JP2003294714A - Electromagnetic acoustic wave inspection device using cross-correlation method - Google Patents

Electromagnetic acoustic wave inspection device using cross-correlation method

Info

Publication number
JP2003294714A
JP2003294714A JP2002130996A JP2002130996A JP2003294714A JP 2003294714 A JP2003294714 A JP 2003294714A JP 2002130996 A JP2002130996 A JP 2002130996A JP 2002130996 A JP2002130996 A JP 2002130996A JP 2003294714 A JP2003294714 A JP 2003294714A
Authority
JP
Japan
Prior art keywords
wave
defect
ultrasonic wave
electromagnetic
ultrasonic probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002130996A
Other languages
Japanese (ja)
Other versions
JP3581931B2 (en
Inventor
Katsuhiro Kawashima
捷宏 川島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2002130996A priority Critical patent/JP3581931B2/en
Publication of JP2003294714A publication Critical patent/JP2003294714A/en
Application granted granted Critical
Publication of JP3581931B2 publication Critical patent/JP3581931B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electromagnetic acoustic wave inspection device using cross-correlation method for material surface inspection which can solve a problem such that an erroneous detection occurs because random noises prevent a small ultrasonic wave reflected by a surface defect from being detected due to low transmit-receive efficiency of ultrasonic wave. <P>SOLUTION: An electromagnetic acoustic wave probe for sending an ultrasonic wave and an electromagnetic ultrasonic wave probe for receiving an ultrasonic wave are located to face each other with a small clearance on the surface of an object to be inspected. The electromagnetic acoustic wave prove for receiving an ultrasonic wave receives a direct ultrasonic wave emitted from the electromagnetic acoustic wave probe for sending an ultrasonic wave and propagates in the clearance, and a defect ultrasonic wave reflected by a surface defect. After the received ultrasonic waves are amplified and digitized by an AD converter, a cross-correction function of the direct ultrasonic wave and the defect ultrasonic wave is calculated, and thereby the defect ultrasonic wave submerged with random noises can be detected. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、超音波の表面波あ
るいは板波を用いて材料の表面あるいは表面近くの内部
の欠陥を探るための検査方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an inspection method for detecting defects inside or near a surface of a material by using surface waves or plate waves of ultrasonic waves.

【0002】[0002]

【従来の技術】従来、製鉄所でつくられる厚鋼板等の材
料の表層部を検査するために超音波の表面波がよく用い
られている。例えば特開平6−331603公報には可
変角振動子を内部に備えたタイヤ探触子による表面欠陥
検査法が開示されている。しかしこの方法ではタイヤ探
触子中の可変角振動子から発せられる超音波を材料の表
面に伝えるために、タイヤ探触子を水等の媒体液を介し
て材料表面に接触させ、タイヤ探触子と材料表面との音
響的結合を確立させる必要がある。この場合に使用され
る水等の媒体液はタイヤ探触子周辺のみにとどまってい
るとは限らず、材料表面を流れて表面波の伝播路にまで
広がることがあり、表面波はこの水等の媒体液を表面欠
陥と区別できずに誤検出してしまうという問題があっ
た。
2. Description of the Related Art Conventionally, ultrasonic surface waves are often used for inspecting the surface layer of materials such as thick steel plates produced in steelworks. For example, Japanese Unexamined Patent Publication No. 6-331603 discloses a surface defect inspection method using a tire probe having a variable angle oscillator inside. However, in this method, in order to transmit the ultrasonic waves emitted from the variable angle transducer in the tire probe to the surface of the material, the tire probe is brought into contact with the material surface through a medium liquid such as water, and the tire probe is It is necessary to establish an acoustic coupling between the child and the material surface. The liquid medium such as water used in this case does not always stay only around the tire probe, but may flow on the material surface and spread to the propagation path of the surface wave. However, there is a problem that the medium liquid of (3) cannot be distinguished from the surface defect and is erroneously detected.

【0003】また、薄鋼板等の材料の表層部を検査する
ために超音波の板波がよく用いられているがこれに用い
るタイヤ探触子に関しても同じ問題があった。
In addition, ultrasonic plate waves are often used for inspecting the surface layer portion of materials such as thin steel plates, but the tire probe used therefor has the same problem.

【0004】このような問題点を解決する方法として水
等の媒体液を使用する必要がなく材料に非接触で超音波
を発受信できる電磁超音波法(EMAT)が発明され、
特開平7−77465公報や「超音波ハンドブック」
(出版社:丸善、刊行年月:平成11年8月)の第3章
第4節に開示されている。しかしながら電磁超音波法は
原理的に電気・音響エネルギー変換効率が低いために超
音波を発受信する効率が悪く、これを補うために小さな
超音波信号を増幅するための増幅率の大きな増幅器を使
用する必要がある。増幅率の大きな増幅器は微小なラン
ダムノイズも同時に増幅してしまうため、目的とする表
面欠陥あるいは表面近くの内部欠陥から反射されてきた
小さな超音波信号はランダムノイズに埋もれてしまう傾
向があり誤検出の最大の原因となっていた。
As a method for solving such a problem, an electromagnetic ultrasonic method (EMAT) has been invented, which does not need to use a medium liquid such as water and can emit and receive ultrasonic waves in a non-contact manner with a material,
JP-A-7-77465 and "Ultrasonic Handbook"
(Publisher: Maruzen, Publication date: August 1999), Chapter 3, Section 4. However, the electromagnetic ultrasonic method is inferior in efficiency of transmitting and receiving ultrasonic waves because of its low electric-acoustic energy conversion efficiency in principle, and to compensate for this, an amplifier with a large amplification factor is used to amplify a small ultrasonic signal. There is a need to. An amplifier with a large amplification factor also amplifies a small amount of random noise at the same time, so small ultrasonic signals reflected from the target surface defect or internal defects near the surface tend to be buried in random noise, resulting in false detection. Was the biggest cause of

【0005】[0005]

【発明が解決しようとする課題】本発明は、このような
実情に鑑みてなされたもので、表面欠陥あるいは表面近
くの内部欠陥から反射されてきたランダムノイズに埋も
れた小さな超音波信号を抽出することのできる電磁超音
波検査方法を提供することを課題とする。
SUMMARY OF THE INVENTION The present invention has been made in view of such circumstances, and extracts a small ultrasonic signal buried in random noise reflected from a surface defect or an internal defect near the surface. An object of the present invention is to provide an electromagnetic ultrasonic inspection method capable of performing the above.

【0006】[0006]

【問題を解決する手段】表面波による検査に関する前記
課題を解決する手段は、表面波発信用の電磁超音波探触
子と表面波受信用の電磁超音波探触子とを被検査材料の
表面に短距離を隔てて設け、該表面波発信用の電磁超音
波探触子により発信され該短距離を伝播してきた直達表
面波と表面欠陥あるいは表面近くの内部欠陥から反射さ
れてきた欠陥表面波の両方を該表面波受信用の電磁超音
波探触子により受信し、増幅し、AD変換器によりディ
ジタル化した後に該直達表面波と該欠陥表面波との相互
相関関数を算出することによりランダムノイズに埋もれ
た欠陥表面波を抽出するものである。
[Means for Solving the Problems] Means for solving the above-mentioned problems relating to inspection by surface waves include: an electromagnetic ultrasonic probe for transmitting surface waves and an electromagnetic ultrasonic probe for receiving surface waves; A direct surface wave transmitted by the electromagnetic ultrasonic probe for transmitting the surface wave and propagating the short distance and a surface wave that is reflected from a surface defect or an internal defect near the surface. Random by calculating the cross-correlation function between the direct surface wave and the defective surface wave after receiving both of them by the electromagnetic ultrasonic probe for receiving the surface wave, amplifying them, and digitizing them by the AD converter. This is to extract a defect surface wave buried in noise.

【0007】板波による探傷に関する前記課題を解決す
る手段は、板波発信用の電磁超音波探触子と板波受信用
の電磁超音波探触子とを被検査材料の表面に短距離を隔
てて設け、該板波発信用の電磁超音波探触子により発信
され該短距離を伝播してきた直達板波と表面欠陥あるい
は表面近くの内部欠陥から反射されてきた欠陥板波の両
方を板波受信用の電磁超音波探触子により受信し、増幅
し、AD変換器によりディジタル化した後に該直達板波
と該欠陥板波との相互相関関数を算出することによりラ
ンダムノイズに埋もれた欠陥板波を抽出するものであ
る。
A means for solving the above-mentioned problems relating to flaw detection by plate waves is to provide an electromagnetic ultrasonic probe for transmitting a plate wave and an electromagnetic ultrasonic probe for receiving a plate wave on the surface of the material to be inspected over a short distance. Plates both a direct plate wave transmitted separately from the plate-wave transmitting electromagnetic ultrasonic probe and propagating the short distance and a defective plate wave reflected from a surface defect or an internal defect near the surface. A defect buried in random noise by calculating a cross-correlation function between the direct plate wave and the defective plate wave after being received by an electromagnetic ultrasonic probe for wave reception, amplified, and digitized by an AD converter. It is to extract plate waves.

【0008】[0008]

【発明の実施の形態】発明の実施の形態を実施例にもと
づき図面を参照して説明する。図1は発明の実施の1例
である電磁超音波検査装置の概要を示す概要図である。
図1において、1は被検査体である厚鋼板、2は表面欠
陥、3はパルス送信器、4は表面波発信用の電磁超音波
探触子、5は表面波発信用の電磁超音波探触子4から短
い距離(8cm)に設けられた表面波受信用の電磁超音
波探触子、6は増幅器、7はAD変換器、8はデータ蓄
積器、9は演算器、10は出力装置である。データ蓄積
器8はコンピューターのICメモリで構成されるが、I
Cメモリのかわりにコンピューターのハードディスクで
もよい。11の波形矢印は表面波発信用の電磁超音波探
触子4により発信された表面波が鋼材表面を伝播し、表
面欠陥2に反射されてもどっていく様子を表している。
図2(a)は表面波発信用の電磁超音波探触子4の下面
図、図2(b)は表面波発信用の電磁超音波探触子4と
被検体である厚鋼板1との関係を示した図である。図3
(a)は表面波受信用の電磁超音波探触子5の下面図、
図3(b)は表面波受信用の電磁超音波探触子5と被検
体である厚鋼板1との関係を示した図である。12、1
4は永久磁石、13、15は往復する繰り返し線路を有
するコイルである。図2、図3では永久磁石を使用して
いるが電磁石を使用してもよい。図2、図3からわかる
ように表面波発信用の電磁超音波探触子4と表面波受信
用の電磁超音波探触子5とは全く同じ構造を有してい
る。このような構造の電磁超音波探触子が表面波を発信
し、また受信できることは特開平7−77465公報の
図9、図10に開示されているように一般によく知られ
ているが以下に簡単にその原理を説明する。図2の表面
波発信用の電磁超音波探触子4のコイル13にパルス送
信器3より送信電流を流すと電磁誘導により厚鋼板1の
表面に渦電流が流れる。この渦電流と永久磁石12によ
り発している磁界との間のローレンツ力や厚鋼板1の持
つ磁歪効果によって表面波が発信される。図3の表面波
受信用の電磁超音波探触子の直下を表面波が通過すると
発信とは全く逆の物理的過程によりコイル15に電気信
号を発生し表面波が受信されることなる。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described based on examples with reference to the drawings. FIG. 1 is a schematic diagram showing an outline of an electromagnetic ultrasonic inspection apparatus according to an embodiment of the invention.
In FIG. 1, 1 is a steel plate to be inspected, 2 is a surface defect, 3 is a pulse transmitter, 4 is an electromagnetic ultrasonic probe for transmitting surface waves, and 5 is an electromagnetic ultrasonic probe for transmitting surface waves. An electromagnetic ultrasonic probe for receiving surface waves, which is provided at a short distance (8 cm) from the probe 4, 6 is an amplifier, 7 is an AD converter, 8 is a data accumulator, 9 is a calculator, and 10 is an output device. Is. The data storage 8 is composed of an IC memory of a computer.
A hard disk of a computer may be used instead of the C memory. The waveform arrow 11 indicates how the surface wave transmitted by the electromagnetic ultrasonic probe 4 for surface wave propagation propagates on the surface of the steel material and returns even after being reflected by the surface defect 2.
2 (a) is a bottom view of the electromagnetic ultrasonic probe 4 for transmitting surface waves, and FIG. 2 (b) shows the electromagnetic ultrasonic probe 4 for transmitting surface waves and the thick steel plate 1 which is the subject. It is the figure which showed the relationship. Figure 3
(A) is a bottom view of an electromagnetic ultrasonic probe 5 for receiving surface waves,
FIG. 3B is a diagram showing the relationship between the electromagnetic ultrasonic probe 5 for receiving surface waves and the thick steel plate 1 which is the subject. 12, 1
Reference numeral 4 is a permanent magnet, and 13 and 15 are coils having reciprocating repetitive lines. Although a permanent magnet is used in FIGS. 2 and 3, an electromagnet may be used. As can be seen from FIGS. 2 and 3, the surface acoustic wave transmitting electromagnetic ultrasonic probe 4 and the surface wave receiving electromagnetic ultrasonic probe 5 have exactly the same structure. It is generally well known that the electromagnetic ultrasonic probe having such a structure can transmit and receive surface waves, as disclosed in FIGS. 9 and 10 of JP-A-7-77465. The principle will be briefly described. When a transmission current is applied from the pulse transmitter 3 to the coil 13 of the electromagnetic ultrasonic probe 4 for transmitting surface waves in FIG. 2, an eddy current flows on the surface of the thick steel plate 1 due to electromagnetic induction. A surface wave is transmitted by the Lorentz force between the eddy current and the magnetic field generated by the permanent magnet 12 and the magnetostrictive effect of the thick steel plate 1. When the surface wave passes directly below the electromagnetic ultrasonic probe for receiving the surface wave in FIG. 3, an electric signal is generated in the coil 15 by a physical process completely opposite to the transmission, and the surface wave is received.

【0009】実施の他の例としては図2、図3に示す電
磁超音波探触子のかわりに、「超音波便覧」(出版社:
丸善、刊行年月:平成11年8月)の第3章第4節図
3.9.1 に開示されている材料表面に平行な磁界成
分を有するマグネットを使用したタイプのLamb波用
の電磁超音波探触子と同じ構造のものを用いても表面波
を発受信できるのでこれを使用してもよいし、特開20
00−187022公報の図1に開示されている表面に
SH波を発受信するタイプの電磁超音波探触子を使用し
てもよい。
As another example of the implementation, instead of the electromagnetic ultrasonic probe shown in FIGS. 2 and 3, "Ultrasonic Handbook" (publisher:
Maruzen, Publication date: August 1999) Chapter 3 Section 4 Disclosed in Fig. 3.9.1 Electromagnetic for Lamb wave of the type using a magnet having a magnetic field component parallel to the material surface Even if an ultrasonic probe having the same structure as that of the ultrasonic probe is used, the surface wave can be emitted and received, so that this may be used.
An electromagnetic ultrasonic probe of the type that emits and receives SH waves on the surface disclosed in FIG. 1 of the publication 00-187022 may be used.

【0010】パルス送信器3は周波数が1MHz、波数
が10、繰り返し周波数が400Hzであるバースト波
電流を表面波発信用の電磁超音波探触子4に送信する。
すると上に述べた原理により厚鋼板1の表面に表面波が
発信される。この表面波は図1において、まず右方へ伝
播して表面波発信用の電磁超音波探触子4より8cmの
距離に設けられた表面波受信用の電磁超音波探触子5に
より直達表面波として受信され、さらに右方へ伝播して
表面波発信用の電磁超音波探触子4より28cmの距離
にある表面欠陥2により反射されて左方へ伝播し表面波
受信用の電磁超音波探触子5により欠陥表面波として受
信される。増幅器6は直達表面波、欠陥表面波を増幅す
る。
The pulse transmitter 3 transmits a burst wave current having a frequency of 1 MHz, a wave number of 10 and a repetition frequency of 400 Hz to the electromagnetic ultrasonic probe 4 for transmitting a surface wave.
Then, a surface wave is transmitted to the surface of the thick steel plate 1 according to the principle described above. In FIG. 1, the surface wave first propagates to the right and is directly reached by the surface acoustic wave receiving electromagnetic ultrasonic probe 5 provided at a distance of 8 cm from the surface acoustic wave transmitting electromagnetic ultrasonic probe 4. Electromagnetic wave for receiving surface waves, which is received as a wave, propagates further to the right, is reflected by a surface defect 2 at a distance of 28 cm from the surface-transmitting electromagnetic ultrasonic probe 4, and propagates to the left. The probe 5 receives the defect surface wave. The amplifier 6 amplifies the direct surface wave and the defective surface wave.

【0011】図4には表面欠陥2が十分大きい(長さ
3.5cm、深さ1mm)場合に、こうして増幅された
ままの、即ち相互相関関数を算出していない従来の方法
による表面波信号の例を示している。横軸は時間、縦軸
は表面波信号の大きさである。図4において16は超音
波発信のためのバースト波電流によって空間を隔てた電
磁的誘導により発生した電気信号である。17は直達表
面波、18は欠陥表面波、19はランダムノイズであ
る。この場合は表面欠陥2が十分大きい(長さ3.5c
m、深さ1mm)ので欠陥表面波18も大きく、図4に
示すように明瞭に受信されるため問題はない。
In FIG. 4, when the surface defect 2 is sufficiently large (length: 3.5 cm, depth: 1 mm), the surface wave signal that has been amplified in this way, that is, the cross-correlation function is not calculated, is obtained. Shows an example of. The horizontal axis represents time, and the vertical axis represents the magnitude of the surface wave signal. In FIG. 4, reference numeral 16 is an electric signal generated by electromagnetic induction with a space separated by a burst wave current for ultrasonic wave transmission. Reference numeral 17 is a direct surface wave, 18 is a defect surface wave, and 19 is random noise. In this case, the surface defect 2 is sufficiently large (length 3.5c
m, depth 1 mm), the defect surface wave 18 is also large, and there is no problem because it is received clearly as shown in FIG.

【0012】図5には表面欠陥2が小さい(長さ1.5
cm、深さ0.3mm)場合に、増幅されたままの、即
ち相互相関関数を算出していない従来の方法による表面
波信号の例を示している。図5において16は超音波発
信のためのバースト波電流によって空間を隔てた電磁的
誘導により発生した電気信号である。17は直達表面
波、19はランダムノイズである。この場合には直達表
面波17は明瞭に検出されているが欠陥表面波はランダ
ムノイズ19に埋もれてしまい識別することが不可能で
あることがわかる。すなわち図5によれば表面欠陥2が
小さい(長さ1.5cm、深さ0.3mm)場合は受信
された欠陥表面波も小さいためにランダムノイズに埋も
れてしまい、欠陥表面波として識別することは不可能と
なることがわかる。
In FIG. 5, the surface defect 2 is small (length 1.5).
(cm, depth 0.3 mm) shows an example of a surface wave signal that has been amplified, that is, a conventional method in which a cross-correlation function is not calculated. In FIG. 5, reference numeral 16 is an electric signal generated by electromagnetic induction with a space separated by a burst wave current for ultrasonic wave transmission. Reference numeral 17 is a direct surface wave, and 19 is random noise. In this case, the direct surface wave 17 is clearly detected, but the defect surface wave is buried in the random noise 19 and cannot be identified. That is, according to FIG. 5, when the surface defect 2 is small (length: 1.5 cm, depth: 0.3 mm), the received defect surface wave is also small and therefore buried in random noise, and is identified as a defect surface wave. Turns out to be impossible.

【0013】本発明の発明者は、まず直達表面波17と
表面欠陥から反射された欠陥表面波18を拡大して詳し
く調査した結果、両者は大きさは異なるが形は非常に似
ていることを見出した。さらにこのことを利用し、直達
表面波とランダムノイズに埋もれた欠陥表面波との相互
相関関数を算出することにより欠陥表面波を明瞭に抽出
されることを見出したわけである。すなわち図1におい
て増幅器6により増幅された超音波信号をAD変換器7
によりディジタル化しこれをデータ蓄積器8に蓄積す
る。演算器8は蓄積されたデータから直達表面波と欠陥
表面波との相互相関関数を次の式により算出する。 ここでA(i×Δt)は、直達表面波がΔtの時間間隔
でディジタル化されてできたi番目のディジタル値を、
B((i−j)×Δt)は欠陥表面波がΔtの時間間隔
でディジタル化されてできた(i−j)番目のディジタ
ル値を表す。C(j×Δt)は算出された相互相関関数
のj番目のディジタル値である。こうして算出された相
互相関関数を図6に示す。図6において20は相互相関
関数を算出した結果小さくなったランダムノイズであ
り、21は相互相関関数を算出した結果明瞭に現れた欠
陥表面波である。こうして、図5ではランダムノイズに
埋もれ識別することのできなかった欠陥表面波が、相互
相関関数を算出することにより図6に示すように欠陥表
面波21が明瞭に識別できるようになったことがわか
る。
The inventor of the present invention first magnified and investigated the direct surface wave 17 and the defect surface wave 18 reflected from the surface defect, and as a result, they are different in size but very similar in shape. Found. Furthermore, by utilizing this fact, it was found that the defect surface wave can be clearly extracted by calculating the cross-correlation function between the direct surface wave and the defect surface wave buried in random noise. That is, the ultrasonic signal amplified by the amplifier 6 in FIG.
It is digitized by and is stored in the data storage device 8. The calculator 8 calculates the cross-correlation function between the direct surface wave and the defect surface wave from the accumulated data by the following formula. Here, A (i × Δt) is the i-th digital value obtained by digitizing the direct surface wave at Δt time intervals,
B ((i−j) × Δt) represents the (i−j) th digital value obtained by digitizing the defect surface wave at Δt time intervals. C (j × Δt) is the j-th digital value of the calculated cross-correlation function. The cross-correlation function calculated in this way is shown in FIG. In FIG. 6, reference numeral 20 is random noise that is reduced as a result of calculating the cross-correlation function, and 21 is a defect surface wave that clearly appears as a result of calculating the cross-correlation function. In this way, the defect surface wave which was buried in the random noise and could not be identified in FIG. 5 became able to clearly identify the defect surface wave 21 as shown in FIG. 6 by calculating the cross-correlation function. Recognize.

【0014】演算器8の演算速度が十分大きい場合に
は、繰り返し発信されるバースト波電流の合間に演算を
完了できるので、その場合にはデータ蓄積器8を必要と
しない。また繰り返して受信される超音波信号の1回毎
に相互相関関数を算出するかわりに、繰り返して受信さ
れる超音波信号の複数回の加算平均を算出して信号対雑
音比を改善してから相互相関関数を算出すれば所要時間
は長くはなるがさらに効果が大きくなることは言うまで
もない。 対象となる欠陥は表面欠陥とは限らず表面近
くの内部欠陥でもこの方法は適用できる。被検査材料は
厚鋼板とは限らずアルミニウム合金、銅等の導電性材料
ならどのような材料の検査にも適用できる。 また表面
波用の電磁超音波探触子と同じ構造を有する板波(La
mb波およびSH板波)用の電磁超音波探触子による板
状の導電性材料の板波(Lamb波およびSH板波)に
よる検査にもこの方法は適用できる。
When the operation speed of the operation unit 8 is sufficiently high, the operation can be completed between the burst wave currents repeatedly transmitted, and in that case, the data storage unit 8 is not required. In addition, instead of calculating the cross-correlation function for each ultrasonic wave signal that is repeatedly received, the arithmetic mean of multiple ultrasonic wave signals that are repeatedly received is calculated to improve the signal-to-noise ratio. Needless to say, if the cross-correlation function is calculated, the time required will be longer, but the effect will be even greater. The target defects are not limited to surface defects, and this method can be applied to internal defects near the surface. The material to be inspected is not limited to the thick steel plate, but can be applied to the inspection of any material as long as it is a conductive material such as aluminum alloy or copper. In addition, a plate wave (La having the same structure as the electromagnetic ultrasonic probe for surface waves)
This method can also be applied to the inspection of a plate-shaped conductive material with a plate wave (Lamb wave and SH plate wave) using an electromagnetic ultrasonic probe for mb wave and SH plate wave.

【0015】[0015]

【発明の効果】相互相関関数を算出することにより、表
面欠陥あるいは表面近くの内部欠陥から反射されてきた
ランダムノイズに埋もれた小さな欠陥表面波信号あるい
は欠陥板波信号を抽出することのできる電磁超音波検査
方法を実現することができ、その結果欠陥の誤検出が皆
無となり信頼性も飛躍的に向上する。従前の超音波検査
のように接触媒質を使用する必要もなく、その結果検査
コストの大幅な削減が可能となる。本発明はこのように
優れた実用的効果を有するものである。
By calculating the cross-correlation function, it is possible to extract a small defect surface wave signal or defect plate wave signal buried in random noise reflected from a surface defect or an internal defect near the surface. A sound wave inspection method can be realized, and as a result, false detection of defects is eliminated, and reliability is dramatically improved. It is not necessary to use a couplant as in the conventional ultrasonic inspection, and as a result, inspection costs can be significantly reduced. The present invention thus has excellent practical effects.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の相互相関法を用いた電磁超音波検査方
法を説明するための電磁超音波検査装置の概要図であ
る。
FIG. 1 is a schematic diagram of an electromagnetic ultrasonic inspection apparatus for explaining an electromagnetic ultrasonic inspection method using a cross-correlation method of the present invention.

【図2】表面波発信用の電磁超音波探触子を説明するた
めの図である。
FIG. 2 is a diagram for explaining an electromagnetic ultrasonic probe for transmitting surface waves.

【図3】表面波受信用の電磁超音波探触子を説明するた
めの図である。
FIG. 3 is a diagram for explaining an electromagnetic ultrasonic probe for receiving surface waves.

【図4】従来の方法で大きな表面欠陥を有する厚鋼板を
検査した結果を表す図である。
FIG. 4 is a diagram showing a result of inspecting a thick steel plate having a large surface defect by a conventional method.

【図5】従来の方法で小さな表面欠陥を有する厚鋼板を
検査した結果を表す図である。
FIG. 5 is a diagram showing a result of inspecting a thick steel plate having a small surface defect by a conventional method.

【図6】本発明の相互相関法を用いた電磁超音波検査方
法で小さな表面欠陥を有する厚鋼板を検査した結果を表
す図である。
FIG. 6 is a diagram showing a result of inspecting a thick steel plate having small surface defects by an electromagnetic ultrasonic inspection method using the cross-correlation method of the present invention.

【符号の説明】[Explanation of symbols]

1 厚鋼板 2 表面欠陥 3 パルス送信器 4 表面波発信用の電磁超音波探触子 5 表面波受信用の電磁超音波探触子 6 増幅器 7 AD変換器 8 データ蓄積器 9 演算器 10 出力装置 11 表面波伝播の経路 12 永久磁石 13 コイル 14 永久磁石 15 コイル 16 空間を隔てた電磁的誘導による電気信号 17 直達表面波 18 欠陥表面波 19 ランダムノイズ 20 相互相関関数を算出した結果小さくなったランダ
ムノイズ 21 相互相関関数を算出した結果明瞭に現れた欠陥表
面波
1 Thick Steel Plate 2 Surface Defect 3 Pulse Transmitter 4 Electromagnetic Ultrasonic Probe 5 for Surface Wave Transmission 5 Electromagnetic Ultrasonic Probe for Surface Wave Reception 6 Amplifier 7 AD Converter 8 Data Accumulator 9 Computing Unit 10 Output Device 11 Surface Wave Propagation Path 12 Permanent Magnet 13 Coil 14 Permanent Magnet 15 Coil 16 Electric Signal Due to Electromagnetic Induction Across Space 17 Direct Surface Wave 18 Defect Surface Wave 19 Random Noise 20 Result of Calculation of Cross-Correlation Function Noise 21 Defect surface waves that clearly appeared as a result of calculating the cross-correlation function

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】表面波発信用の電磁超音波探触子と表面波
受信用の電磁超音波探触子とを被検査材料の表面に短距
離を隔てて設け、該表面波発信用の電磁超音波探触子に
より発信され該短距離を伝播してきた直達表面波と表面
欠陥あるいは表面近くの内部欠陥から反射されてきた欠
陥表面波の両方を該表面波受信用の電磁超音波探触子に
より受信し、増幅し、AD変換器によりディジタル化し
た後に該直達表面波と該欠陥表面波との相互相関関数を
算出することによりランダムノイズに埋もれた欠陥表面
波を抽出することを特徴とする電磁超音波検査方法
1. An electromagnetic ultrasonic probe for transmitting a surface wave and an electromagnetic ultrasonic probe for receiving a surface wave are provided on the surface of a material to be inspected at a short distance, and the electromagnetic wave for transmitting the surface wave is provided. An electromagnetic ultrasonic probe for receiving both the direct surface wave transmitted by the ultrasonic probe and propagating in the short distance and the defect surface wave reflected from a surface defect or an internal defect near the surface. It is characterized by extracting a defect surface wave buried in random noise by calculating a cross-correlation function between the direct surface wave and the defect surface wave after being received by, amplified by, and digitized by an AD converter. Electromagnetic ultrasonic inspection method
【請求項2】板波発信用の電磁超音波探触子と板波受信
用の電磁超音波探触子とを被検査材料の表面に短距離を
隔てて設け、該板波発信用の電磁超音波探触子により発
信され該短距離を伝播してきた直達板波と表面欠陥ある
いは表面近くの内部欠陥から反射されてきた欠陥板波の
両方を板波受信用の電磁超音波探触子により受信し、増
幅し、AD変換器によりディジタル化した後に該直達板
波と該欠陥板波との相互相関関数を算出することにより
ランダムノイズに埋もれた欠陥板波を抽出することを特
徴とする電磁超音波検査方法
2. An electromagnetic ultrasonic probe for transmitting a plate wave and an electromagnetic ultrasonic probe for receiving a plate wave are provided on a surface of a material to be inspected at a short distance, and the electromagnetic wave for transmitting the plate wave is provided. Both the direct plate wave transmitted by the ultrasonic probe and propagating the short distance and the defective plate wave reflected from the surface defect or the internal defect near the surface are detected by the electromagnetic ultrasonic probe for receiving the plate wave. An electromagnetic wave characterized by extracting a defective plate wave buried in random noise by calculating a cross-correlation function between the direct plate wave and the defective plate wave after receiving, amplifying and digitizing by an AD converter. Ultrasonic inspection method
JP2002130996A 2002-03-28 2002-03-28 Electromagnetic ultrasonic inspection method using cross-correlation method Expired - Fee Related JP3581931B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002130996A JP3581931B2 (en) 2002-03-28 2002-03-28 Electromagnetic ultrasonic inspection method using cross-correlation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002130996A JP3581931B2 (en) 2002-03-28 2002-03-28 Electromagnetic ultrasonic inspection method using cross-correlation method

Publications (2)

Publication Number Publication Date
JP2003294714A true JP2003294714A (en) 2003-10-15
JP3581931B2 JP3581931B2 (en) 2004-10-27

Family

ID=29244005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002130996A Expired - Fee Related JP3581931B2 (en) 2002-03-28 2002-03-28 Electromagnetic ultrasonic inspection method using cross-correlation method

Country Status (1)

Country Link
JP (1) JP3581931B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103134856A (en) * 2013-02-19 2013-06-05 重庆镪镔实业有限公司 Electromagnetic ultrasonic detecting device and method for surface defects of cold rolled ribbed steel bar
CN104007179A (en) * 2014-05-12 2014-08-27 北京化工大学 Determination apparatus for surface internal stress of polymer plane thin-plate product and implementation method thereof
JP2016027321A (en) * 2014-07-03 2016-02-18 Jfeエンジニアリング株式会社 Ultrasonic inspection method and probe installation fixture
JP2016191573A (en) * 2015-03-31 2016-11-10 Jfeスチール株式会社 Ultrasonic flaw detection device, ultrasonic flaw detection method, and method of manufacturing steel

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106363030B (en) * 2016-08-22 2018-08-03 重庆伟铭金属有限公司 PC reinforcing bars electric induction driving frequency control device and method based on impedance measurement

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103134856A (en) * 2013-02-19 2013-06-05 重庆镪镔实业有限公司 Electromagnetic ultrasonic detecting device and method for surface defects of cold rolled ribbed steel bar
CN104007179A (en) * 2014-05-12 2014-08-27 北京化工大学 Determination apparatus for surface internal stress of polymer plane thin-plate product and implementation method thereof
JP2016027321A (en) * 2014-07-03 2016-02-18 Jfeエンジニアリング株式会社 Ultrasonic inspection method and probe installation fixture
JP2016191573A (en) * 2015-03-31 2016-11-10 Jfeスチール株式会社 Ultrasonic flaw detection device, ultrasonic flaw detection method, and method of manufacturing steel

Also Published As

Publication number Publication date
JP3581931B2 (en) 2004-10-27

Similar Documents

Publication Publication Date Title
US4307616A (en) Signal processing technique for ultrasonic inspection
US20180031525A1 (en) Shear wave sensors for acoustic emission and hybrid guided wave testing
US4691572A (en) Transducing device for contactless ultrasonic inspection of pipelines or tubings
CN102661995B (en) Electromagnetic acoustic and magnetic leakage compounded detection method
US7426867B2 (en) Electromagnetic acoustic transducers for use in ultrasound inspection systems
US7546770B2 (en) Electromagnetic acoustic transducer
US20050072237A1 (en) Pipeline inspection pigs
CN103969341A (en) Ultrasonic testing special probe for butt girth welding of austenitic stainless steel pipe
CN108956762A (en) The effective flexible electromagnetic ultrasonic guide wave sensor of one kind and detection method
US20160299106A1 (en) Systems and methods for using flexural modes in non-destructive testing and inspection
CN110603442A (en) Electromagnetic acoustic transducer (EMAT) for corrosion mapping
JP3581931B2 (en) Electromagnetic ultrasonic inspection method using cross-correlation method
US20220099629A1 (en) Method and device for non-destructive testing of a plate material
CN107991393A (en) A kind of double frequency electromagnetic acoustic detecting system
JP2006242770A (en) Electromagnetic ultrasonic flaw detection/measurement method and device
JP2005017089A (en) Method and device for inspecting tank
RU2153163C1 (en) Method of intratube ultrasonic diagnostics of condition of pipe-line
JP2007309794A (en) Apparatus and method for measuring plate thickness
JP2006250595A (en) Ultrasonic measuring method and device
JP2009276184A (en) Electromagnetic ultrasonic sensor
Aanes et al. Inline-inspection crack detection for gas pipelines using a novel technology
Van den Berg et al. Development of an electromagnetic acoustic transducer for inspecting the wall thickness of offshore risers from the inside
JP2002277447A (en) Ultrasonic flaw detection method and apparatus
JP2006275945A (en) Ultrasonic flaw detector
Edwards et al. Detection of corrosion in offshore risers using guided ultrasonic waves

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20040629

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040712

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080806

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090806

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20100806

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20110806

LAPS Cancellation because of no payment of annual fees