JP2003294626A - Method for analyzing tissue construction of multi- components dispersion food - Google Patents
Method for analyzing tissue construction of multi- components dispersion foodInfo
- Publication number
- JP2003294626A JP2003294626A JP2002094950A JP2002094950A JP2003294626A JP 2003294626 A JP2003294626 A JP 2003294626A JP 2002094950 A JP2002094950 A JP 2002094950A JP 2002094950 A JP2002094950 A JP 2002094950A JP 2003294626 A JP2003294626 A JP 2003294626A
- Authority
- JP
- Japan
- Prior art keywords
- observation
- food
- fluorescent dye
- component
- filter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
Abstract
Description
【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、澱粉、蛋白質およ
び脂質の少なくとも一種の成分を含有する多成分分散系
食品の組織構造を立体的に解析する方法に関する。
【0002】
【従来の技術】澱粉、蛋白質および脂質は食品の三大栄
養素といわれている。パン類、麺類、米飯、菓子類、天
ぷらなどの二次加工食品は小麦粉、米を主原料としてお
り、これらに含まれる三大栄養素成分が食品中にどのよ
うな形態で存在しているかによって味覚、食感が大きく
変わるものと考えられている。従来これらの味覚、食感
の評価はもっぱら官能検査によって行われていたが、近
年機器類を用いて食品の組織構造を解明し、その組織構
造から食感等を判別することが試みられている。しかし
ながら、これらの機器類によって組織構造を観察しても
各構成成分の境界部が不鮮明であったり、得られる画像
が平面的であるため満足し得る評価が行えないのが現状
である。
【0003】例えば電子顕微鏡による場合は、標本に電
子を飛ばして反射してきた電子を検出して標本の形を観
察したり(走査型電子顕微鏡)あるいは標本を透過した
電子と未透過の電子の差を検出して標本の形を観察した
り(透過型電子顕微鏡)するが、これらの方法はいずれ
も非常に高い分解能で標本を観察することができる反
面、染色ができないため特定成分の判別が困難であり、
その境界部分の構造解析をすることができない。光学顕
微鏡による場合は、標本の特定成分の染色を行い観察す
るが、やはり境界部分が不鮮明であり、さらに多重染色
によりある程度の色分けはできるが、染色による特異性
が小さく、かつ染色剤のオーバーラップによって組織構
造の判別が実質的にできなかった。レーザー共焦点顕微
鏡は、レーザー光を採用することで、直進性に優れた強
い光を一点に集中させることができる。そのレーザー光
を利用し、合焦点のみの像を表示でき、また、焦点深度
の深い断面像が得られるため、コントラストの高い画像
が得られる。その反面、染色ができないため得られた画
像から特定成分の判別が難しく、その境界部分の構造解
析をすることは困難である。
【0004】
【発明が解決しようとする課題】本発明者等は、澱粉、
蛋白質および脂質を含有する多成分分散系食品の複雑な
組織構造を鮮明に判別することが可能な画像解析方法に
ついて種々研究を重ねた結果本発明を完成するに至っ
た。
【0005】
【課題を解決するための手段】すなわち、本発明は、澱
粉、蛋白質および脂質の少なくとも一種の成分を含有す
る食品を蛍光性の蛋白質染色色素、蛍光性の脂質染色色
素、蛍光性の澱粉染色色素、または蛍光性の非特性色素
の中から少なくとも一種類以上の染色剤で染色した後、
少なくとも一種類の蛍光色素の最大吸収波長の−40nm
より低波長領域のそれぞれ異なる少なくとも2つの波長
で観察し、取得した少なくとも2つ以上の画像を合成す
る多成分分散系食品の組織構造を解析する方法である。
【0006】
【発明の実施の形態】次に本発明方法について説明す
る。澱粉、蛋白質および脂質の少なくとも一種の成分を
含有する食品(以下多成分分散系食品という)の組織標
本を作成する。この組織標本の作成方法としては凍結固
定法、浸漬固定法、マイクロウェーブ処理固定法等が採
用できる。
【0007】次に凍結固定法について説明する。多成分
分散系食品をミクロトームの冷却ステージ上に凍結固定
する。次いで凍結固定した試料を一定の厚みに切り出
す。切り出した切片をプレパラート上に載せてヒーター
で乾燥固定させ固定化する。別に蛍光色素溶液を調製
し、この蛍光色素溶液と試料切片を一定時間(例えば1
〜30分間、長い場合で1〜3時間)反応させた後乾燥
する。乾燥した試料切片を軟質のカナダバルサムで封入
することによって組織標本を得ることができる。前記組
織標本の作成にあたって試料切片を複数の蛍光色素で染
色する場合は、蛍光色素と反応させて乾燥した後別の蛍
光色素と反応させて乾燥する操作を繰り返すことによっ
て複数の蛍光色素を用いて染色することができる。
【0008】また、浸漬固定法は、多成分分散系食品を
ホルマリン溶液またはグルタルアルデヒド溶液に12〜
24時間浸漬させる。次いでこの多成分分散系食品を流
水中で数時間(例えば1〜12時間)洗浄する。洗浄し
た多成分分散系食品は、脱水した後80%、95%、9
9.5%および100%濃度のエタノール溶液で順次各
々2〜4時間浸漬処理する。次に多成分分散系食品をキ
シレン−軟質パラフィン液に12時間浸漬し包埋する。
包埋したパラフィンを台木の上に固定する。固定した多
成分分散系食品はミクロトームを使用し、一定の厚みに
切り出す。切り出した切片は湯浴(35〜40℃)上に
浮かせて、しわをのばした後、スライドグラス上に切片
をすくいあげ乾燥させる。別に蛍光色素溶液を調製し、
この蛍光色素溶液と切片を一定時間(例えば1〜30分
間、長い場合で1〜3時間)反応させた後乾燥する。乾
燥した切片を軟質のカナダバルサムで封入することによ
って組織標本を得ることができる。なお複数の蛍光色素
を用いて染色する場合は、凍結固定法と同様に蛍光色素
で染色した後乾燥した後再度別の蛍光色素を用いて染色
した後乾燥し、この操作を繰り返すことにより多重染色
を行うことができる。さらにマイクロウェーブ処理固定
法は多成分分散系食品を例えばグルタルアルデヒド溶液
に12〜24時間浸漬させ、マイクロウェーブを10〜
60秒間照射し固定する。以後浸漬固定法と同様に処理
することによって組織標本を得ることができる。
【0009】本発明方法の染色剤として使用する蛍光色
素としては、フルオレセイン−イソチオシアネート、エ
オキシン−イソチオシアネート、ルシファーイエローC
H、レゾルフィン、テトラメチルローダミン−イソチオ
シアネート、クマリンマレイン酸イミド、7−アミノ−
4−メチルクマリン−3−酢酸、フルオレスカミン、塩
化ダンシル、ダンシルヒドラジン、アシッドグリーン、
アクリジンオレンジ、アクリジンイエロー、コンゴレッ
ド、酸性フクシン、ナイルブルー、ファーストグリー
ン、カルセイン、カルセインブルー、アクリフラビン、
エバンスブルー、ローダミン123、ズダンブラック
B、過ヨウ素酸シッフ、塩基性パラローズアニリン、パ
ラローズアニリンアセテート、ベーシックルビン、マゼ
ンダIII、アニリンブルー、アルファズリンA、アルフ
ァズリンFG、パテントブルーVF、トリ−(p−アミ
ノフェニル)アミン、トリ−(p−イソチオシアネート
フェニル)アミン等が挙げられる。
【0010】これらの蛍光色素のうち澱粉を特異的に染
色する蛍光色素としては、コンゴレッド、過ヨウ素酸シ
ッフ等が挙げられ、また蛋白質を特異的に染色する蛍光
色素としてはフルオレスカミン、酸性フクシン、塩基性
パラローズアニリン、パラローズアニリンアセテート、
ベーシックルビン、マゼンダIII、アニリンブルー、ア
ルファズリンA、アルファズリンFG、パテントブルー
VF、トリ−(p−アミノフェニル)アミン、トリ−
(p−イソチオシアネートフェニル)アミン等が挙げら
れ、さらに脂質を特異的に染色する蛍光色素としてはナ
イルブルー、ズダンブラックB等が挙げられる。
【0011】次に蛍光染色された食品は使用した蛍光色
素の最大吸収波長の−40nmのより低波長領域内におい
て、2つ以上の波長で観察する。この観察を蛍光色素の
最大吸収波長の−40nmより、高波長領域で観察すると
蛍光強度が強くなること等、反対に判別がしずらくなり
本発明の目的は達成されない。
【0012】本発明における「観察」手段としては使用
する蛍光色素の種類によって可視光による観察方法、赤
外波長または紫外波長の領域で観察する方法によって行
われる。赤外または紫外波長の領域で観察する場合は特
定の観測機器を用い、観測データーを電気信号に変換
し、コンピューター処理することによって観測すること
が可能である。
【0013】本発明の蛍光観察に使用する光源として
は、水銀ランプ(100V)、水銀ランプ(200
V)、キセノンランプ(75V)、キセノンランプ(1
50V)、ハロゲンランプ(12V100W)、タング
ステンランプ(6V30W)。これ以外にも、キセノン
ランプ[250〜1,000nm]、タングステンランプ
[250〜1,000nm]、Cr:LiSAFランプ
[430nm]、ヘリウム−カドミニウムレーザー[32
5、442nm]、アルゴンイオンレーザー[488、5
14nm]、Nd:YAGレーザー[532nm]、ヘリウ
ムネオンレーザー[543、594、633nm]、クリ
プトンイオンレーザー[568、647nm]などの励起
光源が用いられる。
【0014】本発明において多成分分散系食品の組織構
造を解析する場合通常蛍光観察により行われるが、位相
差と併用することによって、より立体的な組織構造とし
て観察できる。この位相差手段としては明視野観察、位
相差観察、微分干渉観察等が挙げられるが特に位相差観
察あるいは微分干渉観察との併用が好ましい。
【0015】前記の蛍光観察に用いられるフィルターと
しては励起フィルター、ダイクロイックフィルター、吸
収フィルターあるいはこれらがセットになったミラーユ
ニットが用いられる。これらのミラーユニットとしては
U−MWU[励起フィルター(330〜385nm)、吸
収フィルター(420nm)、吸収フィルター(400n
m)]、U−MWIB[励起フィルター(460〜49
0nm)、吸収フィルター(515nm)、吸収フィルター
(505nm)]、U−MWIG[励起フィルター(52
0〜550nm)、吸収フィルター(580nm)、吸収フ
ィルター(565nm)]、U−MWIY[励起フィルタ
ー(545〜580nm)、吸収フィルター(610n
m)、吸収フィルター(600nm)](オリンパス光学
工業株式会社製品名)等が挙げられる。
【0016】前記の蛍光観察と明視野観察を併用する場
合は照明ランプの明るさの透過率を全体の6%以下に抑
えることが好ましい。この観察に用いられるNDフィル
ターとしてはLBDフィルター(オリンパス光学工業株
式会社製品名)、ND25フィルター(オリンパス光学
工業株式会社製品名)、ND6フィルター(オリンパス
光学工業株式会社製品名)等が挙げられる。
【0017】本発明は、前記の蛍光観察を行うにあた
り、使用した蛍光色素の最大吸収波長の−40nmより低
波長領域内において2箇所以上の波長点によって観察す
ることが必要である。
【0018】次に本発明の蛍光観察について説明する。
多成分分散系食品の組織標本をA蛍光色素(λmaxa)
を用いて染色した場合は、例えば「a−45nm」および
「a−60nm」の波長で観察する。
【0019】また複数の蛍光色素を用いて多成分分散系
食品の組織標本を染色した場合、例えばB蛍光色素(λ
maxb)およびC蛍光色素(λmaxc)を用いて蛍光観察
を行う場合には「b−50nm」および「b−80nm」で
の観察、「c−60nm」および「c−70nm」での観
察、「b−50nm」および「c−60nm」での観察、
「b−80nm」および「c−60nm」での観察、「b−
50nm」、「b−80nm」および「c−60nm」での観
察、「b−50nm」、「b−80nm」、「c−60nm」
および「c−70nm」での観察等の種々の観察方法が採
用できる。
【0020】
【実施例】次に本発明方法をさらに具体的に説明するた
めに実施例を掲げるが、本発明は以下の実施例のみに限
定されるものではない。
【0021】実施例1,比較例1〜3
パン生地を冷却ステージ上で急速凍結させる。凍結切片
をミクロトームで一定の厚さに薄切し、顕微鏡用プレパ
ラート上に乾燥固定し切片を作製する。次に蛋白質染色
色素であるアニリンブルー(λmax=605nm)を用い
て切片を染色し、十分乾燥させる。次に得られた組織標
本を蛍光顕微鏡(オリンパス光学工業社製BX51)で
下記表1に示す蛍光観察用フィルターを用いて蛍光観察
を行った。また、蛍光観察と、位相差観察あるいは微分
干渉観察を併用して行った。評価は観察によって撮影し
た組織構造の画像を重ね合わせた写真を10名のパネラ
ーにより表2に示す評価基準に従って評価を行った。そ
の試験結果を示せば表1のとおりである。
【0022】
【表1】
【0023】
【表2】
【0024】実施例2〜4,比較例4〜6
うどんの麺線を浸漬固定する。浸漬固定した麺線を冷却
ステージ上で凍結固定した後、ミクロトームで一定の厚
さに薄切し、顕微鏡用プレパラート上に乾燥固定し切片
を作製する。次に蛋白質染色色素であるパラローズアニ
リンアセテート(λmax=545nm)を用いて切片を染
色し、乾燥する。次に、非選択性蛍光色素であるファー
ストグリーンFCF(λmax=622nm)を用いて切片
を染色し、乾燥する。次に得られた組織標本を蛍光顕微
鏡(オリンパス光学工業社製BX51)で下記表3に示
す蛍光観察用フィルターを用いた蛍光観察を行った。ま
た、蛍光観察と、位相差観察あるいは微分干渉観察を併
用して行った。評価は観察によって撮影した組織構造を
重ね合わせた写真を実施例1と同様に評価を行った。そ
の試験結果を示せば表3のとおりである。
【0025】
【表3】【0026】実施例5,比較例7〜9
天ぷらの衣を冷却ステージ上でコンパウンド(三共コパ
ウドCTC)と共に急速凍結させる。凍結切片をミクロ
トームで一定の厚さに薄切し、顕微鏡用プレパラート上
に乾燥固定し切片を作製する。次に脂質染色色素でズダ
ンブラックB(λmax=598nm)を用いて切片を染色
し、乾燥する。次に、蛋白質染色色素である酸性フクシ
ン(λmax=545nm)を用いて切片を染色し、乾燥す
る。次に得られた組織標本を蛍光顕微鏡(オリンパス光
学工業社製BX51)で下記表4に示す蛍光観察用フィ
ルターを用いた蛍光観察を行った。また、蛍光観察と、
位相差観察あるいは微分干渉観察を併用して行った。評
価は観察によって撮影した組織構造を重ね合わせた写真
を実施例1と同様に評価を行った。その試験結果を示せ
ば表4のとおりである。
【0027】
【表4】
【0028】
【発明の効果】本発明方法によれば、澱粉、蛋白質、脂
質等を含有する多成分分散系食品の組織構造を立体的画
像として解析することができる。Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for three-dimensionally analyzing the tissue structure of a multi-component dispersion food containing at least one component of starch, protein and lipid. . [0002] Starches, proteins and lipids are said to be three major nutrients in foods. Secondary processed foods such as breads, noodles, cooked rice, confectionery, and tempura are mainly made of flour and rice, and taste is determined by the form of the three major nutrients contained in these foods. It is considered that the texture changes greatly. Conventionally, the evaluation of taste and texture has been performed exclusively by sensory tests, but in recent years, it has been attempted to elucidate the tissue structure of food using equipment and determine the texture and the like from the tissue structure. . However, even when the tissue structure is observed with these instruments, the boundary of each component is unclear or the obtained image is planar, so that satisfactory evaluation cannot be performed at present. [0003] For example, in the case of using an electron microscope, the shape of the sample is observed by detecting electrons reflected by skipping electrons on the sample (scanning electron microscope) or the difference between electrons transmitted through the sample and untransmitted electrons. Specimens are detected and the shape of the specimen is observed (transmission electron microscope). In each of these methods, the specimen can be observed with extremely high resolution, but it is difficult to distinguish specific components due to the inability to stain. And
The structural analysis of the boundary cannot be performed. When using an optical microscope, a specific component of the sample is stained and observed.But the border is still unclear, and multiple staining can be performed to some extent, but the specificity due to staining is small, and the overlapping of stains Did not substantially determine the tissue structure. The laser confocal microscope employs laser light and can concentrate strong light having excellent straightness on one point. By using the laser light, an image only at the focal point can be displayed, and a cross-sectional image with a large depth of focus can be obtained, so that an image with high contrast can be obtained. On the other hand, it is difficult to determine a specific component from the obtained image because it cannot be stained, and it is difficult to analyze the structure of the boundary portion. SUMMARY OF THE INVENTION [0004] The present inventors have developed starch,
As a result of various studies on an image analysis method capable of clearly distinguishing the complex tissue structure of a multi-component dispersion food containing protein and lipid, the present invention has been completed. [0005] That is, the present invention relates to a food containing at least one component of starch, protein and lipid, which is used for a fluorescent protein dye, a fluorescent lipid dye, and a fluorescent dye. After staining with at least one or more dyes from starch dyeing dyes or fluorescent non-characteristic dyes,
-40 nm of the maximum absorption wavelength of at least one fluorescent dye
This is a method of observing at least two different wavelengths in a lower wavelength region and analyzing the tissue structure of a multi-component dispersed food in which at least two or more acquired images are synthesized. Next, the method of the present invention will be described. A tissue specimen of a food containing at least one component of starch, protein and lipid (hereinafter referred to as a multi-component dispersion food) is prepared. As a method for preparing this tissue specimen, a freeze fixing method, an immersion fixing method, a microwave processing fixing method, or the like can be adopted. Next, the freeze fixing method will be described. The multi-component dispersion food is frozen and fixed on the cooling stage of the microtome. Next, the frozen and fixed sample is cut into a certain thickness. The cut section is placed on a slide, dried and fixed with a heater, and fixed. Separately, a fluorescent dye solution is prepared, and the fluorescent dye solution and the sample section are kept for a certain time (for example, 1 hour).
After the reaction, the reaction is dried for up to 30 minutes, and in the longest case, for 1 to 3 hours. A tissue specimen can be obtained by enclosing the dried sample section with soft Canadian balsam. In the case of staining a sample section with a plurality of fluorescent dyes in preparing the tissue specimen, using a plurality of fluorescent dyes by repeating an operation of reacting with a fluorescent dye and drying and then reacting with another fluorescent dye and drying. Can be dyed. [0008] In the immersion fixing method, a multi-component dispersion food is added to a formalin solution or a glutaraldehyde solution in 12 to 12 hours.
Let soak for 24 hours. Next, the multi-component dispersion food is washed in running water for several hours (for example, 1 to 12 hours). 80%, 95%, 9
The immersion treatment is performed successively for 2 to 4 hours with a 9.5% and 100% ethanol solution. Next, the multi-component dispersion food is immersed in a xylene-soft paraffin solution for 12 hours and embedded.
Fix the embedded paraffin on the stock. The fixed multi-component dispersion food is cut into a certain thickness using a microtome. The cut section is floated on a hot water bath (35 to 40 ° C.) to remove wrinkles, and then scooped up on a slide glass and dried. Separately prepare a fluorescent dye solution,
The fluorescent dye solution and the section are allowed to react for a certain period of time (for example, 1 to 30 minutes, and in a long case, 1 to 3 hours), and then dried. Tissue specimens can be obtained by enclosing the dried sections in soft Canadian balsam. When staining with multiple fluorescent dyes, multiple dyeing is performed by staining with a fluorescent dye in the same manner as the freeze-fixing method, drying, staining again with another fluorescent dye, drying, and repeating this operation. It can be performed. Further, in the microwave treatment fixing method, the multi-component dispersion food is immersed in, for example, a glutaraldehyde solution for 12 to 24 hours, and microwaves are applied for 10 to 24 hours.
Irradiate for 60 seconds and fix. Thereafter, a tissue specimen can be obtained by performing the same treatment as in the immersion fixing method. Fluorescent dyes used as a dye in the method of the present invention include fluorescein-isothiocyanate, eoxin-isothiocyanate and Lucifer Yellow C
H, resorufin, tetramethylrhodamine-isothiocyanate, coumarinmaleimide, 7-amino-
4-methylcoumarin-3-acetic acid, fluorescamine, dansyl chloride, dansyl hydrazine, acid green,
Acridine orange, acridine yellow, congo red, acid fuchsin, nile blue, fast green, calcein, calcein blue, acriflavine,
Evans Blue, Rhodamine 123, Sudan Black B, Periodic Acid Schiff, Basic Pararoseaniline, Pararoseaniline Acetate, Basic Rubin, Magenta III, Aniline Blue, Alphazurin A, Alphazurin FG, Patent Blue VF, Bird -(P-aminophenyl) amine, tri- (p-isothiocyanatephenyl) amine and the like. Among these fluorescent dyes, the fluorescent dyes that specifically stain starch include Congo Red and Schiff periodate. The fluorescent dyes that specifically stain proteins include fluorescamine and acidic dyes. Fuchsin, basic pararose aniline, pararose aniline acetate,
Basic rubin, magenta III, aniline blue, alphazurin A, alphazurin FG, patent blue VF, tri- (p-aminophenyl) amine, tri-
(P-isothiocyanate phenyl) amine and the like. Nyl blue, Sudan black B and the like can be mentioned as fluorescent dyes that specifically stain lipids. Next, the fluorescently-stained food is observed at two or more wavelengths within a lower wavelength range of -40 nm, which is the maximum absorption wavelength of the fluorescent dye used. On the other hand, when this observation is performed in a wavelength region higher than the maximum absorption wavelength of the fluorescent dye of -40 nm, the fluorescence intensity becomes stronger. For example, the discrimination becomes difficult, and the object of the present invention is not achieved. The "observation" means in the present invention is carried out by an observation method using visible light or a method of observing in an infrared wavelength region or an ultraviolet wavelength region depending on the type of fluorescent dye used. When observing in the infrared or ultraviolet wavelength region, it is possible to use a specific observation instrument, convert observation data into electric signals, and perform computer processing to observe. The light source used for the fluorescence observation of the present invention is a mercury lamp (100 V) or a mercury lamp (200 V).
V), xenon lamp (75 V), xenon lamp (1
50V), halogen lamp (12V100W), tungsten lamp (6V30W). Other than this, a xenon lamp [250 to 1,000 nm], a tungsten lamp [250 to 1,000 nm], a Cr: LiSAF lamp [430 nm], a helium-cadmium laser [32
5,442 nm], argon ion laser [488,5
An excitation light source such as 14 nm], a Nd: YAG laser [532 nm], a helium neon laser [543, 594, 633 nm], and a krypton ion laser [568, 647 nm] is used. In the present invention, when analyzing the tissue structure of a multi-component dispersed food, it is usually performed by fluorescence observation, but by using it together with a phase difference, it can be observed as a more three-dimensional tissue structure. Examples of the phase difference means include bright field observation, phase difference observation, differential interference observation, and the like, and it is particularly preferable to use the phase difference observation or differential interference observation together. An excitation filter, a dichroic filter, an absorption filter or a mirror unit in which these are set are used as filters used for the above-mentioned fluorescence observation. These mirror units include U-MWU [excitation filter (330 to 385 nm), absorption filter (420 nm), absorption filter (400 nm).
m)], U-MWIB [excitation filter (460-49)
0 nm), absorption filter (515 nm), absorption filter (505 nm)], U-MWIG [excitation filter (52
0-550 nm), absorption filter (580 nm), absorption filter (565 nm)], U-MWIY [excitation filter (545-580 nm), absorption filter (610 n)
m), absorption filter (600 nm)] (Olympus Optical Industry Co., Ltd. product name) and the like. When both the fluorescence observation and the bright field observation are used, it is preferable to suppress the brightness transmittance of the illumination lamp to 6% or less of the whole. Examples of the ND filter used for this observation include an LBD filter (Olympus Optical Industry Co., Ltd. product name), an ND25 filter (Olympus Optical Industry Co., Ltd. product name), an ND6 filter (Olympus Optical Industry Co., Ltd. product name) and the like. In the present invention, when performing the above-mentioned fluorescence observation, it is necessary to observe at two or more wavelength points in a wavelength region lower than the maximum absorption wavelength of −40 nm of the fluorescent dye used. Next, the fluorescence observation of the present invention will be described.
A fluorescent dye A (λmaxa)
When staining is carried out using, for example, observation is performed at wavelengths of “a-45 nm” and “a-60 nm”. When a tissue specimen of a multi-component dispersion food is stained using a plurality of fluorescent dyes, for example, a B fluorescent dye (λ
When performing fluorescence observation using the maxb) and C fluorescent dyes (λmaxc), observation at “b-50 nm” and “b-80 nm”, observation at “c-60 nm” and “c-70 nm”, and “ observation at "b-50 nm" and "c-60 nm",
Observation at “b-80 nm” and “c-60 nm”, “b-
Observation at "50 nm", "b-80 nm" and "c-60 nm", "b-50 nm", "b-80 nm", "c-60 nm"
Various observation methods such as observation at "c-70 nm" can be adopted. The present invention will be described in more detail with reference to the following Examples, which by no means limit the present invention. Example 1, Comparative Examples 1-3 Bread dough is rapidly frozen on a cooling stage. The frozen section is sliced to a certain thickness with a microtome, and dried and fixed on a microscope preparation to prepare a section. Next, the sections are stained with aniline blue (λmax = 605 nm), which is a protein dye, and dried sufficiently. Next, the obtained tissue specimen was subjected to fluorescence observation using a fluorescence microscope (BX51 manufactured by Olympus Optical Industrial Co., Ltd.) using a filter for fluorescence observation shown in Table 1 below. In addition, fluorescence observation was performed in combination with phase difference observation or differential interference observation. The evaluation was performed according to the evaluation criteria shown in Table 2 by ten panelists on a photograph obtained by superimposing images of the tissue structure taken by observation. Table 1 shows the test results. [Table 1] [Table 2] Examples 2-4, Comparative Examples 4-6 Udon noodle strings are immersed and fixed. After the immersion-fixed noodle strings are frozen and fixed on a cooling stage, they are sliced to a certain thickness with a microtome, and dried and fixed on a microscope slide to prepare sections. Next, the sections are stained with pararose aniline acetate (λmax = 545 nm), which is a protein staining dye, and dried. Next, the sections are stained with a non-selective fluorescent dye, Fast Green FCF (λmax = 622 nm), and dried. Next, the obtained tissue specimen was subjected to fluorescence observation using a fluorescence observation filter shown in Table 3 below with a fluorescence microscope (BX51, manufactured by Olympus Optical Industries, Ltd.). In addition, fluorescence observation was performed in combination with phase difference observation or differential interference observation. The evaluation was performed in the same manner as in Example 1 for a photograph obtained by superimposing the tissue structures taken by observation in the same manner as in Example 1. Table 3 shows the test results. [Table 3] Example 5 and Comparative Examples 7 to 9 Tempura batter is rapidly frozen on a cooling stage together with a compound (Sankyo Copout CTC). The frozen section is sliced to a certain thickness with a microtome, and dried and fixed on a microscope preparation to prepare a section. The sections are then stained with Sudan Black B (λmax = 598 nm) with a lipid staining dye and dried. Next, the sections are stained with acidic fuchsin (λmax = 545 nm), which is a protein staining dye, and dried. Next, the obtained tissue specimen was subjected to fluorescence observation using a fluorescence observation filter shown in Table 4 below with a fluorescence microscope (BX51, manufactured by Olympus Optical Industries). Also, fluorescence observation,
The phase difference observation or the differential interference observation was performed in combination. The evaluation was performed in the same manner as in Example 1 for a photograph obtained by superimposing the tissue structures taken by observation in the same manner as in Example 1. Table 4 shows the test results. [Table 4] According to the method of the present invention, the tissue structure of a multi-component dispersion food containing starch, protein, lipid and the like can be analyzed as a three-dimensional image.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 山田 昌治 埼玉県入間郡大井町鶴ヶ岡5丁目3番1号 株式会社日清製粉グループ本社基礎研究 所内 (72)発明者 竹谷 光司 埼玉県入間郡大井町鶴ヶ岡5丁目3番1号 株式会社日清製粉グループ本社基礎研究 所内 Fターム(参考) 2G043 AA03 BA14 CA05 DA01 EA01 FA01 FA02 FA06 HA02 JA02 KA02 KA03 KA05 KA09 ────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Shoji Yamada 5-3-1 Tsurugaoka, Oi-machi, Iruma-gun, Saitama Nisshin Seifun Group Inc.Basic research Inside (72) Inventor Koji Takeya 5-3-1 Tsurugaoka, Oi-machi, Iruma-gun, Saitama Nisshin Seifun Group Inc.Basic research Inside F term (reference) 2G043 AA03 BA14 CA05 DA01 EA01 FA01 FA02 FA06 HA02 JA02 KA02 KA03 KA05 KA09
Claims (1)
種の成分を含有する食品を、少なくとも一種の蛍光色素
で染色した後、使用した蛍光色素の最大吸収波長の−4
0nmより低波長領域内におけるそれぞれ異なる少なくと
も2つの波長でそれぞれの画像を得、得られた画像を合
成することを特徴とする、多成分分散系食品の組織構造
を解析する方法。Claims 1. After dyeing a food containing at least one component of starch, protein and lipid with at least one fluorescent dye, the maximum absorption wavelength of the used fluorescent dye is -4.
A method for analyzing a tissue structure of a multi-component dispersion food, characterized by obtaining images at at least two different wavelengths in a wavelength region lower than 0 nm and synthesizing the obtained images.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002094950A JP3771861B2 (en) | 2002-03-29 | 2002-03-29 | Analysis method of tissue structure in multi-component dispersed food |
AU2002300557A AU2002300557B2 (en) | 2002-02-13 | 2002-08-14 | Method for Analysis of the Textural Structure of Food of a Multi-Component Dispersion System |
CA2398763A CA2398763C (en) | 2002-02-13 | 2002-08-19 | Method for analysis of the textural structure of food of a multi-component dispersion system |
US10/223,366 US6720185B2 (en) | 2002-02-13 | 2002-08-20 | Method for analysis of the textural structure of food of a multi-component dispersion system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002094950A JP3771861B2 (en) | 2002-03-29 | 2002-03-29 | Analysis method of tissue structure in multi-component dispersed food |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003294626A true JP2003294626A (en) | 2003-10-15 |
JP3771861B2 JP3771861B2 (en) | 2006-04-26 |
Family
ID=29238693
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002094950A Expired - Lifetime JP3771861B2 (en) | 2002-02-13 | 2002-03-29 | Analysis method of tissue structure in multi-component dispersed food |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3771861B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008122401A (en) * | 2007-12-17 | 2008-05-29 | Fuji Oil Co Ltd | Observation method for wheat flour product |
WO2008078752A1 (en) * | 2006-12-27 | 2008-07-03 | Nisshin Seifun Group Inc. | Method of forming tissue structure image of processed food or raw material for producing the same |
CN105115965A (en) * | 2015-07-27 | 2015-12-02 | 南昌大学 | Soft drink synthetic pigment fast detection method and kit |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5311655B2 (en) * | 2009-05-15 | 2013-10-09 | 独立行政法人農業・食品産業技術総合研究機構 | Component distribution analysis method and component distribution analyzer |
-
2002
- 2002-03-29 JP JP2002094950A patent/JP3771861B2/en not_active Expired - Lifetime
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008078752A1 (en) * | 2006-12-27 | 2008-07-03 | Nisshin Seifun Group Inc. | Method of forming tissue structure image of processed food or raw material for producing the same |
JPWO2008078752A1 (en) * | 2006-12-27 | 2010-04-30 | 株式会社日清製粉グループ本社 | Method for forming tissue structure image of processed food or raw material for its production |
JP4912413B2 (en) * | 2006-12-27 | 2012-04-11 | 株式会社日清製粉グループ本社 | Method for forming tissue structure image of processed food or raw material for its production |
US8603826B2 (en) | 2006-12-27 | 2013-12-10 | Nisshin Seifun Group Inc. | Method of forming tissue structure image of processed food or raw material for producing the same |
JP2008122401A (en) * | 2007-12-17 | 2008-05-29 | Fuji Oil Co Ltd | Observation method for wheat flour product |
CN105115965A (en) * | 2015-07-27 | 2015-12-02 | 南昌大学 | Soft drink synthetic pigment fast detection method and kit |
Also Published As
Publication number | Publication date |
---|---|
JP3771861B2 (en) | 2006-04-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Dürrenberger et al. | Visualization of food structure by confocal laser scanning microscopy (CLSM) | |
Fereidouni et al. | Microscopy with ultraviolet surface excitation for rapid slide-free histology | |
Heia et al. | Detection of nematodes in cod (Gadus morhua) fillets by imaging spectroscopy | |
Kamemoto et al. | Near-infrared micro-Raman spectroscopy for in vitro detection of cervical cancer | |
EP3164689B1 (en) | Novel methods of tissue processing for deep imaging | |
JP2018025812A (en) | Digitally enhanced microscope for multiplexed histology | |
TWI224286B (en) | Transformation method of digital images | |
JP2012122852A (en) | Image processing apparatus, image processing method, and image processing program | |
JP2008541179A (en) | Separation of spectral or color superimposed image contributions in multicolor images, especially microscope multicolor transmission images | |
JP2004286666A (en) | Pathological diagnosis support apparatus and pathological diagnosis support program | |
WO2008023629A1 (en) | Image processing device, image processing method, and image processing program | |
CN108351302B (en) | Method and device for determining tumor site | |
Cahill et al. | Comparing histologic evaluation of prostate tissue using nonlinear microscopy and paraffin H&E: a pilot study | |
JP4912413B2 (en) | Method for forming tissue structure image of processed food or raw material for its production | |
Gu et al. | Quantitative diagnosis of cervical neoplasia using fluorescence lifetime imaging on haematoxylin and eosin stained tissue sections | |
Frame et al. | Development of a label-free Raman imaging technique for differentiation of malaria parasite infected from non-infected tissue | |
JP2003294626A (en) | Method for analyzing tissue construction of multi- components dispersion food | |
JP3762308B2 (en) | Analysis method of tissue structure in multi-component dispersed food | |
AU2002300557B2 (en) | Method for Analysis of the Textural Structure of Food of a Multi-Component Dispersion System | |
JP2007521473A (en) | Stokes-shifted emission spectroscopy for detection of specimen disease and physiological state | |
JP7231345B2 (en) | Preparation of tissue sections using fluorescence-based detection | |
Turchette et al. | Developing a more useful surface quality metric for laser optics | |
Sun et al. | Rapid, noninvasive screening of ocular diseases using tear raman spectroscopy and different classification algorithms | |
Pfitzner et al. | Time-and spectrally resolved singlet oxygen phosphorescence detection—discriminating disturbance signals | |
US20160069809A1 (en) | Cervical Sample Preparation For Reduced Variability In Raman Spectroscopy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040803 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060126 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060207 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060210 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 3771861 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090217 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100217 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100217 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110217 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110217 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120217 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120217 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130217 Year of fee payment: 7 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140217 Year of fee payment: 8 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |