JP2003294728A - Penetration speed estimation method of chloride ion into concrete - Google Patents

Penetration speed estimation method of chloride ion into concrete

Info

Publication number
JP2003294728A
JP2003294728A JP2002096559A JP2002096559A JP2003294728A JP 2003294728 A JP2003294728 A JP 2003294728A JP 2002096559 A JP2002096559 A JP 2002096559A JP 2002096559 A JP2002096559 A JP 2002096559A JP 2003294728 A JP2003294728 A JP 2003294728A
Authority
JP
Japan
Prior art keywords
concrete
cement
chloride ion
strength
correlation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002096559A
Other languages
Japanese (ja)
Other versions
JP4139616B2 (en
Inventor
Kazuo Yamada
一夫 山田
Yuichiro Kamimura
祐一郎 上村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2002096559A priority Critical patent/JP4139616B2/en
Publication of JP2003294728A publication Critical patent/JP2003294728A/en
Application granted granted Critical
Publication of JP4139616B2 publication Critical patent/JP4139616B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an estimation method which can estimate the penetration speed of chloride ions into a cement with high precision regardless of the kind of the cement. <P>SOLUTION: Relationships between the penetration speed of chloride ions into a cement against the content of a reactive alumina in the cement paste and the strength of concrete are obtained beforehand. A penetration speed of a chloride ion into a cement to be measured is estimated from the content of a reactive alumina in the cement paste to be measured and the strength of concrete thereof. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、コンクリートへの
塩化物イオン浸透速度予測方法に関する。 【0002】 【従来の技術】近年、コンクリートの塩化物イオン浸透
予測には、例えば土木学会コンクリート委員会の「平成
11年度版コンクリート標準示方書」に記載されているよ
うに、水セメント比を指標として塩化物イオンの拡散係
数を表す方法が多く使用されている。この方法は、実験
的に求めたコンクリートの塩化物イオンの見かけの拡散
係数と、該コンクリートの水セメント比との相関をあら
かじめ求めておき、次に、実際に塩化物イオンの拡散係
数を予想しようとするとき、そのコンクリートの水セメ
ント比を該相関に適用して拡散係数を求めるものであ
り、求められた拡散係数より浸透速度を予測する。 【0003】通常、コンクリートの見かけの拡散係数と
水セメント比の関係は、水セメント比をパラメータとし
たそれぞれ別の回帰式で表され、塩化物イオン浸透予測
を行うために使用される。 【0004】 【発明が解決しようとする課題】しかしながら、水セメ
ント比をパラメータとした回帰式による従来の予測方法
は、使用するセメント種の違いによる影響が比較的大き
いという問題点があった。すなわち、使用したセメント
種ごとに回帰式が異なることであり、汎用的に予測が行
えない点が問題であった。 【0005】本発明は、種々のセメントに対し汎用的に
塩化物イオンの浸透を予測できる方法を他の指標を用い
ることにより実現することを目的とする。 【0006】 【課題を解決するための手段】コンクリート中の塩化物
イオン浸透性に深く関与する指標として、コンクリート
の空隙量とセメントの塩化物固定能が挙げられる。コン
クリート圧縮強度は空隙量を、コンクリート中のセメン
トペーストに含有する反応性アルミナ含有量は塩化物固
定能を表現している。本発明者らは、コンクリートの圧
縮強度δ、ペースト中の反応性アルミナ含有量Alをパラ
メータとして用いることで、コンクリートの塩化物イオ
ン浸透速度を精度よく、かつ使用セメントの種類によら
ず予測する方法を見出し、本発明を完成した。 【0007】すなわち、本発明は、コンクリートへの塩
化物イオン浸透速度を予測する方法であって、塩化物イ
オン浸透速度に対する、セメントペースト中の反応性ア
ルミナ含有量及びコンクリート強度との相関をあらかじ
め求めておき、塩化物イオン浸透速度の予測の対象とな
るコンクリートにつき、使用するセメントペースト中の
反応性アルミナ含有量および該コンクリートの強度を該
相関に適用して該コンクリートの塩化物イオン浸透速度
を予測する方法である。 【0008】 【発明の実施の形態】本発明においては、塩化物イオン
の浸透速度に対するセメントペースト中の反応性アルミ
ナ含有量及び該セメントを用いたコンクリート強度との
相関をあらかじめ求めておくことを要する。ここで、反
応性アルミナ含有量とは、大きな表面積を有し、化学反
応性に富んだアルミナの含有量であり、具体的にはいわ
ゆる反応性アルミナと呼ばれるγ−族アルミナがこれに
あたる。反応性アルミナ含有量とコンクリート強度との
相関を求めるには、複数の種類のコンクリートについ
て、その塩化物イオン浸透速度を実験的に求め、それぞ
れのコンクリートの強度を求め、さらに、それぞれのコ
ンクリートに用いたセメント中の反応性アルミナ含有量
を求める。この際、異なるセメントを用いたコンクリー
トや異なる配合によるコンクリート等の広範な種類のコ
ンクリートについて、塩化物イオン浸透速度、強度およ
びセメント中の反応性アルミナ含有量のデータを取得す
ると、最終的な予測の精度が向上するので好ましい。次
に、塩化物イオン浸透速度、強度、セメントペースト中
の反応性アルミナ含有量の相関を求める。相関は、例え
ば回帰式により表現するのが好適である。 【0009】回帰式の種類は特に限定するものではない
が、例えば、回帰式としては次のような式が挙げられ
る。 ζ=k1×√{exp(k2×δ)}/(Al+k3) (1) ここで、ζは塩化物イオン浸透速度係数、δはコンクリ
ートの圧縮強度、Alはコンクリートに用いられたセメン
トペースト中の反応性アルミナ含有量、k1、k2、k3
は定数である。 【0010】ζは、塩化物イオンのコンクリート浸透深
さを実験的に求め、それを浸透時間の平方根で除するこ
とで求めることができる。または、乾湿繰り返し試験を
行って塩化物イオンのコンクリート浸透深さを求める場
合は、浸透時間の平方根の代わりに乾湿繰り返しサイク
ル数の平方根で除してもよい。一方、δは測定方法によ
らないが、例えばJIS A 1108「コンクリートの圧縮強
度試験方法」により求めることができる。さらに、Al
は、やはり測定方法によらないが、例えばJIS R5201に
より求めたセメント中のAl2O3含有量を該セメントの体
積およびコンクリートに用いた水の体積の合計で除する
ことにより求めることができる。複数の種類のコンクリ
ートについてζ、δ、Alの組み合わせを求め、それに上
記回帰式をフィッティングすることにより求められる最
適値をk1、k2、k3とする。 【0011】次に、塩化物イオン浸透速度、強度、セメ
ントペースト中の反応性アルミナ含有量の相関を利用し
て、対象となるコンクリートの塩化物イオン浸透速度を
求めることができる。例えば上記のようなζに対するδ
およびAlをパラメータとした回帰式として求めた場合
は、コンクリート中のセメントペーストのAlおよび該コ
ンクリートの強度を求め、上記回帰式に代入することに
より、対象となるコンクリートのζを精度よく予測する
ことができる。 【0012】本発明による予測方法は、コンクリートが
置かれる環境に特別の影響を受けるものではないが、特
に乾湿繰り返し条件下での塩化物イオン浸透において精
度よく適用できる。 【0013】発明による塩化物イオン浸透速度の予測方
法は、用いるセメントの種類やコンクリートの配合によ
らず適用可能である。すなわち、セメントとして普通ポ
ルトランドセメント、早強ポルトランドセメントまたは
高炉セメントを用いた場合においても好適に適用でき
る。また、コンクリートの水セメント比が変化した場
合、コンクリート材料の単位量が異なる場合においても
本発明の方法により精度よく予測可能である。 【0014】上記予測式に用いられるAlの値は、セメン
トに混合材を添加して用いた場合においても適用可能で
あり、例えば、高炉スラグ、フライアッシュ、メタカオ
リン等を混和材として用いた場合でも適用できる。この
場合、セメント、混合材を合わせたいわゆる結合材中の
反応性アルミナ含有量を結合材体積および水の体積の合
計で除した値をAlとして用いて相関を求め、また、予測
を行う。 【0015】 【実施例】国内、海外の汎用セメントなど多種のセメン
トを用いたコンクリート供試体を様々な配合で作製し、
材齢28日まで20℃の水中で養生を行った。用いたセ
メントの化学組成を表1、コンクリート配合、フレッシ
ュ性状および強度を表2に示す。これらのセメントは普
通セメント系のNPC、早強セメント系のHPC、高炉
スラグセメント系であるBB、およびその他のセメント
に大別できる。 【0016】 【表1】 【0017】 【表2】 【0018】その後、20℃の3%塩化ナトリウム水溶
液に3日間、20℃の相対湿度60%恒温室内で4日間
乾燥を1サイクルの乾湿繰り返しとし、26サイクルま
でコンクリート供試体の乾湿繰り返し塩化物浸漬試験を
行った。この試験において、各サイクルでの塩化物イオ
ン浸透深さx(mm)、コンクリート中のセメントペー
ストに含有する反応性アルミナ含有量Al(g/L)、材
齢28日におけるコンクリート供試体の圧縮強度δ(N
/mm2)を求めた。Alは次の式により求めた。 Al=(表1のAl2O3)×セメント単位量/(セメントと
水の体積の合計) 一方、δはJIS A 1108により求めた。 【0019】浸透時間tの代わりに乾湿繰り返しのサイ
クル数cycleを用いて塩化物イオン浸透速度係数ζ
を求めた。すなわち、 ζ=x/(cycle)0.5 (2) となる。各コンクリートの水セメント比W/C、ζ、δ、A
lを表3にまとめた。 【0020】 【表3】 【0021】次に、表3のデータを(1)式にフィッテ
ィングしてk1、k2およびk3を求めた。すなわち、本
実施例における回帰式として、 ζ=40.8×√{exp(−0.0492×δ)}/(Al−18.8) (3) を得た。 【0022】次に、表2の各コンクリートについて、従
来法に基づき、ζと水セメント比(W/C)との相関を回
帰して求めた。その結果、次の回帰式 ζ=0.0427×(W/C)+0.1939 (4) を得た。 【0023】次に表4の配合に基づいて各種セメントを
用い、新たにコンクリートを混練し、供試体を作成し
た。各コンクリートの供試体に対して前記と同様の方法
により塩化物浸漬試験を行い、塩化物浸透深さを測定
し、ζを同様に求めた。一方、各コンクリートに対して
Alの値を(3)式および(4)式に代入してζを予測し
た。塩化物浸漬試験に基づくζと、(3)式および
(4)式に基づくζとを比較した。その結果を表5にま
とめて示す。表5より、(3)式によるζはセメントの
種類によらず塩化物浸漬試験に基づくζとよく一致して
いたのに対し、(4)式によるζは精度が劣ることが確
認できた。 【0024】 【表4】 【0025】 【表5】【0026】 【発明の効果】本発明の方法によれば、使用セメント、
混和材の種類やコンクリートの強度に依存せず、コンク
リートの塩化物浸透速度を精度よく予想することができ
る。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for predicting a chloride ion penetration rate into concrete. 2. Description of the Related Art In recent years, for example, prediction of chloride ion permeation of concrete has been conducted by the Concrete Committee of the Japan Society of Civil Engineers.
As described in the “11th edition of Concrete Standard Specifications”, a method of expressing the diffusion coefficient of chloride ions using the water-cement ratio as an index is often used. In this method, the correlation between the apparent diffusion coefficient of chloride ion of concrete experimentally obtained and the water-cement ratio of the concrete is obtained in advance, and then the diffusion coefficient of chloride ion is actually predicted. Then, the diffusion coefficient is obtained by applying the water-cement ratio of the concrete to the correlation, and the permeation rate is predicted from the obtained diffusion coefficient. In general, the relationship between the apparent diffusion coefficient of concrete and the water-cement ratio is expressed by different regression equations using the water-cement ratio as a parameter, and is used for predicting chloride ion penetration. [0004] However, the conventional prediction method based on the regression equation using the water-cement ratio as a parameter has a problem in that the influence of the type of cement used is relatively large. In other words, the regression equation is different for each type of cement used, and there has been a problem in that prediction cannot be performed in general. [0005] It is an object of the present invention to realize a method for generally predicting chloride ion penetration into various cements by using other indices. [0006] As an index that is deeply involved in chloride ion permeability in concrete, the amount of voids in concrete and the ability of cement to fix chlorides are cited. Concrete compressive strength expresses void volume, and reactive alumina content contained in cement paste in concrete expresses chloride fixing ability. The present inventors, by using the compressive strength δ of concrete, the reactive alumina content Al in the paste as a parameter, accurately predict the chloride ion penetration rate of concrete, and regardless of the type of cement used And completed the present invention. That is, the present invention relates to a method for predicting the chloride ion penetration rate into concrete, in which the correlation between the chloride ion penetration rate and the content of reactive alumina in cement paste and concrete strength is determined in advance. In advance, for the concrete for which the chloride ion penetration rate is to be predicted, the chloride ion penetration rate of the concrete is predicted by applying the reactive alumina content in the cement paste used and the strength of the concrete to the correlation. How to [0008] In the present invention, it is necessary to determine in advance the correlation between the permeation rate of chloride ions and the content of reactive alumina in cement paste and the strength of concrete using the cement. . Here, the content of reactive alumina is a content of alumina having a large surface area and rich in chemical reactivity, and specifically, γ-group alumina called so-called reactive alumina corresponds to this. To determine the correlation between the reactive alumina content and concrete strength, the chloride ion permeation rate of multiple types of concrete is experimentally determined, the strength of each concrete is determined, and the concrete The content of reactive alumina in the cement is determined. At this time, data on chloride ion penetration rate, strength and reactive alumina content in cement will be obtained for a wide range of concrete types such as concrete using different cements and concretes with different mixes. This is preferable because the accuracy is improved. Next, the correlation between the chloride ion penetration rate, strength, and the reactive alumina content in the cement paste is determined. The correlation is preferably represented by, for example, a regression equation. Although the type of the regression equation is not particularly limited, for example, the following equation can be given as the regression equation. ζ = k 1 × √ {exp (k 2 × δ)} / (Al + k 3 ) (1) where ζ is a chloride ion permeation rate coefficient, δ is compressive strength of concrete, and Al is cement used for concrete. Reactive alumina content in paste, k 1 , k 2 , k 3
Is a constant. Ζ can be obtained by experimentally determining the depth of chloride ion penetration into concrete and dividing the depth by the square root of the penetration time. Alternatively, in the case where the depth of chloride ions permeating concrete is determined by performing a dry / wet repetition test, the depth may be divided by the square root of the number of cycles of dry / wet cycles instead of the square root of the permeation time. On the other hand, δ does not depend on the measuring method, but can be determined by, for example, JIS A 1108 “Method for testing compressive strength of concrete”. Furthermore, Al
Although it does not depend on the measurement method, it can be determined, for example, by dividing the Al 2 O 3 content in cement determined by JIS R5201 by the sum of the volume of the cement and the volume of water used in the concrete. Optimum values obtained by obtaining combinations of ζ, δ, and Al for a plurality of types of concrete and fitting the regression equation to the combinations are defined as k 1 , k 2 , and k 3 . Next, the chloride ion penetration rate of the target concrete can be determined by utilizing the correlation between the chloride ion penetration rate, strength, and the reactive alumina content in the cement paste. For example, δ for ζ as above
And when it is obtained as a regression equation with Al as a parameter, the Al of the cement paste in the concrete and the strength of the concrete are obtained and substituted into the regression equation to accurately predict ζ of the target concrete. Can be. Although the prediction method according to the present invention is not particularly affected by the environment in which concrete is placed, it can be applied particularly accurately to chloride ion permeation under dry and wet repeated conditions. The method for predicting the chloride ion permeation rate according to the present invention can be applied regardless of the type of cement used and the mix of concrete. That is, the present invention can be suitably applied to a case where ordinary Portland cement, early-strength Portland cement or blast furnace cement is used as cement. Further, even when the water-cement ratio of the concrete is changed or the unit amount of the concrete material is different, the method of the present invention can accurately predict. The value of Al used in the above-mentioned prediction formula can be applied to a case where a mixture is added to cement and used. For example, even when blast furnace slag, fly ash, metakaolin and the like are used as an admixture, Applicable. In this case, a correlation is obtained by using a value obtained by dividing the reactive alumina content in the so-called binder obtained by combining the cement and the mixture with the sum of the volume of the binder and the volume of water, and a correlation is obtained, and prediction is performed. EXAMPLES Concrete specimens using various types of cements, such as general-purpose cements in Japan and overseas, were prepared in various combinations.
Curing was performed in water at 20 ° C. until the age of 28 days. Table 1 shows the chemical composition of the cement used, and Table 2 shows the concrete composition, fresh properties and strength. These cements can be broadly divided into ordinary cement-based NPC, early-strength cement-based HPC, blast furnace slag cement-based BB, and other cements. [Table 1] [Table 2] Thereafter, drying was performed in a 3% aqueous sodium chloride solution at 20 ° C. for 3 days and in a constant temperature room at 20 ° C. and a relative humidity of 60% for 4 days. The test was performed. In this test, chloride ion penetration depth x (mm) in each cycle, reactive alumina content Al (g / L) contained in cement paste in concrete, compressive strength of concrete specimen at 28 days of age δ (N
/ Mm 2 ). Al was determined by the following equation. Al = (Al 2 O 3 in Table 1) × Cement unit amount / (Total volume of cement and water) On the other hand, δ was determined by JIS A 1108. The chloride ion permeation rate coefficient ζ is calculated by using the cycle number of repetition of dry and wet cycles instead of the permeation time t.
I asked. That is, ζ = x / (cycle) 0.5 (2) Water / cement ratio of each concrete W / C, ζ, δ, A
l are summarized in Table 3. [Table 3] Next, k 1 , k 2 and k 3 were obtained by fitting the data of Table 3 to the equation (1). That is, 回 帰 = 40.8 × に お け る {exp (−0.0492 × δ)} / (Al−18.8) (3) was obtained as the regression equation in this example. Next, for each concrete in Table 2, the correlation between ζ and the water-cement ratio (W / C) was determined by regression based on the conventional method. As a result, the following regression equation ζ = 0.0427 × (W / C) +0.1939 (4) was obtained. Next, based on the composition shown in Table 4, various kinds of cement were used, and concrete was newly kneaded to prepare test specimens. A chloride immersion test was performed on each concrete specimen in the same manner as described above, and the chloride penetration depth was measured. Meanwhile, for each concrete
The value of Al was substituted into equations (3) and (4) to predict ζ. Ζ based on chloride immersion test and ζ based on equations (3) and (4) were compared. Table 5 summarizes the results. From Table 5, it was confirmed that ζ according to equation (3) was in good agreement with ζ based on chloride immersion test regardless of the type of cement, whereas に 対 し according to equation (4) was inferior in accuracy. [Table 4] [Table 5] According to the method of the present invention, the cement used,
The chloride penetration rate of concrete can be accurately predicted without depending on the type of admixture and the strength of concrete.

Claims (1)

【特許請求の範囲】 【請求項1】 コンクリートへの塩化物イオン浸透速度
を予測する方法であって、塩化物イオン浸透速度に対す
る、セメントペースト中の反応性アルミナ含有量及び該
セメントを用いたコンクリート強度との相関をあらかじ
め求めておき、塩化物イオン浸透速度の予測の対象とな
るコンクリートにつき、使用するセメントペースト中の
反応性アルミナ含有量および該コンクリートの強度を該
相関に適用して該コンクリートの塩化物イオン浸透速度
を予測する方法。
Claims: 1. A method for predicting a chloride ion permeation rate into concrete, comprising: a reactive alumina content in a cement paste with respect to a chloride ion permeation rate; and a concrete using the cement. The correlation with the strength is determined in advance, and for the concrete for which the chloride ion penetration rate is to be predicted, the reactive alumina content in the cement paste used and the strength of the concrete are applied to the correlation to apply the correlation to the concrete. A method for predicting chloride ion penetration rates.
JP2002096559A 2002-03-29 2002-03-29 Prediction method of chloride ion penetration rate into concrete. Expired - Fee Related JP4139616B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002096559A JP4139616B2 (en) 2002-03-29 2002-03-29 Prediction method of chloride ion penetration rate into concrete.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002096559A JP4139616B2 (en) 2002-03-29 2002-03-29 Prediction method of chloride ion penetration rate into concrete.

Publications (2)

Publication Number Publication Date
JP2003294728A true JP2003294728A (en) 2003-10-15
JP4139616B2 JP4139616B2 (en) 2008-08-27

Family

ID=29239553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002096559A Expired - Fee Related JP4139616B2 (en) 2002-03-29 2002-03-29 Prediction method of chloride ion penetration rate into concrete.

Country Status (1)

Country Link
JP (1) JP4139616B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101470107B (en) * 2007-12-27 2013-02-13 河南理工大学 Concrete body and test instrument thereof and method for permeation performance with other medium bonding surface

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102297821B (en) * 2011-05-23 2013-04-17 中国水电顾问集团中南勘测设计研究院 Detection apparatus for impermeability of hardened concrete under constraint state, and method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0388750A (en) * 1989-08-31 1991-04-15 Denki Kagaku Kogyo Kk Cement admixture
JPH06317560A (en) * 1993-04-30 1994-11-15 Tokyo Electric Power Co Inc:The Estimation method of compression strength of concrete by rapid chlorine ion permeability test
JPH0826798A (en) * 1994-07-13 1996-01-30 Denki Kagaku Kogyo Kk Highly durable cement admixture
JPH1021211A (en) * 1996-06-28 1998-01-23 Taisei Corp Neural network, evaluating method and predicting method of corrosion of reinforcing bar in concrete structure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0388750A (en) * 1989-08-31 1991-04-15 Denki Kagaku Kogyo Kk Cement admixture
JPH06317560A (en) * 1993-04-30 1994-11-15 Tokyo Electric Power Co Inc:The Estimation method of compression strength of concrete by rapid chlorine ion permeability test
JPH0826798A (en) * 1994-07-13 1996-01-30 Denki Kagaku Kogyo Kk Highly durable cement admixture
JPH1021211A (en) * 1996-06-28 1998-01-23 Taisei Corp Neural network, evaluating method and predicting method of corrosion of reinforcing bar in concrete structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101470107B (en) * 2007-12-27 2013-02-13 河南理工大学 Concrete body and test instrument thereof and method for permeation performance with other medium bonding surface

Also Published As

Publication number Publication date
JP4139616B2 (en) 2008-08-27

Similar Documents

Publication Publication Date Title
Bernal et al. Accelerated carbonation testing of alkali-activated slag/metakaolin blended concretes: effect of exposure conditions
Dhir et al. Evaluation of Portland limestone cements for use in concrete construction
Colak The long-term durability performance of gypsum–Portland cement–natural pozzolan blends
Khatib et al. Influence of high-temperature and low-humidity curing on chloride penetration in blended cement concrete
US20220332647A1 (en) Concrete formulation system for repairing cultural relic building and use method thereof
Jerônimo et al. Performance of self-compacting concretes with wastes from heavy ceramic industry against corrosion by chlorides
Sadok et al. Chloride diffusion and oxygen permeability of mortars with low active blast furnace slag
Østnor et al. Durability of mortar with calcined marl as supplementary cementing material
JP2006329961A (en) Method for analyzing concentration distribution of element diffused in concrete
Bentur et al. Effect of curing and composition on the properties of the outer skin of concrete
de Oliveira Pereira et al. Influence of cement type in reinforcement corrosion of mortars under action of chlorides
JP5335222B2 (en) Method for determining type of fly ash and method for determining pozzolanic reactivity of fly ash using the same
JP2008292187A (en) Concrete degradation determination method
CN114171140A (en) Method for regulating and controlling carbonation performance of alkali-activated slag cement based on product composition design
JP2017067477A (en) Method for estimating compressive strength and/or static elastic modulus of concrete
JP4139616B2 (en) Prediction method of chloride ion penetration rate into concrete.
JP6177534B2 (en) Method for producing concrete having desired characteristics
Kulasuriya et al. Durability properties of alkali pozzolan cement (APC)
Fjellström et al. Model for concrete strength development including strength reduction at elevated temperatures
El Inaty et al. Long-Term Effects of External Sulfate Attack on Low-Carbon Cementitious Materials at Early Age
Konca The effect of pozzolans addition on cement mortars
Livesey Succeeding with hydraulic lime mortars
JP7454821B2 (en) Acid resistance evaluation method for concrete members
JP2015202978A (en) Mixed cement and production method of concrete
JP2018105766A (en) Estimation method of coefficient of expansion of expansive concrete

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080527

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080609

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130613

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130613

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140613

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees