JP2003290627A - Decomposition reaction process utilizing compounded chemical reaction field - Google Patents

Decomposition reaction process utilizing compounded chemical reaction field

Info

Publication number
JP2003290627A
JP2003290627A JP2002100788A JP2002100788A JP2003290627A JP 2003290627 A JP2003290627 A JP 2003290627A JP 2002100788 A JP2002100788 A JP 2002100788A JP 2002100788 A JP2002100788 A JP 2002100788A JP 2003290627 A JP2003290627 A JP 2003290627A
Authority
JP
Japan
Prior art keywords
reaction
decomposition
reaction process
decomposition reaction
process according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002100788A
Other languages
Japanese (ja)
Inventor
Tetsuya Nanba
哲哉 難波
Tamotsu Kobuchi
存 小渕
Jiyunko Uchisawa
潤子 内澤
Akihiko Oi
明彦 大井
Norio Nakayama
紀夫 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2002100788A priority Critical patent/JP2003290627A/en
Publication of JP2003290627A publication Critical patent/JP2003290627A/en
Pending legal-status Critical Current

Links

Landscapes

  • Fire-Extinguishing Compositions (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a certain and economical treatment technique in place of simple incineration with respect to a chemical substance to be decomposed. <P>SOLUTION: A decomposition reaction process is constituted so that at least one kind of a substance to be decomposed selected from a nitrogen-containing organic chemical substance, hydrocarbons and an organochlorine compound is added to the first reaction field and subsequently subjected to decomposition reaction being the second reaction. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は有害な物質を分解す
る化学反応プロセスに関するものである。
TECHNICAL FIELD The present invention relates to a chemical reaction process for decomposing harmful substances.

【0002】[0002]

【従来の技術】これまで化学物質の処理方法として、単
純な酸化的熱分解(焼却)が広く行われているが、この
場合、元の物質よりも毒性がさらに高い副生成物を生ず
る可能性があり、また、処理対象となる化学物質が低濃
度で排出された場合、高温度での完全無害化のためには
処理単位量当たり大きなエネルギーを必要とする。例え
ば、含窒素有機化学物質は、発ガン性をはじめとする人
体への強い毒性が指摘されており、中でもニトリル化合
物は我が国だけでなく、欧米においても毒性のあること
が示唆されている。その代表的なものとしてアクリロニ
トリルが挙げられる。その環境への年間排出量は約15
00トンと推定されており、環境省により定められた大
気汚染物質の中でも22種の優先取組物質の一つに指定
されている。大気中での半減期は2−4日と推定されて
おり、ホルムアルデヒド(数時間)と比べると滞留時間
がかなり長く、さらに、燃焼処理により有害なNOxおよ
びHCNを生成する。ニトリル化合物を含む含窒素有害有
機化合物の大気放出を未然に防ぐ新たな技術が必要とさ
れている。このようなニーズに基づき、超臨界状態、電
気化学、光化学、低温プラズマなどの特殊反応場を利用
した新しい処理技術が検討されているが、これまでのと
ころ汎用性の高い技術は完成していない。
2. Description of the Related Art Up to now, simple oxidative thermal decomposition (incineration) has been widely used as a method for treating chemical substances, but in this case, a by-product which is more toxic than the original substance may be produced. In addition, when the chemical substance to be treated is discharged at a low concentration, a large amount of energy is required per unit amount of treatment for complete detoxification at high temperature. For example, it has been pointed out that nitrogen-containing organic chemical substances are highly toxic to the human body such as carcinogenicity, and it is suggested that nitrile compounds are toxic not only in Japan but also in Europe and America. Typical examples thereof include acrylonitrile. Annual release to the environment is about 15
It is estimated to be 00 tons, and is designated as one of 22 priority action substances among the air pollutants specified by the Ministry of the Environment. The half-life in the atmosphere is estimated to be 2-4 days, the residence time is considerably longer than that of formaldehyde (several hours), and in addition, NOx and HCN which are harmful are generated by the combustion process. There is a need for a new technology to prevent atmospheric release of nitrogen-containing harmful organic compounds including nitrile compounds. Based on these needs, new processing technologies using special reaction fields such as supercritical state, electrochemical, photochemical, and low-temperature plasma are being studied, but so far, versatile technology has not been completed. .

【0003】[0003]

【発明が解決しようとする課題】本発明は上記の問題点
を鑑みてなされたものであり、目的とする分解対象化学
物質について単純な焼却に替わる確実かつ経済的な処理
技術を提供することを課題とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and it is an object of the present invention to provide a reliable and economical treatment technique for a target chemical substance to be decomposed, which can replace simple incineration. It is an issue.

【0004】[0004]

【課題を解決するための手段】上記の問題点を解決する
ために研究を行った結果、目的とする分解対象物質を、
Pt触媒上でのH2-O2反応などの容易に進行する反応(こ
れを第一の反応とする)場に添加することにより目的と
する対象物質の分解反応(第二の反応)を促進できるこ
とを見出した。
[Means for Solving the Problems] As a result of conducting research to solve the above problems, the target substance to be decomposed was
Accelerating the decomposition reaction (second reaction) of the target substance by adding it to the easily advancing reaction (this is the first reaction) field such as H 2 -O 2 reaction on Pt catalyst I found that I could do it.

【0005】[0005]

【本発明の実施の形態】本発明で用いる第一の反応とし
ては、特に制限はないが、例えばPtなどの酸化触媒上で
のH2-O2、エタノール-O2、メタノール-O2反応などが挙
げられる。また、分解対象とする化学物質についても、
特に制限はないが、アクリロニトリル、アセトニトリル
N,N-ジメチルホルムアミドなどの含窒素化合物、エチレ
ン、プロピレン、ブテン、ベンゼン、トルエン、キシレ
ンなどの炭化水素類、テトラクロロエチレン、トリクロ
ロエチレン、ジクロロメタンなどの有機塩素化合物など
が挙げられる。
BEST MODE FOR CARRYING OUT THE INVENTION The first reaction used in the present invention is not particularly limited, but for example, H 2 -O 2 , ethanol-O 2 , methanol-O 2 reaction on an oxidation catalyst such as Pt. And so on. Also, regarding the chemical substances to be decomposed,
There is no particular limitation, but acrylonitrile, acetonitrile
Examples thereof include nitrogen-containing compounds such as N, N-dimethylformamide, hydrocarbons such as ethylene, propylene, butene, benzene, toluene and xylene, and organic chlorine compounds such as tetrachloroethylene, trichloroethylene and dichloromethane.

【0006】(実施例)以下、本発明を具体的に説明す
る。 実施例1 粒状炭化珪素(SiC)にPt(NH3)4(OH)2を含浸し焼成処理
して、SiCに担持したPt(Pt/SiC)を得た(Pt=0.3wt
%)。反応は、固定床流通型反応装置を用いて昇温プロ
グラム法(TPR)を用いた。触媒試料0.5gへ反応ガスとし
て200ppmアクリロニトリル+1%H2+ 7% H2O + 10% O2(N2
希釈)を500ml/min流した。80°Cから3°C/minの速度で
昇温し、その間にアクリロニトリルが燃焼することによ
り生成するCO2濃度を非分散型IRで連続分析した。
(Example) The present invention will be specifically described below. Example 1 Granular silicon carbide (SiC) was impregnated with Pt (NH 3 ) 4 (OH) 2 and fired to obtain Pt (Pt / SiC) supported on SiC (Pt = 0.3wt).
%). The reaction was carried out by the programmed temperature method (TPR) using a fixed bed flow reactor. 200ppm acrylonitrile + 1% H 2 + as reaction gas to 0.5g catalyst sample 7% H 2 O + Ten% O 2 (N 2
Dilution) was run at 500 ml / min. The temperature was raised from 80 ° C to 3 ° C / min, and the CO 2 concentration produced by the burning of acrylonitrile during that period was continuously analyzed by non-dispersive IR.

【0007】実施例2 実施例1において触媒試料をSiCに担持したアルミナ担持
Pt(Pt/Al2O3/SiC)とした以外は同様にして、アクリロ
ニトリル分解反応を行った。
Example 2 Alumina supported by supporting a catalyst sample on SiC in Example 1
Acrylonitrile decomposition reaction was carried out in the same manner except that Pt (Pt / Al 2 O 3 / SiC) was used.

【0008】実施例3 実施例1において触媒試料をSiCに担持したシリカ担持Pt
(Pt/SiO2/SiC)とした以外は同様にして、アクリロニ
トリル分解反応を行った。
Example 3 Silica-supported Pt in which the catalyst sample was supported on SiC in Example 1
Acrylonitrile decomposition reaction was performed in the same manner except that (Pt / SiO 2 / SiC) was used.

【0009】実施例4 実施例1において分解対象物をアクリロニトリルの代わ
りに200ppmアセトニトリルとした以外は同様に行った。
Example 4 The same procedure as in Example 1 was repeated except that the decomposition target was 200 ppm acetonitrile instead of acrylonitrile.

【0010】実施例5 実施例1において反応ガスの成分のうち1%水素を0.33%
エタノールとし、分解物は200ppmアセトニトリルとした
以外は同様に行った。
Example 5 In Example 1, 0.33% of 1% hydrogen was contained in the components of the reaction gas.
The same procedure was performed except that ethanol was used and the decomposition product was 200 ppm acetonitrile.

【0011】比較例1 実施例1において反応ガスのうち水素を添加しない系で
行った以外は同様にした。 比較例2 実施例1において分解物をアクリロニトリルの代わりに
200ppmアセトニトリルとした以外は同様に行った。 比較例3 実施例5において反応ガスのうちエタノールを添加しな
い系で行った以外は同様にした。これらの結果を表1に
示す。
Comparative Example 1 The same procedure as in Example 1 was repeated except that the reaction gas was not added with hydrogen. Comparative Example 2 Instead of acrylonitrile as the decomposition product in Example 1,
The same procedure was performed except that 200 ppm acetonitrile was used. Comparative Example 3 The same procedure as in Example 5 was carried out except that the reaction gas was not added to ethanol. The results are shown in Table 1.

【0012】[0012]

【表1】 [Table 1]

【0013】実施例6 アルミナ(Al2O3)にH2PtCl6を含浸し焼成処理してアルミ
ナ担持Pt(Pt/Al2O3)触媒を得た(Pt=1wt%)。反応は固
定床流通型反応装置を用いて各温度での定常状態の反応
性を調べた。触媒試料0.2gへ反応ガスとして1000ppm炭
化水素(C2H4またはC3H6, 1- C4H8, cis-2- C4H8, i- C4
H8)+1%H2+2%O2(He希釈)を100ml/min流した。触媒床温
度が定常に到達したところで、炭化水素が燃焼すること
により生成するCO2濃度をガスクロで分析した。この結
果を表2に示す。
Example 6 Alumina (Al 2 O 3 ) was impregnated with H 2 PtCl 6 and calcined to obtain an alumina-supported Pt (Pt / Al 2 O 3 ) catalyst (Pt = 1 wt%). For the reaction, the reactivity in the steady state at each temperature was investigated using a fixed bed flow reactor. To a catalyst sample of 0.2 g, a reaction gas of 1000 ppm hydrocarbon (C 2 H 4 or C 3 H 6 , 1-C 4 H 8 , cis-2-C 4 H 8 , i-C 4
H 8) + 1% H 2 + 2% O 2 and (He dilution) was run 100 ml / min. When the catalyst bed temperature reached a steady state, the CO 2 concentration produced by the combustion of hydrocarbons was analyzed by gas chromatography. The results are shown in Table 2.

【0014】[0014]

【表2】 実施例7.実施例6において触媒試料をアルミナ担持Ir
(Ir/Al2O3)とした以外は同様にして、炭化水素の燃焼
を行った。この結果を表3に示す。
[Table 2] Example 7. In Example 6, the catalyst sample was Ir supported on alumina.
Hydrocarbons were burned in the same manner except that (Ir / Al 2 O 3 ) was used. The results are shown in Table 3.

【0015】[0015]

【表3】 [Table 3]

【0016】[0016]

【発明の効果】表1、表2、表3から明らかなようにH2
るいはエタノールが存在し、これらの酸化反応が進行し
ている反応条件の方が分解対象物質のCO2への分解率が
特に低温領域で高くなる。即ち、本発明によれば、低温
度で効率よく化学物質を処理することができる。
[Effects of the Invention] As is clear from Tables 1, 2, and 3, the rate of decomposition of the substance to be decomposed into CO 2 is better under the reaction conditions in which H 2 or ethanol is present and these oxidation reactions are in progress. Is particularly high in the low temperature region. That is, according to the present invention, a chemical substance can be efficiently treated at a low temperature.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大井 明彦 茨城県つくば市東1−1−1 独立行政法 人産業技術総合研究所つくばセンター内 (72)発明者 中山 紀夫 茨城県つくば市東1−1−1 独立行政法 人産業技術総合研究所つくばセンター内 Fターム(参考) 2E191 BA11 BA12 BD13 4D048 AA17 AB01 AB03 BA03X BA06X BA30X BA33X BA41X BA45X 4G069 AA03 AA08 BA01B BA02B BB15B BC74B BC75B BD05B CA07 CA10 CA11 DA06 FB14   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Akihiko Oi             1-1-1 Higashi 1-1-1 Tsukuba City, Ibaraki Prefecture             Inside the Tsukuba center (72) Inventor Norio Nakayama             1-1-1 Higashi 1-1-1 Tsukuba City, Ibaraki Prefecture             Inside the Tsukuba center F term (reference) 2E191 BA11 BA12 BD13                 4D048 AA17 AB01 AB03 BA03X                       BA06X BA30X BA33X BA41X                       BA45X                 4G069 AA03 AA08 BA01B BA02B                       BB15B BC74B BC75B BD05B                       CA07 CA10 CA11 DA06 FB14

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 含窒素有機化学物質、炭化水素類、有機
塩素化合物から選ばれる分解対象物質の1種又は2種以
上を、第一の反応の場に添加し、次いで、第二の反応で
ある分解反応を行う分解反応プロセス。
1. One or more substances to be decomposed selected from nitrogen-containing organic chemicals, hydrocarbons, and organic chlorine compounds are added to the first reaction site, and then in the second reaction. A decomposition reaction process that performs a certain decomposition reaction.
【請求項2】 第二の反応の反応が酸化反応である請求
項1に記載した分解反応プロセス。
2. The decomposition reaction process according to claim 1, wherein the reaction of the second reaction is an oxidation reaction.
【請求項3】 含窒素有機化学物質が、ニトリル類であ
り、炭化水素類がエチレン、プロピレン、ブテンであ
り、有機塩素化合物がテトラクロロエチレン、トリクロ
ロエチレン、ジクロロメタンである請求項1に記載した
分解反応プロセス。
3. The decomposition reaction process according to claim 1, wherein the nitrogen-containing organic chemical substance is a nitrile, the hydrocarbons are ethylene, propylene, butene, and the organic chlorine compound is tetrachloroethylene, trichloroethylene, or dichloromethane.
【請求項4】 第一の反応がPtあるいはPd触媒上でのH2
-O2反応であり、分解対象物質がニトリル類である請求
項1に記載した分解反応プロセス。
4. The first reaction is H 2 on a Pt or Pd catalyst.
The decomposition reaction process according to claim 1, which is a -O 2 reaction and the decomposition target substance is a nitrile.
【請求項5】 第一の反応がPt触媒上でのエタノール-O
2反応であり、分解対象物質がニトリル類である請求項
1に記載した分解反応プロセス。
5. The first reaction is ethanol-O on a Pt catalyst.
The decomposition reaction process according to claim 1, which is a two- reaction, and the decomposition target substance is a nitrile.
【請求項6】 請求項4において、ニトリル類がアクリ
ロニトリルあるいはアセトニトリルである分解反応プロ
セス。
6. The decomposition reaction process according to claim 4, wherein the nitriles are acrylonitrile or acetonitrile.
【請求項7】 第一の反応がPt、IrあるいはRh触媒上で
のH2-O2反応であり、分解対象物質が炭化水素である請
求項1に記載した分解反応プロセス。
7. The decomposition reaction process according to claim 1, wherein the first reaction is a H 2 —O 2 reaction on a Pt, Ir or Rh catalyst, and the substance to be decomposed is a hydrocarbon.
【請求項8】 請求項5において、ニトリル類がアクリ
ロニトリルあるいはアセトニトリルである分解反応プロ
セス。
8. The decomposition reaction process according to claim 5, wherein the nitriles are acrylonitrile or acetonitrile.
JP2002100788A 2002-04-03 2002-04-03 Decomposition reaction process utilizing compounded chemical reaction field Pending JP2003290627A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002100788A JP2003290627A (en) 2002-04-03 2002-04-03 Decomposition reaction process utilizing compounded chemical reaction field

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002100788A JP2003290627A (en) 2002-04-03 2002-04-03 Decomposition reaction process utilizing compounded chemical reaction field

Publications (1)

Publication Number Publication Date
JP2003290627A true JP2003290627A (en) 2003-10-14

Family

ID=29241491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002100788A Pending JP2003290627A (en) 2002-04-03 2002-04-03 Decomposition reaction process utilizing compounded chemical reaction field

Country Status (1)

Country Link
JP (1) JP2003290627A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006167628A (en) * 2004-12-16 2006-06-29 National Institute Of Advanced Industrial & Technology Reactor for decomposing/detoxifying chemical substance and detoxification reaction process

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006167628A (en) * 2004-12-16 2006-06-29 National Institute Of Advanced Industrial & Technology Reactor for decomposing/detoxifying chemical substance and detoxification reaction process

Similar Documents

Publication Publication Date Title
Mustafa et al. Volatile organic compounds (VOCs) removal in non-thermal plasma double dielectric barrier discharge reactor
KR100962695B1 (en) Method and apparatus for treating exhaust gas
Hung et al. Simultaneous removal of PCDD/Fs, pentachlorophenol and mercury from contaminated soil
Han et al. Oxidative decomposition of aromatic hydrocarbons by electron beam irradiation
Badran et al. A combined experimental and density functional theory study of metformin oxy-cracking for pharmaceutical wastewater treatment
Zhou et al. Theoretical insight into reaction mechanisms of 2, 4-dinitroanisole with hydroxyl radicals for advanced oxidation processes
Fernández-Castro et al. Theoretical and experimental formation of low chlorinated dibenzo-p-dioxins and dibenzofurans in the Fenton oxidation of chlorophenol solutions
Won et al. Electron beam treatment of chloroethylenes/air mixture in a flow reactor
CN1094699A (en) Remove the step-by-step processing method of nitroaromatic and nitro-phenolic compound in the waste water stream
JP2000005740A (en) Cleaning method of soil and underground water contaminated with organic chlorine compound
JP2003290627A (en) Decomposition reaction process utilizing compounded chemical reaction field
Gervasini et al. Catalytic technology assisted with ionization/ozonization phase for the abatement of volatile organic compounds
Sun et al. Toluene and 4-chlorotoluene decomposition in air mixture in electron beam generated non-thermal plasma reactor and their by-products identification
JPH10249165A (en) Treatment of ammonia-containing gas
JPH05269476A (en) Treatment of water containing volatile organohalogen compound
Chen et al. Reduction of nitrate from groundwater: powder catalysts and catalytic membrane
JP4096052B2 (en) Method for decomposing nitrile compounds contained in waste gas
JP2003175385A (en) Method for cleaning ammonia-containing wastewater
JP2003170175A (en) Method for cleaning waste water
RU2163836C2 (en) Method of removing hydrocarbons from industrial gas emissions
JP2004243255A (en) Treating method for organic chlorine compound
JPH0751539A (en) Decomposition of organochlorine compound
JP4997515B2 (en) Chemical detoxification process
KR20070066727A (en) Detoxification method of pcbs by metal catalyst and alkali compounds
JP5682059B2 (en) Method for preparing supported palladium catalyst and method for decomposing organohalogen compound using said catalyst

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060606

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060802

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080610