JP2003294605A - Method of evaluating changes in material characteristics and method of estimating material operating temperature - Google Patents

Method of evaluating changes in material characteristics and method of estimating material operating temperature

Info

Publication number
JP2003294605A
JP2003294605A JP2002099514A JP2002099514A JP2003294605A JP 2003294605 A JP2003294605 A JP 2003294605A JP 2002099514 A JP2002099514 A JP 2002099514A JP 2002099514 A JP2002099514 A JP 2002099514A JP 2003294605 A JP2003294605 A JP 2003294605A
Authority
JP
Japan
Prior art keywords
value
hardness
mechanical property
evaluation method
mechanical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002099514A
Other languages
Japanese (ja)
Other versions
JP4028276B2 (en
Inventor
Yoshinori Katayama
義紀 片山
Motoji Tsubota
基司 坪田
Mitsuharu Nakamura
光晴 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2002099514A priority Critical patent/JP4028276B2/en
Publication of JP2003294605A publication Critical patent/JP2003294605A/en
Application granted granted Critical
Publication of JP4028276B2 publication Critical patent/JP4028276B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To predict secular changes in a mechanical characteristic value of a member such as stainless steel or the like in use. <P>SOLUTION: Changes in a mechanical characteristic value of material equivalent to a member in use are obtained in advance as a function of an initial value of the mechanical characteristic value, temperature, and time. The mechanical characteristic value of the member is obtained from the initial value of the mechanical characteristic value, temperature and time based on the function. It may be premised that the function of the mechanical characteristic value is proportional to the initial value of the mechanical characteristic value. For obtaining the function, time dependence and temperature dependence can be reflected on the function after obtaining the time dependence of the mechanical characteristic value at least at two kinds of temperatures. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は原子力プラント等の
特に高温で長期間使用される部材に用いられるステンレ
ス鋼等の材料の機械的特性値の経年変化を予測する方法
およびその部材の使用された温度を推定する方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for predicting the secular change of mechanical property values of a material such as stainless steel used for a member used for a long time at a high temperature, such as a nuclear power plant, and the member thereof It relates to a method of estimating temperature.

【0002】[0002]

【従来の技術】従来の原子力プラント等においてマルテ
ンサイト系ステンレス鋼および析出硬化型ステンレス鋼
は高強度で耐食性に優れることから、各種弁の弁棒、回
転機軸材等の腐食環境中で高応力を要求される部材に多
用されている。また、フェライト系ステンレス鋼、オー
ステナイト−フェライト系ステンレス鋼は耐食性・加工
性に優れることから、熱交換器の伝熱管等に使用されて
いる。
2. Description of the Related Art In conventional nuclear power plants, martensitic stainless steels and precipitation hardening stainless steels have high strength and excellent corrosion resistance. It is often used for required materials. Further, ferritic stainless steels and austenitic-ferritic stainless steels are used for heat transfer tubes of heat exchangers, etc., because they are excellent in corrosion resistance and workability.

【0003】いくつかの研究により、マルテンサイト系
ステンレス鋼、析出硬化型ステンレス鋼およびオーステ
ナイト−フェライト系ステンレス鋼は高温に長時間加熱
されると硬さの上昇、靱性、延性の低下および応力腐食
割れ感受性の増大等を生じることが明らかになった。
Some studies have shown that martensitic stainless steels, precipitation hardening stainless steels and austenitic-ferritic stainless steels have increased hardness, reduced toughness, ductility and stress corrosion cracking when heated to high temperatures for long periods of time. It has been clarified that the sensitivity is increased.

【0004】上記研究の報告の例として、文献例1:"T
hermal Aging Behavior of Martensitic Stainless Ste
el" M.Tsubota, K.Tajima, K.Hattori, H.Sakamot
o、International Nuclear Power Plant Aging Symposi
um, USNRC, Bethesda, Maryland, Aug. 30, (1988)、文
献例2:"Characterization of Long Term Aged Marten
sitic Stainless Steels" M.Tsubota, K.Hattori, T.
Okada, 5th International Symposium on Environmenta
l Degradation of Materials in Nuclear PowerSystems
-Water Reactor, Montrey, California, Aug. 30, (199
1)、文献例3:"Aging Degradation of Cast Stainless
Steels" O.K.Chopra and H.M.Chung, Environmental D
egradation of Materials in Nuclear Power Systems-W
ater Reactor, (1988)がある。
As an example of the report of the above research, Reference Example 1: "T
hermal Aging Behavior of Martensitic Stainless Ste
el "M.Tsubota, K.Tajima, K.Hattori, H.Sakamot
o, International Nuclear Power Plant Aging Symposi
um, USNRC, Bethesda, Maryland, Aug. 30, (1988), Reference Example 2: "Characterization of Long Term Aged Marten.
sitic Stainless Steels "M. Tsubota, K. Hattori, T.
Okada, 5th International Symposium on Environmenta
l Degradation of Materials in Nuclear Power Systems
-Water Reactor, Montrey, California, Aug. 30, (199
1), Reference 3: "Aging Degradation of Cast Stainless
Steels "OK Chopra and HMChung, Environmental D
egradation of Materials in Nuclear Power Systems-W
There is ater Reactor, (1988).

【0005】[0005]

【発明が解決しようとする課題】しかしながら、これら
ステンレス鋼部材を高温において長時間使用した場合の
機械的特性値の変化や応力腐食割れ感受性がどの程度か
わかっていない。使用中のステンレス鋼部材の機械的特
性値の変化や応力腐食割れ感受性の予測が可能であれ
ば、部材の脆化または応力腐食割れに基づく破損を防止
することができ、機器の信頼性向上につながる。本発明
の目的は、使用中のステンレス鋼等の部材の機械的特性
値を評価する方法および材料使用温度推定方法を提供す
ることにある。
However, it is not known how much changes in mechanical properties and susceptibility to stress corrosion cracking occur when these stainless steel members are used at high temperatures for a long time. If it is possible to predict changes in mechanical property values and stress corrosion cracking susceptibility of stainless steel members in use, it is possible to prevent brittleness of members or damage due to stress corrosion cracking, and improve equipment reliability. Connect An object of the present invention is to provide a method for evaluating mechanical property values of a member such as stainless steel in use and a method for estimating material use temperature.

【0006】[0006]

【課題を解決するための手段】本発明は上記目的を達成
するものであって、請求項1の発明は、部材の使用中の
機械的特性値の変化を評価する材料特性変化評価方法で
あって、前記部材と同等の材料の機械的特性値の変化を
当該機械的特性値の初期値と温度と時間の関数としてあ
らかじめ求めておき、前記部材の機械的特性値の初期値
と温度と時間から、前記関数に基づいて当該部材の機械
的特性値を求めること、を特徴とする。請求項1の発明
によれば、部材の機械的特性値の変化を非破壊的に予測
または評価することができる。
The present invention achieves the above objects, and the invention of claim 1 is a method for evaluating changes in material properties for evaluating changes in mechanical property values during use of a member. Then, the change of the mechanical characteristic value of the material equivalent to the member is obtained in advance as a function of the initial value of the mechanical characteristic value, temperature and time, and the initial value of the mechanical characteristic value of the member, temperature and time are obtained. From the above, the mechanical characteristic value of the member is obtained based on the function. According to the invention of claim 1, it is possible to nondestructively predict or evaluate the change in the mechanical characteristic value of the member.

【0007】また、請求項2の発明は、請求項1に記載
の材料特性変化評価方法において、前記部材はステンレ
ス鋼であって、前記機械的特性値の関数は、前記機械的
特性値が当該機械的特性値の初期値に比例することを前
提とするものであることを特徴とする。
According to a second aspect of the present invention, in the material property change evaluation method according to the first aspect, the member is stainless steel, and the function of the mechanical characteristic value is the mechanical characteristic value. It is characterized in that it is assumed to be proportional to the initial value of the mechanical characteristic value.

【0008】請求項2の発明によれば、請求項1の発明
の作用・効果を得られるのみならず、ステンレス鋼部材
について、機械的特性値の変化曲線の初期値に対する相
似性を利用して、簡単に処理することができる。
According to the invention of claim 2, not only the action and effect of the invention of claim 1 can be obtained, but the similarity of the change curve of the mechanical characteristic value to the initial value is utilized for the stainless steel member. , Can be easily processed.

【0009】また、請求項3の発明は、請求項1または
2に記載の材料特性変化評価方法において、前記部材は
ステンレス鋼であって、前記機械的特性値の関数を求め
るに当たって、少なくとも2種類の温度での機械的特性
値の時間依存性を求め、これらの結果から、時間依存性
と温度依存性を前記関数に反映させるものであることを
特徴とする。
Further, the invention of claim 3 is the material property change evaluation method according to claim 1 or 2, wherein the member is stainless steel, and at least two types are used in obtaining a function of the mechanical property value. The time dependence of the mechanical property value at the temperature of is determined, and from these results, the time dependence and the temperature dependence are reflected in the function.

【0010】請求項3の発明によれば、請求項1または
2の発明の作用・効果を得られるのみならず、ステンレ
ス鋼部材について、少なくとも2種類の温度での機械的
特性値の時間依存性を求めておけば、機械的特性値の変
化を予測または評価することができる。
According to the invention of claim 3, not only the action and effect of the invention of claim 1 or 2 can be obtained, but also for the stainless steel member, the time dependence of the mechanical characteristic value at at least two kinds of temperatures. If it is obtained, it is possible to predict or evaluate the change in the mechanical characteristic value.

【0011】また、請求項4の発明は、請求項3に記載
の材料特性変化評価方法において、前記機械的特性値の
関数は、熱活性化過程に基づくとして求めることを特徴
とする。請求項4の発明によれば、請求項3の発明の作
用・効果を得られるのみならず、機械的特性値の変化を
正確に予測または評価することができる。
Further, the invention of claim 4 is characterized in that, in the material property change evaluation method according to claim 3, the function of the mechanical property value is obtained based on the thermal activation process. According to the invention of claim 4, not only the action and effect of the invention of claim 3 can be obtained, but also the change of the mechanical characteristic value can be accurately predicted or evaluated.

【0012】また、請求項5の発明は、部材の使用中の
機械的特性値の変化を評価する材料特性変化評価方法で
あって、前記部材と同等の材料を用いて、その材料の機
械的特性値と硬さとの関係をあらかじめ求めておき、前
記部材の使用中の硬さの実測値を求め、前記硬さの実測
値および前記機械的特性値と硬さとの関係から、前記部
材の使用中の前記機械的特性値を求めること、を特徴と
する。
A fifth aspect of the present invention is a material property change evaluation method for evaluating a change in mechanical property value during use of a member, wherein a material equivalent to the member is used and the mechanical properties of the material are used. The relationship between the characteristic value and the hardness is obtained in advance, the measured value of the hardness during use of the member is calculated, and the measured value of the hardness and the relationship between the mechanical characteristic value and the hardness are used to determine the use of the member. Determining the mechanical characteristic value therein.

【0013】請求項5の発明によれば、使用中の部材に
大きな損傷を与えることなしに硬さを測定することによ
って、当該部材の機械的特性値の変化を予測または評価
することができる。
According to the fifth aspect of the present invention, by measuring the hardness without seriously damaging the member in use, it is possible to predict or evaluate the change in the mechanical characteristic value of the member.

【0014】また、請求項6の発明は、請求項1ないし
5のいずれかに記載の材料特性変化評価方法において、
前記機械的特性値の限界値をあらかじめ設定し、前記機
械的特性値が前記限界値に到達する時点を前記部材の寿
命と設定し、前記機械的特性値の経年変化に基づいて、
前記寿命に到達する時間を推定すること、を特徴とす
る。請求項6の発明によれば、請求項1ないし5のいず
れかの発明の作用・効果を得られるのみならず、使用中
の部材の寿命を推定することができる。
The invention according to claim 6 is the method for evaluating changes in material properties according to any one of claims 1 to 5,
The limit value of the mechanical characteristic value is set in advance, the time point at which the mechanical characteristic value reaches the limit value is set as the life of the member, and based on the secular change of the mechanical characteristic value,
Estimating the time to reach the life. According to the invention of claim 6, not only the action and effect of the invention of any one of claims 1 to 5 can be obtained, but also the life of the member in use can be estimated.

【0015】また、請求項7の発明は、請求項1ないし
6のいずれかに記載の材料特性変化評価方法において、
前記部材はステンレス鋼であって、前記機械的特性値
は、硬さ、耐力、引張強さ、伸び、絞り、衝撃値および
破壊靭性値のうちの少なくとも一つであること、を特徴
とする。
The invention according to claim 7 is the method for evaluating changes in material properties according to any one of claims 1 to 6,
The member is stainless steel, and the mechanical property value is at least one of hardness, proof stress, tensile strength, elongation, drawing, impact value and fracture toughness value.

【0016】請求項7の発明によれば、請求項1ないし
6のいずれかの発明の作用・効果を得られるのみなら
ず、ステンレス鋼部材について、機械的特性値として具
体的に種々のものを採用することができる。
According to the invention of claim 7, not only the action and effect of the invention of claims 1 to 6 can be obtained, but also various concrete characteristics of stainless steel members can be obtained. Can be adopted.

【0017】また、請求項8の発明は、ステンレス鋼部
材の使用中の応力腐食割れの感受性の変化を評価する材
料特性変化評価方法であって、前記ステンレス鋼部材と
同等の材料を用いて、その材料の応力腐食割れの感受性
と硬さとの関係をあらかじめ求めておき、前記ステンレ
ス鋼部材の使用中の硬さの実測値を求め、前記硬さの実
測値および前記応力腐食割れの感受性と硬さとの関係か
ら、前記ステンレス鋼部材の使用中の前記応力腐食割れ
の感受性を求めること、を特徴とする。
The invention according to claim 8 is a method for evaluating changes in material properties for evaluating changes in susceptibility to stress corrosion cracking during use of a stainless steel member, wherein a material equivalent to the stainless steel member is used, The relationship between the susceptibility to stress corrosion cracking of the material and the hardness is obtained in advance, the actual measurement value of the hardness of the stainless steel member during use is obtained, and the actual measurement value of the hardness and the susceptibility and hardness of the stress corrosion cracking are obtained. And determining the susceptibility of the stress corrosion cracking during use of the stainless steel member.

【0018】請求項8の発明によれば、ステンレス鋼部
材について、使用中の部材に大きな損傷を与えることな
しに硬さを測定することによって、当該部材の応力腐食
割れの感受性を予測または評価することができる。
According to the invention of claim 8, the hardness of a stainless steel member is measured without seriously damaging the member in use to predict or evaluate the susceptibility to stress corrosion cracking of the member. be able to.

【0019】また、請求項9の発明は、部材が使用され
た温度を推定する方法であって、前記部材と同等の材料
を用いて、その材料の硬さの変化を使用された温度と使
用された時間との関数としてあらかじめ求めておき、前
記部材の使用された時間の実測値を求め、前記部材の使
用中の硬さの実測値を求め、前記使用された時間および
使用中の硬さの実測値および前記関数から、前記部材が
使用された温度を推定すること、を特徴とする。
The invention of claim 9 is a method for estimating the temperature at which a member is used, wherein a material equivalent to the member is used, and the change in hardness of the material is used together with the used temperature. It is obtained in advance as a function of the time, the actual measurement value of the used time of the member is obtained, the actual measurement value of the hardness during use of the member is obtained, the used time and the hardness during use. The temperature at which the member is used is estimated from the actual measurement value of the above and the function.

【0020】請求項9の発明によれば、使用中の部材に
大きな損傷を与えることなしに硬さを測定することによ
って、当該部材の使用されてきた温度を推定することが
できる。
According to the ninth aspect of the present invention, the temperature at which the member has been used can be estimated by measuring the hardness without seriously damaging the member in use.

【0021】[0021]

【発明の実施の形態】[第1の実施の形態]マルテンサ
イト系、析出硬化系、フェライト系およびオーステナイ
トーフェライト系ステンレス鋼に生じる劣化挙動は、組
織中のマルテンサイト相およびフェライト相が長時間加
熱されることによりFe原子とCr原子が周期的に分離
する相分離、つまり、Feリッチ相とCrリッチ相に分
離するスピノーダル分解と呼ばれる現象によるものであ
る。このスピノーダル分解は熱活性化過程であることか
ら、分解に必要な温度Tと時間tの関係は式(1)で記
述される。 t=A・exp(Q/RT)……(1) ここで、Aは定数、Rは気体定数、Qは活性化エネルギ
である。
BEST MODE FOR CARRYING OUT THE INVENTION [First Embodiment] The deterioration behavior of martensitic, precipitation hardening, ferritic and austenitic-ferritic stainless steels is that martensitic phase and ferritic phase in the structure are long-term. This is due to a phase separation in which Fe atoms and Cr atoms are periodically separated by heating, that is, a phenomenon called spinodal decomposition in which Fe and Cr rich phases are separated. Since this spinodal decomposition is a thermal activation process, the relationship between the temperature T and the time t required for the decomposition is described by equation (1). t = A · exp (Q / RT) (1) where A is a constant, R is a gas constant, and Q is activation energy.

【0022】機械的特性変化の推定曲線を得るには図1
(a)に示すように、指標とする機械的特性Pの変化を
異なった複数の温度(例えばT1,T)で採取する。
変化する機械的特性Pを初期値Poで除し、温度T1
における経年変化推定曲線(図1(b))を得る。こ
こで、P/Poは経年変化度αである。経年変化度αに
対しては、式(1)が成り立つことから、それぞれの温
度において次の式(2)、(3)が成り立つ。
To obtain an estimated curve of changes in mechanical properties, FIG.
As shown in (a), changes in the mechanical property P used as an index are sampled at a plurality of different temperatures (for example, T 1 and T 2 ).
The changing mechanical characteristic P is divided by the initial value Po to obtain a secular change estimation curve at the temperatures T 1 and T 2 (FIG. 1B). Here, P / Po is the degree of secular change α. Since the equation (1) is established for the degree of secular change α, the following equations (2) and (3) are established at each temperature.

【0023】t1=A・exp(Q/RT1)……(2) t2=A・exp(Q/RT2)……(3) 式(2)、(3)から、この経年変化事象に関する活性
化エネルギQが求まる。
T 1 = A · exp (Q / RT 1 ) ... (2) t 2 = A · exp (Q / RT 2 ) ... (3) From the equations (2) and (3), this secular change The activation energy Q related to the event is obtained.

【0024】 Q=R(log t1−log t2)/(1/T1−1/T2)……(4) 得られたQと経年変化度推定曲線0(図1(c))とか
ら、実際に測定していない温度(T3)における経年変
化度αに対応する時間が、式(5)によって求まる。 log t0 = log t3 − (Q/R)(1/T3−1/T0)……(5)
Q = R (log t 1 −log t 2 ) / (1 / T 1 −1 / T 2 ) ... (4) Obtained Q and secular change estimation curve 0 (FIG. 1 (c)) From this, the time corresponding to the degree of secular change α at the temperature (T 3 ) that is not actually measured is obtained by the equation (5). log t 0 = log t 3 − (Q / R) (1 / T 3 −1 / T 0 ) …… (5)

【0025】上述のようにマルテンサイト系、フェライ
ト系等のステンレス鋼のスピノーダル分解の活性化エネ
ルギQを用いることによって、あらゆる温度条件におけ
る経年変化推定曲線を得ることが可能である。したがっ
て、図2に示すように経年変化推定曲線が求まっている
材料においては、使用温度(例えばT3)、使用時間
(例えばt3)に対応した経年変化度α3が決定できる。
経年変化度α3を入力された初期特性値Poに乗じ、t3
時間使用後の特性値Pを算出する。
By using the activation energy Q of spinodal decomposition of martensitic, ferritic and other stainless steels as described above, it is possible to obtain a secular change estimation curve under all temperature conditions. Therefore, in the material for which the secular change estimation curve is obtained as shown in FIG. 2, the secular change degree α 3 corresponding to the use temperature (eg T 3 ) and the use time (eg t 3 ) can be determined.
Multiply the input initial characteristic value Po by the degree of secular change α 3 to obtain t 3
The characteristic value P after time use is calculated.

【0026】なお、以上述べた各種データの処理や保存
等に電子計算気を使えば能率よく行えることはいうまで
もない。また、上記説明はステンレス鋼について行なっ
たが、式(1)が成り立つ材料であれば、本発明の適用
は、ステンレス鋼に限定されるものではない。
Needless to say, electronic processing can be used efficiently for processing and storing various data described above. Although the above description has been made on stainless steel, the application of the present invention is not limited to stainless steel as long as the material satisfies the formula (1).

【0027】[第2の実施の形態]本発明の第2の実施
の形態では、機械的特性および応力腐食割れ感受性の指
標として硬さを用いる。
[Second Embodiment] In the second embodiment of the present invention, hardness is used as an index of mechanical properties and stress corrosion cracking susceptibility.

【0028】機械的特性、例えば引張強さ、衝撃値、破
壊靭性値等はいずれも破壊試験が必要であり、当該部品
を損傷無しに測定することはできない。ここで、硬さと
他の機械的特性値(例えば耐力、引張強さ、衝撃値、破
壊靭性値等)は一般的に相関性があることから、あらか
じめ硬さと他の機械的特性の相関を求めておけば、硬さ
を他の機械的特性値の指標とすることが可能である。
Mechanical properties such as tensile strength, impact value, fracture toughness value, etc. all require a fracture test, and the component cannot be measured without damage. Here, since hardness and other mechanical property values (for example, proof stress, tensile strength, impact value, fracture toughness value, etc.) are generally correlated, the correlation between hardness and other mechanical property is calculated in advance. If so, the hardness can be used as an index of other mechanical characteristic values.

【0029】さらに、図3に示すように、応力腐食割れ
感受性と硬さの間に相関があることもわかっており、硬
さは応力腐食割れ感受性の指標としても使用可能であ
る。また、図4に示すように使用中の硬さを予測するこ
とで、他の材料特性値を予測することができる。
Further, as shown in FIG. 3, it is also known that there is a correlation between the susceptibility to stress corrosion cracking and the hardness, and the hardness can also be used as an index of the susceptibility to stress corrosion cracking. Further, as shown in FIG. 4, other material characteristic values can be predicted by predicting the hardness during use.

【0030】[第3の実施の形態]本発明の第3の実施
の形態では、上述した第1の実施の形態からさらに図5
に示すように求められた特性値Pと予め定められた限界
値Pcとの大小を比較し、特性値Pが限界値Pc以上と
なったときに当該部材は寿命に達したと推定すること寿
命予測することができることである。
[Third Embodiment] In the third embodiment of the present invention, FIG. 5 is further added from the above-described first embodiment.
As shown in, the magnitude of the characteristic value P obtained is compared with a predetermined limit value Pc, and when the characteristic value P becomes equal to or greater than the limit value Pc, it is estimated that the member has reached the end of life. It can be predicted.

【0031】[第4の実施の形態]本発明の第4の実施
の形態では、図6に示すように硬さ測定結果からオンラ
インで他の機械的特性値の予測を可能とする。超音波式
等の携帯用硬さ測定器と計算機を接続し、あらかじめ対
象材料の機械的特性値の経年変化推定曲線等の必要なデ
ータを計算機に入力し、第2の実施の形態をシステムと
して入力しておくことで、硬さ測定とともに瞬時に他の
機械的特性値の予測および応力腐食割れ感受性の有無を
判定することができる。また、計算機に第3の発明の形
態をシステムとして入力しておくことで、硬さ測定とと
もに瞬時に寿命予測をすることもできる。
[Fourth Embodiment] In the fourth embodiment of the present invention, as shown in FIG. 6, it is possible to predict other mechanical characteristic values online from the hardness measurement result. A portable hardness measuring device such as an ultrasonic type is connected to a computer, and necessary data such as a secular change estimation curve of the mechanical property value of the target material is input to the computer in advance, and the second embodiment is used as a system. By inputting the data, it is possible to instantly predict other mechanical property values and determine the presence or absence of stress corrosion cracking susceptibility as well as the hardness measurement. Further, by inputting the form of the third invention as a system into a computer, it is possible to instantly predict the life as well as the hardness measurement.

【0032】[第5の実施の形態]本発明の第5の実施
の形態では、図7に示すように機器の使用温度が不明な
場合に硬さ測定結果と運転時間から使用温度を推定す
る。機器によっては、使用温度が明確でない場合もあ
る。第2あるいは第4の実施の形態で示した硬さ測定が
可能な部材においては、初期値Po、測定値P、使用時
間tおよび活性化エネルギQと硬さの経年変化推定曲線
から使用温度Tを推定することができる。ただし、温度
履歴に変化があった場合においても使用時間中、一定の
温度で使用していたとして推定される。
[Fifth Embodiment] In the fifth embodiment of the present invention, as shown in FIG. 7, when the operating temperature of the device is unknown, the operating temperature is estimated from the hardness measurement result and the operating time. . The operating temperature may not be clear depending on the device. In the member capable of measuring the hardness shown in the second or fourth embodiment, the operating temperature T is calculated from the initial value Po, the measured value P, the operating time t, the activation energy Q and the estimation curve of the secular change of hardness. Can be estimated. However, even if there is a change in the temperature history, it is estimated that the temperature was used at a constant temperature during the use time.

【0033】[0033]

【発明の効果】以上説明したように、本発明によれば、
ステンレス鋼等の部材の運転時間、運転温度および初期
値がわかれば現在の機械的特性値を予測でき、その部材
を使用した機器の機械的特性値の予測および寿命予測が
可能となる。また、請求項5の発明によれば、現在の硬
さ測定値に基づいて使用温度を推測することができる。
As described above, according to the present invention,
If the operating time, operating temperature, and initial value of a member such as stainless steel are known, the current mechanical characteristic value can be predicted, and the mechanical characteristic value and life of a device using the member can be predicted. According to the invention of claim 5, the operating temperature can be estimated based on the current hardness measurement value.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明における機械的特性変化推定曲線の求め
方を示す説明図であって、(a)は温度T1およびT
における機械的特性Pの変化の例を表すグラフ、(b)
は(a)の機械的特性Pを初期値Poで除した値(経年
変化度α)の変化を表すグラフ、(c)は温度0におけ
る機械的特性変化の経年変化度の推定曲線を表すグラ
フ。
FIG. 1 is an explanatory diagram showing how to obtain a mechanical characteristic change estimation curve according to the present invention, in which (a) shows temperatures T 1 and T 2.
A graph showing an example of changes in the mechanical characteristics P in FIG.
Is a graph showing a change of a value (aging degree α) obtained by dividing the mechanical characteristic P of (a) by an initial value Po, and (c) is a graph showing an estimated curve of the degree of mechanical characteristic change at a temperature of 0. .

【図2】本発明に係る機械的特性変化予測方法の第1の
実施の形態の手順を示す流れ図。
FIG. 2 is a flowchart showing the procedure of the first embodiment of the mechanical property change prediction method according to the present invention.

【図3】硬さと応力腐食割れ感受性の相関性を示す特性
図。
FIG. 3 is a characteristic diagram showing the correlation between hardness and stress corrosion cracking susceptibility.

【図4】本発明に係る機械的特性変化予測方法の第2の
実施の形態の手順を示す流れ図。
FIG. 4 is a flowchart showing the procedure of the second embodiment of the mechanical property change prediction method according to the present invention.

【図5】本発明に係る機械的特性変化予測方法の第3の
実施の形態の手順を示す流れ図。
FIG. 5 is a flowchart showing the procedure of the third embodiment of the mechanical property change prediction method according to the present invention.

【図6】本発明に係る機械的特性変化予測方法の第4の
実施の形態の手順を示す流れ図。
FIG. 6 is a flowchart showing the procedure of the fourth embodiment of the mechanical property change prediction method according to the present invention.

【図7】本発明に係る第5の実施の形態の部材使用温度
推定方法の手順を示す流れ図。
FIG. 7 is a flowchart showing a procedure of a member use temperature estimation method according to a fifth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

0…機械的特性変化の変化度推定曲線(温度T)、1
…機械的特性変化(温度T)、2…機械的特性変化
(温度T)、11…機械的特性変化度(温度T)、
12…機械的特性変化度(温度T)、21…機械的特
性変化の推定曲線(温度T)。
0 ... Degree of change estimation curve of mechanical property change (temperature T 0 ), 1
… Mechanical property change (temperature T 1 ), 2… Mechanical property change (temperature T 2 ), 11… Mechanical property change degree (temperature T 1 ),
12 ... Mechanical property change degree (temperature T 2 ), 21 ... Mechanical characteristic change estimation curve (temperature T 3 ).

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中村 光晴 神奈川県横浜市鶴見区末広町2丁目4番地 株式会社東芝京浜事業所内 Fターム(参考) 2G050 AA01 BA10 BA12 EA01 EA04 EA10 EB01 EC05    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Mitsuharu Nakamura             2-4 Suehiro-cho, Tsurumi-ku, Yokohama-shi, Kanagawa               Toshiba Keihin Office F term (reference) 2G050 AA01 BA10 BA12 EA01 EA04                       EA10 EB01 EC05

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 部材の使用中の機械的特性値の変化を評
価する材料特性変化評価方法であって、 前記部材と同等の材料の機械的特性値の変化を当該機械
的特性値の初期値と温度と時間の関数としてあらかじめ
求めておき、 前記部材の機械的特性値の初期値と温度と時間から、前
記関数に基づいて当該部材の機械的特性値を求めるこ
と、 を特徴とする材料特性変化評価方法。
1. A material property change evaluation method for evaluating a change in a mechanical property value of a member during use, wherein a change in the mechanical property value of a material equivalent to that of the member is an initial value of the mechanical property value. And a temperature and time as a function of time, and from the initial value of the mechanical property value of the member and the temperature and time, to determine the mechanical property value of the member based on the function, material characteristics Change evaluation method.
【請求項2】 請求項1に記載の材料特性変化評価方法
において、前記部材はステンレス鋼であって、前記機械
的特性値の関数は、前記機械的特性値が当該機械的特性
値の初期値に比例することを前提とするものであること
を特徴とする材料特性変化評価方法。
2. The material property change evaluation method according to claim 1, wherein the member is stainless steel, and the function of the mechanical property value is such that the mechanical property value is an initial value of the mechanical property value. A method for evaluating changes in material properties, which is characterized by being proportional to
【請求項3】 請求項1または2に記載の材料特性変化
評価方法において、前記部材はステンレス鋼であって、
前記機械的特性値の関数を求めるに当たって、少なくと
も2種類の温度での機械的特性値の時間依存性を求め、
これらの結果から、時間依存性と温度依存性を前記関数
に反映させるものであることを特徴とする材料特性変化
評価方法。
3. The material property change evaluation method according to claim 1, wherein the member is stainless steel,
In obtaining the function of the mechanical characteristic value, the time dependence of the mechanical characteristic value at at least two kinds of temperatures is obtained,
From these results, the material property change evaluation method is characterized in that the time dependence and the temperature dependence are reflected in the function.
【請求項4】 請求項3に記載の材料特性変化評価方法
において、前記機械的特性値の関数は、熱活性化過程に
基づくとして求めることを特徴とする材料特性変化評価
方法。
4. The material property change evaluation method according to claim 3, wherein the function of the mechanical property value is obtained based on a thermal activation process.
【請求項5】 部材の使用中の機械的特性値の変化を評
価する材料特性変化評価方法であって、 前記部材と同等の材料を用いて、その材料の機械的特性
値と硬さとの関係をあらかじめ求めておき、 前記部材の使用中の硬さの実測値を求め、 前記硬さの実測値および前記機械的特性値と硬さとの関
係から、前記部材の使用中の前記機械的特性値を求める
こと、 を特徴とする材料特性変化評価方法。
5. A material property change evaluation method for evaluating a change in mechanical property value of a member during use, wherein a material equivalent to the member is used, and the relationship between the mechanical property value and hardness of the material. Is obtained in advance, the actual measurement value of the hardness during use of the member is determined, from the relationship between the actual measurement value of the hardness and the mechanical characteristic value and hardness, the mechanical characteristic value during use of the member. The material property change evaluation method characterized by:
【請求項6】 請求項1ないし5のいずれかに記載の材
料特性変化評価方法において、 前記機械的特性値の限界値をあらかじめ設定し、 前記機械的特性値が前記限界値に到達する時点を前記部
材の寿命と設定し、 前記機械的特性値の経年変化に基づいて、前記寿命に到
達する時間を推定すること、 を特徴とする材料特性変化評価方法。
6. The material property change evaluation method according to claim 1, wherein a limit value of the mechanical property value is set in advance, and a time point when the mechanical property value reaches the limit value is set. The material property change evaluation method is characterized in that the life of the member is set, and the time to reach the life is estimated based on the secular change of the mechanical property value.
【請求項7】 請求項1ないし6のいずれかに記載の材
料特性変化評価方法において、前記部材はステンレス鋼
であって、前記機械的特性値は、硬さ、耐力、引張強
さ、伸び、絞り、衝撃値および破壊靭性値のうちの少な
くとも一つであること、を特徴とする材料特性変化評価
方法。
7. The material property change evaluation method according to claim 1, wherein the member is stainless steel, and the mechanical property values are hardness, proof stress, tensile strength, elongation, A material property change evaluation method characterized by being at least one of a drawing, an impact value and a fracture toughness value.
【請求項8】 ステンレス鋼部材の使用中の応力腐食割
れの感受性の変化を評価する材料特性変化評価方法であ
って、 前記ステンレス鋼部材と同等の材料を用いて、その材料
の応力腐食割れの感受性と硬さとの関係をあらかじめ求
めておき、 前記ステンレス鋼部材の使用中の硬さの実測値を求め、 前記硬さの実測値および前記応力腐食割れの感受性と硬
さとの関係から、前記ステンレス鋼部材の使用中の前記
応力腐食割れの感受性を求めること、 を特徴とする材料特性変化評価方法。
8. A method for evaluating changes in material properties for evaluating changes in susceptibility to stress corrosion cracking during use of a stainless steel member, the method comprising using a material equivalent to the stainless steel member, The relationship between susceptibility and hardness is obtained in advance, and the measured value of hardness during use of the stainless steel member is calculated, and from the relationship between the measured value of hardness and the sensitivity and hardness of the stress corrosion cracking, the stainless steel is used. Determining the susceptibility to the stress corrosion cracking during the use of the steel member.
【請求項9】 部材が使用された温度を推定する方法で
あって、 前記部材と同等の材料を用いて、その材料の硬さの変化
を使用された温度と使用された時間との関数としてあら
かじめ求めておき、 前記部材の使用された時間の実測値を求め、 前記部材の使用中の硬さの実測値を求め、 前記使用された時間および使用中の硬さの実測値および
前記関数から、前記部材が使用された温度を推定するこ
と、 を特徴とする材料使用温度推定方法。
9. A method of estimating the temperature at which a member has been used, wherein a material equivalent to the member is used and the change in hardness of the material is a function of the temperature used and the time used. Obtained in advance, obtain the actual measurement value of the time when the member is used, obtain the actual measurement value of the hardness during use of the member, from the actual value of the time used and the hardness during use and the function And estimating the temperature at which the member is used.
JP2002099514A 2002-04-02 2002-04-02 Method for evaluating changes in material properties of stainless steel members Expired - Fee Related JP4028276B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002099514A JP4028276B2 (en) 2002-04-02 2002-04-02 Method for evaluating changes in material properties of stainless steel members

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002099514A JP4028276B2 (en) 2002-04-02 2002-04-02 Method for evaluating changes in material properties of stainless steel members

Publications (2)

Publication Number Publication Date
JP2003294605A true JP2003294605A (en) 2003-10-15
JP4028276B2 JP4028276B2 (en) 2007-12-26

Family

ID=29240922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002099514A Expired - Fee Related JP4028276B2 (en) 2002-04-02 2002-04-02 Method for evaluating changes in material properties of stainless steel members

Country Status (1)

Country Link
JP (1) JP4028276B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008223907A (en) * 2007-03-13 2008-09-25 National Institute Of Advanced Industrial & Technology Back pressure regulating valve
JP2013061222A (en) * 2011-09-13 2013-04-04 Mitsubishi Heavy Ind Ltd Damage evaluation method and formulation method of maintenance evaluation index
CN103852411A (en) * 2012-12-04 2014-06-11 天津市电力公司 Method for evaluating running aging of thermal shrinkage insulating material
CN114279944A (en) * 2021-12-23 2022-04-05 苏州热工研究院有限公司 Method for evaluating thermal aging-stress-corrosion coupling effect of stainless steel welding material

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56163437A (en) * 1980-05-21 1981-12-16 Ishikawajima Harima Heavy Ind Co Ltd Method for quantitatively determining degree of sensitization of stainless steel
JPH01284732A (en) * 1988-05-10 1989-11-16 Mitsubishi Heavy Ind Ltd Evaluating method for creep life expectancy of high temperature equipment
JPH03123859A (en) * 1989-10-06 1991-05-27 Hitachi Ltd Method and device for easy deterioration decision making
JPH04215047A (en) * 1990-02-16 1992-08-05 Westinghouse Electric Corp <We> Method for determining equivalent average temperature associated with temperature histeresis of apparatus
JPH05113397A (en) * 1991-10-22 1993-05-07 Babcock Hitachi Kk Method and apparatus for estimating corrosion of metal material
JPH06331523A (en) * 1993-05-18 1994-12-02 Kansai Electric Power Co Inc:The Method for diagnosing deterioration of laminated product
JPH1010119A (en) * 1996-04-03 1998-01-16 Kyushu Electric Power Co Inc Remaining-life evaluating method for low alloy steel

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56163437A (en) * 1980-05-21 1981-12-16 Ishikawajima Harima Heavy Ind Co Ltd Method for quantitatively determining degree of sensitization of stainless steel
JPH01284732A (en) * 1988-05-10 1989-11-16 Mitsubishi Heavy Ind Ltd Evaluating method for creep life expectancy of high temperature equipment
JPH03123859A (en) * 1989-10-06 1991-05-27 Hitachi Ltd Method and device for easy deterioration decision making
JPH04215047A (en) * 1990-02-16 1992-08-05 Westinghouse Electric Corp <We> Method for determining equivalent average temperature associated with temperature histeresis of apparatus
JPH05113397A (en) * 1991-10-22 1993-05-07 Babcock Hitachi Kk Method and apparatus for estimating corrosion of metal material
JPH06331523A (en) * 1993-05-18 1994-12-02 Kansai Electric Power Co Inc:The Method for diagnosing deterioration of laminated product
JPH1010119A (en) * 1996-04-03 1998-01-16 Kyushu Electric Power Co Inc Remaining-life evaluating method for low alloy steel

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008223907A (en) * 2007-03-13 2008-09-25 National Institute Of Advanced Industrial & Technology Back pressure regulating valve
JP2013061222A (en) * 2011-09-13 2013-04-04 Mitsubishi Heavy Ind Ltd Damage evaluation method and formulation method of maintenance evaluation index
US9689789B2 (en) 2011-09-13 2017-06-27 Mitsubishi Hitachi Power Systems, Ltd. Damage evaluation method and maintenance evaluation index decision method
CN103852411A (en) * 2012-12-04 2014-06-11 天津市电力公司 Method for evaluating running aging of thermal shrinkage insulating material
CN114279944A (en) * 2021-12-23 2022-04-05 苏州热工研究院有限公司 Method for evaluating thermal aging-stress-corrosion coupling effect of stainless steel welding material
CN114279944B (en) * 2021-12-23 2023-05-30 苏州热工研究院有限公司 Method for evaluating coupling effect of heat aging, stress and corrosion of stainless steel welding material

Also Published As

Publication number Publication date
JP4028276B2 (en) 2007-12-26

Similar Documents

Publication Publication Date Title
Garcı́a et al. Effects of prior cold work and sensitization heat treatment on chloride stress corrosion cracking in type 304 stainless steels
Wang et al. Dynamic behavior and a modified Johnson–Cook constitutive model of Inconel 718 at high strain rate and elevated temperature
Benasciutti Some analytical expressions to measure the accuracy of the “equivalent von Mises stress” in vibration multiaxial fatigue
CN103063528B (en) Method for fast evaluating high temperate member residual service life on spot
Xiao et al. Modeling constitutive relationship of 6013 aluminum alloy during hot plane strain compression based on Kriging method
Hayhurst et al. Constitutive equations for time independent plasticity and creep of 316 stainless steel at 550 C
Yeh et al. NDE of metal damage: ultrasonics with a damage mechanics model
Xie et al. Experimental study on creep characterization and lifetime estimation of RPV material at 723-1023 K
JP2003294605A (en) Method of evaluating changes in material characteristics and method of estimating material operating temperature
JP2009031106A (en) Evaluation method of mechanical property of metal material and evaluation method of susceptibility for stress corrosion crack
Nath et al. Prediction of asymmetric cyclic‐plastic behaviour for cyclically stable non‐ferrous materials
Gang et al. Modeling constitutive relationship of 6013 aluminum alloy during hot plane strain compression based on Kriging method
CN111859619B (en) Nondestructive prediction method for low cycle fatigue life of heat aging material by using hardness
Acharya et al. Characterization of intermetallic precipitates in Ni-base alloys by non-destructive techniques
Chen et al. Corrosion fatigue crack growth behavior of alloy 690 in high-temperature pressurized water
Tamura et al. Changes in estimated dislocation density during creep in martensitic heat-resistant steel
Kim et al. Non-linear modeling of stress relaxation curves for Grade 91 steel
Quan et al. Constitutive modeling for tensile behaviors of ultra-high-strength-steel BR1500HS at different temperatures and strain rates
Kim et al. Improved methodology for determining tensile elastic and plastic strain components of Alloy 617
Ranatowski The influence of the constraint effect on the mechanical properties and weldability of the mismatched weld joints
Nishimura et al. Estimation of parameter for predicting time to failure using three stress corrosion cracking methods—constant load, constant strain, and slow strain rate technique
Wei et al. A New Linear Superposition Theory and its Application in Creep Fatigue-Oxidation Crack Growth Modeling
Wei et al. A thermal-fatigue life assessment procedure for components under combined temperature and load cycling
Zhang et al. Parametric optimization of DL‐EPR technique for evaluating IGC susceptibility of 316LN type stainless steel using the Taguchi method
Smirnov et al. Conceptual model of resource assessment of fuel and energy complex long working equipment on the basis of structural criteria

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060707

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060823

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070626

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071011

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101019

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101019

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111019

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111019

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121019

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131019

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees