JP2003291820A - Carrier - Google Patents

Carrier

Info

Publication number
JP2003291820A
JP2003291820A JP2002098111A JP2002098111A JP2003291820A JP 2003291820 A JP2003291820 A JP 2003291820A JP 2002098111 A JP2002098111 A JP 2002098111A JP 2002098111 A JP2002098111 A JP 2002098111A JP 2003291820 A JP2003291820 A JP 2003291820A
Authority
JP
Japan
Prior art keywords
wheel
wheels
wheel support
road surface
support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002098111A
Other languages
Japanese (ja)
Inventor
Hiroki Kamei
浩気 亀井
Kazue Sumiya
和重 角谷
Seiji Murakami
誠治 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2002098111A priority Critical patent/JP2003291820A/en
Publication of JP2003291820A publication Critical patent/JP2003291820A/en
Pending legal-status Critical Current

Links

Landscapes

  • Handcart (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a carrier capable of preventing each wheel from giving large impact to a road surface and preventing each wheel from rising up to run by corresponding to each recessed and projecting part on the road surface flexibly even when the carrier runs on the road surface having recessed and projecting parts. <P>SOLUTION: This carrier is constituted in such a way that wheel support parts 13, 23 which are long in the forward and backward directions and turn vertically centered on a halfway part in the forward and backward directions are arranged on the right and left sides, load sensors 11s, 12s, 21s, 22s for detecting load received by wheels 11, 12, 21, 22 supported by the wheel support parts 13, 23 in the front and rear parts, respectively, are provided, and a running control means 32b controls running speed of each wheel 11, 12, 21, 22 based on the load detected by each load sensor 11s, 12s, 21s, 22s. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、前後方向に長く、
前後方向の中途部を中心として上下へ回動する車輪支持
体を左右に配置し、該車輪支持体の前後部に夫々車輪を
備える台車に関するものである。
TECHNICAL FIELD The present invention is long in the front-back direction,
The present invention relates to a trolley in which wheel supports that rotate up and down around a midway portion in the front-rear direction are arranged on the left and right, and wheels are provided at the front and rear parts of the wheel support.

【0002】[0002]

【従来の技術】車体の前後左右に配置された4つの車輪
と、各車輪を夫々回転させるモータとを備え、各モータ
を自動で駆動させることにより、各車輪が回転して自動
走行を行う台車が知られており、工場内にて搬送物等を
所定位置から所定位置まで搬送する手段として利用され
ている。このような自動走行により搬送物を搬送する台
車を用いることにより、人手を必要とせず、また人間に
とっての危険地帯においても利用することができ、作業
効率を向上させることができる。上述の台車に備える各
車輪は、自身が路面に及ぼす荷重に対応する荷重を受け
ながら回転しており、ある程度の凹凸を有する路面上を
走行する場合であっても、各車輪の回転力により凹凸に
対応して走行することができる。
2. Description of the Related Art A truck having four wheels arranged in front, rear, left and right of a vehicle body and a motor for rotating each wheel, and by automatically driving each motor, each wheel rotates to automatically travel. Is known, and is used as a means for transporting goods and the like from a predetermined position to a predetermined position in a factory. By using the carriage that conveys the conveyed goods by such automatic traveling, it is possible to use it in a dangerous zone for humans without requiring manpower and to improve work efficiency. Each wheel provided in the above-mentioned bogie rotates while receiving a load corresponding to the load exerted on the road surface by itself, and even when traveling on a road surface having a certain degree of unevenness, unevenness is caused by the rotational force of each wheel. You can drive according to.

【0003】[0003]

【発明が解決しようとする課題】しかし、上述した台車
は、自身に備える車輪の外径の半分以上の段差を有する
上方への段差部を備える路面上を走行する場合、前輪が
前記段差部に衝突し、この衝突により前記前輪は前記段
差部から進行方向と反対方向の荷重を受けるため、前記
段差部を乗り越えることができない。また、車輪の外径
の半分以上の段差を有する下方への段差部を備える路面
上を走行する場合、前輪の1つが前記段差部を通過して
も、しばらくは段差部の上側を走行する他の3つの車輪
により体勢が保たれ、前記前輪が浮いた状態で走行する
ことになり、更にもう一方の前輪が前記段差部を通過す
ることにより、2つの前輪が段差部の下側に落下してし
まう。これにより、各前輪は段差部の下側に大きな衝撃
を与え、同時に台車も大きな衝撃を受けてしまい、台車
に搭載してあった荷物等が落下し、台車自体も転倒等す
るおそれがあるという問題があった。
However, in the above-mentioned bogie, when traveling on a road surface having an upward step portion having a step of at least half the outer diameter of the wheel provided for itself, the front wheels are placed on the step portion. A collision occurs and the front wheel receives a load in the opposite direction to the traveling direction from the step portion due to this collision, and therefore cannot cross the step portion. In addition, when traveling on a road surface having a downward step portion having a step that is equal to or more than half the outer diameter of the wheel, even if one of the front wheels passes through the step portion, the vehicle travels above the step portion for a while. The three front wheels keep the posture, and the front wheel runs in a floating state. When the other front wheel passes through the step, the two front wheels fall to the lower side of the step. Will end up. As a result, each front wheel gives a big impact to the lower side of the stepped portion, and at the same time the dolly receives a big impact, so that the luggage etc. mounted on the dolly may drop and the dolly itself may fall down. There was a problem.

【0004】本発明はかかる事情に鑑みてなされたもの
であり、前後方向に長く、前後方向の中途部を中心とし
て上下へ回動する車輪支持体を左右に配置し、一方の車
輪支持体が支持する車輪の回転速度を、他方の車輪支持
体が支持する車輪の回転速度よりも速く又は遅く制御す
る速度制御手段を備えることにより、左右の車輪支持体
が支持する各車輪の回転速度に相違が生じ、この相違に
基づき台車本体に捩れが生じる。この台車本体の捩れに
より、各車輪支持体が回動し、この車輪支持体の回動に
より、該車輪支持体が支持する車輪が適宜上下方向へ移
動することができる台車を提供することを目的とする。
The present invention has been made in view of the above circumstances, in which wheel supports that are long in the front-rear direction and that rotate up and down around a middle portion in the front-rear direction are arranged on the left and right, and one of the wheel supports is By providing speed control means for controlling the rotation speed of the supported wheel to be faster or slower than the rotation speed of the wheel supported by the other wheel support, the rotation speed of each wheel supported by the left and right wheel supports is different. Occurs, and the trolley body is twisted due to this difference. An object of the present invention is to provide a trolley in which each wheel support is rotated by the twist of the trolley body, and the wheels supported by the wheel support can be appropriately moved in the vertical direction by the rotation of the wheel support. And

【0005】本発明の他の目的は、車輪夫々が受ける外
力を検出し、検出した外力が所定範囲よりも大きいか否
か又は小さいか否かを判断する判断手段を備え、前記速
度制御手段が、前記判断手段が判断した結果に基づき、
前記外力を受けた車輪及び該車輪と同じ車輪支持体が支
持する車輪の回転速度を、他の車輪支持体が支持する車
輪の回転速度よりも速く又は遅く制御すべく構成してあ
ることにより、各車輪が受ける外力に応じて左右の車輪
支持体が支持する各車輪の回転速度に相違が生じ、この
相違に基づき台車本体に捩れが生じ、この台車本体の捩
れにより、各車輪支持体が回動して、該車輪支持体が支
持する車輪が適宜上下方向へ移動することができ、凹凸
及び溝等を有する路面上を走行する場合であっても、各
車輪が路面上に大きな衝撃を及ぼすことなく、また各車
輪が浮いた状態にならずに路面上の各凹凸及び溝に柔軟
に対応して走行する台車を提供することにある。
Another object of the present invention is to provide a judging means for detecting an external force received by each wheel and judging whether the detected external force is larger or smaller than a predetermined range. , Based on the result judged by the judging means,
By being configured to control the rotational speed of the wheel that receives the external force and the wheel supported by the same wheel support as the wheel to be faster or slower than the rotational speed of the wheel supported by another wheel support, The rotation speed of each wheel supported by the left and right wheel supports varies depending on the external force received by each wheel, and the trolley body is twisted based on this difference, and the twisting of the trolley body causes each wheel support to rotate. The wheels supported by the wheel support can move vertically as appropriate, and each wheel exerts a large impact on the road surface even when traveling on the road surface having unevenness and grooves. It is an object of the present invention to provide a dolly that travels flexibly in response to each unevenness and groove on the road surface without causing each wheel to float.

【0006】本発明の更に他の目的は、上述の他の車輪
支持体を回動させないように制御する構成を更に備える
ことにより、所望の車輪支持体をより容易に回動させる
ことができ、該車輪支持体により支持される所望の車輪
が、より容易に上下方向に移動することができ、凹凸及
び溝等を有する路面上を走行する場合であっても、路面
上の各凹凸及び溝に柔軟に対応して走行する台車を提供
することにある。
Still another object of the present invention is to further provide a structure for controlling the above-mentioned other wheel support so as not to rotate, so that a desired wheel support can be rotated more easily. A desired wheel supported by the wheel support can move up and down more easily, and even when traveling on a road surface having unevenness and grooves, the unevenness and grooves on the road surface It is to provide a bogie that flexibly travels.

【0007】本発明の更に他の目的は、段差を検出する
段差検出手段を備え、該段差検出手段が検出した段差に
基づき各車輪の回転速度を制御する構成を有することに
より、昇降すべき段差の高低の程度に応じて制御される
左右の車輪の回転速度の相違に基づき生じる台車本体の
捩れに従って、各車輪支持体が適宜角度だけ回動し、こ
の車輪支持体の回動により、該車輪支持体が支持する車
輪が上下方向に適宜距離だけ移動することができ、凹凸
を有する路面上を走行する場合であっても、各車輪が路
面上の各凹凸に柔軟に対応して走行する台車を提供する
ことにある。
Still another object of the present invention is to provide a step detecting means for detecting a step, and to control the rotational speed of each wheel based on the step detected by the step detecting means, so that the step to be moved up and down. Each wheel support is rotated by an appropriate angle in accordance with the twisting of the bogie main body caused by the difference in the rotational speeds of the left and right wheels, which is controlled according to the height of the wheel, and the rotation of the wheel support causes the wheels to rotate. A trolley in which each wheel flexibly responds to each unevenness on the road surface, even when the wheels supported by the support can move in the vertical direction by an appropriate distance and travels on the uneven road surface. To provide.

【0008】本発明の更に他の目的は、各車輪の車軸
が、該車輪を支持する車輪支持体から適宜間隔を隔てて
配置されていることにより、左右の各車輪の回転速度の
相違による前記車輪支持体の回動をより容易に行うこと
ができ、前記車輪がより容易に上下方向への移動を行う
台車を提供することにある。
Still another object of the present invention is that the axle of each wheel is arranged at an appropriate distance from the wheel support that supports the wheel, so that the rotation speeds of the left and right wheels are different. It is an object of the present invention to provide a trolley in which the wheel support can be rotated more easily and the wheels can be moved in the vertical direction more easily.

【0009】[0009]

【課題を解決するための手段】第1発明に係る台車は、
前後方向に長く、前後方向の中途部を中心として上下へ
回動する車輪支持体を左右に配置し、該車輪支持体の前
後部に夫々車輪を備える台車において、一方の車輪支持
体が支持する車輪の回転速度を、他方の車輪支持体が支
持する車輪の回転速度よりも速く又は遅く制御する速度
制御手段を備えることを特徴とする。
A trolley according to the first invention is
A wheel support that is long in the front-rear direction and that rotates up and down about a midway portion in the front-rear direction is arranged on the left and right, and one wheel support is supported by a bogie having wheels on the front and rear portions of the wheel support. It is characterized by further comprising speed control means for controlling the rotational speed of the wheel to be faster or slower than the rotational speed of the wheel supported by the other wheel support.

【0010】第1発明による場合は、前後方向に長く、
前後方向の中途部を中心として上下へ回動する車輪支持
体を左右に配置し、一方の車輪支持体が支持する車輪の
回転速度を、他方の車輪支持体が支持する車輪の回転速
度よりも速く又は遅く制御する速度制御手段を備えるこ
とにより、左右の車輪支持体が支持する各車輪の回転速
度に相違が生じ、この相違に基づき台車本体に捩れが生
じる。この台車本体の捩れにより、各車輪支持体が回動
し、この車輪支持体の回動により、該車輪支持体が支持
する車輪が適宜上下方向へ移動することができる台車を
実現することができる。
In the case of the first invention, it is long in the front-back direction,
The wheel supports that rotate up and down around the middle part in the front-rear direction are arranged on the left and right, and the rotation speed of the wheels supported by one wheel support is higher than the rotation speed of the wheels supported by the other wheel support. By providing the speed control means for controlling fast or slow, the rotational speeds of the wheels supported by the left and right wheel supports differ from each other, and the truck body is twisted based on this difference. It is possible to realize a trolley in which each wheel support is rotated by the twist of the trolley body, and the wheels supported by the wheel support can be appropriately moved in the vertical direction by the rotation of the wheel support. .

【0011】第2発明に係る台車は、第1発明に係る台
車において、前記車輪夫々が受ける外力を検出する外力
検出手段と、該外力検出手段が検出した外力が所定範囲
よりも大きいか否か又は小さいか否かを判断する判断手
段とを備え、前記速度制御手段は、前記判断手段が判断
した判断結果に基づき、前記外力を受けた車輪及び該車
輪と同じ車輪支持体が支持する車輪の回転速度を、他の
車輪支持体が支持する車輪の回転速度よりも速く又は遅
く制御すべくなしてあることを特徴とする。
A trolley according to a second aspect of the present invention is the trolley according to the first aspect of the invention, wherein external force detecting means for detecting an external force received by each of the wheels and whether the external force detected by the external force detecting means is larger than a predetermined range or not. Or a judgment means for judging whether or not it is small, the speed control means, based on the judgment result judged by the judgment means, of the wheel receiving the external force and the wheel supported by the same wheel support body as the wheel. It is characterized in that the rotation speed is controlled to be faster or slower than the rotation speed of a wheel supported by another wheel support.

【0012】第2発明による場合は、車輪夫々が受ける
外力を検出し、検出した外力が所定範囲よりも大きいか
否か又は小さいか否かを判断する判断手段を備え、前記
速度制御手段は、前記判断手段が判断した結果に基づ
き、前記外力を受けた車輪及び該車輪と同じ車輪支持体
が支持する車輪の回転速度を、他の車輪支持体が支持す
る車輪の回転速度よりも速く又は遅く制御すべく構成し
てあることにより、各車輪が受ける外力に応じて左右の
車輪支持体が支持する各車輪の回転速度に相違が生じ、
この相違に基づき台車本体に捩れが生じ、この台車本体
の捩れにより、各車輪支持体が回動して、該車輪支持体
が支持する車輪が適宜上下方向へ移動することができ
る。
According to the second aspect of the invention, the speed control means is provided with a judging means for detecting an external force received by each wheel and judging whether the detected external force is larger or smaller than a predetermined range. Based on the result determined by the determination means, the rotation speed of the wheel that receives the external force and the wheel supported by the same wheel support as the wheel is faster or slower than the rotation speed of the wheel supported by another wheel support. By being configured to control, the rotation speed of each wheel supported by the left and right wheel supports varies depending on the external force received by each wheel,
Due to this difference, the carriage main body is twisted, and the twisting of the carriage main body causes each wheel support body to rotate, and the wheels supported by the wheel support body can appropriately move in the vertical direction.

【0013】従って、凹凸及び溝等を有する路面上を走
行する場合であっても、各車輪が路面上に大きな衝撃を
及ぼすことなく、また各車輪が浮いた状態にならずに路
面上の各凹凸及び溝に柔軟に対応して走行する台車を実
現することができる。また、各車輪は、所定範囲の外力
を受けながら平坦な路面上を走行しており、外力検出手
段により検出された車輪夫々が受ける外力が、所定範囲
よりも大きいか否か又は小さいか否かを判断する判断手
段を備えることにより、該判断手段が前記所定範囲より
も大きいと判断した場合、前記外力を受けた車輪が、前
方の上方への段差部に衝突したことを検知することがで
き、前記判断手段が前記所定範囲よりも小さいと判断し
た場合、前記外力を受けた車輪が、前方の下方への段差
部を降下し始めたことを検知することができる。
Therefore, even when the vehicle travels on a road surface having irregularities, grooves, etc., each wheel does not exert a large impact on the road surface and each wheel on the road surface does not float. It is possible to realize a truck that flexibly travels in response to unevenness and grooves. Further, each wheel is traveling on a flat road surface while receiving an external force in a predetermined range, and whether the external force received by each wheel detected by the external force detecting means is larger or smaller than the predetermined range. By providing the determination means for determining, it is possible to detect that the wheel that has received the external force has collided with the step portion to the upper front when the determination means determines that it is larger than the predetermined range. When the determination means determines that the size is smaller than the predetermined range, it is possible to detect that the wheel receiving the external force has begun to descend the front step portion.

【0014】第3発明に係る台車は、第1又は第2発明
に係る台車において、前記判断手段が前記所定範囲より
も大きい又は小さいと判断した場合、前記他方の車輪支
持体を回動させないように制御する回動制御手段を更に
備えることを特徴とする。
A trolley according to a third aspect of the present invention is the trolley according to the first or second aspect of the invention, in which the other wheel support is not rotated when the determination means determines that it is larger or smaller than the predetermined range. It is characterized by further comprising a rotation control means for controlling.

【0015】第3発明による場合は、第1又は第2発明
における他の車輪支持体を回動させないように制御する
構成を更に備えることにより、所望の車輪支持体をより
容易に回動させることができ、該車輪支持体により支持
される所望の車輪が、より容易に上下方向に移動するこ
とができ、凹凸及び溝等を有する路面上を走行する場合
であっても、路面上の各凹凸及び溝に柔軟に対応して走
行する台車を実現することができる。
In the case of the third invention, a desired wheel support can be rotated more easily by further providing a structure for controlling the other wheel support in the first or second invention so as not to rotate. The desired wheel supported by the wheel support can move in the vertical direction more easily, and even when traveling on a road surface having unevenness and grooves, each unevenness on the road surface Also, it is possible to realize a cart that travels flexibly in the groove.

【0016】第4発明に係る台車は、第1乃至第3発明
のいずれかに係る台車において、段差を検出する段差検
出手段を備え、前記速度制御手段は、前記段差検出手段
が検出した段差に基づき、前記車輪夫々の回転速度を制
御すべくなしてあることを特徴とする。
A trolley according to a fourth aspect is the trolley according to any one of the first to third aspects, further comprising step detecting means for detecting a step, and the speed control means detects the step detected by the step detecting means. Based on this, the rotation speed of each of the wheels is controlled.

【0017】第4発明による場合は、段差を検出する段
差検出手段を備え、該段差検出手段が検出した段差に基
づき各車輪の回転速度を制御する構成を有することによ
り、昇降すべき段差の高低の程度に応じて制御される左
右の車輪の回転速度の相違に基づき生じる台車本体の捩
れに従って、各車輪支持体が適宜角度だけ回動し、この
車輪支持体の回動により、該車輪支持体が支持する車輪
が上下方向に適宜距離だけ移動することができる。従っ
て、溝等を含む段差部を有する路面上を走行する場合で
あっても、各車輪が、予め検出された段差に応じて上下
方向に適宜距離だけ移動することにより、路面上に大き
な衝撃を及ぼすことなく、また各車輪が浮いた状態にな
らずに路面上の各段差に柔軟に対応して走行する台車を
実現することができる。
In the case of the fourth aspect of the present invention, the step detecting means for detecting the step is provided, and the rotation speed of each wheel is controlled based on the step detected by the step detecting means. Each wheel support is rotated by an appropriate angle in accordance with the twist of the bogie main body caused by the difference in the rotational speeds of the left and right wheels, which is controlled according to the degree of the wheel support, and the rotation of the wheel support causes the wheel support to rotate. The wheels supported by can move up and down by an appropriate distance. Therefore, even when traveling on a road surface having a stepped portion including a groove or the like, a large impact is exerted on the road surface by moving each wheel in the vertical direction by an appropriate distance according to the step detected in advance. It is possible to realize a bogie that travels flexibly in response to each step on the road surface without exerting any influence and without causing the wheels to float.

【0018】第5発明に係る台車は、第1乃至第4発明
のいずれかに係る台車において、前記車輪の車軸は、該
車輪を支持する前記車輪支持体から適宜間隔を隔てて配
置してあることを特徴とする。
A trolley according to a fifth aspect of the present invention is the trolley according to any of the first through fourth aspects of the invention, wherein the axle of the wheel is arranged at an appropriate distance from the wheel support that supports the wheel. It is characterized by

【0019】第5発明による場合は、各車輪の車軸が、
該車輪を支持する車輪支持体から適宜間隔を隔てて配置
されていることにより、左右の各車輪の回転速度の相違
による前記車輪支持体の回動をより容易に行うことがで
き、前記車輪がより容易に上下方向への移動を行う台車
を実現することができる。
According to the fifth aspect of the invention, the axle of each wheel is
By arranging the wheel supporter that supports the wheel at an appropriate interval, the wheel supporter can be more easily rotated due to the difference in the rotational speeds of the left and right wheels, and the wheel is It is possible to realize a cart that can move in the vertical direction more easily.

【0020】[0020]

【発明の実施の形態】以下に、本発明に係る台車をその
実施の形態を示す図面に基づいて詳述する。図1は本発
明に係る台車を示す斜視図、図2は正面図、図3は側面
図である。図において1は台車を示しており、この台車
1は、自身を制御する制御装置32を搭載した台車本体
30と、この台車本体30の下部に2つの脚部10,2
0と、2つの脚部10,20を、夫々の中途部で保持し
つつ台車本体30を支持する本体支持部31とを備えて
いる。
BEST MODE FOR CARRYING OUT THE INVENTION A bogie according to the present invention will be described in detail below with reference to the drawings showing an embodiment thereof. FIG. 1 is a perspective view showing a carriage according to the present invention, FIG. 2 is a front view, and FIG. 3 is a side view. In the figure, reference numeral 1 denotes a trolley, and the trolley 1 has a trolley body 30 on which a control device 32 for controlling the trolley itself is mounted, and two pedestals 10, 2 at the bottom of the trolley body 30.
0 and a main body support portion 31 that supports the trolley main body 30 while holding the two leg portions 10 and 20 in the middle portions thereof.

【0021】脚部10は、台車1の前後方向に長い板状
の車輪支持部13が、その前後部にて夫々荷重センサ1
4,15を介して車輪11,12を回転自在に支持する
ことにより構成されている。尚、車輪11,12の車軸
は車輪支持部13から適宜間隔を隔てて配置されてい
る。また車輪11,12は各別に回転するように構成さ
れており、車輪11,12夫々の回転軸上には、自身を
回転させるための車輪用モータ11m,12m及び自身
の回転角度を検出するための車輪用センサ11s,12
sを備えている。車輪支持部13は、前後方向の中途部
を回動軸13aとする回動自在に構成されており、車輪
支持部13の回動軸13a上には、該車輪支持部13を
回動させるための支持部用モータ13m及び車輪支持部
13の回動角度を検出するための支持部用センサ13s
を備えている。
The leg portion 10 has a plate-like wheel support portion 13 which is long in the front-rear direction of the carriage 1, and the load sensor 1 is provided at the front and rear portions thereof, respectively.
The wheels 11 and 12 are rotatably supported through the wheels 4 and 15. The axles of the wheels 11 and 12 are arranged at appropriate intervals from the wheel support portion 13. The wheels 11 and 12 are configured to rotate separately, and the wheel motors 11m and 12m for rotating the wheels 11 and 12 and the rotation angles of the wheels 11 and 12 are detected on the rotation axes of the wheels 11 and 12, respectively. Wheel sensors 11s, 12
s. The wheel support portion 13 is configured to be rotatable about a middle portion in the front-rear direction as a rotation shaft 13a, and the wheel support portion 13 is rotated on the rotation shaft 13a of the wheel support portion 13. Support section motor 13m and support section sensor 13s for detecting the rotation angle of the wheel support section 13
Is equipped with.

【0022】脚部20は、上述した脚部10と同じ構成
を有しており、台車1の前後方向に長い板状の車輪支持
部23が、その前後部にて夫々荷重センサ24,25を
介して車輪21,22を支持している。また、車輪2
1,22夫々の回転軸上には、車輪21,22を回転さ
せるための車輪用モータ21m,22m及び車輪21,
22の回転角度を検出するための車輪用センサ21s,
22sを、車輪支持部23の回動軸23a上には、該車
輪支持部23を回動させるための支持部用モータ23m
及び車輪支持部23の回動角度を検出するための支持部
用センサ23sを備えている。
The leg portion 20 has the same structure as that of the leg portion 10 described above, and a plate-shaped wheel support portion 23 which is long in the front-rear direction of the carriage 1 has load sensors 24 and 25 at its front and rear portions, respectively. The wheels 21 and 22 are supported through the wheels. Also, the wheel 2
Wheel motors 21m and 22m for rotating the wheels 21 and 22 and the wheels 21 on the rotation shafts of the wheels 21 and 22, respectively.
A wheel sensor 21s for detecting the rotation angle of 22;
22s is mounted on the rotation shaft 23a of the wheel supporting portion 23, and is a support portion motor 23m for rotating the wheel supporting portion 23.
And a support portion sensor 23s for detecting the rotation angle of the wheel support portion 23.

【0023】2つの脚部10,20は、夫々車輪支持部
13,23の回動軸13a,23a上に配置される支持
部用センサ13s,23sを、車体支持部31により保
持されることにより、台車1の左右位置に配置されてお
り、これにより、脚部10に備える車輪11,12は、
夫々前輪又は後輪として、同様に脚部20に備える車輪
21,22は、夫々前輪又は後輪として機能する。また
台車本体30には、図示しないバッテリが搭載されてお
り、このバッテリからの電源の供給により、制御装置3
2が動作し、制御装置32の制御に従い台車1に備える
上述した各部が動作している。
The two leg portions 10 and 20 are supported by the vehicle body support portion 31 by holding the support portion sensors 13s and 23s arranged on the rotation shafts 13a and 23a of the wheel support portions 13 and 23, respectively. , Which are arranged at the left and right positions of the carriage 1, whereby the wheels 11 and 12 provided on the leg 10 are
Similarly, the wheels 21 and 22 provided on the leg 20 function as front wheels and rear wheels, respectively, and function as front wheels and rear wheels, respectively. A battery (not shown) is mounted on the trolley body 30, and the controller 3 is supplied with power from the battery.
2 operates, and the above-described units provided in the carriage 1 operate under the control of the control device 32.

【0024】図4は台車1に備える車輪支持部13の回
動態様を示す説明図であり、図においては、矢符Aで示
す方向を進行方向として前方の上方への段差部を乗り越
える態様を示している。図においては、進行方向の左側
に配置された車輪11,12の回転速度を、右側に配置
された車輪21,22の回転速度よりも速く制御してお
り、この左右の各車輪の回転速度の相違に基づき台車1
に捩れが生じ、この台車1の捩れにより各車輪支持部1
3,23が回動する。尚、段差部を乗り越えない右側の
車輪支持部23を回動しないように制御しており、これ
により、車輪支持部13が図にθで示す角度だけ回動
し、車輪11が上方へ移動することが分かる。また逆
に、左側の車輪11,12の回転速度を、右側の車輪2
1,22の回転速度よりも遅く制御した場合、左側の車
輪支持部13が逆方向に回動して車輪11が下方に移動
することができる。
FIG. 4 is an explanatory view showing a rotation mode of the wheel support section 13 provided on the carriage 1. In the figure, a mode in which the direction indicated by an arrow A is used as a traveling direction and a step portion forwardly and upwardly is overcome is shown. Shows. In the figure, the rotation speeds of the wheels 11 and 12 arranged on the left side in the traveling direction are controlled to be higher than the rotation speeds of the wheels 21 and 22 arranged on the right side. Truck 1 based on the difference
Twisting occurs in each wheel supporting portion 1 due to the twisting of the carriage 1.
3, 23 rotate. The right wheel support 23 that does not get over the step is controlled so as not to rotate, whereby the wheel support 13 rotates by an angle indicated by θ in the figure, and the wheel 11 moves upward. I understand. On the contrary, the rotational speeds of the left wheels 11 and 12 are changed to the right wheel 2
When the rotation speed is controlled to be slower than the rotation speeds of the wheels 1 and 22, the left wheel support portion 13 rotates in the opposite direction and the wheels 11 can move downward.

【0025】図5は本発明に係る台車1の構成を示すブ
ロック図である。台車1に備える制御装置32は具体的
にはMPU(Micro Processor Unit) 等で構成され、台
車1に備える車輪用センサ11s,12s,21s,2
2s、支持部用センサ13s,23s、荷重センサ1
4,15,24,25、車輪用モータ11m,12m,
21m,22m及び支持部用モータ13m,23mが夫
々接続されている。制御装置32は、車輪用センサ11
s,12s,21s,22sが検出した各車輪11,1
2,21,22の回転角度、支持部用センサ13s,2
3sが検出した車輪支持部13,23の回動角度及び荷
重センサ14,15,24,25が検出した各車輪1
1,12,21,22が受けた荷重を逐次取得し、取得
した各値に基づき、各車輪11,12,21,22を回
転させる車輪用モータ11m,12m,21m,22m
及び各車輪支持部13,23を回動させる支持部用モー
タ13m,23mを駆動させる駆動力を制御すべく、イ
ンピーダンス制御手段32a及び走行制御手段32bを
備えている。
FIG. 5 is a block diagram showing the structure of the carriage 1 according to the present invention. The control device 32 provided in the truck 1 is specifically configured by an MPU (Micro Processor Unit) or the like, and the wheel sensors 11s, 12s, 21s, 2 provided in the truck 1 are provided.
2s, support section sensors 13s and 23s, load sensor 1
4, 15, 24, 25, wheel motors 11m, 12m,
21m, 22m and motors 13m, 23m for the support are respectively connected. The control device 32 uses the wheel sensor 11
Wheels 11, 1 detected by s, 12s, 21s, 22s
2, 21 and 22 rotation angles, support section sensors 13s, 2
Rotation angles of the wheel supporting portions 13 and 23 detected by 3s and the respective wheels 1 detected by the load sensors 14, 15, 24 and 25
The motors for wheels 11m, 12m, 21m, 22m that sequentially acquire the loads received by the 1, 12, 21, 21 and rotate the wheels 11, 12, 21, 22 based on the acquired values.
Also, an impedance control means 32a and a travel control means 32b are provided in order to control the driving force for driving the support portion motors 13m, 23m for rotating the wheel support portions 13, 23.

【0026】走行制御手段32bは、制御装置32が取
得した各センサからのデータに基づき、各車輪11,1
2,21,22を回転させる車輪用モータ11m,12
m,21m,22mの駆動力を制御しており、平坦な路
面上を走行する場合、所定の駆動力にて各モータを駆動
させている。また、走行制御手段32bは、1つの車輪
が前方の上方への段差部を乗り越えると判断した場合、
前記1つの車輪と左右位置に配置される2つの車輪の回
転速度が0になるように各車輪用モータの駆動力を0に
制御し、1つの車輪が前方の下方への段差部を降下する
と判断した場合、前記1つの車輪と左右位置に配置され
る2つの車輪の回転速度が所定速度だけ速くなるように
各車輪用モータの駆動力を制御する。尚、段差部を昇降
する車輪及び該車輪と同じ車輪支持部が支持する車輪の
回転速度を、他の車輪支持部が支持する車輪の回転速度
よりも速く又は遅く制御することにより、左右の車輪の
回転速度に相違が生じる構成であれば、上述したように
段差部を昇降しない側の各車輪の回転速度のみを制御す
る構成に限られない。
The traveling control means 32b, based on the data from each sensor acquired by the control device 32, each wheel 11, 1
Wheel motors 11m, 12 for rotating 2, 21, 22
The driving force of m, 21 m, and 22 m is controlled, and when traveling on a flat road surface, each motor is driven with a predetermined driving force. In addition, when the traveling control means 32b determines that one wheel crosses over the front step,
When the driving force of each wheel motor is controlled to 0 so that the rotation speeds of the one wheel and the two wheels arranged at the left and right positions become zero, and one wheel descends the step portion to the front and lower side. When the determination is made, the driving force of each wheel motor is controlled so that the rotation speeds of the one wheel and the two wheels arranged at the left and right positions are increased by a predetermined speed. The left and right wheels are controlled by controlling the rotation speeds of the wheels that move up and down the step and the wheels that are supported by the same wheel support portion as the wheels to be faster or slower than the rotation speeds of the wheels that are supported by the other wheel support portions. The configuration is not limited to the configuration in which only the rotational speeds of the wheels on the side that does not move up and down the stepped portion are controlled as described above as long as the rotational speeds differ.

【0027】インピーダンス制御手段32aは、各セン
サからのデータに基づき、インピーダンス制御処理によ
り、各車輪支持部13,23を回動させる支持部用モー
タ13m,23mの駆動力を制御する。ここで、インピ
ーダンス制御処理とは、一般的には以下の(1)式にて
表現される各インピーダンス特性M,D,Kを調整する
ことにより、制御対象をインピーダンス制御における平
衡点位置xd に到達させるために必要な駆動力Fを制御
する処理である。
The impedance control means 32a controls the driving force of the support portion motors 13m and 23m for rotating the wheel support portions 13 and 23 by impedance control processing based on the data from the respective sensors. Here, the impedance control process is generally performed by adjusting each impedance characteristic M, D, and K represented by the following equation (1) to set the control target to the equilibrium point position x d in impedance control. This is a process of controlling the driving force F required to reach the target.

【0028】[0028]

【数1】 [Equation 1]

【0029】本実施の形態におけるインピーダンス制御
手段32aは、上述したように車輪支持部13,23を
回動させる支持部用モータ13m,23mの駆動力Fを
制御しており、(1)式における平衡点位置xd 及び現
在位置xは、夫々車輪支持部13,23の目標回動角度
θd 及び現在角度θを意味している。また、本実施の形
態においては、質量特性Mを台車本体30の質量とし、
減衰特性Dを車輪支持部13,23が予め有する機械特
性としているため、インピーダンス制御手段32aは、
以下の(2)式にて表現される剛性特性Kを調整するこ
とにより、支持部用モータ13m,23mの駆動力Fを
制御する構成を有している。尚、質量特性M及び減衰特
性Dについても調整する構成としてもよい。
The impedance control means 32a in the present embodiment controls the driving force F of the support portion motors 13m and 23m for rotating the wheel support portions 13 and 23 as described above, and in the formula (1). The equilibrium point position x d and the current position x mean the target rotation angle θ d and the current angle θ of the wheel support portions 13 and 23, respectively. Further, in the present embodiment, the mass characteristic M is the mass of the carriage main body 30,
Since the damping characteristic D is a mechanical characteristic that the wheel supporting portions 13 and 23 have in advance, the impedance control means 32a
By adjusting the rigidity characteristic K expressed by the following equation (2), the driving force F of the support unit motors 13m and 23m is controlled. The mass characteristic M and the damping characteristic D may be adjusted.

【0030】K(θ−θd )=F …(2) (K:剛性特性,θd :平衡点位置,θ:現在位置)K (θ-θ d ) = F (2) (K: rigidity characteristic, θ d : equilibrium point position, θ: current position)

【0031】また、インピーダンス制御手段32aが調
整する剛性特性Kとは、車輪11,12,21,22を
上下方向に移動させるために仮想的に設けられた仮想バ
ネのバネ定数であり、このバネ定数をより小さい値に設
定することにより、より小さな力により各車輪11,1
2,21,22が上下方向に移動することができる。本
実施の形態においては、このバネ定数を、平坦な路面上
を走行する場合、段差部を昇降する場合及び段差部を昇
降しない場合において逐次変更し、夫々のバネ定数
0 ,K1 ,K2 (0<K1 <K0 <K2 )を予め記憶
している。一方、上述の(2)式において平衡点位置θ
d は、前記仮想バネが自然長となる位置、即ち、各車輪
支持部13,23が回動せずに安定する位置を示してい
る。従って、インピーダンス制御手段32aは、車輪支
持部13,23が目標回動角度θd からずれた場合、上
述の(2)式に基づき算出された駆動力Fにより各支持
部用モータ13m,23mを駆動させることにより、各
車輪11,12,21,22が、路面上の凹凸に柔軟に
対応しながら安定して走行することができる。
The rigidity characteristic K adjusted by the impedance control means 32a is the spring constant of a virtual spring virtually provided for moving the wheels 11, 12, 21, 22 in the vertical direction. By setting the constant to a smaller value, a smaller force is applied to each wheel 11, 1
2, 21, 22 can move in the vertical direction. In the present embodiment, this spring constant is changed sequentially when traveling on a flat road surface, when moving up and down the stepped portion, and when not moving up and down the stepped portion, and the respective spring constants K 0 , K 1 , K. 2 (0 <K 1 <K 0 <K 2 ) is stored in advance. On the other hand, in equation (2) above, the equilibrium point position θ
d indicates a position where the virtual spring has a natural length, that is, a position where the wheel support portions 13 and 23 are stable without rotating. Therefore, when the wheel support parts 13 and 23 deviate from the target rotation angle θ d , the impedance control means 32a operates the support part motors 13m and 23m by the driving force F calculated based on the above equation (2). By driving, each wheel 11, 12, 21, 22 can travel stably while flexibly responding to the unevenness on the road surface.

【0032】荷重センサ14,15,24,25は夫
々、車輪11,12,21,22が路面から受ける荷重
を検出しており、台車1が平坦な路面上を走行している
場合は、各車輪11,12,21,22は路面から所定
範囲内の大きさの荷重を受けている。従って、本実施の
形態における制御装置32は、各荷重センサ14,1
5,24,25が、この所定範囲よりも大きい荷重を検
出した場合に、この荷重を受けた車輪が前方の上方への
段差部に衝突したことを認識し、各荷重センサ14,1
5,24,25が、この所定範囲よりも小さい荷重を検
出した場合に、この荷重を受けた車輪が前方の下方への
段差部を降下し始めたことを認識することとする。
The load sensors 14, 15, 24, 25 detect the loads received by the wheels 11, 12, 21, 22 from the road surface, respectively. When the truck 1 is traveling on a flat road surface, The wheels 11, 12, 21, 22 are subjected to a load within a predetermined range from the road surface. Therefore, the control device 32 in the present embodiment is configured so that the load sensors 14, 1
When 5, 24, 25 detect a load larger than this predetermined range, it recognizes that the wheel receiving this load has collided with the front step portion, and each load sensor 14, 1
When 5, 24, 25 detect a load smaller than the predetermined range, it is recognized that the wheel receiving the load has started to descend the front step portion.

【0033】従って、インピーダンス制御手段32a
は、各荷重センサ14,15,24,25が検出した荷
重に基づき、前方の段差部を昇降する車輪を支持する車
輪支持部における仮想バネのバネ定数を小さい値K
1 に、他の車輪支持部における仮想バネのバネ定数を大
きい値K2 に変更する。これにより、前記他の車輪支持
部は回動せず、段差部を昇降する前記車輪は、前記段差
部に沿って容易に上下方向に移動することができる。
Therefore, the impedance control means 32a
Is a small value K of the spring constant of the virtual spring in the wheel support portion that supports the wheel that moves up and down the front step portion based on the load detected by each load sensor 14, 15, 24, 25.
1, to change the spring constant of the imaginary spring to a large value K 2 of the other wheel support portion. Accordingly, the other wheel support portion does not rotate, and the wheel that moves up and down the step portion can easily move in the vertical direction along the step portion.

【0034】以下に、台車1による段差部の乗り越え処
理について説明する。図6及び図7は本発明に係る台車
1による段差部の乗越手順を示すフローチャート、図8
は本発明に係る台車1による段差部の乗越処理を説明す
るための説明図である。台車1は、図8中に矢符Cで示
す方向を進行方向として、前方に上方への段差部Bを有
する路面上を走行している。また台車1は、段差部Bに
対して斜めに進入しており、進行方向に対して左前輪が
最初に段差部Bを乗り越えることとする。尚、便宜上、
左前輪を車輪11、左後輪を車輪12、右前輪を車輪2
1、右後輪を車輪22とする。
The process of getting over the stepped portion by the carriage 1 will be described below. FIG. 6 and FIG. 7 are flowcharts showing a procedure for getting over the stepped portion by the carriage 1 according to the present invention, and FIG.
FIG. 4 is an explanatory diagram for explaining a process of getting over a step portion by the carriage 1 according to the present invention. The trolley | bogie 1 is running on the road surface which has the step part B which goes to the front upwards by making the direction shown by the arrow C in FIG. Further, the trolley 1 is obliquely entering the stepped portion B, and the left front wheel first crosses the stepped portion B in the traveling direction. For convenience,
Left front wheel is wheel 11, left rear wheel is wheel 12, right front wheel is wheel 2
1, the right rear wheel is wheel 22.

【0035】台車1は、平坦な路面上においては、各車
輪11,12,21,22を上下方向に移動させる仮想
バネのバネ定数を、路面の凹凸を十分吸収する程度の大
きさK0 とし、車輪支持部13,23の目標回動角度
を、水平方向に配された現在角度θ0 として、以下の
(3)式に基づき車輪支持部13,23を回動させる支
持部用モータ13m,23mの駆動力を制御しながら走
行している。
In the trolley 1, on a flat road surface, the spring constant of a virtual spring for vertically moving the wheels 11, 12, 21, 22 is set to a magnitude K 0 sufficient to absorb the unevenness of the road surface. , The target rotation angle of the wheel support portions 13 and 23 is the current angle θ 0 arranged in the horizontal direction, and the support portion motor 13m that rotates the wheel support portions 13 and 23 based on the following equation (3). It is traveling while controlling the driving force of 23 m.

【0036】K0 (θ−θ0 )=F …(3)K 0 (θ-θ 0 ) = F (3)

【0037】従って、車輪支持部13,23が目標回動
角度θ0 からずれた場合、インピーダンス制御手段32
aに、上述の(3)式に基づき算出された駆動力Fにて
各支持部用モータ13m,23mを駆動させることによ
り、各車輪11,12,21,22が路面上の凹凸に柔
軟に対応することができ、台車1が安定して走行するこ
とができる。制御装置32は、荷重センサ14,15,
24,25が検出する各車輪11,12,21,22が
路面から受ける荷重に基づき、各車輪11,12,2
1,22が前方の段差部Bに衝突したか否かを判断する
(S1)。具体的には、荷重センサ14,15,24,
25が検出する荷重が、平坦な路面上の走行中に検出さ
れる所定範囲の荷重よりも大きいか否かを判断し、所定
範囲よりも大きいと判断した場合、前記荷重を受けた車
輪11,21,21,22が前方の段差部Bに衝突した
と判断することができる。
Therefore, when the wheel support portions 13 and 23 deviate from the target rotation angle θ 0 , the impedance control means 32 is provided.
By driving the support unit motors 13m and 23m with a by the driving force F calculated based on the above equation (3), the wheels 11, 12, 21, and 22 flexibly conform to the unevenness on the road surface. It is possible to cope with this, and the carriage 1 can travel stably. The control device 32 includes load sensors 14, 15,
Based on the load received from the road surface by each wheel 11, 12, 21, 22 detected by 24, 25, each wheel 11, 12, 2
It is determined whether or not the vehicles 1 and 22 have collided with the front stepped portion B (S1). Specifically, the load sensors 14, 15, 24,
It is determined whether the load detected by 25 is larger than a load within a predetermined range detected during traveling on a flat road surface, and when it is determined that the load is larger than the predetermined range, the wheel 11, which has received the load, It can be determined that the 21, 21 and 22 have collided with the front stepped portion B.

【0038】制御装置32は、段差部Bに衝突したと判
断した場合、各荷重センサ14,15,24,25が検
出した荷重に基づき、どの車輪が段差部Bに衝突したか
を判断して、段差部Bを乗り越える必要がある車輪を決
定する(S2)。図8(a)は左前輪11が段差部Bに
衝突する台車1を示しており、本実施の形態では、左前
輪11,右前輪21,左後輪12,右後輪22の順に順
次段差部Bを乗り越える。次に制御装置32は、各前輪
11,21が段差部Bを乗り越える車輪であるか否かに
より、各車輪11,12,21,22の回転速度を変更
する(S3)。具体的には、段差部Bを乗り越えない右
前輪21及び右後輪22を回転させる車輪用モータ21
m,22mの駆動力を0にして、右前輪21及び右後輪
22の回転速度を0にする。
When the controller 32 determines that the wheel collides with the stepped portion B, it determines which wheel has collided with the stepped portion B based on the load detected by each load sensor 14, 15, 24, 25. , Determine which wheels need to ride over the stepped portion B (S2). FIG. 8A shows the dolly 1 in which the left front wheel 11 collides with the step portion B. In the present embodiment, the left front wheel 11, the right front wheel 21, the left rear wheel 12, and the right rear wheel 22 are stepped in this order. Get over Part B. Next, the control device 32 changes the rotation speed of each of the wheels 11, 12, 21, 22 depending on whether or not each of the front wheels 11, 21 is a wheel over the stepped portion B (S3). Specifically, the wheel motor 21 that rotates the right front wheel 21 and the right rear wheel 22 that does not climb over the stepped portion B
The driving forces of m and 22m are set to 0, and the rotational speeds of the right front wheel 21 and the right rear wheel 22 are set to 0.

【0039】更に制御装置32は、各前輪11,21が
段差部Bを乗り越える車輪であるか否かにより、各前輪
11,21を支持する車輪支持部13,23に行うイン
ピーダンス制御におけるバネ定数を決定する(S4)。
具体的には、段差部Bを乗り越える左前輪11を支持す
る車輪支持部13におけるバネ定数を、段差部Bから受
ける荷重に応じて車輪支持部13が柔軟に回動できる大
きさのバネ定数K1 とし、段差部Bを乗り越えない右前
輪21を支持する車輪支持部23におけるバネ定数を、
路面から受ける荷重に対して車輪支持部23が回動しな
い大きさのバネ定数K2 とする。
Further, the control device 32 determines the spring constant in impedance control to be performed on the wheel support portions 13 and 23 supporting the front wheels 11 and 21, depending on whether or not the front wheels 11 and 21 are wheels overcoming the stepped portion B. Determine (S4).
Specifically, the spring constant of the wheel support portion 13 that supports the left front wheel 11 that rides over the stepped portion B is set so that the wheel support portion 13 can flexibly rotate according to the load received from the stepped portion B. 1 , the spring constant in the wheel support portion 23 that supports the right front wheel 21 that does not get over the stepped portion B is
The spring constant K 2 is set so that the wheel supporting portion 23 does not rotate with respect to the load received from the road surface.

【0040】制御装置32は、上述のように変更した各
車輪支持部13,23に行うインピーダンス制御処理に
おけるバネ定数に基づき、インピーダンス制御手段32
aにより、各車輪支持部13,23を回動させる支持部
用モータ13m,23mの駆動力を算出し(S5)、夫
々算出された駆動力に基づき各支持部用モータ13m,
23mを駆動させる(S6)。尚、上述のようにバネ定
数を変更することにより、車輪支持部13を回動させる
支持部用モータ13mの駆動力は、以下の(4)式に基
づき、車輪支持部23を回動させる支持部用モータ23
mの駆動力は、以下の(5)式に基づき夫々算出され
る。
The control device 32 controls the impedance control means 32 based on the spring constant in the impedance control process performed on the wheel support portions 13 and 23 changed as described above.
The driving force of the support portion motors 13m and 23m for rotating the wheel support portions 13 and 23 is calculated by a (S5), and the respective support portion motors 13m and 23m are calculated based on the calculated driving force.
23 m is driven (S6). By changing the spring constant as described above, the driving force of the supporting portion motor 13m for rotating the wheel supporting portion 13 is determined by the following formula (4) to rotate the wheel supporting portion 23. Motor 23
The driving force of m is calculated based on the following equation (5).

【0041】 K1 (θ−θ0 )=F …(4) K2 (θ−θ0 )=F …(5)K 1 (θ−θ 0 ) = F (4) K 2 (θ−θ 0 ) = F (5)

【0042】インピーダンス制御手段32aは、所定周
期毎に各荷重センサ14,15,24,25が検出する
各車輪11,12,21,22が路面から受ける荷重に
基づき、左前輪11が段差部Bの乗り越えを完了したか
否かを判断している(S7)。図8(b)は左前輪11
が段差部Bを走行中の台車1を示しており、走行制御手
段32bは、左前輪11が段差部Bの乗り越えを完了し
たと判断するまで、ステップS3において変更した回転
速度にて各車輪11,12,21,22を回転させる。
尚、左前輪11の段差部Bの乗り越えが完了すると、荷
重センサ14により検出される荷重が大きく変化するの
で、検出される荷重の変化量を測定することにより、左
前輪11の段差部Bの乗り越えが完了したかどうかを判
断することができる。
In the impedance control means 32a, the left front wheel 11 has a stepped portion B on the basis of the load received by the load sensors 14, 15, 24, 25 from the road surface by the load sensors 14, 15, 24, 25 at predetermined intervals. It is determined whether or not the overcoming of is completed (S7). FIG. 8B shows the left front wheel 11
Indicates the truck 1 traveling on the stepped portion B, and the traveling control means 32b determines that the left front wheel 11 has finished passing over the stepped portion B at each rotational speed changed in step S3. , 12, 21, 22 are rotated.
It should be noted that when the ride over the stepped portion B of the left front wheel 11 is completed, the load detected by the load sensor 14 changes greatly. Therefore, by measuring the amount of change in the detected load, the stepped portion B of the left front wheel 11 can be measured. It is possible to judge whether or not the overcoming is completed.

【0043】図8(c)は左前輪11が段差部Bを乗り
越えた台車1を示しており、ステップS7において、制
御装置32が、前記左前輪11が段差部Bの乗り越えを
完了したと判断した場合、全ての車輪11,12,2
1,22が段差部Bの乗り越えを完了したか否かを判断
する(S8)。ここでは、左前輪11のみが段差部Bを
乗り越えただけであり、左前輪11が段差部Bの上側を
走行する台車1における制御装置32は、各車輪11,
12,21,22の回転速度を、平坦な路面上を走行す
る場合の所定の回転速度に変更する(S9)。また、制
御装置32は、各車輪支持部13,23に行うインピー
ダンス制御におけるバネ定数を、平坦な路面上を走行す
る場合のバネ定数K0 に変更する(S10)。
FIG. 8 (c) shows the truck 1 in which the left front wheel 11 has passed over the stepped portion B, and in step S7, the control device 32 determines that the left front wheel 11 has completed passing over the stepped portion B. If so, all wheels 11, 12, 2
It is determined whether or not the wheels 1 and 22 have finished passing over the stepped portion B (S8). Here, only the front left wheel 11 has passed over the stepped portion B, and the control device 32 in the carriage 1 in which the front left wheel 11 travels above the stepped portion B is
The rotation speeds of 12, 21, 22 are changed to predetermined rotation speeds when traveling on a flat road surface (S9). Further, the control device 32 changes the spring constant in the impedance control performed on each wheel support 13, 23 to the spring constant K 0 when traveling on a flat road surface (S10).

【0044】次に制御装置32は、支持部用センサ13
sにより、左前輪11が段差部Bを乗り越えることによ
る車輪支持部13の現在までの回動角度(現在角度)を
検出し(S11)、左前輪11を支持する車輪支持部1
3に行うインピーダンス制御における目標回動角度を、
この検出した現在角度に変更する(S12)。尚、左前
輪11が段差部Bを乗り越えることによる車輪支持部1
3の回動角度はθ1 (θ0 <θ1 )とする。インピーダ
ンス制御手段32aは、変更したバネ定数及び目標回動
角度に基づき、各車輪支持部13,23を回動させる支
持部用モータ13m,23mの駆動力を算出し(S1
3)、夫々算出された駆動力に基づき各支持部用モータ
13m,23mを駆動させ(S14)、ステップS1の
処理に戻る。尚、車輪支持部13を回動させる支持部用
モータ13mの駆動力は、以下の(6)式に基づき算出
され、車輪支持部23を回動させる支持部用モータ23
mの駆動力は、上述の(3)式に基づき算出される。
Next, the control device 32 controls the support part sensor 13
By s, the rotation angle (current angle) of the wheel support portion 13 up to the present when the left front wheel 11 gets over the stepped portion B is detected (S11), and the wheel support portion 1 that supports the left front wheel 11 is detected.
The target rotation angle in the impedance control performed in 3 is
The detected current angle is changed (S12). It should be noted that the left front wheel 11 gets over the step B and the wheel support 1
The rotation angle of 3 is θ 101 ). The impedance control unit 32a calculates the driving force of the support unit motors 13m and 23m that rotate the wheel support units 13 and 23 based on the changed spring constant and the target rotation angle (S1).
3) Then, the supporter motors 13m and 23m are driven based on the respective calculated driving forces (S14), and the process returns to step S1. The driving force of the support portion motor 13m that rotates the wheel support portion 13 is calculated based on the following equation (6), and the support portion motor 23 that rotates the wheel support portion 23 is calculated.
The driving force of m is calculated based on the above formula (3).

【0045】K0 (θ−θ1 )=F …(6)K 0 (θ-θ 1 ) = F (6)

【0046】台車1に備える各車輪11,12,21,
22は、次に段差部Bを乗り越える車輪が段差部Bに衝
突するまで夫々段差部Bの上側又は下側を走行する。制
御装置32は、荷重センサ14,15,24,25が検
出する各車輪11,12,21,22が路面から受ける
荷重に基づき、各車輪11,12,21,22が段差部
Bに衝突したか否かを再度判断し(S1)、段差部Bに
衝突したと判断した場合、各荷重センサ14,15,2
4,25が検出した荷重に基づき、どの車輪が段差部B
に衝突したかを判断して、段差部Bを乗り越える必要が
ある車輪を決定する(S2)。ここでは、右前輪21が
段差部Bを乗り越える。
Each wheel 11, 12, 21, provided for the carriage 1,
The vehicle 22 travels on the upper side or the lower side of the stepped portion B, respectively, until the next wheel over the stepped portion B collides with the stepped portion B. The control device 32 causes the wheels 11, 12, 21, 22 to collide with the stepped portion B based on the load received by the wheels 11, 12, 21, 22 from the road surface detected by the load sensors 14, 15, 24, 25. If it is determined that the collision with the stepped portion B is made again (S1), each load sensor 14, 15, 2
Based on the load detected by Nos. 4 and 25, which wheel has stepped portion B
It is determined whether or not the vehicle has collided with, and the wheels that need to get over the stepped portion B are determined (S2). Here, the right front wheel 21 gets over the stepped portion B.

【0047】制御装置32は、段差部Bを乗り越えない
左前輪11及び左後輪12を回転させる車輪用モータ1
1m,12mの駆動力を0にして、左前輪11及び左後
輪12の回転速度を0にする(S3)。また制御装置3
2は、段差部Bを乗り越える右前輪21を支持する車輪
支持部23に行うインピーダンス制御におけるバネ定数
を、段差部Bから受ける荷重に応じて車輪支持部23が
柔軟に回動できる大きさのバネ定数K1 に、車輪支持部
13におけるバネ定数を、路面から受ける荷重に対して
車輪支持部13が回動しない大きさのバネ定数K2 に変
更する(S4)。制御装置32は、上述のように変更し
た各車輪支持部13,23に行うインピーダンス制御処
理におけるバネ定数から、インピーダンス制御手段32
aにより、各車輪支持部13,23を回動させる支持部
用モータ13m,23mの駆動力を、夫々以下の(7)
式及び上述の(4)式に基づき算出し(S5)、夫々算
出された駆動力に基づき各支持部用モータ13m,23
mを駆動させる(S6)。
The controller 32 controls the wheel motor 1 for rotating the left front wheel 11 and the left rear wheel 12 which do not get over the stepped portion B.
The driving force of 1 m and 12 m is set to 0, and the rotational speeds of the left front wheel 11 and the left rear wheel 12 are set to 0 (S3). In addition, the control device 3
Reference numeral 2 denotes a spring whose spring constant in impedance control is performed on the wheel support portion 23 that supports the right front wheel 21 that rides over the stepped portion B, such that the wheel support portion 23 can flexibly rotate according to the load received from the stepped portion B. the constant K 1, the spring constant of the wheel support portion 13, the wheel support 13 to change the spring constant K 2 of the size does not rotate with respect to the load received from the road surface (S4). The control device 32 determines the impedance control means 32 from the spring constant in the impedance control process performed on the wheel support parts 13 and 23 changed as described above.
The driving force of the support part motors 13m and 23m for rotating the wheel support parts 13 and 23 by a is as follows (7).
Formulas and the formula (4) above are used to calculate (S5), and the supporting unit motors 13m and 23 are calculated based on the respective calculated driving forces.
m is driven (S6).

【0048】K2 (θ−θ1 )=F …(7)K 2 (θ-θ 1 ) = F (7)

【0049】インピーダンス制御手段32aは、所定周
期毎に各荷重センサ14,15,24,25が検出する
各車輪11,12,21,22が路面から受ける荷重に
基づき、右前輪21が段差部Bの乗り越えを完了したか
否かを判断しており(S7)、右前輪21が段差部Bの
乗り越えを完了したと判断した場合、全ての車輪11,
12,21,22が段差部Bの乗り越えを完了したか否
かを判断する(S8)。ここでは、前輪11,21が段
差部Bを乗り越えただけであり、前輪11,12が段差
部Bの上側を走行する台車1における制御装置32は、
各車輪11,12,21,22の回転速度を、平坦な路
面上を走行する場合の所定の回転速度に変更する(S
9)。また、制御装置32は、各車輪支持部13,23
に行うインピーダンス制御におけるバネ定数を、平坦な
路面上を走行する場合のバネ定数K0 に変更する(S1
0)。
In the impedance control means 32a, the right front wheel 21 has a stepped portion B based on the load received by the load sensors 14, 15, 24, 25 from the road surface by the load sensors 14, 15, 24, 25 at predetermined intervals. When it is determined that the right front wheel 21 has completed overcoming the stepped portion B (S7), it is determined that all the wheels 11,
It is determined whether 12, 21, and 22 have completed passing over the stepped portion B (S8). Here, the front wheels 11 and 21 have only passed over the stepped portion B, and the control device 32 in the truck 1 in which the front wheels 11 and 12 travel above the stepped portion B is
The rotation speed of each wheel 11, 12, 21, 22 is changed to a predetermined rotation speed when traveling on a flat road surface (S
9). Further, the control device 32 controls the wheel support parts 13 and 23.
The spring constant in the impedance control performed in step 1 is changed to the spring constant K 0 when traveling on a flat road surface (S1).
0).

【0050】次に制御装置32は、支持部用センサ23
sにより、右前輪21が段差部Bを乗り越えることによ
る車輪支持部23の現在角度θ1 を検出し(S11)、
右前輪21を支持する車輪支持部23に行うインピーダ
ンス制御における目標回動角度を、この検出した現在角
度θ1 に変更する(S12)。インピーダンス制御手段
32aは、変更したバネ定数及び目標回動角度から、上
述の(6)式に基づき、各支持部用モータ13m,23
mの駆動力を夫々算出し(S13)、夫々算出された駆
動力に基づき各支持部用モータ13m,23mを駆動さ
せ(S14)、ステップS1の処理に戻る。尚、台車1
に備える各車輪11,12,21,22は、次に段差部
Bを乗り越える車輪が段差部Bに衝突するまで夫々段差
部Bの上側又は下側を走行する。
Next, the controller 32 controls the support sensor 23.
From s, the current angle θ 1 of the wheel support 23 due to the right front wheel 21 getting over the step B is detected (S11),
The target rotation angle in the impedance control performed on the wheel support portion 23 that supports the right front wheel 21 is changed to the detected current angle θ 1 (S12). The impedance control means 32a uses the changed spring constant and the target rotation angle based on the above equation (6) to support the motors 13m and 23 for the support portions.
The driving force of m is calculated respectively (S13), each of the supporter motors 13m and 23m is driven based on the calculated driving force (S14), and the process returns to step S1. In addition, trolley 1
Each of the wheels 11, 12, 21, 22 provided on the vehicle travels on the upper side or the lower side of the stepped portion B until the next wheel over the stepped portion B collides with the stepped portion B.

【0051】制御装置32は、荷重センサ14,15,
24,25が検出する各車輪11,12,21,22が
路面から受ける荷重に基づき、各車輪11,12,2
1,22が段差部Bに衝突したか否かを再度判断し(S
1)、段差部Bに衝突したと判断した場合、各荷重セン
サ14,15,24,25が検出した荷重に基づき、ど
の車輪が段差部Bに衝突したかを判断して、段差部Bを
乗り越える必要がある車輪を決定する(S2)。ここで
は、左後輪12が段差部Bを乗り越える。制御装置32
は、段差部Bを乗り越えない右前輪21及び右後輪22
を回転させる車輪用モータ21m,22mの駆動力を所
定量だけ大きくして、右前輪21及び右後輪22の回転
速度を所定量速くする(S3)。
The control device 32 includes the load sensors 14, 15,
Based on the load received from the road surface by each wheel 11, 12, 21, 22 detected by 24, 25, each wheel 11, 12, 2
It is again determined whether or not the first and second wheels collide with the stepped portion B (S
1) When it is determined that the bump portion B has collided, it is determined which wheel collides with the bump portion B based on the load detected by each load sensor 14, 15, 24, 25, and the bump portion B is detected. The wheels that need to be overcome are determined (S2). Here, the left rear wheel 12 gets over the stepped portion B. Control device 32
Is a right front wheel 21 and a right rear wheel 22 that do not climb over the stepped portion B.
The driving forces of the wheel motors 21m and 22m for rotating the vehicle are increased by a predetermined amount to increase the rotational speeds of the right front wheel 21 and the right rear wheel 22 by a predetermined amount (S3).

【0052】また制御装置32は、段差部Bを乗り越え
る左後輪12を支持する車輪支持部13に行うインピー
ダンス制御におけるバネ定数を、段差部Bから受ける荷
重に応じて車輪支持部13が柔軟に回動できる大きさの
バネ定数K1 に、車輪支持部23におけるバネ定数を、
路面から受ける荷重に対して車輪支持部23が回動しな
い大きさのバネ定数K2 に変更する(S4)。制御装置
32は、上述のように変更した各車輪支持部13,23
に行うインピーダンス制御処理におけるバネ定数から、
インピーダンス制御手段32aにより、各車輪支持部1
3,23を回動させる支持部用モータ13m,23mの
駆動力を、夫々以下の(8)式及び上述の(7)式に基
づき算出し(S5)、夫々算出された駆動力に基づき各
支持部用モータ13m,23mを駆動させる(S6)。
Further, the control device 32 flexibly adjusts the spring constant in the impedance control performed on the wheel supporting portion 13 that supports the left rear wheel 12 over the step portion B according to the load received from the step portion B. The spring constant of the wheel support portion 23 is set to the spring constant K 1 of a size that allows rotation,
The spring constant K 2 is changed so that the wheel support 23 does not rotate with respect to the load received from the road surface (S4). The control device 32 uses the wheel support parts 13 and 23 modified as described above.
From the spring constant in the impedance control process to
Each wheel support unit 1 is controlled by the impedance control unit 32a.
The driving forces of the supporter motors 13m and 23m for rotating the motors 3 and 23 are calculated based on the following equation (8) and the above equation (7) (S5), and each is calculated based on the calculated driving force. The supporting unit motors 13m and 23m are driven (S6).

【0053】K1 (θ−θ1 )=F …(8)K 1 (θ-θ 1 ) = F (8)

【0054】インピーダンス制御手段32aは、所定周
期毎に各荷重センサ14,15,24,25が検出する
各車輪11,12,21,22が路面から受ける荷重に
基づき、左後輪12が段差部Bの乗り越えを完了したか
否かを判断しており(S7)、左後輪12が段差部Bの
乗り越えを完了したと判断した場合、全ての車輪11,
12,21,22が段差部Bの乗り越えを完了したか否
かを判断する(S8)。ここでは、前輪11,21及び
左後輪12が段差部Bを乗り越えただけであり、前輪1
1,21及び左後輪12が段差部Bの上側を走行する台
車1における制御装置32は、各車輪11,12,2
1,22の回転速度を、平坦な路面上を走行する場合の
所定の回転速度に変更する(S9)。また、制御装置3
2は、各車輪支持部13,23に行うインピーダンス制
御におけるバネ定数を、平坦な路面上を走行する場合の
バネ定数K0 に変更する(S10)。
The impedance control means 32a is arranged such that the left rear wheel 12 has a stepped portion based on the load received by the load sensors 14, 15, 24, 25 from the road surface by the load sensors 14, 15, 24, 25 at predetermined intervals. When it is determined that the left rear wheel 12 has passed over the stepped portion B, it is determined whether all the wheels 11,
It is determined whether 12, 21, and 22 have completed passing over the stepped portion B (S8). Here, the front wheels 11 and 21 and the left rear wheel 12 have only crossed over the stepped portion B.
1, 21 and the left rear wheel 12 travel on the upper side of the stepped portion B, the control device 32 in the trolley 1 is configured so that the wheels 11, 12, 2
The rotation speeds of 1 and 22 are changed to a predetermined rotation speed when traveling on a flat road surface (S9). In addition, the control device 3
2 changes the spring constant in the impedance control performed on each wheel support 13, 23 to the spring constant K 0 when traveling on a flat road surface (S10).

【0055】次に制御装置32は、支持部用センサ13
sにより、左後輪12が段差部Bを乗り越えることによ
る車輪支持部13の現在角度を検出し(S11)、左後
輪12を支持する車輪支持部13に行うインピーダンス
制御における目標回動角度を、この検出した現在角度に
変更する(S12)。ここで、車輪支持部13は、後輪
12が段差部Bの上方に移動することにより、水平状態
となるため、車輪支持部13の目標回動角度は、水平方
向に平坦な路面上の走行時の目標回動角度θ0となる。
インピーダンス制御手段32aは、変更したバネ定数及
び目標回動角度から、上述の(3)式及び(6)式に基
づき、各支持部用モータ13m,23mの駆動力を夫々
算出し(S13)、夫々算出された駆動力に基づき各支
持部用モータ13m,23mを駆動させ(S14)、ス
テップS1の処理に戻る。尚、台車1に備える各車輪1
1,12,21,22は、次に段差部Bを乗り越える車
輪が段差部Bに衝突するまで夫々段差部Bの上側又は下
側を走行する。
Next, the control device 32 controls the support part sensor 13
By s, the current angle of the wheel support 13 due to the left rear wheel 12 getting over the step B is detected (S11), and the target rotation angle in the impedance control performed on the wheel support 13 supporting the left rear wheel 12 is determined. , The detected current angle is changed (S12). Here, the wheel supporting portion 13 is brought into a horizontal state by the rear wheel 12 moving above the stepped portion B, so that the target rotation angle of the wheel supporting portion 13 is a horizontal traveling surface on a flat road surface. The target rotation angle θ 0 at that time is obtained.
The impedance control unit 32a calculates the driving force of each of the support unit motors 13m and 23m from the changed spring constant and target rotation angle based on the above equations (3) and (6) (S13). The supporting unit motors 13m and 23m are driven based on the respective calculated driving forces (S14), and the process returns to step S1. In addition, each wheel 1 provided for the trolley 1
1, 12, 21, and 22 travel on the upper side or the lower side of the stepped portion B, respectively, until the wheel which gets over the stepped portion B next collides with the stepped portion B.

【0056】制御装置32は、荷重センサ14,15,
24,25が検出する各車輪11,12,21,22が
路面から受ける荷重に基づき、各車輪11,12,2
1,22が段差部Bに衝突したか否かを再度判断し(S
1)、段差部Bに衝突したと判断した場合、各荷重セン
サ14,15,24,25が検出した荷重に基づき、ど
の車輪が段差部Bに衝突したかを判断して、段差部Bを
乗り越える必要がある車輪を決定する(S2)。ここで
は、右後輪22が段差部Bを乗り越える。制御装置32
は、段差部Bを乗り越えない左前輪11及び左後輪12
を回転させる車輪用モータ11m,12mの駆動力を所
定量大きくして、左前輪11及び左後輪12の回転速度
を所定量速くする(S3)。
The control device 32 includes load sensors 14, 15,
Based on the load received from the road surface by each wheel 11, 12, 21, 22 detected by 24, 25, each wheel 11, 12, 2
It is again determined whether or not the first and second wheels collide with the stepped portion B (S
1) When it is determined that the bump portion B has collided, it is determined which wheel collides with the bump portion B based on the load detected by each load sensor 14, 15, 24, 25, and the bump portion B is detected. The wheels that need to be overcome are determined (S2). Here, the right rear wheel 22 gets over the stepped portion B. Control device 32
Is a front left wheel 11 and a rear left wheel 12 that do not climb over the stepped portion B.
The driving force of the wheel motors 11m and 12m for rotating the vehicle is increased by a predetermined amount, and the rotational speeds of the left front wheel 11 and the left rear wheel 12 are increased by a predetermined amount (S3).

【0057】また制御装置32は、段差部Bを乗り越え
る右後輪22を支持する車輪支持部23に行うインピー
ダンス制御におけるバネ定数を、段差部Bから受ける荷
重に応じて車輪支持部23が柔軟に回動できる大きさの
バネ定数K1 に、車輪支持部13におけるバネ定数を、
路面から受ける荷重に対して車輪支持部13が回動しな
い大きさのバネ定数K2 に変更する(S4)。制御装置
32は、上述のように変更した各車輪支持部13,23
に行うインピーダンス制御処理におけるバネ定数から、
インピーダンス制御手段32aにより、各車輪支持部1
3,23を回動させる支持部用モータ13m,23mの
駆動力を、夫々上述の(5)式及び(8)式に基づき算
出し(S5)、夫々算出された駆動力に基づき各支持部
用モータ13m,23mを駆動させる(S6)。
Further, the control device 32 flexibly adjusts the spring constant in the impedance control performed on the wheel support portion 23 supporting the right rear wheel 22 over the step portion B according to the load received from the step portion B. The spring constant of the wheel supporting portion 13 is set to the spring constant K 1 of the size that allows the rotation.
The spring constant K 2 is changed so that the wheel support 13 does not rotate with respect to the load received from the road surface (S4). The control device 32 uses the wheel support parts 13 and 23 modified as described above.
From the spring constant in the impedance control process to
Each wheel support unit 1 is controlled by the impedance control unit 32a.
The driving forces of the support unit motors 13m and 23m for rotating the motors 3 and 23 are calculated based on the above equations (5) and (8), respectively (S5), and each support unit is calculated based on the calculated driving force. The driving motors 13m and 23m are driven (S6).

【0058】インピーダンス制御手段32aは、所定周
期毎に各荷重センサ14,15,24,25が検出する
各車輪11,12,21,22が路面から受ける荷重に
基づき、右後輪22が段差部Bの乗り越えを完了したか
否かを判断しており(S7)、右後輪22が段差部Bの
乗り越えを完了したと判断した場合、全ての車輪11,
12,21,22が段差部Bの乗り越えを完了したか否
かを判断し(S8)、全ての車輪11,12,21,2
2が段差部Bを乗り越えた場合、段差部Bの乗越処理を
終了する。
In the impedance control means 32a, the right rear wheel 22 is stepped based on the load received from the road surface by each wheel 11, 12, 21, 22 detected by each load sensor 14, 15, 24, 25 at a predetermined cycle. When it is determined whether the ride over B has been completed (S7), and it is determined that the right rear wheel 22 has finished climbing over the stepped portion B, all the wheels 11,
It is determined whether or not 12, 21, 22 have completed getting over the stepped portion B (S8), and all the wheels 11, 12, 21, 2,
When 2 gets over the stepped portion B, the process of getting over the stepped portion B is ended.

【0059】上述したように、前輪が段差部Bを乗り越
える場合には、該前輪を支持する車輪支持部ではない車
輪支持部が支持する各車輪の回転速度が0になるように
各車輪用モータを制御することにより、段差部Bを乗り
越える前輪が,段差部Bに沿って上方へ移動することが
できる。また、後輪が段差部Bを乗り越える場合には、
該後輪を支持する車輪支持部ではない車輪支持部が支持
する各車輪の回転速度が、前記後輪を支持する車輪支持
部が支持する各車輪の回転速度よりも速くなるように各
車輪用モータを制御することにより、段差部Bを乗り越
える後輪が、段差部Bに沿って上方へ移動するKとがで
きる。
As described above, when the front wheels pass over the stepped portion B, the motor for each wheel is controlled so that the rotation speed of each wheel supported by the wheel support portion other than the wheel support portion supporting the front wheel becomes zero. The front wheel that rides over the stepped portion B can move upward along the stepped portion B by controlling the. Also, when the rear wheel gets over the stepped portion B,
For each wheel such that the rotation speed of each wheel supported by the wheel support portion other than the wheel support portion supporting the rear wheel is higher than the rotation speed of each wheel supported by the wheel support portion supporting the rear wheel. By controlling the motor, the rear wheel that rides over the stepped portion B can move upward along the stepped portion B.

【0060】更に、段差部Bを乗り越えない車輪を支持
する車輪支持部に行うインピーダンス制御処理における
バネ定数を、段差部Bから受ける荷重に対して車輪支持
部が回動しない大きさとすることにより、段差部Bを乗
り越える車輪が、自身を支持する車輪支持部をより容易
に回動することができる。従って、前記車輪がより容易
に段差部Bに沿って上方へ移動することができ、段差部
Bを乗り越えることができる。
Furthermore, by setting the spring constant in the impedance control processing performed on the wheel support portion that supports the wheel that does not climb over the step portion B so that the wheel support portion does not rotate with respect to the load received from the step portion B, The wheel that rides over the stepped portion B can more easily rotate the wheel support portion that supports itself. Therefore, the wheels can more easily move upward along the stepped portion B and can get over the stepped portion B.

【0061】以下に、台車1による段差部の降下処理に
ついて説明する。図9及び図10は本発明に係る台車1
による段差部の降下手順を示すフローチャート、図11
は本発明に係る台車1による段差部の降下処理を説明す
るための説明図である。台車1は、図11中に矢符Eで
示す方向を進行方向として、前方に下方への段差部Dを
有する路面上を走行している。また台車1は、段差部D
に対して斜めに進入しており、進行方向に対して左前輪
が最初に段差部Dを降下することとする。尚、便宜上、
左前輪を車輪11、左後輪を車輪12、右前輪を車輪2
1、右後輪を車輪22とする。
The process of lowering the stepped portion by the carriage 1 will be described below. 9 and 10 show a cart 1 according to the present invention.
11 is a flow chart showing a step of descending the step portion by FIG.
FIG. 6 is an explanatory diagram for explaining a descent process of a step portion by the trolley 1 according to the present invention. The trolley 1 travels on a road surface having a downward step D in the forward direction with the direction indicated by the arrow E in FIG. 11 as the traveling direction. In addition, the dolly 1 has
It is assumed that the left front wheel first descends from the step D with respect to the traveling direction. For convenience,
Left front wheel is wheel 11, left rear wheel is wheel 12, right front wheel is wheel 2
1, the right rear wheel is wheel 22.

【0062】台車1は、各車輪11,12,21,22
を上下方向に移動させる仮想バネのバネ定数を、路面の
凹凸を十分吸収する程度の大きさK0 とし、車輪支持部
13,23の目標回動角度を、水平方向に配された現在
角度θ0 として、上述の(3)式に基づき車輪支持部1
3,23を回動させる支持部用モータ13m,23mの
駆動力を制御しながら、平坦な路面上を走行している。
制御装置32は、荷重センサ14,15,24,25が
検出する各車輪11,12,21,22が路面から受け
る荷重に基づき、各車輪11,12,21,22が前方
の段差部Dを降下し始めたか否かを判断する(S2
1)。具体的には、荷重センサ14,15,24,25
が検出する荷重が、平坦な路面上の走行中に検出される
所定範囲の荷重よりも小さいか否かを判断し、所定範囲
よりも小さいと判断した場合、前記荷重を受けた車輪1
1,21,21,22が前方の段差部Dを降下し始めた
と判断することができる。
The trolley 1 has wheels 11, 12, 21, 22.
The spring constant of a virtual spring for moving the wheel is set to a magnitude K 0 sufficient to absorb the unevenness of the road surface, and the target rotation angle of the wheel support portions 13 and 23 is set to the current angle θ arranged in the horizontal direction. As 0 , the wheel support portion 1 is based on the above equation (3).
While controlling the driving force of the support unit motors 13m and 23m for rotating the motors 3 and 23, the vehicle travels on a flat road surface.
The control device 32 causes the wheels 11, 12, 21, 22 to detect the front step D based on the load received by the wheels 11, 12, 21, 22 from the road surface detected by the load sensors 14, 15, 24, 25. It is determined whether or not the descent has started (S2
1). Specifically, the load sensors 14, 15, 24, 25
It is determined whether the load detected by the load is smaller than the load within a predetermined range detected during traveling on a flat road surface. When it is determined that the load is smaller than the predetermined range, the wheel 1 that has received the load is determined.
It can be determined that the 1, 2, 21, 22 have begun to descend the front step D.

【0063】制御装置32は、段差部Dを降下し始めた
と判断した場合、各荷重センサ14,15,24,25
が検出した荷重に基づき、どの車輪が段差部Dを降下し
始めたかを判断して、段差部Dを降下する必要がある車
輪を決定する(S22)。図11(a)は左前輪11が
段差部Dを降下し始めた台車1を示しており、本実施の
形態では、左前輪11,右前輪21,左後輪12,右後
輪22の順に順次段差部Dを降下する。次に制御装置3
2は、各前輪11,21が段差部Dを降下する車輪であ
るか否かにより、各車輪11,12,21,22の回転
速度を変更する(S23)。具体的には、段差部Dを降
下しない右前輪21及び右後輪22を回転させる車輪用
モータ21m,22mの駆動力を所定量だけ大きくし、
右前輪21及び右後輪22の回転速度を所定速度速くす
る。
When it is determined that the control device 32 has begun to descend the step portion D, the load sensors 14, 15, 24, 25.
Based on the load detected by, which wheel has started to descend the step D is determined, and the wheel that needs to descend the step D is determined (S22). FIG. 11A shows the truck 1 in which the left front wheel 11 has begun to descend the step D. In the present embodiment, the left front wheel 11, the right front wheel 21, the left rear wheel 12, and the right rear wheel 22 are arranged in this order. The step portion D descends in sequence. Next, the control device 3
2 changes the rotation speed of each wheel 11, 12, 21, 22 depending on whether or not each front wheel 11, 21 is a wheel descending the step D (S23). Specifically, the driving forces of the wheel motors 21m and 22m that rotate the right front wheel 21 and the right rear wheel 22 that do not descend the step D are increased by a predetermined amount,
The rotation speeds of the right front wheel 21 and the right rear wheel 22 are increased by a predetermined speed.

【0064】更に制御装置32は、各前輪11,21が
段差部Dを降下する車輪であるか否かにより、各前輪1
1,21を支持する車輪支持部13,23に行うインピ
ーダンス制御におけるバネ定数を変更する(S24)。
具体的には、段差部Dを降下する左前輪11を支持する
車輪支持部13におけるバネ定数を、段差部Dから受け
る荷重に応じて車輪支持部13が柔軟に回動できる大き
さのバネ定数K1 とし、段差部Dを降下しない右前輪2
1を支持する車輪支持部23におけるバネ定数を、路面
から受ける荷重に対して車輪支持部23が回動しない大
きさのバネ定数K2 とする。
Further, the control device 32 determines whether each front wheel 11 or 21 is a wheel descending the step D or not.
The spring constant in the impedance control performed on the wheel support portions 13 and 23 supporting the wheels 1 and 21 is changed (S24).
Specifically, the spring constant of the wheel support portion 13 that supports the left front wheel 11 that descends the step portion D is set so that the wheel support portion 13 can flexibly rotate according to the load received from the step portion D. K 1 and right front wheel 2 that does not descend step D
The spring constant of the wheel support portion 23 supporting 1 is set to a spring constant K 2 of such a magnitude that the wheel support portion 23 does not rotate with respect to the load received from the road surface.

【0065】制御装置32は、上述のように変更した各
車輪支持部13,23に行うインピーダンス制御処理に
おけるバネ定数に基づき、インピーダンス制御手段32
aにより、各車輪支持部13,23を回動させる支持部
用モータ13m,23mの駆動力を算出し(S25)、
夫々算出された駆動力に基づき各支持部用モータ13
m,23mを駆動させる(S26)。尚、上述のように
バネ定数を変更することにより、車輪支持部13を回動
させる支持部用モータ13mの駆動力は、上述の(4)
式に基づき、車輪支持部23を回動させる支持部用モー
タ23mの駆動力は、上述の(5)式に基づき夫々算出
される。
The control device 32 controls the impedance control means 32 on the basis of the spring constant in the impedance control process performed on the wheel support portions 13 and 23 changed as described above.
The driving force of the support unit motors 13m and 23m for rotating the wheel support units 13 and 23 is calculated from a (S25),
The motor 13 for each support portion is calculated based on the calculated driving force.
m and 23m are driven (S26). The driving force of the support portion motor 13m for rotating the wheel support portion 13 by changing the spring constant as described above is the same as in (4) above.
Based on the equation, the driving force of the support portion motor 23m that rotates the wheel support portion 23 is calculated based on the above equation (5).

【0066】インピーダンス制御手段32aは、所定周
期毎に各荷重センサ14,15,24,25が検出する
各車輪11,12,21,22が路面から受ける荷重に
基づき、左前輪11が段差部Dの降下を完了したか否か
を判断している(S27)。図11(b)は左前輪11
が段差部Dを降下中の台車1を示しており、走行制御手
段32bは、左前輪11が段差部Dの降下を完了したと
判断するまで、ステップS23において変更した回転速
度にて各車輪11,12,21,22を回転させる。
尚、左前輪11の段差部Bの乗り越えが完了すると、荷
重センサ14により検出される荷重が大きく変化するの
で、検出される荷重の変化量を測定することにより、左
前輪11の段差部Bの乗り越えが完了したかどうかを判
断することができる。
The impedance control means 32a determines that the left front wheel 11 has a step D on the basis of the load received by the load sensors 14, 15, 24, 25 from the road surface by the load sensors 14, 15, 24, 25 at predetermined intervals. It is determined whether or not the descent has been completed (S27). Fig. 11 (b) shows the left front wheel 11
Indicates the truck 1 that is descending the step D, and the traveling control unit 32b determines that the left front wheel 11 has completed the descent of the step D at each rotation speed changed in step S23. , 12, 21, 22 are rotated.
It should be noted that when the ride over the stepped portion B of the left front wheel 11 is completed, the load detected by the load sensor 14 changes greatly. Therefore, by measuring the amount of change in the detected load, the stepped portion B of the left front wheel 11 can be measured. It is possible to judge whether or not the overcoming is completed.

【0067】図11(c)は左前輪11が段差部Dを降
下した台車1を示しており、ステップS27において、
制御装置32が、前記左前輪11が段差部Dの降下を完
了したと判断した場合、全ての車輪11,12,21,
22が段差部Dの降下を完了したか否かを判断する(S
28)。ここでは、左前輪11のみが段差部Dを降下し
ただけであり、左前輪11が段差部Dの下側を走行する
台車1における制御装置32は、各車輪11,12,2
1,22の回転速度を、平坦な路面上を走行する場合の
所定の回転速度に変更する(S29)。また、制御装置
32は、各車輪支持部13,23に行うインピーダンス
制御におけるバネ定数を、平坦な路面上を走行する場合
のバネ定数K0 に変更する(S30)。
FIG. 11C shows the trolley 1 in which the left front wheel 11 has descended the step D, and in step S27,
When the control device 32 determines that the left front wheel 11 has completed the descent of the step D, all the wheels 11, 12, 21,
22 determines whether or not the descent of the step portion D has been completed (S
28). Here, only the left front wheel 11 has just descended the step D, and the control device 32 in the trolley 1 in which the left front wheel 11 travels below the step D is controlled by the wheels 11, 12, 2.
The rotation speeds of 1 and 22 are changed to a predetermined rotation speed when traveling on a flat road surface (S29). Further, the control device 32 changes the spring constant in the impedance control performed on the wheel support portions 13 and 23 to the spring constant K 0 when traveling on a flat road surface (S30).

【0068】次に制御装置32は、支持部用センサ13
sにより、左前輪11が段差部Dを降下することによる
車輪支持部13の現在角度を検出し(S31)、左前輪
11を支持する車輪支持部13に行うインピーダンス制
御における目標回動角度を、この検出した現在角度に変
更する(S32)。尚、左前輪11が段差部Dを降下す
ることによる車輪支持部13の回動角度はθ2 (θ2
θ0 )とする。インピーダンス制御手段32aは、変更
したバネ定数及び目標回動角度に基づき、各車輪支持部
13,23を回動させる支持部用モータ13m,23m
の駆動力を算出し(S33)、夫々算出された駆動力に
基づき各支持部用モータ13m,23mを駆動させ(S
34)、ステップS21の処理に戻る。尚、車輪支持部
13を回動させる支持部用モータ13mの駆動力は、以
下の(9)式に基づき算出され、車輪支持部23を回動
させる支持部用モータ23mの駆動力は、上述の(3)
式に基づき算出される。
Next, the control device 32 controls the support part sensor 13
By s, the current angle of the wheel support 13 caused by the left front wheel 11 descending the step D is detected (S31), and the target rotation angle in the impedance control performed on the wheel support 13 supporting the left front wheel 11 is The detected current angle is changed (S32). The rotation angle of the wheel support portion 13 when the left front wheel 11 descends the step D is θ 22 <
θ 0 ). The impedance control means 32a rotates the wheel support parts 13 and 23 based on the changed spring constant and the target rotation angle, and the support part motors 13m and 23m.
(S33), and the drive motors 13m and 23m for the supporting portions are driven based on the calculated driving forces (S33).
34) and the process returns to step S21. The driving force of the support portion motor 13m that rotates the wheel support portion 13 is calculated based on the following equation (9), and the driving force of the support portion motor 23m that rotates the wheel support portion 23 is as described above. (3)
It is calculated based on the formula.

【0069】K0 (θ−θ2 )=F …(9)K 0 (θ-θ 2 ) = F (9)

【0070】台車1に備える各車輪11,12,21,
22は、次に段差部Dを降下する車輪が段差部Dを降下
し始めるまで夫々段差部Dの上側又は下側を走行する。
制御装置32は、荷重センサ14,15,24,25が
検出する各車輪11,12,21,22が路面から受け
る荷重に基づき、各車輪11,12,21,22が段差
部Dを降下し始めたか否かを再度判断し(S21)、段
差部Dを降下し始めたと判断した場合、各荷重センサ1
4,15,24,25が検出した荷重に基づき、どの車
輪が段差部Dを降下し始めたかを判断して、段差部Dを
降下する必要がある車輪を決定する(S22)。ここで
は、右前輪21が段差部Dを降下する。
The wheels 11, 12, 21 provided on the carriage 1 are
The vehicle 22 travels on the upper side or the lower side of the stepped portion D, respectively, until the wheel next descending the stepped portion D starts to descend the stepped portion D.
The control device 32 causes the wheels 11, 12, 21, 22 to descend the step D based on the load received by the wheels 11, 12, 21, 22 from the road surface detected by the load sensors 14, 15, 24, 25. When it is judged again whether or not the load sensor 1 has started (S21), and it is judged that the stepped portion D has started to descend, each load sensor 1
Based on the loads detected by 4, 15, 24, and 25, it is determined which wheel has begun to descend the step D, and the wheel that needs to descend the step D is determined (S22). Here, the right front wheel 21 descends the step D.

【0071】制御装置32は、段差部Dを降下しない左
前輪11及び左後輪12を回転させる車輪用モータ11
m,12mの駆動力を所定量だけ大きくし、左前輪11
及び左後輪12の回転速度を所定速度速くする(S2
3)。また制御装置32は、段差部Dを降下する右前輪
21を支持する車輪支持部23に行うインピーダンス制
御におけるバネ定数を、段差部Dから受ける荷重に応じ
て車輪支持部23が柔軟に回動できる大きさのバネ定数
1 に、車輪支持部13におけるバネ定数を、路面から
受ける荷重に対して車輪支持部13が回動しない大きさ
のバネ定数K2 に変更する(S24)。制御装置32
は、上述のように変更した各車輪支持部13,23に行
うインピーダンス制御処理におけるバネ定数から、イン
ピーダンス制御手段32aにより、各車輪支持部13,
23を回動させる支持部用モータ13m,23mの駆動
力を、夫々以下の(10)式及び上述の(4)式に基づ
き算出し(S25)、夫々算出された駆動力に基づき各
支持部用モータ13m,23mを駆動させる(S2
6)。
The controller 32 controls the wheel motor 11 for rotating the left front wheel 11 and the left rear wheel 12 which do not descend the step D.
The driving force of m, 12m is increased by a predetermined amount, and
And the rotation speed of the left rear wheel 12 is increased by a predetermined speed (S2
3). In addition, the control device 32 can flexibly rotate the wheel support portion 23 according to the load received from the step portion D, in the spring constant in the impedance control performed on the wheel support portion 23 that supports the right front wheel 21 that descends the step portion D. The spring constant of the wheel support portion 13 is changed to the spring constant K 1 of a magnitude to a spring constant K 2 of a magnitude at which the wheel support portion 13 does not rotate with respect to the load received from the road surface (S24). Control device 32
Is determined by the impedance control means 32a from the spring constant in the impedance control process performed on the wheel support parts 13 and 23 changed as described above.
The driving forces of the support unit motors 13m and 23m that rotate the 23 are calculated based on the following equation (10) and the above equation (4) (S25), and each support portion is calculated based on the calculated driving force. Drive the motors 13m and 23m (S2
6).

【0072】K2 (θ−θ2 )=F …(10)K 2 (θ-θ 2 ) = F (10)

【0073】インピーダンス制御手段32aは、所定周
期毎に各荷重センサ14,15,24,25が検出する
各車輪11,12,21,22が路面から受ける荷重に
基づき、右前輪21が段差部Dの降下を完了したか否か
を判断しており(S27)、右前輪21が段差部Dの降
下を完了したと判断した場合、全ての車輪11,12,
21,22が段差部Dの降下を完了したか否かを判断す
る(S28)。ここでは、前輪11,21が段差部Dを
降下しただけであり、前輪11,21が段差部Dの下側
を走行する台車1における制御装置32は、各車輪1
1,12,21,22の回転速度を、平坦な路面上を走
行する場合の所定の回転速度に変更する(S29)。ま
た、制御装置32は、各車輪支持部13,23に行うイ
ンピーダンス制御におけるバネ定数を、平坦な路面上を
走行する場合のバネ定数K0 に変更する(S30)。
In the impedance control means 32a, the right front wheel 21 has a step portion D based on the load received by the load sensors 14, 15, 24, 25 from the road surface by the load sensors 14, 15, 24, 25 at predetermined intervals. If it is determined that the right front wheel 21 has completed the descent of the stepped portion D (S27), it is determined that all the wheels 11, 12,
It is determined whether the steps 21 and 22 have completed the descent of the step D (S28). Here, the front wheels 11 and 21 only have descended the stepped portion D, and the control device 32 in the truck 1 in which the front wheels 11 and 21 travel below the stepped portion D is
The rotation speeds of 1, 12, 21, 22 are changed to predetermined rotation speeds when traveling on a flat road surface (S29). Further, the control device 32 changes the spring constant in the impedance control performed on the wheel support portions 13 and 23 to the spring constant K 0 when traveling on a flat road surface (S30).

【0074】次に制御装置32は、支持部用センサ23
sにより、右前輪21が段差部Dを降下することによる
車輪支持部23の現在角度θ2 を検出し(S31)、右
前輪21を支持する車輪支持部23に行うインピーダン
ス制御における目標回動角度を、この検出した現在角度
θ2 に変更する(S32)。インピーダンス制御手段3
2aは、変更したバネ定数及び目標回動角度から、上述
の(9)式に基づき、各支持部用モータ13m,23m
の駆動力を夫々算出し(S33)、夫々算出された駆動
力に基づき各支持部用モータ13m,23mを駆動させ
(S34)、ステップS21の処理に戻る。尚、台車1
に備える各車輪11,12,21,22は、次に段差部
Dを降下する車輪が段差部Dを降下し始めるまで夫々段
差部Dの上側又は下側を走行する。
Next, the controller 32 controls the support sensor 23.
s detects the current angle θ 2 of the wheel support portion 23 due to the right front wheel 21 descending the step D (S31), and the target rotation angle in the impedance control performed on the wheel support portion 23 supporting the right front wheel 21. Is changed to the detected current angle θ 2 (S32). Impedance control means 3
2a is based on the changed spring constant and target rotation angle, based on the above equation (9), the motors 13m and 23m for the respective support portions.
Are calculated respectively (S33), and the supporter motors 13m and 23m are driven based on the calculated driving forces (S34), and the process returns to step S21. In addition, trolley 1
Each of the wheels 11, 12, 21, 22 provided for the vehicle travels on the upper side or the lower side of the stepped portion D until the wheel next descending the stepped portion D starts to descend the stepped portion D.

【0075】制御装置32は、荷重センサ14,15,
24,25が検出する各車輪11,12,21,22が
路面から受ける荷重に基づき、各車輪11,12,2
1,22が段差部Dを降下し始めたか否かを再度判断し
(S21)、段差部Dを降下し始めたと判断した場合、
各荷重センサ14,15,24,25が検出した荷重に
基づき、どの車輪が段差部Dを降下し始めたかを判断し
て、段差部Dを降下する必要がある車輪を決定する(S
22)。ここでは、左後輪12が段差部Dを降下する。
制御装置32は、段差部Dを降下しない右前輪21及び
右後輪22を回転させる車輪用モータ21m,22mの
駆動力を所定量だけ小さくし、右前輪21及び右後輪2
2の回転速度を所定速度遅くする(S23)。
The control device 32 includes load sensors 14, 15,
Based on the load received from the road surface by each wheel 11, 12, 21, 22 detected by 24, 25, each wheel 11, 12, 2
When it is determined again whether or not the first and the second 22 have started to descend the step D (S21), and it is determined that the step D has started to descend,
Based on the load detected by each load sensor 14, 15, 24, 25, it is determined which wheel has begun to descend the step D, and the wheel that needs to descend the step D is determined (S).
22). Here, the left rear wheel 12 descends the step D.
The control device 32 reduces the driving force of the wheel motors 21m and 22m that rotate the right front wheel 21 and the right rear wheel 22 that do not descend the step D by a predetermined amount to reduce the right front wheel 21 and the right rear wheel 2.
The rotation speed of 2 is reduced by a predetermined speed (S23).

【0076】また制御装置32は、段差部Dを降下する
左後輪12を支持する車輪支持部13に行うインピーダ
ンス制御におけるバネ定数を、段差部Dから受ける荷重
に応じて車輪支持部13が柔軟に回動できる大きさのバ
ネ定数K1 に、車輪支持部23におけるバネ定数を、路
面から受ける荷重に対して車輪支持部23が回動しない
大きさのバネ定数K2 に変更する(S24)。制御装置
32は、上述のように変更した各車輪支持部13,23
に行うインピーダンス制御処理におけるバネ定数から、
インピーダンス制御手段32aにより、各車輪支持部1
3,23を回動させる支持部用モータ13m,23mの
駆動力を、夫々以下の(11)式及び上述の(10)式
に基づき算出し(S25)、夫々算出された駆動力に基
づき各支持部用モータ13m,23mを駆動させる(S
26)。
Further, the control device 32 causes the wheel support portion 13 to flexibly adjust the spring constant in the impedance control performed on the wheel support portion 13 supporting the left rear wheel 12 descending the step portion D according to the load received from the step portion D. The spring constant of the wheel supporting portion 23 is changed to a spring constant K 1 that allows the wheel supporting portion 23 to rotate to a spring constant K 2 that does not allow the wheel supporting portion 23 to rotate with respect to the load received from the road surface (S24). . The control device 32 uses the wheel support parts 13 and 23 modified as described above.
From the spring constant in the impedance control process to
Each wheel support unit 1 is controlled by the impedance control unit 32a.
The driving forces of the supporter motors 13m and 23m for rotating the motors 3 and 23 are calculated based on the following equations (11) and (10), respectively (S25), and based on the calculated driving forces, respectively. Drive the support motors 13m and 23m (S
26).

【0077】K1 (θ−θ2 )=F …(11)K 1 (θ-θ 2 ) = F (11)

【0078】インピーダンス制御手段32aは、所定周
期毎に各荷重センサ14,15,24,25が検出する
各車輪11,12,21,22が路面から受ける荷重に
基づき、左後輪12が段差部Dの降下を完了したか否か
を判断しており(S27)、左後輪12が段差部Dの降
下を完了したと判断した場合、全ての車輪11,12,
21,22が段差部Dの降下を完了したか否かを判断す
る(S28)。ここでは、前輪11,21及び左後輪1
2が段差部Dを降下しただけであり、前輪11,21及
び左後輪12が段差部Dの下側を走行する台車1におけ
る制御装置32は、各車輪11,12,21,22の回
転速度を、平坦な路面上を走行する場合の所定の回転速
度に変更する(S29)。また、制御装置32は、各車
輪支持部13,23に行うインピーダンス制御における
バネ定数を、平坦な路面上を走行する場合のバネ定数K
0 に変更する(S30)。
The impedance control means 32a is arranged such that the left rear wheel 12 has a stepped portion based on the load received by the load sensors 14, 15, 24, 25 from the road surface by the load sensors 14, 15, 24, 25 at predetermined intervals. It is determined whether or not the descent of D is completed (S27), and when it is determined that the left rear wheel 12 has completed the descent of the stepped portion D, all the wheels 11, 12,
It is determined whether the steps 21 and 22 have completed the descent of the step D (S28). Here, the front wheels 11 and 21 and the left rear wheel 1
The control device 32 in the trolley 1 in which the front wheels 11 and 21 and the left rear wheel 12 travel under the step D only when the vehicle 2 has just descended the step D, the rotation of the wheels 11, 12, 21, and 22. The speed is changed to a predetermined rotation speed when traveling on a flat road surface (S29). Further, the control device 32 sets the spring constant in the impedance control performed on the wheel support portions 13 and 23 to the spring constant K when traveling on a flat road surface.
The value is changed to 0 (S30).

【0079】次に制御装置32は、支持部用センサ13
sにより、左後輪12が段差部Dを降下することによる
車輪支持部13の現在角度を検出し(S31)、左後輪
12を支持する車輪支持部13に行うインピーダンス制
御における目標回動角度を、この検出した現在角度に変
更する(S32)。ここで、車輪支持部13は、後輪1
2が段差部Dの下方に移動することにより、水平状態と
なるため、車輪支持部13の目標回動角度は、水平方向
に平坦な路面上の走行時の目標回動角度θ0 となる。イ
ンピーダンス制御手段32aは、変更したバネ定数及び
目標回動角度から、上述の(3)式及び(9)式に基づ
き、各支持部用モータ13m,23mの駆動力を夫々算
出し(S33)、夫々算出された駆動力に基づき各支持
部用モータ13m,23mを駆動させ(S34)、ステ
ップS21の処理に戻る。尚、台車1に備える各車輪1
1,12,21,22は、次に段差部Dを降下する車輪
が段差部Dを降下し始めるまで夫々段差部Dの上側又は
下側を走行する。
Next, the controller 32 controls the support part sensor 13
By s, the current angle of the wheel support portion 13 due to the left rear wheel 12 descending the step D is detected (S31), and the target rotation angle in the impedance control performed on the wheel support portion 13 supporting the left rear wheel 12 is detected. Is changed to the detected current angle (S32). Here, the wheel support portion 13 is the rear wheel 1
When 2 moves below the step portion D, the wheel supporting portion 13 becomes horizontal, so that the target rotation angle of the wheel support portion 13 becomes the target rotation angle θ 0 when traveling on a flat road surface in the horizontal direction. The impedance control unit 32a calculates the driving force of each of the support unit motors 13m and 23m from the changed spring constant and target rotation angle based on the above equations (3) and (9) (S33). The supporting unit motors 13m and 23m are driven based on the respective calculated driving forces (S34), and the process returns to step S21. In addition, each wheel 1 provided for the trolley 1
1, 12, 21, and 22 run on the upper side or the lower side of the step D, respectively, until the wheels that descend the step D next start to descend the step D.

【0080】制御装置32は、荷重センサ14,15,
24,25が検出する各車輪11,12,21,22が
路面から受ける荷重に基づき、各車輪11,12,2
1,22が段差部Dを降下し始めたか否かを再度判断し
(S21)、段差部Dを降下し始めたと判断した場合、
各荷重センサ14,15,24,25が検出した荷重に
基づき、どの車輪が段差部Dを降下し始めたかを判断し
て、段差部Dを降下する必要がある車輪を決定する(S
22)。ここでは、右後輪22が段差部Dを降下する。
制御装置32は、段差部Dを降下しない左前輪11及び
左後輪12を回転させる車輪用モータ11m,12mの
駆動力を所定量だけ小さくし、左前輪11及び左後輪1
2の回転速度を所定速度遅くする(S23)。
The control device 32 includes the load sensors 14, 15,
Based on the load received from the road surface by each wheel 11, 12, 21, 22 detected by 24, 25, each wheel 11, 12, 2
When it is determined again whether or not the first and the second 22 have started to descend the step D (S21), and it is determined that the step D has started to descend,
Based on the load detected by each load sensor 14, 15, 24, 25, it is determined which wheel has begun to descend the step D, and the wheel that needs to descend the step D is determined (S).
22). Here, the right rear wheel 22 descends the step D.
The control device 32 reduces the driving force of the wheel motors 11m and 12m that rotate the left front wheel 11 and the left rear wheel 12 that do not descend the step D by a predetermined amount to reduce the left front wheel 11 and the left rear wheel 1.
The rotation speed of 2 is reduced by a predetermined speed (S23).

【0081】また制御装置32は、段差部Dを降下する
右後輪22を支持する車輪支持部23に行うインピーダ
ンス制御におけるバネ定数を、段差部Dから受ける荷重
に応じて車輪支持部23が柔軟に回動できる大きさのバ
ネ定数K1 に、車輪支持部13におけるバネ定数を、路
面から受ける荷重に対して車輪支持部13が回動しない
大きさのバネ定数K2 に変更する(S24)。制御装置
32は、上述のように変更した各車輪支持部13,23
に行うインピーダンス制御処理におけるバネ定数から、
インピーダンス制御手段32aにより、各車輪支持部1
3,23を回動させる支持部用モータ13m,23mの
駆動力を、夫々上述の(5)式及び(11)式に基づき
算出し(S25)、夫々算出された駆動力に基づき各支
持部用モータ13m,23mを駆動させる(S26)。
Further, the control device 32 causes the wheel supporting portion 23 to flexibly adjust the spring constant in the impedance control performed to the wheel supporting portion 23 supporting the right rear wheel 22 descending the step portion D according to the load received from the step portion D. The spring constant of the wheel supporting portion 13 is changed to a spring constant K 1 of a size that allows the wheel supporting portion 13 to rotate to a spring constant K 2 of a size that does not allow the wheel supporting portion 13 to rotate with respect to the load received from the road surface (S24). . The control device 32 uses the wheel support parts 13 and 23 modified as described above.
From the spring constant in the impedance control process to
Each wheel support unit 1 is controlled by the impedance control unit 32a.
The driving forces of the support unit motors 13m and 23m for rotating the motors 3 and 23 are calculated based on the above equations (5) and (11), respectively (S25), and each support unit is calculated based on the calculated driving force. The driving motors 13m and 23m are driven (S26).

【0082】インピーダンス制御手段32aは、所定周
期毎に各荷重センサ14,15,24,25が検出する
各車輪11,12,21,22が路面から受ける荷重に
基づき、右後輪22が段差部Dの降下を完了したか否か
を判断しており(S27)、右後輪22が段差部Dの降
下を完了したと判断した場合、全ての車輪11,12,
21,22が段差部Dの降下を完了したか否かを判断し
(S28)、全ての車輪11,12,21,22が段差
部Dを降下した場合、段差部Dの降下処理を終了する。
In the impedance control means 32a, the right rear wheel 22 has a stepped portion based on the load received by the load sensors 14, 15, 24, 25 from the road surface by the load sensors 14, 15, 24, 25 at predetermined intervals. It is determined whether or not the descent of D has been completed (S27), and when it is determined that the right rear wheel 22 has completed the descent of the stepped portion D, all the wheels 11, 12,
It is determined whether or not the wheels 21 and 22 have completed the descent of the stepped portion D (S28), and when all the wheels 11, 12, 21, 22 descend the stepped portion D, the descent process of the stepped portion D is ended. .

【0083】上述したように、前輪が段差部Dを降下す
る場合には、該前輪を支持する車輪支持部ではない車輪
支持部が支持する各車輪の回転速度を、段差部Dを降下
する前記前輪及び該前輪と同じ車輪支持部により支持さ
れる車輪の回転速度よりも速くなるように各車輪用モー
タを制御することにより、段差部Dを降下する前輪が、
路面上に大きな衝撃を与えることなく、また浮いた状態
にならずに段差部Dに沿って降下することができる。ま
た、後輪が段差部Dを降下する場合には,該後輪を支持
する車輪支持部ではない車輪支持部が支持する各車輪の
回転速度を、段差部Dを降下する前記後輪及び該後輪と
同じ車輪支持部により支持される車輪の回転速度よりも
遅くなるように各車輪用モータを制御することにより、
段差部Dを降下する前輪が、路面上に大きな衝撃を与え
ることなく、また浮いた状態にならずに段差部Dに沿っ
て降下することができる。
As described above, when the front wheels descend the stepped portion D, the rotation speed of each wheel supported by the wheel supporting portion other than the wheel supporting portion supporting the front wheels is lowered by the stepped portion D. By controlling each wheel motor so as to be faster than the rotation speed of the front wheel and the wheel supported by the same wheel support portion as the front wheel, the front wheel that descends the step D is
It is possible to descend along the step portion D without giving a large impact to the road surface and without floating. Further, when the rear wheel descends the step D, the rotation speed of each wheel supported by the wheel support portion other than the wheel support portion supporting the rear wheel is set to the rear wheel descending the step D By controlling each wheel motor so as to be slower than the rotation speed of the wheel supported by the same wheel support portion as the rear wheel,
The front wheel descending along the step D can descend along the step D without giving a large impact on the road surface and without floating.

【0084】更に、段差部Dを降下しない車輪を支持す
る車輪支持部に行うインピーダンス制御処理におけるバ
ネ定数を、段差部Dから受ける荷重に対して車輪支持部
が回動しない大きさとすることにより、段差部Dを降下
する車輪が、自身を支持する車輪支持部をより容易に回
動することができる。従って、前記車輪がより容易に段
差部Dに沿って下方へ移動することができ、段差部Dを
降下することができる。尚、溝を有する路面上を走行す
る場合であっても、各車輪が夫々各溝に対応して走行す
ることができる。
Further, by setting the spring constant in the impedance control processing performed on the wheel supporting portion that supports the wheel that does not descend the step portion D so that the wheel supporting portion does not rotate with respect to the load received from the step portion D, The wheel that descends the stepped portion D can more easily rotate the wheel support portion that supports itself. Therefore, the wheel can more easily move downward along the step D, and the step D can be lowered. Even when traveling on a road surface having grooves, each wheel can travel corresponding to each groove.

【0085】上述した実施の形態においては,各荷重セ
ンサが検出する荷重に基づき、各車輪が前方の段差部に
差し掛かったことを検知して、各車輪の回転速度を所定
の速度に変更する構成を有しているが、赤外線センサ等
を備え、昇降すべき段差の大きさを予め検出し、検出し
た段差に基づき、各車輪11,12,21,22の回転
速度を変更し、また、前記赤外線センサにより段差部の
昇降の完了を検出する構成としてもよい。また、2つの
赤外線センサを1組として、夫々車輪11,12,2
1,22の上方に配置することにより、台車1の段差部
への進入角度を算出することができ、算出された進入角
度に基づき、当該段差部の昇降か可能であるか否かを判
断する構成としても良い。
In the above-described embodiment, it is detected that each wheel approaches the front step portion based on the load detected by each load sensor, and the rotation speed of each wheel is changed to a predetermined speed. However, an infrared sensor or the like is provided, the size of a step to be moved up and down is detected in advance, and the rotation speed of each wheel 11, 12, 21, 22 is changed based on the detected step, and An infrared sensor may be used to detect the completion of the elevation of the step. In addition, two infrared sensors are set as one set, and the wheels 11, 12, 2 are respectively set.
By arranging above the vehicle 1 and 22, it is possible to calculate the approach angle of the trolley 1 to the stepped portion, and it is determined whether or not the stepped portion can be moved up and down based on the calculated approach angle. It may be configured.

【0086】更に、上述の実施の形態では、段差部の昇
降時において、段差部を昇降しない車輪を支持する車輪
支持部を、台車本体30を支えるべく回動しないように
制御されているが、段差部を昇降する車輪を支持する車
輪支持部の回動方向と逆の方向に回動等させて、台車本
体30の重心を前記段差部を昇降しない3つの車輪にて
支えることにより、段差部を昇降する車輪がよりスムー
ズに上下方向に移動することができる。また、各車輪1
1,12,21,22の車軸は、各車輪を支持する車輪
支持部13,23から適宜間隔を隔てて配置されてお
り、これにより、左右の各車輪11,12,21,22
の回転速度の相違による各車輪支持部13,23の回動
をより容易に行うことができ、各車輪11,12,2
1,22がより容易に上下方向へ移動することができる
が、各車輪11,12,21,22の車軸が、各車輪支
持部13,23と同一直線上に配置される構成としても
よい。
Further, in the above-described embodiment, when the step portion is moved up and down, the wheel support portion that supports the wheels that do not move up and down the step portion is controlled so as not to rotate to support the carriage body 30. By rotating the wheel supporting portion that supports the wheel that raises and lowers the step portion in a direction opposite to the rotation direction, and supporting the center of gravity of the carriage main body 30 by the three wheels that do not raise and lower the step portion, The wheels that move up and down can move more smoothly in the vertical direction. Also, each wheel 1
The axles of the wheels 1, 12, 21, 22 are arranged at appropriate intervals from the wheel support portions 13, 23 that support the wheels, whereby the left and right wheels 11, 12, 21, 22, 22 are arranged.
It is possible to more easily rotate the wheel support portions 13 and 23 due to the difference in rotation speed of the wheels 11, 12, and 2.
Although the wheels 1 and 22 can be moved in the vertical direction more easily, the axles of the wheels 11, 12, 21 and 22 may be arranged on the same straight line as the wheel support portions 13 and 23.

【0087】[0087]

【発明の効果】第1発明による場合は、前後方向に長
く、前後方向の中途部を中心として上下へ回動する車輪
支持体を左右に配置し、一方の車輪支持体が支持する車
輪の回転速度を、他方の車輪支持体が支持する車輪の回
転速度よりも速く又は遅く制御する速度制御手段を備え
ることにより、左右の車輪支持体が支持する各車輪の回
転速度に相違が生じ、この相違に基づき台車本体に捩れ
が生じる。この台車本体の捩れにより、各車輪支持体が
回動し、この車輪支持体の回動により、該車輪支持体が
支持する車輪が適宜上下方向へ移動することができる台
車を実現することができる。
According to the first aspect of the invention, the wheel supports that are long in the front-rear direction and that rotate up and down about the midpoint of the front-rear direction are arranged on the left and right, and the wheels supported by one wheel support rotate. By providing the speed control means for controlling the speed to be faster or slower than the rotation speed of the wheel supported by the other wheel support, the rotation speed of each wheel supported by the left and right wheel supports is different, and this difference As a result, the trolley body is twisted. It is possible to realize a trolley in which each wheel support is rotated by the twist of the trolley body, and the wheels supported by the wheel support can be appropriately moved in the vertical direction by the rotation of the wheel support. .

【0088】第2発明による場合は、車輪夫々が受ける
外力を検出し、検出した外力が所定範囲よりも大きいか
否か又は小さいか否かを判断する判断手段を備え、前記
速度制御手段は、前記判断手段が判断した結果に基づ
き、前記外力を受けた車輪及び該車輪と同じ車輪支持体
が支持する車輪の回転速度を、他の車輪支持体が支持す
る車輪の回転速度よりも速く又は遅く制御すべく構成し
てあることにより、各車輪が受ける外力に応じて左右の
車輪支持体が支持する各車輪の回転速度に相違が生じ、
この相違に基づき台車本体に捩れが生じ、この台車本体
の捩れにより、各車輪支持体が回動して、該車輪支持体
が支持する車輪が適宜上下方向へ移動することができ
る。
In the case of the second invention, the speed control means is provided with a judging means for detecting an external force received by each wheel and judging whether the detected external force is larger or smaller than a predetermined range. Based on the result determined by the determination means, the rotation speed of the wheel that receives the external force and the wheel supported by the same wheel support as the wheel is faster or slower than the rotation speed of the wheel supported by another wheel support. By being configured to control, the rotation speed of each wheel supported by the left and right wheel supports varies depending on the external force received by each wheel,
Due to this difference, the carriage main body is twisted, and the twisting of the carriage main body causes each wheel support body to rotate, and the wheels supported by the wheel support body can appropriately move in the vertical direction.

【0089】従って、凹凸及び溝等を有する路面上を走
行する場合であっても、各車輪が路面上に大きな衝撃を
及ぼすことなく、また各車輪が浮いた状態にならずに路
面上の各凹凸及び溝に柔軟に対応して走行する台車を実
現することができる。また、各車輪は、所定範囲の外力
を受けながら平坦な路面上を走行しており、外力検出手
段により検出された車輪夫々が受ける外力が、所定範囲
よりも大きいか否か又は小さいか否かを判断する判断手
段を備えることにより、該判断手段が前記所定範囲より
も大きいと判断した場合、前記外力を受けた車輪が、前
方の上方への段差部に衝突したことを検知することがで
き、前記判断手段が前記所定範囲よりも小さいと判断し
た場合、前記外力を受けた車輪が、前方の下方への段差
部を降下し始めたことを検知することができる。
Therefore, even when traveling on a road surface having irregularities, grooves, etc., each wheel does not exert a large impact on the road surface and each wheel on the road surface does not float. It is possible to realize a truck that flexibly travels in response to unevenness and grooves. Further, each wheel is traveling on a flat road surface while receiving an external force in a predetermined range, and whether the external force received by each wheel detected by the external force detecting means is larger or smaller than the predetermined range. By providing the determination means for determining, it is possible to detect that the wheel that has received the external force has collided with the step portion to the upper front when the determination means determines that it is larger than the predetermined range. If the determination means determines that the wheel size is smaller than the predetermined range, it can be detected that the wheel receiving the external force has started to descend the front step portion.

【0090】第3発明による場合は、第1又は第2発明
における他の車輪支持体を回動させないように制御する
構成を更に備えることにより、所望の車輪支持体をより
容易に回動させることができ、該車輪支持体により支持
される所望の車輪が、より容易に上下方向に移動するこ
とができ、凹凸及び溝等を有する路面上を走行する場合
であっても、路面上の各凹凸及び溝に柔軟に対応して走
行する台車を実現することができる。
In the case of the third invention, a desired wheel support can be rotated more easily by further providing a structure for controlling the other wheel support in the first or second invention so as not to rotate. The desired wheel supported by the wheel support can move in the vertical direction more easily, and even when traveling on a road surface having unevenness and grooves, each unevenness on the road surface Also, it is possible to realize a cart that travels flexibly in the groove.

【0091】第4発明による場合は、段差を検出する段
差検出手段を備え、該段差検出手段が検出した段差に基
づき各車輪の回転速度を制御する構成を有することによ
り、昇降すべき段差の高低の程度に応じて制御される左
右の車輪の回転速度の相違に基づき生じる台車本体の捩
れに従って、各車輪支持体が適宜角度だけ回動し、この
車輪支持体の回動により、該車輪支持体が支持する車輪
が上下方向に適宜距離だけ移動することができる。従っ
て、溝等を含む段差部を有する路面上を走行する場合で
あっても、各車輪が、予め検出された段差に応じて上下
方向に適宜距離だけ移動することにより、路面上に大き
な衝撃を及ぼすことなく、また各車輪が浮いた状態にな
らずに路面上の各段差に柔軟に対応して走行する台車を
実現することができる。
According to the fourth aspect of the invention, the level difference detecting means for detecting the level difference is provided, and the rotation speed of each wheel is controlled based on the level difference detected by the level difference detecting means. Each wheel support is rotated by an appropriate angle in accordance with the twist of the bogie main body caused by the difference in the rotational speeds of the left and right wheels, which is controlled according to the degree of the wheel support, and the rotation of the wheel support causes the wheel support to rotate. The wheels supported by can move up and down by an appropriate distance. Therefore, even when traveling on a road surface having a stepped portion including a groove or the like, a large impact is exerted on the road surface by moving each wheel in the vertical direction by an appropriate distance according to the step detected in advance. It is possible to realize a dolly that travels flexibly corresponding to each step on the road surface without exerting any influence and without causing the wheels to float.

【0092】第5発明による場合は、各車輪の車軸が、
該車輪を支持する車輪支持体から適宜間隔を隔てて配置
されていることにより、左右の各車輪の回転速度の相違
による前記車輪支持体の回動をより容易に行うことがで
き、前記車輪がより容易に上下方向への移動を行う台車
を実現することができる。
In the case of the fifth invention, the axle of each wheel is
By arranging the wheel supporter that supports the wheel at an appropriate interval, the wheel supporter can be more easily rotated due to the difference in the rotational speeds of the left and right wheels, and the wheel is It is possible to realize a cart that can move in the vertical direction more easily.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る台車を示す斜視図である。FIG. 1 is a perspective view showing a carriage according to the present invention.

【図2】本発明に係る台車を示す正面図である。FIG. 2 is a front view showing a carriage according to the present invention.

【図3】本発明に係る台車を示す側面図である。FIG. 3 is a side view showing a truck according to the present invention.

【図4】本発明に係る台車に備える車輪支持部の回動態
様を示す説明図である。
FIG. 4 is an explanatory diagram showing a rotation mode of a wheel support portion included in the truck according to the present invention.

【図5】本発明に係る台車の構成を示すブロック図であ
る。
FIG. 5 is a block diagram showing a configuration of a truck according to the present invention.

【図6】本発明に係る台車による段差部の乗越手順を示
すフローチャートである。
FIG. 6 is a flowchart showing a step-over procedure of a stepped portion by a trolley according to the present invention.

【図7】本発明に係る台車による段差部の乗越手順を示
すフローチャートである。
FIG. 7 is a flowchart showing a step-over procedure of a stepped portion by a trolley according to the present invention.

【図8】本発明に係る台車による段差部の乗越処理を説
明するための説明図である。
FIG. 8 is an explanatory diagram for explaining a process of getting over a step portion by a trolley according to the present invention.

【図9】本発明に係る台車による段差部の降下手順を示
すフローチャートである。
FIG. 9 is a flow chart showing a procedure for lowering a stepped portion by a trolley according to the present invention.

【図10】本発明に係る台車による段差部の降下手順を
示すフローチャートである。
FIG. 10 is a flow chart showing a procedure for lowering a stepped portion by a trolley according to the present invention.

【図11】本発明に係る台車による段差部の降下処理を
説明するための説明図である。
FIG. 11 is an explanatory diagram for explaining a step of lowering a stepped portion by a trolley according to the present invention.

【符号の説明】[Explanation of symbols]

1 台車 10,20 脚部 11,12,21,22 車輪 13,23 車輪支持部 14,15,24,25 荷重センサ 13m,23m 支持部用モータ 32 制御装置 1 dolly 10, 20 legs 11,12,21,22 wheels 13,23 Wheel support 14, 15, 24, 25 Load sensor 13m, 23m support motor 32 control device

───────────────────────────────────────────────────── フロントページの続き (72)発明者 村上 誠治 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 Fターム(参考) 3D050 BB01 DD01 DD07 EE08 EE15 FF04 GG01 JJ09 KK06 KK14 5H301 AA01 AA10 GG06 GG23 GG28 GG29 HH10 LL01 LL11    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Seiji Murakami             2-5-3 Keihan Hondori, Moriguchi City, Osaka Prefecture             Within Yo Denki Co., Ltd. F term (reference) 3D050 BB01 DD01 DD07 EE08 EE15                       FF04 GG01 JJ09 KK06 KK14                 5H301 AA01 AA10 GG06 GG23 GG28                       GG29 HH10 LL01 LL11

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 前後方向に長く、前後方向の中途部を中
心として上下へ回動する車輪支持体を左右に配置し、該
車輪支持体の前後部に夫々車輪を備える台車において、
一方の車輪支持体が支持する車輪の回転速度を、他方の
車輪支持体が支持する車輪の回転速度よりも速く又は遅
く制御する速度制御手段を備えることを特徴とする台
車。
1. A trolley in which wheel supports that are long in the front-rear direction and rotate up and down about a midway portion in the front-rear direction are arranged on the left and right sides, and wheels are provided in the front and rear parts of the wheel support, respectively.
A trolley comprising speed control means for controlling the rotational speed of a wheel supported by one wheel support to be faster or slower than the rotational speed of a wheel supported by the other wheel support.
【請求項2】 前記車輪夫々が受ける外力を検出する外
力検出手段と、 該外力検出手段が検出した外力が所定範囲よりも大きい
か否か又は小さいか否かを判断する判断手段とを備え、 前記速度制御手段は、前記判断手段が判断した判断結果
に基づき、前記外力を受けた車輪及び該車輪と同じ車輪
支持体が支持する車輪の回転速度を、他の車輪支持体が
支持する車輪の回転速度よりも速く又は遅く制御すべく
なしてあることを特徴とする請求項1に記載の台車。
2. An external force detecting means for detecting an external force received by each of the wheels, and a determining means for determining whether the external force detected by the external force detecting means is larger or smaller than a predetermined range, The speed control means, based on the determination result determined by the determination means, determines the rotational speed of the wheel that receives the external force and the wheel that is supported by the same wheel support as the wheel of the wheel that is supported by another wheel support. The trolley according to claim 1, wherein the trolley is controlled to be faster or slower than the rotation speed.
【請求項3】 前記判断手段が前記所定範囲よりも大き
い又は小さいと判断した場合、前記他方の車輪支持体を
回動させないように制御する回動制御手段を更に備える
ことを特徴とする請求項1又は2に記載の台車。
3. The rotation control means for controlling the other wheel support not to rotate when the judgment means judges that the judgment result is larger or smaller than the predetermined range. The trolley described in 1 or 2.
【請求項4】 段差を検出する段差検出手段を備え、 前記速度制御手段は、前記段差検出手段が検出した段差
に基づき、前記車輪夫々の回転速度を制御すべくなして
あることを特徴とする請求項1乃至3のいずれかに記載
の台車。
4. A step detecting means for detecting a step is provided, and the speed control means is configured to control the rotational speed of each of the wheels based on the step detected by the step detecting means. The dolly according to any one of claims 1 to 3.
【請求項5】 前記車輪の車軸は、該車輪を支持する前
記車輪支持体から適宜間隔を隔てて配置してあることを
特徴とする請求項1乃至4のいずれかに記載の台車。
5. The trolley according to claim 1, wherein an axle of the wheel is arranged at a proper distance from the wheel support that supports the wheel.
JP2002098111A 2002-03-29 2002-03-29 Carrier Pending JP2003291820A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002098111A JP2003291820A (en) 2002-03-29 2002-03-29 Carrier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002098111A JP2003291820A (en) 2002-03-29 2002-03-29 Carrier

Publications (1)

Publication Number Publication Date
JP2003291820A true JP2003291820A (en) 2003-10-15

Family

ID=29240259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002098111A Pending JP2003291820A (en) 2002-03-29 2002-03-29 Carrier

Country Status (1)

Country Link
JP (1) JP2003291820A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006290195A (en) * 2005-04-12 2006-10-26 Sony Corp Vehicle device and its control method
JP2007089926A (en) * 2005-09-30 2007-04-12 Casio Comput Co Ltd Wheel-driven moving apparatus
CN103373173A (en) * 2012-04-14 2013-10-30 卢维团 Self-locking deformation wheel with movable spoke
JP2018109522A (en) * 2016-12-28 2018-07-12 株式会社イトーキ Loading device, and measuring mechanism

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006290195A (en) * 2005-04-12 2006-10-26 Sony Corp Vehicle device and its control method
JP4635692B2 (en) * 2005-04-12 2011-02-23 トヨタ自動車株式会社 Vehicle apparatus and control method thereof
JP2007089926A (en) * 2005-09-30 2007-04-12 Casio Comput Co Ltd Wheel-driven moving apparatus
CN103373173A (en) * 2012-04-14 2013-10-30 卢维团 Self-locking deformation wheel with movable spoke
JP2018109522A (en) * 2016-12-28 2018-07-12 株式会社イトーキ Loading device, and measuring mechanism

Similar Documents

Publication Publication Date Title
JP4735598B2 (en) Inverted wheel type moving body and control method thereof
JP3749232B2 (en) Step elevation method, cart and wheelchair
JP5152673B2 (en) Horizontal motorcycle
JP4605204B2 (en) Inverted pendulum type moving body and control method thereof
CN101600618B (en) Mobile and control method of mobile
KR101158372B1 (en) Inverted wheel type mobile body and method of controlling the same
JP4470988B2 (en) Inverted wheel type moving body and control method thereof
US8267213B2 (en) Omnidirectional vehicle
JP6051777B2 (en) Mobile vehicle and stair lift
JP4766031B2 (en) Inverted moving body and control method of inverted moving body
CN105122168B (en) Moving body control device and movable body control method
CN110077497B (en) Bicycle seat post system
KR101457257B1 (en) Transportation system to move stairs
JP2007168602A (en) Two-wheel traveling carriage
CN106314645A (en) Vehicle balancing device and method for adjusting vehicle balance
KR101099631B1 (en) Moving apparatus of welding robot for climbing over the longitudinal
JP4689950B2 (en) Electric wheelchair or single-seater small electric vehicle.
JP2003291820A (en) Carrier
CN205059861U (en) Vehicle balancing unit
JP2005082044A5 (en)
KR101105667B1 (en) A standing-up type ride robot directed by recognizing passenger&#39;s posture
JPH0233554B2 (en)
JP2008230548A (en) Inversion pendulum type movement body and its control method
JP2003291819A (en) Carrier
JP2003316436A (en) Bogie