e. hollow products, e.g. hollow clad or with core-clad interface
    • C03B2203/16Hollow core
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/10Internal structure or shape details
    • C03B2203/18Axial perturbations, e.g. in refractive index or composition
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/42Photonic crystal fibres, e.g. fibres using the photonic bandgap PBG effect, microstructured or holey optical fibres

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a PCF having barrier walls in optional positions and to provide a method for economically manufacturing the PCF. <P>SOLUTION: The photonic crystal fiber having a plurality of tubular hollow holes 2 formed in the internal part thereof along an axial center is characterized in that the barrier walls 3 between adjacent hollow holes are provided in optional positions. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はフォトニッククリス
タルファイバ及びその製造方法に関する。詳しくは、水
中環境下においても使用可能な高信頼なフォトニックク
リスタルファイバの製造方法に関するものである。
TECHNICAL FIELD The present invention relates to a photonic crystal fiber and a method for manufacturing the same. More specifically, the present invention relates to a highly reliable method for manufacturing a photonic crystal fiber that can be used even in an underwater environment.

【0002】[0002]

【背景技術】従来の通信用光ファイバに代わる広帯域な
伝送媒体としてフォトニッククリスタルファイバ(PC
F:別名、空孔ファイバ)が提案されている。これらは
光ファイバ長手方向に連続した空孔を有しているが、こ
のファイバを水中環境下で用いた場合の伝送特性及び強
度面での劣化を防止する目的で、空孔部を遮断する隔壁
を設けたPCFが提案されている(特願2002−20
04号)。
BACKGROUND ART Photonic crystal fiber (PC) has been used as a broadband transmission medium replacing conventional optical fibers for communication.
F: Another name, hole fiber) has been proposed. These have holes that are continuous in the longitudinal direction of the optical fiber, but for the purpose of preventing deterioration in transmission characteristics and strength when this fiber is used in an underwater environment, a partition wall that blocks the holes. A PCF provided with is proposed (Japanese Patent Application No. 2002-20).
04).

【0003】このPCFは、その外観を図2に示すよう
に、光伝送媒体からなる円柱形ファイバ長手方向に複数
本の空孔を設けたもので、材質としては光ファイバ材料
として実績のある石英等が提案されている。即ち、円柱
形ファイバである石英ロッド1の長手方向に沿って複数
本の空孔2が連続して形成され、これらの空孔2が隔壁
3で遮断されることにより、隔壁3で閉じられた空孔4
とされている。空孔2の直径は波長オーダーであり、こ
の直径や配列、本数、ファイバ外径等の構造的パラメー
ターにより、カットオフ波長及び分散特性が決定され
る。
As shown in FIG. 2, the appearance of this PCF is one in which a plurality of holes are provided in the longitudinal direction of a cylindrical fiber made of an optical transmission medium. Etc. have been proposed. That is, a plurality of holes 2 are continuously formed along the longitudinal direction of the quartz rod 1 which is a cylindrical fiber, and the holes 2 are closed by the partition walls 3 to be closed by the partition walls 3. Hole 4
It is said that. The diameter of the holes 2 is on the order of wavelength, and the cutoff wavelength and dispersion characteristics are determined by structural parameters such as diameter, arrangement, number, and fiber outer diameter.

【0004】[0004]

【発明が解決しようとする課題】上記特願2002−2
004号では、PCFの製造方法の一例として提案され
た方法では、隣り合う空孔2において隔壁3を全て同一
箇所にしか製造できないという不都合があった。本発明
は任意箇所に隔壁を有するPCF及びPCFを経済的に
製造する方法を提供することを目的とする。
[Patent Document 1] Japanese Patent Application No. 2002-2
In No. 004, the method proposed as an example of the method for manufacturing the PCF has a disadvantage that the partition walls 3 can be manufactured only at the same location in the adjacent holes 2. An object of the present invention is to provide a PCF having a partition wall at an arbitrary position and a method for economically manufacturing the PCF.

【0005】[0005]

【課題を解決するための手段】上記課題を解決する本発
明の請求項1に係るフォトニッククリスタルファイバ
は、軸心に沿って内部に管状の空孔が複数形成されたフ
ォトニッククリスタルファイバにおいて、互いに隣り合
う前記空孔の任意の位置に隔壁を設けたことを特徴とす
る。
The photonic crystal fiber according to claim 1 of the present invention for solving the above-mentioned problems is a photonic crystal fiber having a plurality of tubular holes formed inside along an axis thereof. A partition wall is provided at an arbitrary position of the holes adjacent to each other.

【0006】上記課題を解決する本発明の請求項2に係
るフォトニッククリスタルファイバの製造方法は、石英
よりなるフォトニッククリスタルファイバ母材の溶融線
引工程において、前記母材の空孔開口部より石英粉末を
随時供給することを特徴とする。
A method of manufacturing a photonic crystal fiber according to a second aspect of the present invention which solves the above-mentioned problems is a method of drawing a photonic crystal fiber base material made of quartz from a hole opening portion of the base material in a melt drawing step. The feature is that quartz powder is supplied at any time.

【0007】上記課題を解決する本発明の請求項3に係
るフォトニッククリスタルファイバの製造方法は、石英
よりなるフォトニッククリスタルファイバ母材の空孔開
口部より挿入した石英粉末供給管により、石英粉末を空
孔内壁に間欠的に封入しつつ、前記供給管を引き抜く工
程、及び前記母材を溶融線引する工程を有する事を特徴
とする。
A method of manufacturing a photonic crystal fiber according to a third aspect of the present invention which solves the above-mentioned problems is a quartz powder supply tube inserted from a hole opening of a photonic crystal fiber base material made of quartz. Is intermittently enclosed in the inner wall of the hole, and a step of pulling out the supply pipe and a step of melting and drawing the base material.

【0008】[0008]

【発明の実施の形態】以下、本発明について、図面に示
す実施例を参照して詳細に説明する。本実施例は、PC
Fのコア部分に隔壁を付ける工程と、工程で製造し
たコアにジャケット管を被覆する工程と、工程でで
きたプリフォームを線引きする工程との三つの工程か
ら構成されるフォトニッククリスタルファイバの製造方
法である。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will now be described in detail with reference to the embodiments shown in the drawings. This embodiment is a PC
Production of a photonic crystal fiber consisting of three steps: a step of forming a partition wall on the core portion of F, a step of coating the core produced in the step with a jacket tube, and a step of drawing the preform produced in the step Is the way.

【0009】本実施例の製造工程を図3に示す。尚、
工程説明のため、PCFファイバプリフォーム10につ
いては断面で図示している。図3に示すように、貫通す
る空孔2を有するPCFファイバプリフォーム10を加
熱炉12内に配置すると共にその上部及び下部をそれぞ
れプリフォーム把持部13,14で保持し、PCFファ
イバプリフォーム10の上端開口部に石英粉末間欠供給
装置11に取り付けられた粉末供給パイプを挿入する。
The manufacturing process of this embodiment is shown in FIG. still,
The PCF fiber preform 10 is shown in cross section for the purpose of explaining the steps. As shown in FIG. 3, a PCF fiber preform 10 having a through hole 2 is placed in a heating furnace 12, and upper and lower parts thereof are held by preform gripping parts 13 and 14, respectively. The powder supply pipe attached to the quartz powder intermittent supply device 11 is inserted into the upper end opening of the.

【0010】ここで、PCFファイバプリフォーム10
の中央部分で延伸したい部分を加熱炉12により融点近
傍まで加熱し、プリフォーム把持部13,14によって
プリフォーム10に一定の張力を加えることによってプ
リフォーム10の加熱部分を延伸する。同時に、PCF
ファイバプリフォーム10の上端の開口部へ、石英粉末
間欠供給装置11から石英粉末をプリフォーム10の空
孔2に随時或いは間欠的に供給する。必要量の粉末を供
給した時点で、供給を停止する。
Here, the PCF fiber preform 10
The heated portion of the preform 10 is stretched by heating the portion to be stretched in the central portion of the preform 10 by the heating furnace 12 and applying a constant tension to the preform 10 by the preform gripping portions 13 and 14. At the same time, PCF
Quartz powder is intermittently and intermittently supplied to the pores 2 of the preform 10 from the silica powder intermittent supply device 11 to the opening at the upper end of the fiber preform 10. When the required amount of powder has been supplied, the supply is stopped.

【0011】空孔2に供給された粉末は目詰まり状態と
なった後、加熱されて溶融し、空孔部を充填する。その
後、加熱部の温度を低下させると、冷却固化する過程で
空孔2を閉鎖したまま固化する結果、充填した石英粉末
が隔壁3となる。PCFファイバプリフォーム10の延
伸工程において任意の時点に任意量だけ石英粉末を供給
及び供給停止することが可能なので、空孔2の閉鎖個所
をファイバ長手方向に任意に分布させた一連の連続のフ
ァイバの製造が可能である。
The powder supplied to the pores 2 is clogged and then heated and melted to fill the pores. After that, when the temperature of the heating portion is lowered, the voids 2 are solidified while being closed in the process of cooling and solidification, so that the filled quartz powder becomes the partition walls 3. Since it is possible to supply and stop the supply of quartz powder by an arbitrary amount at any time during the drawing process of the PCF fiber preform 10, a series of continuous fibers in which the closed positions of the holes 2 are arbitrarily distributed in the fiber longitudinal direction. Can be manufactured.

【0012】尚、図3では図面の説明の簡単化のため、
PCFファイバプリフォーム10に複数本ある空孔2の
うち1本にだけ石英粉末間欠供給装置11を接続した
が、全ての空孔2に石英粉末が供給できるものであるこ
とは、言うまでもない。このため石英粉末間欠供給装置
11を複数台用意しても良いし、これを移動させても良
い。
In FIG. 3, in order to simplify the description of the drawing,
Although the quartz powder intermittent supply device 11 was connected to only one of the plurality of holes 2 in the PCF fiber preform 10, it goes without saying that the quartz powder can be supplied to all the holes 2. Therefore, a plurality of quartz powder intermittent supply devices 11 may be prepared or may be moved.

【0013】また、PCFファイバプリフォーム10の
加熱部分を連続してプリフォーム下部から上部へと移動
させることにより、任意長の隔壁付きPCFコアプリフ
ォームの作成が可能である。尚、加熱炉12としては図
示のごとく固定式でも良いし、プリフォーム加熱部位の
上方向への変更に伴って平行移動できるものでも良い。
Further, by continuously moving the heated portion of the PCF fiber preform 10 from the lower part to the upper part of the preform, it is possible to produce a PCF core preform with a partition wall having an arbitrary length. The heating furnace 12 may be of a fixed type as shown in the figure, or may be of a type that can move in parallel as the preform heating portion changes upward.

【0014】石英粉末間欠供給装置11を空孔2の数に
見合う複数台用意した場合には図2のようにPCFの長
手方向における同一箇所に隔壁3を構成し得る。一方、
石英粉末間欠供給装置11を平行移動させた場合は、図
1に示すように隣あった空孔間での隔壁位置が異なった
PCFのコア部分を製造することとなる。本工程によ
って作成されたプリフォームを、以後の説明では隔壁付
きPCFコアプリフォームと呼ぶ。
When a plurality of quartz powder intermittent supply devices 11 corresponding to the number of holes 2 are prepared, the partition 3 can be formed at the same position in the longitudinal direction of the PCF as shown in FIG. on the other hand,
When the quartz powder intermittent feeding device 11 is moved in parallel, the PCF core portion in which the positions of the partition walls between the adjacent holes are different as shown in FIG. 1 is manufactured. The preform created by this step is referred to as a partition-attached PCF core preform in the following description.

【0015】本実施例の工程を図4に示す。先ず、図
4に示すように、工程で作成した隔壁付きコアプリフ
ォーム15の外径より若干大きめの貫通した孔を中心部
に1本作成したPCFジャケット管16を用意する。こ
のジャケット管16の孔に、隔壁付きPCFコアプリフ
ォーム15を挿入することによって、コアの周囲にジャ
ケットを有するPCFプリフォーム20を得る。
The steps of this embodiment are shown in FIG. First, as shown in FIG. 4, there is prepared a PCF jacket tube 16 having a through hole slightly larger than the outer diameter of the core preform 15 with a partition formed in the step and having one through hole at the center. By inserting the PCF core preform 15 with a partition into the hole of the jacket tube 16, a PCF preform 20 having a jacket around the core is obtained.

【0016】本実施例の工程を図5に示す。工程は
線引き装置22を用いた線引き工程である。即ち、前記
PCFプリフォーム20を加熱炉21で加熱溶融させ、
下方に一定張力で線引きし、樹脂被覆ダイス23を通過
させて樹脂を被覆し、樹脂硬化炉24で樹脂を硬化さ
せ、更に、巻取ボビン25で巻き取ることにより、外径
一定の隔壁付きPCFを得ることができる。この工程
で作成される隔壁付きPCFの断面図を図1に示す。
The steps of this embodiment are shown in FIG. The process is a drawing process using the drawing device 22. That is, the PCF preform 20 is heated and melted in the heating furnace 21,
A PCF with a partition wall having a constant outer diameter is obtained by drawing a wire downward with a constant tension, passing it through a resin coating die 23 to coat the resin, curing the resin in a resin curing furnace 24, and further winding it with a winding bobbin 25. Can be obtained. A cross-sectional view of a PCF with a partition formed in this step is shown in FIG.

【0017】従来の製造方法では図2に示すとおり隔壁
3は全ての空孔2において同じ場所に構成せざるを得な
かったのに対し、本製造方法では隔壁の場所を空孔毎に
任意に設定することが可能となった。即ち、本実施例に
係るフォトニッククリスタルファイバは、円柱形ファイ
バである石英ロッド1の長手方向に沿って複数本の空孔
2が連続して形成され、これらの空孔2が隔壁3で遮断
されると共に、隣あった空孔2の間での隔壁3の位置が
異なるものである。
In the conventional manufacturing method, as shown in FIG. 2, the partition wall 3 had to be formed in the same place in all the holes 2, whereas in the present manufacturing method, the partition wall position was arbitrarily set for each hole. It became possible to set. That is, in the photonic crystal fiber according to the present embodiment, a plurality of holes 2 are continuously formed along the longitudinal direction of the quartz rod 1 which is a cylindrical fiber, and these holes 2 are blocked by the partition wall 3. In addition, the positions of the partition walls 3 between the adjacent holes 2 are different.

【0018】〔実施例〕工程において合成石英よりな
る外径約11mm、長さ35mm(長さに把持部13,
14の把持しろは含まない)のPCFコアプリフォーム
10を用意した。空孔の内径は約1mmである。このP
CFコアプリフォーム10を工程によって延伸するこ
とにより、平行部分の外径約6mm、長さ約100mm
の隔壁付きPCFコアプリフォーム15を作成した。
[Example] In the process, the outer diameter of synthetic quartz is about 11 mm and the length is 35 mm (the length of the grip portion 13,
PCF corepliform 10 of 14 gripping margins is not included. The inner diameter of the holes is about 1 mm. This P
By stretching the CF core preform 10 in the process, the outer diameter of the parallel part is about 6 mm and the length is about 100 mm.
A PCF core preform 15 with a partition wall was prepared.

【0019】空孔の内径が1mmあるので、内部に外径
0.7mmの石英粉末供給パイプを30mmほど容易に
挿入することが可能で、石英粉末の供給制御性に優れ
る。延伸部分の加熱温度は約1650℃である。工程
に用いるPCFジャケット管プリフォーム16として、
外径約18mm、貫通する中央部空孔の内径約6.1m
m、長さ100mmの合成石英プリフォームを用意し、
前記隔壁付きPCFコアプリフォーム15を挿入して、
PCFプリフォーム20を作成した。
Since the hole has an inner diameter of 1 mm, a quartz powder supply pipe having an outer diameter of 0.7 mm can be easily inserted into the inside by about 30 mm, and the controllability of supplying quartz powder is excellent. The heating temperature of the stretched portion is about 1650 ° C. As the PCF jacket tube preform 16 used in the process,
Outer diameter about 18mm, inner diameter of the central hole that penetrates about 6.1m
m, 100mm long synthetic quartz preform prepared,
Insert the PCF core preform 15 with the partition,
A PCF preform 20 was created.

【0020】このプリフォーム20を工程によって線
引きし、外径125ミクロンの隔壁付きPCF約15k
mを作成した。空孔2の内径は約1ミクロン、隔壁の厚
さは約130ミクロン、一本の空孔2における隣り合っ
た隔壁の間隔は、約1kmである。得られたPCFの損
失は波長1.55ミクロンにおいて1kmあたり約2d
B、カットオフ波長は1ミクロンであり、優れた低損失
特性を有することを確認した。
This preform 20 is drawn by a process, and a PCF with a partition having an outer diameter of 125 microns is about 15 k.
created m. The inner diameter of the hole 2 is about 1 micron, the thickness of the partition wall is about 130 microns, and the distance between adjacent partition walls in one hole 2 is about 1 km. The loss of the obtained PCF is about 2d per km at a wavelength of 1.55 microns.
B, the cutoff wavelength was 1 micron, and it was confirmed to have excellent low loss characteristics.

【0021】また、このファイバを水素分圧4気圧、温
度約25℃の水素釜中に保持して、波長1.24ミクロ
ンにおける損失変化を測定したところ、1kmあたり約
20dBの飽和損失に達するのに、約170時間を要し
た。この結果、期待どおり、極めて優れた耐水素損失を
有することを確認した。この結果より、隔壁を設けたこ
とによって、海底のような水中にPCFを布設した際
に、事故や障害で亀裂が生じたとしても、空孔の長手方
向に沿って伝播する水分の動きが制約され、水分が局部
的にしか伝播できなくなるので、PCFの強度劣化を大
幅に抑制できることが、推定できる。
When this fiber was held in a hydrogen tank having a hydrogen partial pressure of 4 atm and a temperature of about 25 ° C., and loss change at a wavelength of 1.24 μm was measured, a saturation loss of about 20 dB per km was reached. It took about 170 hours. As a result, it was confirmed that it had an extremely excellent hydrogen resistance loss as expected. From this result, by providing the partition wall, even if a crack occurs due to an accident or obstacle when the PCF is laid in water such as the seabed, the movement of moisture propagating along the longitudinal direction of the hole is restricted. Therefore, it can be inferred that the moisture can be propagated only locally, so that the strength deterioration of the PCF can be significantly suppressed.

【0022】このように説明したように、本実施例で
は、プリフォームの製造工程を工程と工程に分割す
ることによって、PCFコアプリフォーム10の空孔内
径を1mm程度まで大口径にすることが可能となった。
この結果、石英粉末間欠供給装置11の粉末供給パイプ
の空孔内部への挿入も容易となり、図1に示すような任
意位置における石英隔壁3の作成が初めて可能となっ
た。更に、隔壁3の近傍に集中する伝送特性の不安定現
象をファイバ長手方向に分散することが可能となり、全
長にわたって安定した伝送特性のPCFの製造が可能と
なった。
As described above, in this embodiment, by dividing the manufacturing process of the preform into steps and steps, the inner diameter of the PCF core preform 10 can be increased to about 1 mm. It has become possible.
As a result, it becomes easy to insert the powder supply pipe of the quartz powder intermittent supply device 11 into the inside of the hole, and it becomes possible for the first time to form the quartz partition wall 3 at an arbitrary position as shown in FIG. Furthermore, it becomes possible to disperse the unstable phenomenon of the transmission characteristics concentrated in the vicinity of the partition wall 3 in the longitudinal direction of the fiber, and it becomes possible to manufacture a PCF having stable transmission characteristics over the entire length.

【0023】[0023]

【発明の効果】以上、実施例に基づいて具体的に説明し
たように、本発明は、海底等の長距離区間に主に布設さ
れるフォトニッククリスタルファイバにおいて、光ファ
イバ内部の空孔2を任意の位置に隔壁を設けることを特
徴とした光ファイバの構造及びその製造方法である。従
って、本発明によれば、光ファイバ内部の空孔の任意の
位置に隔壁を設けることができるため、従来の隔壁近傍
に集中する伝送特性の劣化を光ファイバの長手方向に分
散することが可能となり、全長に亘って安定した伝送特
性を有するPCFの製造が可能となる。
As described above in detail based on the embodiments, according to the present invention, in the photonic crystal fiber mainly laid in a long distance section such as the seabed, the holes 2 inside the optical fiber are formed. A structure of an optical fiber and a manufacturing method thereof, characterized in that a partition is provided at an arbitrary position. Therefore, according to the present invention, since the partition wall can be provided at an arbitrary position of the hole inside the optical fiber, it is possible to disperse the deterioration of the transmission characteristics concentrated in the vicinity of the conventional partition wall in the longitudinal direction of the optical fiber. Therefore, it becomes possible to manufacture a PCF having stable transmission characteristics over the entire length.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による隔壁付きPCFの断面図である。FIG. 1 is a sectional view of a PCF with a partition according to the present invention.

【図2】従来の隔壁付きPCFの断面図である。FIG. 2 is a sectional view of a conventional PCF with a partition wall.

【図3】本発明のPCFの製造方法(工程)の説明図
である。
FIG. 3 is an explanatory diagram of a PCF manufacturing method (process) of the present invention.

【図4】本発明のPCFの製造方法(工程)の説明図
である。
FIG. 4 is an explanatory diagram of a PCF manufacturing method (process) of the present invention.

【図5】本発明のPCFの製造方法(工程)の説明図
である。
FIG. 5 is an explanatory diagram of a PCF manufacturing method (process) of the present invention.

【符号の説明】[Explanation of symbols]

1 石英ロッド 2 空孔 3 隔壁 4 隔壁で閉じられた空孔 10 PCFコアプリフォーム 11 石英粉末間欠供給装置 12 加熱炉 13,14 プリフォーム把持部 15 隔壁付きPCFコアプリフォーム 16 PCFジャケット管プリフォーム 20 PCFプリフォーム 21 加熱炉 22 線引装置 23 樹脂被覆ダイス 24 樹脂硬化炉 25 巻取ボビン 1 quartz rod 2 holes 3 partitions 4 Holes closed by partition walls 10 PCF core application form 11 Quartz powder intermittent supply device 12 heating furnace 13,14 Preform grip 15 PCF core app form with bulkhead 16 PCF jacket tube preform 20 PCF preform 21 heating furnace 22 Wire drawing device 23 Resin-coated dies 24 Resin curing furnace 25 winding bobbin

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 軸心に沿って内部に管状の空孔が複数形
成されたフォトニッククリスタルファイバにおいて、互
いに隣り合う前記空孔の任意の位置に隔壁を設けたこと
を特徴とするフォトニッククリスタルファイバ。
1. A photonic crystal fiber having a plurality of tubular holes formed inside along an axis, wherein a partition is provided at an arbitrary position of the holes adjacent to each other. fiber.
【請求項2】 石英よりなるフォトニッククリスタルフ
ァイバ母材の溶融線引工程において、前記母材の空孔開
口部より石英粉末を随時供給することを特徴とするフォ
トニッククリスタルファイバの製造方法。
2. A method for producing a photonic crystal fiber, characterized in that, in a step of drawing a photonic crystal fiber preform made of quartz, quartz powder is supplied from a hole opening portion of the preform at any time.
【請求項3】 石英よりなるフォトニッククリスタルフ
ァイバ母材の空孔開口部より挿入した石英粉末供給管に
より、石英粉末を空孔内壁に間欠的に封入しつつ、前記
供給管を引き抜く工程、及び前記母材を溶融線引する工
程を有する事を特徴とするフォトニッククリスタルファ
イバの製造方法。
3. A step of pulling out the supply tube while intermittently enclosing the quartz powder in the inner wall of the hole by a quartz powder supply tube inserted through a hole opening of a photonic crystal fiber preform made of quartz, and A method for producing a photonic crystal fiber, comprising a step of melting and drawing the base material.
JP2002100774A 2002-04-03 2002-04-03 Photonic crystal fiber and method for manufacturing the same Withdrawn JP2003294969A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002100774A JP2003294969A (en) 2002-04-03 2002-04-03 Photonic crystal fiber and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002100774A JP2003294969A (en) 2002-04-03 2002-04-03 Photonic crystal fiber and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2003294969A true JP2003294969A (en) 2003-10-15

Family

ID=29241485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002100774A Withdrawn JP2003294969A (en) 2002-04-03 2002-04-03 Photonic crystal fiber and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2003294969A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009192702A (en) * 2008-02-13 2009-08-27 Nippon Telegr & Teleph Corp <Ntt> Optical fiber and method of manufacturing the same
WO2019031489A1 (en) * 2017-08-09 2019-02-14 株式会社フジクラ Optical fiber base material production method, optical fiber base material, and optical fiber production method
JP2019031427A (en) * 2017-08-09 2019-02-28 株式会社フジクラ Method for manufacturing optical fiber preform, optical fiber preform and method for manufacturing optical fiber

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009192702A (en) * 2008-02-13 2009-08-27 Nippon Telegr & Teleph Corp <Ntt> Optical fiber and method of manufacturing the same
JP4616892B2 (en) * 2008-02-13 2011-01-19 日本電信電話株式会社 Optical fiber manufacturing method
WO2019031489A1 (en) * 2017-08-09 2019-02-14 株式会社フジクラ Optical fiber base material production method, optical fiber base material, and optical fiber production method
JP2019031427A (en) * 2017-08-09 2019-02-28 株式会社フジクラ Method for manufacturing optical fiber preform, optical fiber preform and method for manufacturing optical fiber
CN110709362A (en) * 2017-08-09 2020-01-17 株式会社藤仓 Method for manufacturing optical fiber preform, and method for manufacturing optical fiber
CN110709362B (en) * 2017-08-09 2022-03-15 株式会社藤仓 Method for manufacturing optical fiber preform, and method for manufacturing optical fiber
JP7068945B2 (en) 2017-08-09 2022-05-17 株式会社フジクラ Manufacturing method of optical fiber base material, manufacturing method of optical fiber base material, optical fiber
US11834365B2 (en) 2017-08-09 2023-12-05 Fujikura Ltd. Optical fiber preform production method, optical fiber preform, and optical fiber production method

Similar Documents

Publication Publication Date Title
JP2005227779A (en) Porous optical fiber and method for manufacturing the same
CN1984850A (en) Optical fiber and its preform as well as method and apparatus for fabricating them
US20060153512A1 (en) Fused array preform fabrication of holey optical fibers
WO2002039161A1 (en) Dispersion tailoring in optical fibres
KR20100015329A (en) Method of producing microchannel and nanochannel articles
JP4220261B2 (en) Photonic crystal fiber manufacturing method
KR920002481A (en) Method of manufacturing polarized optical fiber
EP0141534A2 (en) Optical fibre fabrication
KR101140458B1 (en) Optical fiber and its preform as well as method and apparatus for fabricating them
JP2003294969A (en) Photonic crystal fiber and method for manufacturing the same
JP2015178444A (en) Method of manufacturing base material for multicore fiber, and method of manufacturing multicore fiber using the same
WO2004046777A1 (en) Microstructured polymer signal guiding element
JP2005289769A (en) Method of forming preform rod for photonic crystal fiber
JP2004307250A (en) Optical fiber and method of manufacture the same
JP2004238246A (en) Production method for photonic crystal fiber and production apparatus therefor
JP2009227548A (en) Method for producing preform for photonic crystal fiber, and method for producing photonic crystal fiber
JP2004102281A (en) Photonic crystal fiber and method for manufacturing the same
JPS5992940A (en) Production of optical fiber having pore
JP6010587B2 (en) Method for manufacturing base material for multi-core fiber, and method for manufacturing multi-core fiber using the same
JP4184302B2 (en) Multi-core fiber and manufacturing method thereof
JP2020059646A5 (en)
JP4242805B2 (en) Optical fiber pore filling method and optical fiber
JP2006044950A (en) Method for producing optical fiber preform
JP2004533398A5 (en)
JP6216263B2 (en) Multi-core fiber preform, multi-core fiber using the same, multi-core fiber preform manufacturing method, and multi-core fiber manufacturing method using the same

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050607