JP2003294386A - Internally grooved heat transfer pipe and its manufacturing apparatus - Google Patents

Internally grooved heat transfer pipe and its manufacturing apparatus

Info

Publication number
JP2003294386A
JP2003294386A JP2002100580A JP2002100580A JP2003294386A JP 2003294386 A JP2003294386 A JP 2003294386A JP 2002100580 A JP2002100580 A JP 2002100580A JP 2002100580 A JP2002100580 A JP 2002100580A JP 2003294386 A JP2003294386 A JP 2003294386A
Authority
JP
Japan
Prior art keywords
tube
heat transfer
pipe
diameter
roll
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002100580A
Other languages
Japanese (ja)
Other versions
JP3871597B2 (en
Inventor
Nobuaki Hinako
伸明 日名子
Chikara Saeki
主税 佐伯
Kiyonori Koseki
清憲 小関
Hideki Iwamoto
秀樹 岩本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2002100580A priority Critical patent/JP3871597B2/en
Publication of JP2003294386A publication Critical patent/JP2003294386A/en
Application granted granted Critical
Publication of JP3871597B2 publication Critical patent/JP3871597B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Rigid Pipes And Flexible Pipes (AREA)
  • Metal Extraction Processes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an internally grooved heat transfer pipe excellent in the property of contact between the outer surface of the pipe and fins and in heat- transfer performance, and also to provide a manufacturing apparatus for the pipe. <P>SOLUTION: The internally grooved heat transfer pipe has spiral grooves and/or crossing grooves formed on its inner surface. Sinusoidal, periodical projecting and recessed parts formed on the outer surface of the pipe have an average interval of 0.8 mm or more as measured over 5 mm in the direction of the pipe axis and have a height difference of not more than 5 μm between the apex of the highest projecting part and the bottom of the lowest recessed part. The average surface roughness Ra of the pipe outer surface measured in the direction of the pipe axis is not more than 0.4 μm, with the maximum surface roughness Rmax being 4 μm or less. Further, when grooves are transferred onto the inner surface of the heat transfer pipe by means of drum-shaped rolling rolls, the surface roughness Ra of the rolling roll in its circumferential direction and in the direction of the roll axis is 0.2 μm or less, with its maximum surface roughness Rmax being 1.5 μm or less. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、管内面に螺旋溝及
び/又は交差溝が形成されたシームレスの内面溝付伝熱
管及びその製造装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a seamless inner grooved heat transfer tube having spiral grooves and / or intersecting grooves formed on the inner surface of the tube, and a manufacturing apparatus therefor.

【0002】[0002]

【従来の技術】熱交換器においては、銅又は銅合金から
なる伝熱管を使用して熱交換を行う。この場合に、伝熱
性能を高めるために、伝熱管の内面には、螺旋状及び/
又は交差状の溝が形成されている。この内面溝付伝熱管
としては、素管の内面に溝付プラグを配置し、管外から
転造ボール又は圧延ロールにより素管を前記溝付プラグ
に押しつけてその溝形状を管内面に転写することにより
製造されるシームレス管、又は帯板状の素板の上面に溝
形状を転写し、その後帯板の幅方向に丸めて両端部を溶
接することにより製造される溶接管がある。
2. Description of the Related Art In a heat exchanger, heat is exchanged using a heat transfer tube made of copper or a copper alloy. In this case, in order to improve the heat transfer performance, the inner surface of the heat transfer tube has a spiral shape and / or
Or, a cross-shaped groove is formed. As this inner surface grooved heat transfer tube, a grooved plug is arranged on the inner surface of the raw tube, and the raw tube is pressed against the grooved plug from the outside of the tube by a rolling ball or a rolling roll to transfer the groove shape to the inner surface of the tube. There is a seamless pipe manufactured by the above, or a welded pipe manufactured by transferring the groove shape to the upper surface of a strip-shaped base plate, then rolling the strip in the width direction of the strip and welding both ends.

【0003】この場合に、溶接管は、種々の形状の溝を
形成しやすいものの、前記溝をその片面に形成した銅又
は銅合金の帯板を幅方向に丸めて溶接することにより製
造するため、製造工程が複雑で、生産性が低いという難
点がある。これに対し、シームレス管は生産性が高いと
いう利点がある。
In this case, although the welded pipe is easy to form grooves of various shapes, it is manufactured by rolling a copper or copper alloy strip having the grooves on one side thereof in the width direction and welding. However, the manufacturing process is complicated and the productivity is low. On the other hand, seamless tubes have the advantage of high productivity.

【0004】図3は従来のシームレス管の製造装置を示
す図である。素管18は焼鈍処理された後、縮径ダイス
11により縮径加工され、転造ボールによる押圧を受
け、その後、整径ダイス17により縮径加工されて製品
径とされる。この素管18の内部には、縮径ダイス11
の配置位置に整合する位置に、フローティングプラグ1
2が配置されており、このフローティングプラグ12は
その最大径が縮径ダイス11の最小径よりも大きい。従
って、フローティングプラグ12には、矢印方向に引き
抜かれる素管18による摩擦力により、矢印方向に力が
作用する共に、縮径ダイス11により移動が阻止されて
その位置に係止される。
FIG. 3 is a diagram showing a conventional seamless pipe manufacturing apparatus. After being annealed, the blank 18 is reduced in diameter by the diameter reducing die 11, pressed by the rolling balls, and then reduced in diameter by the diameter adjusting die 17 to obtain the product diameter. Inside the tube 18, the diameter reduction die 11
Floating plug 1 at a position that matches the placement position of
2 are arranged, and the maximum diameter of the floating plug 12 is larger than the minimum diameter of the diameter-reducing die 11. Therefore, the floating plug 12 has a force acting in the direction of the arrow due to the frictional force generated by the element pipe 18 that is pulled out in the direction of the arrow, and is blocked by the diameter-reducing die 11 to be locked at that position.

【0005】一方、このフローティングプラグ12には
プラグ軸14を介して溝付プラグ13が連結されてお
り、この溝付プラグ13は転造ボール15の配置位置に
整合する位置に止まるようになっている。転造ボール1
5は管外面に転動しつつ管周方向に公転するように回転
駆動されており、この転造ボール15により素管18が
溝付プラグ13に向けて押圧され、溝付プラグ13の外
面の溝形状が管内面に転写され、内面溝16が形成され
る。
On the other hand, a grooved plug 13 is connected to the floating plug 12 via a plug shaft 14, and the grooved plug 13 stops at a position aligned with the position of the rolling ball 15. There is. Rolled ball 1
5 is rotationally driven so as to revolve in the circumferential direction of the pipe while rolling on the outer surface of the pipe, and the rolling pipe 15 presses the raw pipe 18 toward the grooved plug 13 so that the outer surface of the grooved plug 13 is The groove shape is transferred to the inner surface of the tube, and the inner surface groove 16 is formed.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、この転
造ボール15により押圧された内面溝付管は、管の外面
を転造ボールが回転しながら引き抜かれるために、管外
面に螺旋状のボールの通過痕が形成されるという欠点が
ある。このボール通過痕は、管軸方向に対して特定の周
期・深さの正弦曲線状の表面形状を呈する。
However, the inner surface grooved tube pressed by the rolling ball 15 has a spiral ball shape on the outer surface of the tube because the rolling ball is pulled out while rotating the outer surface of the tube. There is a drawback that passage marks are formed. The ball passage mark has a sinusoidal surface shape with a specific period and depth in the tube axis direction.

【0007】この伝熱管は、U字形に曲げ加工された
後、複数の平板状のアルミニウムフィンに設けた孔に挿
通され、管内部にマンドレルを挿入し、このマンドレル
により管を拡開することにより、伝熱管とフィンとが固
定される。
This heat transfer tube is bent into a U-shape and then inserted into holes provided in a plurality of flat plate-shaped aluminum fins, a mandrel is inserted into the tube, and the tube is expanded by the mandrel. The heat transfer tube and the fin are fixed.

【0008】この場合に、伝熱管の外面に前述のボール
通過痕が存在すると、伝熱管を拡管してアルミニウムフ
ィンと密着させようとしたときに、銅管外表面とアルミ
ニウムフィンとの間に形成される隙間の体積が大きくな
り、伝熱性能が低下する要因となる。
In this case, if the above-mentioned ball passage mark is present on the outer surface of the heat transfer tube, it is formed between the outer surface of the copper tube and the aluminum fin when the heat transfer tube is expanded to make close contact with the aluminum fin. As a result, the volume of the created gap becomes large, which causes a decrease in heat transfer performance.

【0009】本発明はかかる問題点に鑑みてなされたも
のであって、管外面とフィンとの接触性が良好で、伝熱
性能が優れた内面溝付伝熱管及びその製造装置を提供す
ることを目的とする。
The present invention has been made in view of the above problems, and provides an inner grooved heat transfer tube having good contact property between the outer surface of the tube and the fins and excellent heat transfer performance, and an apparatus for manufacturing the same. With the goal.

【0010】[0010]

【課題を解決するための手段】本発明に係る内面溝付伝
熱管は、管内面に螺旋溝及び/又は交差溝が形成された
内面溝付伝熱管において、管外面に形成された正弦曲線
状の周期的な凹凸が、管軸方向に5mmにわたって測定
したときの平均ピッチで0.8mm以上、最も高い凸部
の頂部と最も低い凹部の底部との高低差が5μm以下で
あることを特徴とする。
A heat transfer tube with an inner surface groove according to the present invention is a heat transfer tube with an inner surface groove having a spiral groove and / or a cross groove formed on the inner surface of the tube. The average pitch when measured over 5 mm in the tube axis direction is 0.8 mm or more, and the height difference between the top of the highest convex portion and the bottom of the lowest concave portion is 5 μm or less. To do.

【0011】この内面溝付伝熱管において、管軸方向に
測定した管外面の平均表面粗さRaが0.4μm以下、
最大表面粗さRmaxが4μm以下であることが好まし
い。
In this heat transfer tube with inner groove, the average surface roughness Ra of the outer surface of the tube measured in the tube axis direction is 0.4 μm or less,
The maximum surface roughness Rmax is preferably 4 μm or less.

【0012】本発明に係る内面溝付管の製造装置は、素
管を縮径する縮径ダイスと、前記素管の通流方向におけ
る前記縮径ダイスの下流側にその回転軸を前記素管の管
軸に垂直にして配置された少なくとも1対の鼓状ロール
と、前記縮径ダイスの配置位置に整合する位置の素管内
部に前記縮径ダイスに係止されて止まるフローティング
プラグと、前記フローティングプラグにプラグ軸を介し
て連結されて前記鼓状ロールの配置位置に整合する位置
の素管内部に配置された溝付プラグと、を有し、前記鼓
状ロールにより前記素管を前記溝付プラグに向けて押圧
して螺旋溝及び/又は交差溝を前記素管の内面に転写す
る内面溝付管の製造装置において、前記鼓状ロールの円
周方向及びロール軸方向のロールの表面粗さRaが0.
2μm以下、Rmaxが1.5μm以下であることを特
徴とする。
The apparatus for manufacturing an inner grooved pipe according to the present invention comprises a diameter-reducing die for reducing the diameter of the elemental tube, and a rotation axis of the elemental tube located downstream of the diameter-reducing die in the flow direction of the elemental tube. At least one pair of drum-shaped rolls arranged perpendicularly to the tube axis, and a floating plug that is stopped by being locked by the diameter-reducing die inside the raw tube at a position that matches the position of the diameter-reducing die. A grooved plug that is connected to a floating plug through a plug shaft and that is arranged inside the element tube at a position that matches the arrangement position of the hourglass-shaped roll. In an apparatus for manufacturing an inner grooved tube for pressing a spiral groove and / or a cross groove to the inner surface of the raw tube by pressing it toward an attached plug, the surface roughness of the roll in the circumferential direction and the roll axial direction of the drum-shaped roll. Ra is 0.
It is characterized in that it is 2 μm or less and Rmax is 1.5 μm or less.

【0013】本発明においては、管外面を管の引き抜き
方向にロールで圧延するようにしたので、ボール転造の
場合のようなボールの通過痕は形成されない。また、本
発明においては、管外面の表面プロフィールが、管軸方
向に5mmにわたって測定したときに正弦曲線状の周期
的な凹凸の平均ピッチが0.8mm以上であり、最も高
い凸部の高さと最も低い凹部との差が5μm以下である
ので、管外面は管軸方向について極めて平滑である。従
って、伝熱管をフィンの孔に挿通し、拡管したときに、
伝熱管とフィンとの間の間隙が小さく、また各フィンに
ついて均一であるので、伝熱管とフィンとの間の接触性
が高く、優れた伝熱性能を得ることができる。
In the present invention, since the outer surface of the tube is rolled by the roll in the drawing direction of the tube, the passing mark of the ball unlike the case of ball rolling is not formed. Further, in the present invention, the surface profile of the outer surface of the tube has an average pitch of sinusoidal periodic unevenness of 0.8 mm or more when measured over the tube axis direction of 5 mm, and the height of the highest convex portion is Since the difference with the lowest concave portion is 5 μm or less, the outer surface of the tube is extremely smooth in the tube axis direction. Therefore, when the heat transfer tube is inserted through the fin hole and expanded,
Since the gap between the heat transfer tube and the fin is small and the fins are uniform, the contact between the heat transfer tube and the fin is high, and excellent heat transfer performance can be obtained.

【0014】[0014]

【発明の実施の形態】以下、本発明の実施例について、
添付の図面を参照して具体的に説明する。図1は本発明
の内面溝付伝熱管を製造する装置を示す図である。縮径
ダイス2、1対の圧延ロール3、整径ダイス4,1対の
圧延ロール5、整径ダイス6が、この順に、素管1の抽
伸方向に配列されており、素管1の内部には、縮径ダイ
ス2に整合する位置にフローティングプラグ7が配置さ
れ、圧延ロール3に整合する位置に溝付プラグ9aが配
置され、圧延ロール5に整合する位置に溝付プラグ9c
が配置されている。溝付プラグ9a、9cの周面には、
夫々溝9b、9dが形成されている。フローティングプ
ラグ7と、溝付プラグ9aと、溝付プラグ9cとは、プ
ラグ軸10により連結されている。そして、フローティ
ングプラグ7が、大径部7aと、縮径部7bとからな
り、この大径部7aが縮径ダイス2の最小径部よりも大
径であるために、引き抜かれる素管1の摩擦力によりフ
ローティングプラグ7は素管1の引抜方向に力を印加さ
れると共に、縮径ダイス2により通過を阻止されて、縮
径ダイス2の位置に止まる。これにより、フローティン
グプラグ7に連結された溝付プラグ9a、9cは、夫々
圧延ロール3,5の位置に止まる。1対の圧延ロール3
と1対の圧延ロール5とは、その回転軸を管軸に直交す
る方向にして配置されているが、圧延ロール3の回転軸
と、圧延ロール5の回転軸とは、相互に0〜90°の角
度をなして交差している。なお、図示例は、圧延ロール
3の回転軸と、圧延ロール5の回転軸とが直交してい
る。よって、素管1は、圧延ロール3により圧下を受け
る部位と、圧延ロール5により圧下を受ける部位とが、
管周方向に中心角で約90°ずれている。これにより、
素管1は管周方向のほぼ全域で圧延ロールによる圧下を
受け、内面には、その周方向のほぼ全域で溝が転写され
る。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below.
A detailed description will be given with reference to the accompanying drawings. FIG. 1 is a view showing an apparatus for manufacturing a heat transfer tube with an inner groove according to the present invention. The diameter-reducing die 2, a pair of rolling rolls 3, the diameter-adjusting die 4, a pair of rolling rolls 5, and the diameter-adjusting die 6 are arranged in this order in the drawing direction of the tube 1, and the inside of the tube 1 , A floating plug 7 is arranged at a position aligned with the diameter reducing die 2, a grooved plug 9a is arranged at a position aligned with the rolling roll 3, and a grooved plug 9c is aligned at a position aligned with the rolling roll 5.
Are arranged. On the peripheral surfaces of the grooved plugs 9a and 9c,
Grooves 9b and 9d are formed, respectively. The floating plug 7, the grooved plug 9 a, and the grooved plug 9 c are connected by a plug shaft 10. The floating plug 7 includes a large-diameter portion 7a and a reduced-diameter portion 7b. Since the large-diameter portion 7a has a larger diameter than the minimum-diameter portion of the diameter-reducing die 2, the raw pipe 1 to be pulled out Due to the frictional force, a force is applied to the floating plug 7 in the pulling-out direction of the raw tube 1, and the diameter reduction die 2 prevents the floating plug 7 from passing therethrough, so that the floating plug 7 stays at the position of the diameter reduction die 2. As a result, the grooved plugs 9a and 9c connected to the floating plug 7 stop at the positions of the rolling rolls 3 and 5, respectively. A pair of rolling rolls 3
And the pair of rolling rolls 5 are arranged with their rotation axes orthogonal to the tube axis, but the rotation axis of the rolling roll 3 and the rotation axis of the rolling roll 5 are 0 to 90 degrees relative to each other. They intersect at an angle of °. In the illustrated example, the rotation axis of the rolling roll 3 and the rotation axis of the rolling roll 5 are orthogonal to each other. Therefore, the base pipe 1 has a portion subjected to reduction by the rolling rolls 3 and a portion subjected to reduction by the rolling rolls 5,
The center angle is deviated by about 90 ° in the pipe circumferential direction. This allows
The raw tube 1 is subjected to reduction by the rolling rolls in almost the entire area in the circumferential direction of the tube, and grooves are transferred to the inner surface in almost the entire area in the circumferential direction.

【0015】但し、素管1の内面に溝を形成する際、溝
付プラグ9a、9cはプラグ軸10に対して回転可能に
支持されているものの、圧延ロール3による圧下により
形成された管内面の溝が溝付プラグ9aの溝9bを抜け
るために、素管1には管周方向に回転する方向の捻り力
を受ける。よって、圧延ロール3により圧下を受けた部
位(又は、圧下を受けなかった部位)は圧延ロール5の
配置位置に到達したときに、管周方向に若干の中心角で
ずれている。そこで、圧延ロール5の回転軸と、圧延ロ
ール3の回転軸とは直交させずに、そのズレの分だけ直
交する方向からずらせた方が好ましい。即ち、圧延ロー
ル5の回転軸は、圧延ロール3により圧下を受けた部位
(又は、圧下を受けなかった部位)が圧延ロール5によ
り圧下を受けない部位(又は、圧下を浮ける部位)に一
致するように、圧延ロール3の回転軸の方向に直交する
方向に対し、素管の捻りの角度だけ、ずらすことが好ま
しい。
However, when the groove is formed on the inner surface of the raw tube 1, the grooved plugs 9a and 9c are rotatably supported with respect to the plug shaft 10, but the inner surface of the tube formed by the rolling by the rolling roll 3 is pressed. Since the groove of (1) passes through the groove 9b of the grooved plug 9a, the elemental tube 1 receives a twisting force in the direction of rotation in the tube circumferential direction. Therefore, when the rolling roll 3 receives the reduction (or the portion that does not receive the reduction) reaches the position where the rolling roll 5 is arranged, it is displaced at a slight central angle in the pipe circumferential direction. Therefore, it is preferable that the rotation axis of the rolling roll 5 and the rotation axis of the rolling roll 3 are not orthogonal to each other, but are deviated from the direction orthogonal to each other by the deviation. That is, the rotation axis of the rolling roll 5 coincides with the portion (or the portion that does not undergo reduction) by the rolling roll 3 that does not undergo reduction by the rolling roll 5 (or the portion that floats the reduction). As described above, it is preferable to shift the element tube by the angle of twist with respect to the direction orthogonal to the direction of the rotation axis of the rolling roll 3.

【0016】なお、整径ダイス4は、素管1が圧延ロー
ル3により圧下を受けて楕円状に扁平したときに、これ
を真円に戻す作用を有する。
The diameter-adjusting die 4 has a function of returning the element tube 1 to a perfect circle when the element tube 1 is pressed by the rolling roll 3 and flattened into an elliptical shape.

【0017】このようにして、整径ダイス6により所定
の寸法の製品径を有し、管内面に溝1bが形成された内
面溝付管1aが製造される。
In this way, the inner diameter grooved pipe 1a having a product diameter of a predetermined size and having the groove 1b formed on the inner surface of the pipe is manufactured by the diameter adjusting die 6.

【0018】なお、図1に示す製造装置は、2組の圧延
ロール3,5と、各組の圧延ロールに整合する位置に設
けた溝付プラグ9a、9cとを有する場合のものである
が、管内のほぼ全面に溝を形成する必要がない場合、又
は管内に交差溝を形成する必要がない場合には、圧延ロ
ールは1対設ければよい。
Although the manufacturing apparatus shown in FIG. 1 has two sets of rolling rolls 3 and 5, and grooved plugs 9a and 9c provided at positions aligned with the rolling rolls of each set, If it is not necessary to form grooves on almost the entire surface of the pipe, or if it is not necessary to form cross grooves in the pipe, one pair of rolling rolls may be provided.

【0019】而して、本発明においては、圧延ロール
3,5の素管1に転動する面の表面粗さRaは、ロール
の円周方向及びロール軸方向のいずれにおいても0.2
μm以下である。
Thus, in the present invention, the surface roughness Ra of the surface of the rolling rolls 3, 5 rolling on the raw pipe 1 is 0.2 in both the circumferential direction of the roll and the axial direction of the roll.
μm or less.

【0020】このような圧延ロール3,5を使用し、図
1に示す装置により、管内面に溝を形成することによ
り、管外面の表面プロファイルを滑らかなものにするこ
とができる。即ち、管外面の凹凸形状を管軸方向に5m
mにわたって測定したときに、正弦曲線状の周期的な凹
凸の平均ピッチが0.8mm以上となり、微細な凹凸が
なくなる。また、管外面の凹凸形状を管軸方向に5mm
にわたって測定したときに、最も高い凸部の頂部と最も
低い凹部の底部との高低差が5μm以下である。このた
め、管外面の凹凸が極めて小さく、平滑が外面が得られ
る。
By using the rolling rolls 3 and 5 as described above and forming a groove on the inner surface of the tube by the apparatus shown in FIG. 1, the surface profile of the outer surface of the tube can be made smooth. That is, the uneven shape on the outer surface of the pipe is 5 m in the axial direction of the pipe.
When measured over m, the average pitch of sinusoidal periodic irregularities becomes 0.8 mm or more, and fine irregularities disappear. Also, the uneven shape of the outer surface of the pipe is 5 mm in the pipe axis direction.
When measured over, the height difference between the top of the highest convex portion and the bottom of the lowest concave portion is 5 μm or less. Therefore, the unevenness of the outer surface of the tube is extremely small, and the smooth outer surface can be obtained.

【0021】更に、管外面の管軸方向に測定した表面粗
さRaが0.4μm以下、Rmaxが4μm以下である
ことが好ましい。
Further, it is preferable that the surface roughness Ra of the outer surface of the tube measured in the tube axis direction is 0.4 μm or less and the Rmax is 4 μm or less.

【0022】圧延後の管外面の微細な凹凸(表面粗さ)
は、圧延前の素管の表面粗さ、圧延ロールの表面粗さ、
圧延ロール材質、圧下率、潤滑油等により影響を受け
る。この表面粗さRaが0.4μm以下、Rmaxが4
μm以下の条件を満たさないと、アルミニウムフィンへ
の挿入抵抗の増大(フィンの破損、作業性の低下等)、及
び伝熱性能の低下等を招きやすい。従って、Ra≦0.
4μm、Rmax≦4μmであることが望ましい。更に
好ましくは、Ra≦0.3μm、Rmax≦3.5μm
である。
Fine irregularities (surface roughness) on the outer surface of the pipe after rolling
Is the surface roughness of the raw pipe before rolling, the surface roughness of the rolling roll,
It is affected by the material of rolling rolls, rolling reduction, lubricating oil, etc. This surface roughness Ra is 0.4 μm or less and Rmax is 4
If the condition of not more than μm is not satisfied, the insertion resistance into the aluminum fin (damage of the fin, deterioration of workability, etc.) and the heat transfer performance are likely to be deteriorated. Therefore, Ra ≦ 0.
It is desirable that 4 μm and Rmax ≦ 4 μm. More preferably, Ra ≦ 0.3 μm, Rmax ≦ 3.5 μm
Is.

【0023】銅又は銅合金素管を鼓状のロールで圧延す
ると、銅又は銅合金素管の外表面の微細な凸部が圧延ロ
ールにより平坦化されと共に、圧延ロールの表面の凹凸
プロフィールが素管の表面に転写される。このときの素
管の外面の表面粗さを小さくするためには、圧延ロール
の表面粗さが小さいことが必要である。即ち、ロール円
周方向及びロール軸方向の圧延ロールの表面粗さRaが
0.2μmを超えると、圧延された素管の表面粗さRa
を0.4μm以下とすることが難しくなる。従って、ロ
ール円周方向及びロール軸方向のロールの表面粗さRa
は0.2μm以下とすることが必要である。好ましく
は、ロールの表面粗さRaは0.15μm以下である。
また、ロール表面のRmaxは1.5μm以下であるこ
とが好ましく、更に好ましくは1μm以下である。
When the copper or copper alloy base pipe is rolled with a drum-shaped roll, fine projections on the outer surface of the copper or copper alloy base pipe are flattened by the rolling roll, and the uneven profile on the surface of the rolling roll is flat. Transferred to the surface of the tube. At this time, in order to reduce the surface roughness of the outer surface of the raw pipe, it is necessary that the surface roughness of the rolling roll is small. That is, when the surface roughness Ra of the rolling roll in the roll circumferential direction and the roll axial direction exceeds 0.2 μm, the surface roughness Ra of the rolled raw pipe is Ra.
Is difficult to be 0.4 μm or less. Therefore, the surface roughness Ra of the roll in the roll circumferential direction and the roll axial direction is
Needs to be 0.2 μm or less. Preferably, the surface roughness Ra of the roll is 0.15 μm or less.
The Rmax on the roll surface is preferably 1.5 μm or less, more preferably 1 μm or less.

【0024】圧延ロールは、HRC80以上の超硬(J
ISV1等)、HRC60以上のSK3、SKD11等
の鋼材、又はショア硬さ100以上のセラミックス(サ
イアロン、窒化珪素等)等により製造することができ
る。
The rolling roll is made of cemented carbide (JC
ISV1 etc.), HRC60 or higher SK3, SKD11 or other steel material, or Shore hardness 100 or higher ceramics (sialon, silicon nitride, etc.) and the like.

【0025】[0025]

【実施例】次に、本発明の実施例の内面溝付伝熱管を使
用した熱交換器を製造し、その伝熱性能を本発明の範囲
から外れる比較例と比較した結果について説明する。伝
熱性能の評価は以下の工程により行った。溝付圧延工程
→LWC(レベルワウンドコイル)への巻取り工程→焼
鈍(不活性ガス雰囲気)工程→整直及び切断工程→ヘアピ
ン曲げ工程→熱交換器組立(アルミフィンへの挿入,拡
管,ろう付け)工程→気密試験→伝熱性能測定試験この
熱交換器の組立工程においては、焼鈍したLWCから内
面溝付銅又は銅合金管を所定の長さに切断し、ピッチ2
1mmでヘアピン曲げ加工して、U字状の管を製作し
た。次に、平行に配列された多数のアルミニウムフィン
にヘアピン曲げしたU字状管を挿入し、アルミフィンと
銅管の密着性を高めるために銅管内に管内最小内径より
少し大きいソロバン玉状の拡管ブレットを挿入して、管
内径を押し広げ(拡管)、ヘアピンの開口端にUベンド管
(U字状の継手管)を所定の配管経路になるように、ろ
う付けし、熱交換器を製作した。この熱交換器の寸法
は、600mm×230mmであり、列数は2、段数は
12である。
EXAMPLE A heat exchanger using the heat transfer tube with internal groove according to the example of the present invention will be manufactured, and the result of comparison of its heat transfer performance with a comparative example outside the scope of the present invention will be described. The heat transfer performance was evaluated by the following steps. Grooving rolling process → LWC (level wound coil) winding process → Annealing (inert gas atmosphere) process → Straightening and cutting process → Hairpin bending process → Heat exchanger assembly (insertion into aluminum fin, expansion, brazing) Process) → airtightness test → heat transfer performance measurement test In the process of assembling this heat exchanger, a copper or copper alloy tube with inner groove is cut to a predetermined length from the annealed LWC, and pitch 2
A U-shaped tube was manufactured by bending a hairpin with 1 mm. Next, insert a hairpin-bent U-shaped tube into a number of aluminum fins arranged in parallel, and in order to improve the adhesion between the aluminum fin and the copper tube, the abacus ball shape that is slightly larger than the minimum inner diameter inside the tube is inserted into the copper tube. Insert a tube expansion bullet to expand the tube inner diameter (tube expansion), and braze a U-bend tube (U-shaped joint tube) to the open end of the hairpin so that it has a specified piping path, and then install the heat exchanger. I made it. The dimensions of this heat exchanger are 600 mm × 230 mm, the number of rows is 2 and the number of stages is 12.

【0026】アルミニウムフィンは、板厚が0.11m
mのJISA1100−H26アルミニウム合金板に、
通常のプレコート(シリカ表面処理)と高滑り性のプレ
コート(潤滑剤入りシリカ表面処理)を実施し、その
後、フィン形状をコルゲート状とし、ドローレス成形に
より、1列10段、カラーハイト1.20mmに成形し
た。カラーの孔径は直径7.20mmである。
The aluminum fin has a plate thickness of 0.11 m.
m JIS A1100-H26 aluminum alloy plate,
Normal precoat (silica surface treatment) and highly slippery precoat (lubricant-containing silica surface treatment) were carried out, and then the fin shape was made into a corrugated shape, and by drawless molding, 1 row 10 steps, color height 1.20 mm. Molded. The hole diameter of the collar is 7.20 mm in diameter.

【0027】伝熱性能は、下記表1に示す測定条件で測
定した。伝熱性能の測定結果は、実施例3の伝熱性能を
1として、指数表示した。なお、比較例5はシームレス
転造管(転造ボールにより製造したシームレス管)を使
用して作製した熱交換器(従来例)である。また、冷媒
R410Aは非共沸混合冷媒である。
The heat transfer performance was measured under the measurement conditions shown in Table 1 below. The measurement result of the heat transfer performance is shown as an index with the heat transfer performance of Example 3 being 1. Comparative Example 5 is a heat exchanger (conventional example) manufactured by using a seamless rolled tube (seamless tube manufactured by rolling balls). The refrigerant R410A is a non-azeotropic mixed refrigerant.

【0028】[0028]

【表1】 [Table 1]

【0029】圧延ロールの表面形状を下記表2に示し、
得られた内面溝付管の表面凹凸形状を下記表3に示し、
蒸発性能及び凝縮性能の測定結果を下記表4に示す。
The surface shape of the rolling roll is shown in Table 2 below.
The surface irregularities of the obtained inner grooved tube are shown in Table 3 below,
The measurement results of the evaporation performance and the condensation performance are shown in Table 4 below.

【0030】[0030]

【表2】 [Table 2]

【0031】[0031]

【表3】 [Table 3]

【0032】[0032]

【表4】 [Table 4]

【0033】図2は、実施例1及び比較例5についての
表面の凹凸ピッチを示すチャート及びである。この
チャートは、銅管を管軸方向が水平になるように固定
し、触針式表面粗さ計のプローブを伝熱管の外面に接触
させた状態でスキャンし、プローブの変位を記録したも
のである。チャートの横軸はプローブのスキャン長さ
で、1目盛り(1mm)が0.02mmに相当し、横方
向は50倍に拡大されている。一方、縦軸は、プローブ
の上下方向の位置で、1目盛り(1mm)が0.5μm
に相当し、縦方向は2000倍に拡大されている。
2A and 2B are a chart and a chart showing the uneven pitch of the surface in Example 1 and Comparative Example 5, respectively. In this chart, the copper tube is fixed so that the tube axis is horizontal, the probe of the stylus type surface roughness meter is scanned in contact with the outer surface of the heat transfer tube, and the displacement of the probe is recorded. is there. The horizontal axis of the chart is the scan length of the probe, and one scale (1 mm) corresponds to 0.02 mm, and the horizontal direction is magnified 50 times. On the other hand, the vertical axis is the vertical position of the probe, and one scale (1 mm) is 0.5 μm.
And is enlarged 2000 times in the vertical direction.

【0034】この図2に示すように、従来の転造ボール
により製造した伝熱管の外面は凹凸が正弦波状にうねり
をもって形成されており、そのピッチは表4に示すよう
に、0.7mmである。これに対し、本発明の実施例1
はこのような正弦波状の凹凸は認められない。また、本
発明の実施例1乃至3の圧延ロール表面の粗さRaは
0.2μm以下であり、伝熱管外面の凹凸ピッチは計測
できず、凸部と凹部との最大高低差は5μm以下であ
り、伝熱管の表面粗さRaが0.4μm以下、Rmax
が4μm以下であるので、この伝熱管を使用することに
より、蒸発性能及び凝縮性能が優れた熱交換器を得るこ
とができる。
As shown in FIG. 2, the outer surface of the heat transfer tube manufactured by the conventional rolling balls has unevenness with sine wave undulations, and its pitch is 0.7 mm as shown in Table 4. is there. On the other hand, Example 1 of the present invention
No such sinusoidal unevenness is observed. Further, the roughness Ra of the surface of the rolling roll of Examples 1 to 3 of the present invention is 0.2 μm or less, the uneven pitch of the outer surface of the heat transfer tube cannot be measured, and the maximum height difference between the convex portion and the concave portion is 5 μm or less. Yes, the surface roughness Ra of the heat transfer tube is 0.4 μm or less, Rmax
Since it is 4 μm or less, by using this heat transfer tube, a heat exchanger having excellent evaporation performance and condensation performance can be obtained.

【0035】[0035]

【発明の効果】以上説明したように、本発明によれば、
伝熱管の外面の凹凸が小さく、微小なうねりもないの
で、この伝熱管をフィンに挿入したときの両者の間隙を
解消し、又は極めて小さくすることができる。これによ
り、熱交換器の伝熱性能を向上させることができる。
As described above, according to the present invention,
Since the unevenness of the outer surface of the heat transfer tube is small and there is no minute undulation, the gap between the heat transfer tube and the fin when the heat transfer tube is inserted into the fin can be eliminated or extremely reduced. As a result, the heat transfer performance of the heat exchanger can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に係る伝熱管を製造する装置を
示す図である。
FIG. 1 is a view showing an apparatus for manufacturing a heat transfer tube according to an embodiment of the present invention.

【図2】表面の凹凸を示すチャートである。FIG. 2 is a chart showing surface irregularities.

【図3】従来の伝熱管を転造ボールにより製造する装置
を示す図である。
FIG. 3 is a view showing an apparatus for manufacturing a conventional heat transfer tube by rolling balls.

【符号の説明】[Explanation of symbols]

1、18:素管 2、11:縮径ダイス 3、5:圧延ロール 7、12:フローティングプラグ 9a、9c、13:溝付ロール 15:転造ボール 1, 18: Tube 2, 11: Diameter reduction die 3, 5: Rolling roll 7, 12: Floating plug 9a, 9c, 13: grooved roll 15: Rolled ball

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小関 清憲 神奈川県秦野市平沢65番地 株式会社神戸 製鋼所秦野工場内 (72)発明者 岩本 秀樹 神奈川県秦野市平沢65番地 株式会社神戸 製鋼所秦野工場内 Fターム(参考) 3H111 AA01 BA04 CB02 CB14 CB22 CB29 DB09 EA10 4E028 HA02 HA07 4E096 EA04 EA18 FA03 FA16 FA23 FA24    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Kiyonori Ozeki             65 Hirasawa, Hadano City, Kanagawa Prefecture Kobe, Inc.             Steel Works Hadano Factory (72) Inventor Hideki Iwamoto             65 Hirasawa, Hadano City, Kanagawa Prefecture Kobe, Inc.             Steel Works Hadano Factory F term (reference) 3H111 AA01 BA04 CB02 CB14 CB22                       CB29 DB09 EA10                 4E028 HA02 HA07                 4E096 EA04 EA18 FA03 FA16 FA23                       FA24

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 管内面に螺旋溝及び/又は交差溝が形成
された内面溝付伝熱管において、管外面に形成された正
弦曲線状の周期的な凹凸が、管軸方向に5mmにわたっ
て測定したときの平均ピッチで0.8mm以上、最も高
い凸部の頂部と最も低い凹部の底部との高低差が5μm
以下であることを特徴とする内面溝付伝熱管。
1. In a heat transfer tube with an inner groove having a spiral groove and / or a cross groove formed on the inner surface of the tube, the sinusoidal periodic unevenness formed on the outer surface of the tube is measured over 5 mm in the tube axial direction. The average pitch is 0.8 mm or more, and the height difference between the top of the highest convex portion and the bottom of the lowest concave portion is 5 μm.
A heat transfer tube with an internal groove, characterized in that:
【請求項2】 管軸方向に測定した管外面の平均表面粗
さRaが0.4μm以下、最大表面粗さRmaxが4μ
m以下であることを特徴とする請求項1に記載の内面溝
付伝熱管。
2. The average surface roughness Ra of the outer surface of the pipe measured in the pipe axial direction is 0.4 μm or less, and the maximum surface roughness Rmax is 4 μm.
The heat transfer tube with an inner groove according to claim 1, wherein the heat transfer tube has an inner diameter of m or less.
【請求項3】 素管を縮径する縮径ダイスと、前記素管
の通流方向における前記縮径ダイスの下流側にその回転
軸を前記素管の管軸に垂直にして配置された少なくとも
1対の鼓状ロールと、前記縮径ダイスの配置位置に整合
する位置の素管内部に前記縮径ダイスに係止されて止ま
るフローティングプラグと、前記フローティングプラグ
にプラグ軸を介して連結されて前記鼓状ロールの配置位
置に整合する位置の素管内部に配置された溝付プラグ
と、を有し、前記鼓状ロールにより前記素管を前記溝付
プラグに向けて押圧して螺旋溝及び/又は交差溝を前記
素管の内面に転写する内面溝付伝熱管の製造装置におい
て、前記鼓状ロールの円周方向及びロール軸方向のロー
ルの表面粗さRaが0.2μm以下、Rmaxが1.5
μm以下であることを特徴とする内面溝付伝熱管の製造
装置。
3. A diameter-reducing die for reducing the diameter of the raw pipe, and at least a downstream side of the diameter-reducing die in the flow direction of the raw pipe, the rotation axis of which is perpendicular to the pipe axis of the raw pipe. A pair of drum-shaped rolls, a floating plug that is stopped by being stopped by the diameter-reducing die inside the element tube at a position matching the arrangement position of the diameter-reducing die, and connected to the floating plug through a plug shaft. And a grooved plug disposed inside the element tube at a position aligned with the arrangement position of the hourglass-shaped roll, wherein the element tube is pressed by the hourglass-shaped roller toward the grooved plug, and a spiral groove and / Or in the manufacturing apparatus of the heat transfer tube with the inner groove for transferring the cross groove to the inner surface of the raw tube, the surface roughness Ra of the roll in the circumferential direction and the roll axial direction of the drum-shaped roll is 0.2 μm or less, and Rmax is 1.5
An apparatus for manufacturing a heat transfer tube with an inner groove, characterized in that the diameter is not more than μm.
JP2002100580A 2002-04-02 2002-04-02 Internal grooved heat transfer tube and its manufacturing equipment Expired - Fee Related JP3871597B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002100580A JP3871597B2 (en) 2002-04-02 2002-04-02 Internal grooved heat transfer tube and its manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002100580A JP3871597B2 (en) 2002-04-02 2002-04-02 Internal grooved heat transfer tube and its manufacturing equipment

Publications (2)

Publication Number Publication Date
JP2003294386A true JP2003294386A (en) 2003-10-15
JP3871597B2 JP3871597B2 (en) 2007-01-24

Family

ID=29241426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002100580A Expired - Fee Related JP3871597B2 (en) 2002-04-02 2002-04-02 Internal grooved heat transfer tube and its manufacturing equipment

Country Status (1)

Country Link
JP (1) JP3871597B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009228940A (en) * 2008-03-21 2009-10-08 Sumitomo Light Metal Ind Ltd Copper tube for cross fin tube type heat exchanger
JP2009228941A (en) * 2008-03-21 2009-10-08 Sumitomo Light Metal Ind Ltd Copper tube for cross fin tube type heat exchanger
JP2013011419A (en) * 2011-06-30 2013-01-17 Furukawa-Sky Aluminum Corp Method for manufacturing aluminum alloy made tube with inner face grooves for air conditioner
WO2017170113A1 (en) * 2016-03-30 2017-10-05 株式会社神戸製鋼所 Copper or copper alloy strip for vapor chamber
CN113219141A (en) * 2021-06-01 2021-08-06 盾构及掘进技术国家重点实验室 Grooved pipe device for micro-fracture development characteristics in tunnel surrounding rock and monitoring method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101172406B1 (en) 2010-09-13 2012-08-08 주식회사 포스코 Apparatus for shear drawing
KR101172408B1 (en) 2010-10-19 2012-08-08 주식회사 포스코 Drawing type continuous shear deformation apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009228940A (en) * 2008-03-21 2009-10-08 Sumitomo Light Metal Ind Ltd Copper tube for cross fin tube type heat exchanger
JP2009228941A (en) * 2008-03-21 2009-10-08 Sumitomo Light Metal Ind Ltd Copper tube for cross fin tube type heat exchanger
JP2013011419A (en) * 2011-06-30 2013-01-17 Furukawa-Sky Aluminum Corp Method for manufacturing aluminum alloy made tube with inner face grooves for air conditioner
WO2017170113A1 (en) * 2016-03-30 2017-10-05 株式会社神戸製鋼所 Copper or copper alloy strip for vapor chamber
JP2017180967A (en) * 2016-03-30 2017-10-05 株式会社神戸製鋼所 Copper or copper alloy stripe for vapor chamber
CN108885068A (en) * 2016-03-30 2018-11-23 株式会社神户制钢所 Vapor chamber copper or copper alloy bar
CN113219141A (en) * 2021-06-01 2021-08-06 盾构及掘进技术国家重点实验室 Grooved pipe device for micro-fracture development characteristics in tunnel surrounding rock and monitoring method

Also Published As

Publication number Publication date
JP3871597B2 (en) 2007-01-24

Similar Documents

Publication Publication Date Title
EP1386116B1 (en) Improved heat transfer tube with grooved inner surface
CA1150723A (en) Heat transfer surface and method of manufacture
JP2005288502A (en) Tube expanding tool and method for expanding tube using the same
JPH109789A (en) Heat exchanger tube
KR960001709A (en) Metal fin tube
JP2005526945A (en) Reversible grooved tube for heat exchanger
WO2012117440A1 (en) Heat exchanger, refrigerator with the heat exchanger, and air conditioner with the heat exchanger
US20070062682A1 (en) Multiple-hole tube for heat exchanger and manufacturing method thereof
JP2003294386A (en) Internally grooved heat transfer pipe and its manufacturing apparatus
US20030066635A1 (en) Turbulator with offset louvers and method of making same
WO2001063196A1 (en) Tube with inner surface grooves and method of manufacturing the tube
US6427767B1 (en) Nucleate boiling surface
JP2006130558A (en) Method for manufacturing heat exchanger
CN102288061A (en) Heat transfer tube with inner surface slot and heat exchanger
JP2005207670A (en) Internally grooved tube, and its manufacturing device and method
JP3592149B2 (en) Internal grooved tube
CN101806551B (en) Heat exchanger and heat transfer tube
JP3908974B2 (en) Internal grooved tube and manufacturing method thereof
JP2003240485A (en) Heat transfer tube with internal groove
JP2004230450A (en) Inside grooved tube and apparatus and method for manufacturing the same
JP3752046B2 (en) Heat transfer tube and manufacturing method thereof
JP4632487B2 (en) Internal grooved heat transfer tube and manufacturing method thereof
JP2706339B2 (en) Manufacturing method of heat transfer tube for inner surface processing
JP2002327995A (en) Cross-groove welded tube, bar for cross-groove welded tube and grooved roller, and method for manufacturing cross-groove welded tube
JP2002292411A (en) Crossing groove forming apparatus, manufacturing method of rolling stripe with crossing groove used for its apparatus, manufacturing method of welded tube with crossing groove, rolling stripe with crossing groove and welded tube with crossing groove

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040922

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20050114

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050525

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061017

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061017

R150 Certificate of patent or registration of utility model

Ref document number: 3871597

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091027

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101027

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101027

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101027

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111027

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111027

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121027

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131027

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees