JP2003293050A - Method for removing impurity metal ion in aqueous solution containing fluoride ion of titanium - Google Patents

Method for removing impurity metal ion in aqueous solution containing fluoride ion of titanium

Info

Publication number
JP2003293050A
JP2003293050A JP2002102127A JP2002102127A JP2003293050A JP 2003293050 A JP2003293050 A JP 2003293050A JP 2002102127 A JP2002102127 A JP 2002102127A JP 2002102127 A JP2002102127 A JP 2002102127A JP 2003293050 A JP2003293050 A JP 2003293050A
Authority
JP
Japan
Prior art keywords
aqueous solution
ions
titanium
solution containing
impurity metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002102127A
Other languages
Japanese (ja)
Other versions
JP3800122B2 (en
Inventor
Shigeru Kitani
滋 木谷
Tsutomu Fukumura
勉 福村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2002102127A priority Critical patent/JP3800122B2/en
Publication of JP2003293050A publication Critical patent/JP2003293050A/en
Application granted granted Critical
Publication of JP3800122B2 publication Critical patent/JP3800122B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for efficiently separating and removing metals, such as iron, included as impurities in recovering the titanium included in a waste solution of pickling etc. <P>SOLUTION: The aqueous solution containing the fluoride ions of the titanium, such as the waste solution of pickling, is acted on an anion exchanger previously subjected to substitution of an exchange group with hydrogen ions. The aqueous solution containing one or two kinds or more among the ions of iron, chromium, nickel, manganese, copper, and cobalt, as the impurity ions is more desirable as the effect of separating and removing these ions is high. Also, the concentration of the free acids in the aqueous solution below 2N is more desirable for efficient separation and removal of the ions. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、チタンのフッ化物
イオンを含む水溶液中の不純物金属イオンの除去方法に
関する。_
TECHNICAL FIELD The present invention relates to a method for removing impurity metal ions from an aqueous solution containing titanium fluoride ions. _

【従来の技術】_ チタンの板、棒、線、管などの製造
工程においては、焼鈍などの加熱工程によって生成した
酸化スケールを酸洗によって除去する脱スケールが一般
的に行われている。
2. Description of the Related Art In the manufacturing process of titanium plates, rods, wires, tubes, etc., descaling is generally carried out to remove oxide scale produced by a heating process such as annealing by pickling.

【0002】脱スケール用酸洗液としては、硝酸とフッ
化水素酸を適切な割合で混合した硝フッ酸水溶液が多く
用いられており、フッ化水素酸単独の水溶液が用いられ
ることもある。
As a descaling pickling solution, an aqueous solution of nitric hydrofluoric acid in which nitric acid and hydrofluoric acid are mixed in an appropriate ratio is often used, and an aqueous solution of hydrofluoric acid alone may be used.

【0003】いずれの酸の酸洗液を用いた場合でも、酸
洗によって液中の遊離酸が消費されると同時に、液中に
チタンのフッ化物イオンが溶け出すため、処理量が増す
につれて酸洗液としての能力が低下する。_ 酸洗能力
は新しい酸を追加することによってある程度は回復する
が、チタンの溶解量が多くなるにつれて回復の程度が小
さくなるので、一定の使用限度を超えた酸洗液は廃液と
して廃棄される。
When any acid pickling solution is used, the free acid in the solution is consumed by the pickling, and at the same time, the fluoride ions of titanium are dissolved out in the solution, so that the acid is increased as the treatment amount is increased. The ability as a washing liquid decreases. _ Pickling capacity is restored to a certain extent by adding a new acid, but the degree of recovery decreases as the amount of titanium dissolved increases, so pickling solutions that exceed a certain usage limit are discarded as waste liquid. .

【0004】このような酸洗廃液はかなり多くの遊離酸
やチタンのフッ化物イオンを含むため、そのまま一般の
下水などに放出することはできない。したがって、通常
は水酸化カルシウムなどのアルカリを用いて中和処理
し、含有されるチタンを水酸化物等の沈殿物として分離
した後、排水として放出している。また、チタンの水酸
化物の沈殿には、フッ化カルシウムなどのフッ化物が多
量に含まれているため、公害を出さないように処理をし
た後、産業廃棄物として処分する必要がある。
Since such pickling waste liquid contains a considerable amount of free acid and titanium fluoride ion, it cannot be released as it is to general sewage. Therefore, it is usually neutralized with an alkali such as calcium hydroxide to separate the titanium contained as a precipitate such as a hydroxide and then discharged as waste water. In addition, since the precipitation of titanium hydroxide contains a large amount of fluoride such as calcium fluoride, it is necessary to dispose it as industrial waste after treating it so as not to cause pollution.

【0005】酸洗液の廃液処理については従来から多く
の研究が行われている。例えば、特公昭45−7647
号公報には、ステンレス鋼の酸洗に用いた硝フッ酸等の
廃液を水酸化カルシウムを用いて中和処理し、中和処理
時のpHを調節することによって廃液中に含まれるFe、
Cr、Ni等の金属をそれぞれに分離して水酸化物の形で回
収する方法が開示されている。
Much research has been conducted in the past regarding the treatment of waste liquids of pickling solutions. For example, Japanese Patent Publication No. 45-7647
In the gazette, a waste liquid such as nitric hydrofluoric acid used for pickling of stainless steel is neutralized with calcium hydroxide, and Fe contained in the waste liquid by adjusting the pH during the neutralization treatment,
A method of separating metals such as Cr and Ni and recovering them in the form of hydroxide is disclosed.

【0006】本発明者らが、この方法をチタンのフッ化
物イオンを含む水溶液中のチタンの回収について適用し
たところ、中和処理により得られる水酸化チタンの沈殿
物は、多量のカルシウムやフッ素を含有しているため、
純度が低くそのまま資源として再利用することが困難で
あることを知得した。
When the present inventors applied this method to the recovery of titanium in an aqueous solution containing titanium fluoride ions, the titanium hydroxide precipitate obtained by the neutralization treatment contained a large amount of calcium and fluorine. Because it contains
We have learned that it is difficult to reuse as a resource because of its low purity.

【0007】特開2000−265223号公報に開示
された発明は、本発明者らの一人が、上述した特公昭4
5−7647号公報に開示された発明に対し、再利用性
を改善した発明であって、チタンのフッ化物を含む水溶
液に水酸化アンモニウムまたはアンモニアを添加するこ
とによって、水酸化チタンとして沈殿・分離し、チタン
の資源として利用する方法である。
The invention disclosed in Japanese Unexamined Patent Publication No. 2000-265223 is disclosed by one of the inventors of the present invention in Japanese Patent Publication No.
It is an invention in which reusability is improved with respect to the invention disclosed in Japanese Patent Publication No. 5-7647, wherein ammonium hydroxide or ammonia is added to an aqueous solution containing a fluoride of titanium to precipitate / separate as titanium hydroxide. However, it is a method of using it as a resource of titanium.

【0008】この方法によれば、フッ素含有量の少ない
水酸化チタンの沈殿物を得ることができる。しかし、処
理しようとする水溶液中に鉄等の不純物金属が含まれる
場合にはそれらを分離することができず、チタンの資源
としての利用価値が著しく低下するという問題がある。
According to this method, a titanium hydroxide precipitate having a low fluorine content can be obtained. However, when an impurity metal such as iron is contained in the aqueous solution to be treated, it cannot be separated, and there is a problem that the utility value of titanium as a resource is significantly reduced.

【0009】[0009]

【発明が解決しようとする課題】本発明の課題は、上述
の問題を解決することにより、酸洗で生じた廃液等、チ
タンのフッ化物イオンを含む水溶液中に存在する高価な
チタンを有用なチタン資源として回収する際に、不純物
として含まれる鉄等の金属を効率的に分離・除去する方
法を提供することにある。
The object of the present invention is to solve the above problems by making it possible to use expensive titanium existing in an aqueous solution containing fluoride ions of titanium, such as waste liquid generated by pickling. An object of the present invention is to provide a method for efficiently separating and removing metals such as iron contained as impurities when recovering titanium resources.

【0010】[0010]

【課題を解決するための手段】上記の課題を解決するた
め、本発明者らは、チタンと鉄等を分離する方法とし
て、中和沈殿分離法、加水分解法、溶媒抽出法、イオン
交換法等について検討した。その結果、イオン交換法が
最も簡便で適切であると判断された。
In order to solve the above problems, the present inventors have proposed a method for separating titanium and iron as a neutralization precipitation separation method, a hydrolysis method, a solvent extraction method, an ion exchange method. Etc. were examined. As a result, the ion exchange method was judged to be the most simple and suitable.

【0011】すなわち、チタンのフッ化物イオンは陽イ
オン交換体にほとんど捕捉されないのに対して、鉄、ク
ロム、ニッケル、マンガン、銅およびコバルトの金属イ
オンまたはそれらのフッ化物イオンは陽イオン交換体に
捕捉されるので、チタンと他の金属を分離することが可
能であることを見いだした。特に、チタンを酸洗した廃
液の遊離酸の濃度が2規定以下、すなわち、廃液1リッ
トル中に含まれる遊離酸が2グラム当量以下であれば、
その分離が比較的容易であることを確認した。
That is, the fluoride ions of titanium are hardly trapped by the cation exchanger, whereas the metal ions of iron, chromium, nickel, manganese, copper and cobalt or their fluoride ions are absorbed by the cation exchanger. It has been found that it is possible to separate titanium and other metals as they are captured. In particular, if the concentration of free acid in the waste liquid obtained by pickling titanium is 2 N or less, that is, if the free acid contained in 1 liter of the waste liquid is 2 gram equivalent or less,
It was confirmed that the separation was relatively easy.

【0012】本発明はこれらの知見に基づいてなされた
ものであって、下記(1)〜(4)のチタンのフッ化物
イオンを含む水溶液中の不純物金属イオンの除去方法を
要旨としている。
The present invention has been made based on these findings and has as its gist the following methods (1) to (4) for removing impurity metal ions in an aqueous solution containing fluoride ions of titanium.

【0013】(1)あらかじめ交換基を水素イオンで置
換した陽イオン交換体にチタンのフッ化物イオンを含む
水溶液を作用させるチタンのフッ化物イオンを含む水溶
液中の不純物金属イオンの除去方法。
(1) A method for removing impurity metal ions from an aqueous solution containing titanium fluoride ions, which comprises reacting an aqueous solution containing titanium fluoride ions with a cation exchanger whose exchange groups have been previously substituted with hydrogen ions.

【0014】(2)前記水溶液が、不純物金属イオンと
して、鉄、クロム、ニッケル、マンガン、銅およびコバ
ルトのイオンのうちの1種または2種以上を含有する上
記(1)に記載のチタンのフッ化物イオンを含む水溶液
中の不純物金属イオンの除去方法。
(2) The titanium fluoride according to (1) above, wherein the aqueous solution contains, as impurity metal ions, one or more of ions of iron, chromium, nickel, manganese, copper and cobalt. Method for removing impurity metal ions from an aqueous solution containing a fluoride ion.

【0015】(3)前記水溶液の遊離酸の濃度が2規定
を超える場合、遊離酸濃度を2規定以下に低下させる前
工程を追加する上記(1)または(2)に記載のチタン
のフッ化物イオンを含む水溶液中の不純物金属イオンの
除去方法。
(3) When the concentration of free acid in the aqueous solution exceeds 2N, a titanium fluoride according to the above (1) or (2) is added which further comprises a step of reducing the concentration of free acid to 2N or less. A method for removing impurity metal ions from an aqueous solution containing ions.

【0016】(4)前記水溶液が、フッ化水素酸を含有
する水溶液でチタンを酸洗した廃液である上記(1)〜
(2)の何れかに記載のチタンのフッ化物イオンを含む
水溶液中の不純物金属イオンの除去方法。
(4) The above aqueous solution is a waste liquid obtained by pickling titanium with an aqueous solution containing hydrofluoric acid.
The method for removing impurity metal ions in an aqueous solution containing the fluoride ion of titanium according to any one of (2).

【0017】[0017]

【発明の実施の形態】本発明は、チタンのフッ化物イオ
ンを含む水溶液中の不純物金属イオンの除去方法に関す
るもので、特に、フッ化水素酸を含有する水溶液または
フッ化水素酸と硝酸の混合水溶液でチタンを酸洗するこ
とによって生じた廃液を有効に処理できる。さらに、フ
ッ化水素酸と硝酸の混合水溶液以外に、フッ化水素酸と
硫酸の混酸やフッ化水素酸と塩酸の混酸によるチタンの
酸洗で生じた廃液にも適用できる。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention relates to a method for removing impurity metal ions from an aqueous solution containing titanium fluoride ions, and particularly to an aqueous solution containing hydrofluoric acid or a mixture of hydrofluoric acid and nitric acid. Waste liquid generated by pickling titanium with an aqueous solution can be effectively treated. Further, in addition to a mixed aqueous solution of hydrofluoric acid and nitric acid, it can be applied to a waste liquid generated by pickling titanium with a mixed acid of hydrofluoric acid and sulfuric acid or a mixed acid of hydrofluoric acid and hydrochloric acid.

【0018】これらの酸の水溶液で酸洗されるチタン
は、工業用純チタンや純金属チタンであることが好まし
い。アルミニウムやバナジウムを含有するチタン合金の
場合は、これらの合金元素が酸洗によって溶けだして生
成したイオンを本発明の方法で分離・除去することは比
較的困難だからである。
The titanium which is pickled with the aqueous solution of these acids is preferably industrial pure titanium or pure metallic titanium. This is because, in the case of a titanium alloy containing aluminum or vanadium, it is relatively difficult to separate and remove the ions produced by melting these alloy elements by pickling by the method of the present invention.

【0019】本発明の方法によって比較的容易に分離・
除去することができる不純物金属イオンは、鉄、クロ
ム、ニッケル、マンガン、銅およびコバルトのイオンで
ある。なお、これらの金属元素は工業用純チタンや純金
属チタンには微量にしか含まれていないが、工業的に
は、酸洗槽や廃液貯蔵槽をステンレス鋼や鉄ニッケル合
金の酸洗や廃液の貯蔵に共用することが多いので、これ
らの金属元素がかなりの濃度で酸洗廃液に混入すること
がある。
By the method of the present invention, separation and
Impurity metal ions that can be removed are iron, chromium, nickel, manganese, copper and cobalt ions. Although these metallic elements are contained only in trace amounts in industrial pure titanium and pure metallic titanium, industrially, pickling tanks and waste liquid storage tanks are used for pickling and waste liquids of stainless steel and iron-nickel alloys. Since it is often used for the storage of the acid, these metal elements may be mixed in the pickling waste liquid in a considerable concentration.

【0020】図1は、本発明の方法により陽イオン交換
体にチタンのフッ化物イオンを含む水溶液(この例で
は、酸洗により生じた廃液を使用)を作用させてその水
溶液中の不純物金属イオンを除去する工程の一例を示し
た図である。
FIG. 1 shows that the cation exchanger is treated with an aqueous solution containing titanium fluoride ions (in this example, a waste solution generated by pickling is used) to act as an impurity metal ion in the aqueous solution. It is the figure which showed an example of the process of removing.

【0021】図1に示すように、陽イオン交換体にあら
かじめ塩酸水溶液や硫酸水溶液を作用させて、その交換
基を水素イオンで置換し(図1の)、次いで水洗(同
)した陽イオン交換体に、チタンのフッ化物イオンを
含む廃液(同)を作用させる。
As shown in FIG. 1, the cation exchanger was previously treated with an aqueous solution of hydrochloric acid or an aqueous solution of sulfuric acid to replace the exchange group with hydrogen ions (FIG. 1), and then washed with water (the same). A liquid waste (the same) containing fluoride ions of titanium is applied to the body.

【0022】本発明者らの検討結果によれば、廃液中に
含まれるチタンのフッ化物イオンの結合形態はチタンの
酸洗に用いる酸の種類によって異なり、フッ化水素酸
や、フッ化水素酸と硫酸の混酸あるいはフッ化水素酸と
塩酸の混酸のような非酸化性の酸を用いた場合には、チ
タンに4個のフッ素が結合した−1価の錯イオン(TiF
)が生成し、フッ化水素酸と硝酸の混酸のような酸
化性の酸を用いた場合には、チタンに6個のフッ素が結
合した−2価の錯イオン(TiF 2−)が生成する。ま
た、不純物として含まれる金属イオンのうち、鉄は、+
2価または+3価の金属イオン(Fe2+、Fe3+)、ま
たはそれに1個または2個のフッ素が結合した+1価ま
たは+2価の錯イオン(FeF、FeF2+、FeF )と
して、クロムは、+3価の金属イオン(Cr3+)または
1個または2個のフッ素が結合した+1価または+2価
の錯イオン(CrF2+、CrF )として、ニッケル、マ
ンガン、銅およびコバルトは、いずれも大部分が+2価
の金属イオン(Ni2+、Mn 、Cu2+、Co2+)とし
て存在している。
According to the results of the examination by the present inventors,
The binding form of titanium fluoride ion contained in titanium is
Hydrofluoric acid varies depending on the type of acid used for pickling
Or mixed acid of hydrofluoric acid and sulfuric acid or hydrofluoric acid
When using a non-oxidizing acid such as a mixed acid of hydrochloric acid,
-1 valence complex ion (TiF
Four ) Is generated and an acid such as a mixed acid of hydrofluoric acid and nitric acid
When a volatile acid is used, 6 fluorines are bound to titanium.
Combined -2 valent complex ion (TiF6 2-) Is generated. Well
Of the metal ions contained as impurities, iron is +
Divalent or +3 valent metal ion (Fe2+, Fe3+),
Or +1 valence with one or two fluorines attached to it.
Or + divalent complex ion (FeF+, FeF2+, FeFTwo +)When
Then, chromium is a +3 valent metal ion (Cr3+) Or
+1 valence or +2 valence in which 1 or 2 fluorine is bonded
Complex ion of (CrF2+, CrFTwo +) As nickel,
Most of gangan, copper and cobalt are +2
Metal ion (Ni2+, MnTwo +, Cu2+, Co2+)age
Exists.

【0023】すなわち、廃液中に含まれるチタンが陰イ
オンの形態で含まれるのに対して、鉄等の不純物金属イ
オンはいずれも陽イオンの形態で含まれるので、これを
あらかじめ交換基を水素イオンで置換した陽イオン交換
体に作用させると、下記(1)式の反応により不純物金属
の陽イオンが陽イオン交換体の交換基の水素イオンと置
換して、交換基に捕捉される。 Mn++nR→nH+(R)Mn+ ・・・(1) ここで、Mn+:+n価の不純物金属イオン(錯イオン
を含む) R :陽イオン交換体の交換基(−1価) H :水素イオン である。
That is, titanium contained in the waste liquid is contained in the form of anion, whereas impurity metal ions such as iron are contained in the form of cation. By acting on the cation exchanger substituted with, the cation of the impurity metal is replaced with the hydrogen ion of the exchange group of the cation exchanger by the reaction of the following formula (1), and is trapped by the exchange group. M n + + nR H + → nH + + (R ) n M n + (1) Where, M n + : + n-valent impurity metal ion (including complex ion) R : Exchange of cation exchanger Group (-1 valence) H + : It is a hydrogen ion.

【0024】一方、チタンは陰イオンの形態で含まれて
いるために、陽イオン交換体の交換基に捕捉されずに溶
液(つまり、陽イオン交換体を通過した廃液)中に残留
するので、この溶液を陽イオン交換体から分離すること
によって、不純物金属イオンが除去されたチタンのフッ
化物イオンの溶液が得られる。
On the other hand, since titanium is contained in the form of anion, it remains in the solution (that is, the waste liquid that has passed through the cation exchanger) without being captured by the exchange groups of the cation exchanger. By separating this solution from the cation exchanger, a solution of titanium fluoride ions from which impurity metal ions have been removed is obtained.

【0025】図1に示した例では、陽イオン交換体に作
用させる廃液中に、チタンのフッ化物イオン(TiF
、TiF 2−)の他、Fe3+、FeF2+等の陽イオンと
HF、HNOが含まれているが、このうちFe3+、Fe
F2+、FeF 、Cr3+、CrF2+、CrF 、Ni2+
Mn2+、Cu2+、Co2+は陽イオン交換体に捕捉され、
TiF 、TiF 2−、HF、HNOから分離・除去され
る。
In the example shown in FIG. 1, a cation exchanger is used.
Titanium fluoride ions (TiFFour
, TiF6 2-), Fe3+, FeF2+With positive ions such as
HF, HNOThreeIs included, of which Fe3+, Fe
F2+, FeFTwo +, Cr3+, CrF2+, CrFTwo +, Ni2+,
Mn2+, Cu2+, Co2+Are trapped in the cation exchanger,
TiF Four , TiF6 2-, HF, HNOThreeSeparated and removed from
It

【0026】不純物金属イオンを捕捉した陽イオン交換
体は、図1中に破線で示したように、塩酸等の酸水溶液
を作用させた後、水で洗浄すれば、廃液の処理に再使用
することができる。
The cation exchanger that has captured the impurity metal ions is reused in the treatment of the waste liquid by treating it with an acid aqueous solution such as hydrochloric acid and then washing it with water as shown by the broken line in FIG. be able to.

【0027】イオン交換体へ廃液を作用させる方法とし
ては、単にイオン交換体と廃液を混合する方法でもよい
が、図2に示すイオン交換カラムを用いる方法が簡便で
あり、より完全に不純物金属イオンを分離できる方法と
して推奨される。図2はイオン交換カラムの概略の構造
を模式的に示した断面図である。同図に示すように、カ
ラムには陽イオン交換体1が充填されている。廃液はカ
ラムの上部から注入され、陽イオン交換体1を通過する
間に廃液中の陽イオンが陽イオン交換体1に捕捉され、
イオン交換された溶液がコック3を経てカラムの下方か
ら流出する。なお、符号2、2′は陽イオン交換体1を
保持するための多孔板である。
As a method for causing the waste liquid to act on the ion exchanger, a method of simply mixing the ion exchanger and the waste liquid may be used. However, the method using the ion exchange column shown in FIG. 2 is simple and more completely the impurity metal ions. Is recommended as a method that can be separated. FIG. 2 is a sectional view schematically showing the schematic structure of the ion exchange column. As shown in the figure, the cation exchanger 1 is packed in the column. The waste liquid is injected from the upper part of the column, and while passing through the cation exchanger 1, the cations in the waste liquid are captured by the cation exchanger 1.
The ion-exchanged solution flows out from below the column via the cock 3. In addition, reference numerals 2 and 2 ′ are perforated plates for holding the cation exchanger 1.

【0028】本発明の方法で用いる陽イオン交換体とし
ては、陽イオン交換樹脂が推奨されるが、陽イオン交換
繊維を用いてもよい。
As the cation exchanger used in the method of the present invention, a cation exchange resin is recommended, but cation exchange fibers may be used.

【0029】本発明の方法は、上記図1に例示し、また
後述する実施例に示すように、特に、チタンのフッ化物
イオンを含む水溶液が不純物金属イオンとして、鉄、ク
ロム、ニッケル、マンガン、銅およびコバルトのイオン
のうちの1種または2種以上を含有するものである場
合、それら不純物金属イオンに対する分離・除去効果が
大きい。また、本発明の方法は、前記元素に限らず、陽
イオンの形態で含まれる不純物金属イオンの分離・除去
に有効である。なお、不純物金属イオンの含有量に特に
限定はないが、1回のイオン交換処理で処理される廃液
中の不純物金属イオン量が使用する陽イオン交換体の交
換容量を超えないようにする必要がある。
In the method of the present invention, as shown in the above-mentioned FIG. 1 and in the examples described later, iron, chromium, nickel, manganese, in particular, an aqueous solution containing titanium fluoride ions is used as impurity metal ions. In the case of containing one kind or two or more kinds of copper and cobalt ions, the effect of separating and removing the impurity metal ions is large. Further, the method of the present invention is effective for separating and removing not only the above-mentioned elements but also impurity metal ions contained in the form of cations. The content of the impurity metal ions is not particularly limited, but it is necessary to prevent the amount of the impurity metal ions in the waste liquid treated by one ion exchange treatment from exceeding the exchange capacity of the cation exchanger used. is there.

【0030】上記本発明の方法において、不純物金属イ
オンを効果的に分離するためには、チタンのフッ化物イ
オンを含む水溶液に含まれる遊離酸の濃度が2規定以下
であることが望ましい。より望ましくは、0.8規定以
下である。その理由は、遊離酸の濃度が2規定を超える
と、遊離酸が解離して多量の水素イオン(H)が発生
し、前記の(1)式の逆向きの反応が起こるからである。
In the above method of the present invention, in order to effectively separate the impurity metal ions, the concentration of the free acid contained in the aqueous solution containing titanium fluoride ions is preferably 2 N or less. More preferably, it is 0.8 normal or less. The reason is that when the concentration of the free acid exceeds 2 N, the free acid dissociates to generate a large amount of hydrogen ions (H + ) and the reverse reaction of the above formula (1) occurs.

【0031】従って、チタンのフッ化物イオンを含む水
溶液(例えば、酸洗廃液)の遊離酸の濃度が2規定を超
える場合は、上記図1に例示した工程の前に、廃液の遊
離酸濃度を2規定以下に低下させる工程を追加すること
が望ましい。その方法としては、例えば、金属チタンの
スクラップ等を溶解して遊離酸を消費する方法があげら
れる。また、特開昭58−58112号公報に開示され
ているような、イオン交換膜を用いた拡散透析法で上記
の水溶液中の遊離酸濃度を低下させる方法を用いてもよ
い。
Therefore, when the free acid concentration of the aqueous solution containing titanium fluoride ions (for example, pickling waste liquid) exceeds 2N, the free acid concentration of the waste liquid is adjusted before the step illustrated in FIG. It is desirable to add a step of lowering it to 2 or less. Examples of the method include a method of dissolving scraps of titanium metal and consuming free acid. Alternatively, a method of reducing the free acid concentration in the aqueous solution by a diffusion dialysis method using an ion exchange membrane, as disclosed in JP-A-58-58112, may be used.

【0032】上記本発明の方法において、チタンのフッ
化物イオンを含む水溶液が、フッ化水素酸を含有する水
溶液でチタンを酸洗して生じた廃液である場合、本発明
の方法は極めて有効である。チタンの工業的利用におい
て酸洗の工程は欠かせないものであり、その際、先にも
述べたように、酸洗廃液に混入する蓋然性の高いFe、C
r、Ni等は本発明の方法による分離・除去効果が大きい
からである。
In the above method of the present invention, when the aqueous solution containing titanium fluoride ions is a waste liquid produced by pickling titanium with an aqueous solution containing hydrofluoric acid, the method of the present invention is extremely effective. is there. The pickling process is indispensable for industrial use of titanium. At that time, as mentioned above, Fe and C, which are highly likely to be mixed in the pickling waste liquid, are used.
This is because r, Ni and the like have a large separation / removal effect by the method of the present invention.

【0033】[0033]

【実施例】図2に示した概略構造を有する、陽イオン交
換体1を充填したイオン交換カラムを準備し、その上部
から塩酸溶液(濃度:3mol/dm)500cm
を流し込んでその交換基を水素イオンで置換した。な
お、陽イオン交換体1としては、ローム・アンド・ハー
ス社製「アンバーライト200CT」200cmを用
いた。
EXAMPLE An ion exchange column packed with cation exchanger 1 having the schematic structure shown in FIG. 2 was prepared, and a hydrochloric acid solution (concentration: 3 mol / dm 3 ) 500 cm 3
Was poured to replace the exchange group with hydrogen ion. As the cation exchanger 1, 200 cm 3 of "Amberlite 200CT" manufactured by Rohm and Haas was used.

【0034】次に、純水500cmをカラムの上部か
ら流し込み、樹脂の間隙に含まれる塩酸溶液を洗い流し
た後、表1のA〜Lに示すチタンのフッ化物イオンを含
む水溶液(廃液)各500cmを流し込んだ。なお、
表1には、それぞれの廃液の組成(遊離酸濃度および含
有される金属成分の濃度)、廃液の来歴およびそれぞれ
の廃液に含有される金属成分の存在形態を示した。
Next, 500 cm 3 of pure water was poured from the upper part of the column to wash away the hydrochloric acid solution contained in the resin gap, and then each of the aqueous solutions (waste liquids) containing titanium fluoride ions shown in Tables A to L. 500 cm 3 was poured. In addition,
Table 1 shows the composition of each waste liquid (concentration of free acid and concentration of contained metal component), history of waste liquid, and existence form of metal component contained in each waste liquid.

【0035】[0035]

【表1】 [Table 1]

【0036】カラムの下部から流出する溶液のうち、最
初の100cmを捨て、続く200cmを採取し
て、IPC発光分光分析法によって金属成分の濃度を分
析した。
Of the solution flowing out from the lower part of the column, the first 100 cm 3 was discarded and the subsequent 200 cm 3 was collected and analyzed for the concentration of metal components by IPC emission spectroscopy.

【0037】表2に分析結果を示す。この結果から明ら
かなように、チタンの濃度はイオン交換処理の前後で全
く変化がなかったが、鉄、クロム、ニッケル、マンガ
ン、銅およびコバルトの濃度は元の廃液中の濃度に比べ
て大きく低下した。ただし、遊離酸濃度が2規定を超え
る廃液(記号:D、HおよびL)の場合は、その濃度低
下の程度は比較的小さかった。
Table 2 shows the analysis results. As is clear from this result, the titanium concentration did not change at all before and after the ion exchange treatment, but the concentrations of iron, chromium, nickel, manganese, copper, and cobalt were significantly lower than those in the original waste liquid. did. However, in the case of the waste liquid having the free acid concentration exceeding 2 N (symbols: D, H and L), the degree of concentration decrease was relatively small.

【0038】[0038]

【表2】 [Table 2]

【0039】[0039]

【発明の効果】本発明の方法によれば、チタンのフッ化
物イオンを含む水溶液、例えばチタンの酸洗廃液等に含
まれるチタンのフッ化物イオンを有用なチタン資源とし
て回収する際に、不純物として含まれる鉄等の金属を効
率的に分離・除去することが可能となる。その結果、回
収されるチタンの純度を高め、より広範囲の用途に使用
できるようになるので、資源としての価値を高め得るば
かりでなく、産業廃棄物の排出量を大幅に削減すること
が可能となるなど、工業的あるいは社会的に多大な効果
が得られる。
EFFECT OF THE INVENTION According to the method of the present invention, when an aqueous solution containing titanium fluoride ions, for example, titanium fluoride ions contained in a titanium pickling waste solution or the like is recovered as a useful titanium resource, it is used as an impurity. It is possible to efficiently separate and remove the contained metal such as iron. As a result, the purity of the recovered titanium can be increased and it can be used in a wider range of applications, so not only can the value as a resource be increased, but it is also possible to significantly reduce the emission of industrial waste. It has a great industrial or social effect.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の方法により陽イオン交換体に酸洗廃液
を作用させてその中に含まれる不純物金属イオンを除去
する工程の一例を示した図である。
FIG. 1 is a diagram showing an example of a step of causing a cation exchanger to act on a cation exchanger with a pickling waste liquid to remove impurity metal ions contained therein by the method of the present invention.

【図2】イオン交換カラムの概略の構造を模式的に示し
た断面図である。
FIG. 2 is a sectional view schematically showing a schematic structure of an ion exchange column.

【符号の説明】[Explanation of symbols]

1:陽イオン交換体 2、2':多孔板 3:コック 1: Cation exchanger 2, 2 ': Perforated plate 3: Cook

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】あらかじめ交換基を水素イオンで置換した
陽イオン交換体にチタンのフッ化物イオンを含む水溶液
を作用させることを特徴とするチタンのフッ化物イオン
を含む水溶液中の不純物金属イオンの除去方法。
1. Removal of impurity metal ions from an aqueous solution containing titanium fluoride ions, characterized in that an aqueous solution containing titanium fluoride ions is caused to act on a cation exchanger whose exchange groups have been previously substituted with hydrogen ions. Method.
【請求項2】前記水溶液が、不純物金属イオンとして、
鉄、クロム、ニッケル、マンガン、銅およびコバルトの
イオンのうちの1種または2種以上を含有することを特
徴とする請求項1に記載のチタンのフッ化物イオンを含
む水溶液中の不純物金属イオンの除去方法。
2. The aqueous solution as impurity metal ions,
One or more of iron, chromium, nickel, manganese, copper and cobalt ions are contained, and the impurity metal ions in the aqueous solution containing titanium fluoride ions according to claim 1 are contained. Removal method.
【請求項3】前記水溶液の遊離酸の濃度が2規定を超え
る場合、遊離酸濃度を2規定以下に低下させる前工程を
追加することを特徴とする請求項1または2に記載のチ
タンのフッ化物イオンを含む水溶液中の不純物金属イオ
ンの除去方法。
3. The titanium fluoride according to claim 1 or 2, wherein when the concentration of the free acid in the aqueous solution exceeds 2N, a pre-process for reducing the concentration of the free acid to 2N or less is added. Method for removing impurity metal ions from an aqueous solution containing a fluoride ion.
【請求項4】前記水溶液が、フッ化水素酸を含有する水
溶液でチタンを酸洗した廃液であることを特徴とする請
求項1〜3の何れかに記載のチタンのフッ化物イオンを
含む水溶液中の不純物金属イオンの除去方法。
4. The aqueous solution containing titanium fluoride ions according to claim 1, wherein the aqueous solution is a waste solution obtained by pickling titanium with an aqueous solution containing hydrofluoric acid. Method for removing impurity metal ions in liquid.
JP2002102127A 2002-04-04 2002-04-04 Method for removing impurity metal ions in aqueous solution containing fluoride ions of titanium Expired - Fee Related JP3800122B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002102127A JP3800122B2 (en) 2002-04-04 2002-04-04 Method for removing impurity metal ions in aqueous solution containing fluoride ions of titanium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002102127A JP3800122B2 (en) 2002-04-04 2002-04-04 Method for removing impurity metal ions in aqueous solution containing fluoride ions of titanium

Publications (2)

Publication Number Publication Date
JP2003293050A true JP2003293050A (en) 2003-10-15
JP3800122B2 JP3800122B2 (en) 2006-07-26

Family

ID=29242121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002102127A Expired - Fee Related JP3800122B2 (en) 2002-04-04 2002-04-04 Method for removing impurity metal ions in aqueous solution containing fluoride ions of titanium

Country Status (1)

Country Link
JP (1) JP3800122B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007316001A (en) * 2006-05-29 2007-12-06 Sumitomo Titanium Corp ANALYSIS METHOD OF METAL IMPURITY IN TiCl4, AND METHOD FOR PRODUCING HIGH PURITY TITANIUM
JP2011509905A (en) * 2008-01-14 2011-03-31 ペルーク (プロプリエタリー) リミテッド Production of titanium trifluoride
CN110669933A (en) * 2019-10-21 2020-01-10 金驰能源材料有限公司 Method for removing fluorine in nickel-cobalt-manganese solution
WO2023074442A1 (en) * 2021-10-28 2023-05-04 住友金属鉱山株式会社 Method for producing lithium-containing solution and method for producing lithium hydroxide

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007316001A (en) * 2006-05-29 2007-12-06 Sumitomo Titanium Corp ANALYSIS METHOD OF METAL IMPURITY IN TiCl4, AND METHOD FOR PRODUCING HIGH PURITY TITANIUM
JP4704958B2 (en) * 2006-05-29 2011-06-22 株式会社大阪チタニウムテクノロジーズ Method for analyzing metal impurities in TiCl4 and method for producing high-purity titanium
JP2011509905A (en) * 2008-01-14 2011-03-31 ペルーク (プロプリエタリー) リミテッド Production of titanium trifluoride
CN110669933A (en) * 2019-10-21 2020-01-10 金驰能源材料有限公司 Method for removing fluorine in nickel-cobalt-manganese solution
WO2023074442A1 (en) * 2021-10-28 2023-05-04 住友金属鉱山株式会社 Method for producing lithium-containing solution and method for producing lithium hydroxide

Also Published As

Publication number Publication date
JP3800122B2 (en) 2006-07-26

Similar Documents

Publication Publication Date Title
US20160289075A1 (en) Method for removing iron in the manufacture of phosphoric acid
CN107365005B (en) A kind of processing method of the fluorine-containing nitrogen-containing wastewater of nitric acid type
JP4579682B2 (en) Method and apparatus for recycling metal pickling baths
TWI252840B (en) Process for treating acidic and metallic waste water
CN103397190B (en) Method for producing high-purity gold and copper sulphate from gold-bearing copper sludge
CN108624893B (en) High-valued treatment method for stainless steel pickling wastewater
CN109650406A (en) A kind of processing method of the high-salt wastewater containing chrome alum and the processing method of precipitation waste residue
JP3800122B2 (en) Method for removing impurity metal ions in aqueous solution containing fluoride ions of titanium
JP4363494B2 (en) Aqueous solution for pickling, method for producing the same and resource recovery method
CN103014338A (en) Method for processing poor organic phase after solvent extraction indium extracting
CN115771973B (en) Method for recycling nickel and cobalt from strongly acidic wastewater
CN109292927B (en) Waste acid recovery regenerant and preparation and use methods thereof
CN107416959A (en) A kind of method of chromium nickel in removal pickle liquor
CN114875252B (en) Recovery method of tungsten-containing waste
CN1686842A (en) Technique for preparing sodium fluosilicate by using raffinate extracted from smelting columbite-tantalite ore
JP4292454B2 (en) Method for treating aqueous solution containing metal fluoride
JP2011195935A (en) Method for separating and recovering platinum group element
JP5742130B2 (en) Method for producing vanadium pentoxide
CN106629853A (en) Method for deeply removing chromium in tungsten-containing waste recycling process
CN106241882B (en) A kind of method of spent solder stripper resource
JP3043522B2 (en) Method for recovering noble metal ions from pickling waste liquid containing noble metal ions
CN115806317B (en) Method for preparing ammonium paratungstate by using tungsten-containing grinding waste
JP2002322581A (en) Method for regenerating waste solution of nitric- hydrofluoric acid and method for pickling stainless steel
JP2001089884A (en) Method for recovering aqueous solution of nitric acid from pickling waste solution
CN1348020A (en) Method of eliminating nickel and heavy metal ion from waste ferric chloride liquid after etching or pickling

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040426

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060417

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3800122

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120512

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120512

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130512

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130512

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130512

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140512

Year of fee payment: 8

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees