JP2003288879A - Nonaqueous electrolytic solution secondary cell - Google Patents

Nonaqueous electrolytic solution secondary cell

Info

Publication number
JP2003288879A
JP2003288879A JP2002088323A JP2002088323A JP2003288879A JP 2003288879 A JP2003288879 A JP 2003288879A JP 2002088323 A JP2002088323 A JP 2002088323A JP 2002088323 A JP2002088323 A JP 2002088323A JP 2003288879 A JP2003288879 A JP 2003288879A
Authority
JP
Japan
Prior art keywords
separator
average pore
secondary cell
electrolyte secondary
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002088323A
Other languages
Japanese (ja)
Other versions
JP4293756B2 (en
Inventor
Ryuji Oshita
竜司 大下
Kikuzo Miyamoto
吉久三 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2002088323A priority Critical patent/JP4293756B2/en
Publication of JP2003288879A publication Critical patent/JP2003288879A/en
Application granted granted Critical
Publication of JP4293756B2 publication Critical patent/JP4293756B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Separators (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nonaqueous electrolytic solution secondary cell using a separator of which, physical property value is restricted to a specific value, not generating fall off of electrode activator, having excellent cycle property and charge preservation property. <P>SOLUTION: The nonaqueous electrolyte secondary cell has a separator between a positive electrode and a negative electrode, of which, an average hole diameter measured by mercury injection method has substantially two peaks, those average hole diameters range between 0.05 μm-0.7 μm, the average hole diameter on the surface is 0.3 μm or less, and bubble point value is 0.29-0.68 MPa. By the above, the nonaqueous electrolyte secondary cell with improved cycle property and charge preservation property is obtained. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、正極と、負極と、
これらの正極と負極を隔離するセパレータと、非水電解
質とを備えた非水電解質二次電池に係り、特に、充電保
存特性に優れた非水電解質二次電池に関する。 【0002】 【従来の技術】近年、小型ビデオカメラ、携帯電話、ノ
ートパソコン等の携帯用電子・通信機器等の電源とし
て、小型軽量でかつ高容量な非水電解質二次電池が用い
られるようになった。このような非水電解質二次電池
は、リチウムイオンの吸蔵・放出が可能な黒鉛を負極活
物質として用い、リチウム含有コバルト酸化物(LiC
oO 2)、リチウム含有マンガン酸化物(LiMn
24)等のリチウム含有遷移金属酸化物を正極活物質と
して用い、有機溶媒に溶質としてリチウム塩を溶解させ
た電解液を用いて構成される電池である。 【0003】この種の非水電解質二次電池は、長期に亘
って充放電を繰り返すと、電解液の分解反応が発生し
て、それに伴うセパレータの目詰まりが生じて、電池性
能の低下を引き起こすことが知られている。ところで、
電解液の分解反応は、主に電極とセパレータ界面で発生
し、その反応生成物がセパレータ目詰まり(閉塞)の原
因となる。近年の非水電解質二次電池においては、電池
の高容量化のために、負極材料に反応性の高い黒鉛粉末
を混入したり、活物質の充填嵩密度を高める傾向にあ
る。そこで、電解液分解物の発生に伴うセパレータ目詰
まりの起こりにくいセパレータが求められるようになっ
てきた。 【0004】 【発明が解決しようとする課題】一般に、セパレータの
孔径が大きい方が目詰まりしにくいことから、大きな孔
径のセパレータが要求される傾向にある。しかしなが
ら、セパレータの孔径が大きすぎると、電極活物質の脱
落やリチウムの樹枝状析出物(デンドライト)による正
極・負極間での短絡などの問題が発生しやすくなる。特
に、充放電サイクルとともに電極活物質の微細な粒子や
電流集中によって負極表面で発生したデンドライトは、
セパレータ内部へ進入し内部短絡ブリッジを形成するこ
とで電気絶縁性を損なうという問題を生じた。 【0005】また、セパレータの孔径が大きくなると必
要な強度が得られなくなって、電池組み立て時の作業性
が低下するという問題も生じた。このように、セパレー
タにおいては、目詰まりしにくい大きな孔径であること
と、電極活物質やデンドライト貫通による微小短絡を起
こしにくいことを両立する孔構造を実現し、かつ必要な
強度を維持することはかなり困難なことである。また、
目詰まりしにくい大きな孔径であると、電極と接するセ
パレータには電解液と接する箇所が多くなる。このた
め、充電状態で保存した場合に、副反応の電解液分解反
応が生じて充電保存特性が低下するという問題も生じ
た。 【0006】そこで、本発明は上記問題点を解消するた
めになされたものであって、特定の物性値に規制したセ
パレータを用いて、電極活物質の脱落やデンドライドに
よる短絡を起こさず、サイクル特性にも優れ、かつ充電
保存特性にも優れた非水電解質二次電池を提供できるよ
うにすることを目的とするものである。 【0007】 【課題を解決するための手段】このような目的を達成す
るため、本発明の非水電解質二次電池は、水銀圧入法に
より測定した平均孔径が実質的に2つ以上のピークを有
するとともに、それらの平均孔径はいずれも0.05μ
m〜0.7μmの範囲内にあり、かつ表面の平均孔径が
0.3μm以下で、バブルポイント値が0.29〜0.
68MPaであるセパレータを正極と負極との間に備え
るようにしている。 【0008】ここで、水銀圧入法により測定した平均孔
径が0.05μm未満のセパレータを用いると、電解液
の分解物の発生に伴う目詰まりが起こり易くなるために
サイクル特性が著しく低下する。また、水銀圧入法によ
り測定した平均孔径が0.7μmより大きいセパレータ
を用いると、電極活物質の脱落やリチウムデンドライド
による短絡が起こりやすくなったり、必要な強度が保て
なくなって、電池組み立て時の作業性が著しく低下す
る。このため、水銀圧入法により測定した平均孔径が
0.05μm〜0.7μmの範囲内にあるセパレータを
用いる必要がある。 【0009】そして、表面の平均孔径が0.3μm以下
であると、充電状態で保存しても、正極や負極と接する
セパレータ部には電解液と接する箇所が少なくなるた
め、副反応による電解液の分解反応が生じるのを抑制で
きるようになる。これにより、セパレータ内に電解液が
閉じ込められた形態になり、充分な量の電解液が保持で
きるようになって充電保存特性が向上するようになる。 【0010】このことは、電解液の分解物の発生に伴う
目詰まりを抑制するためには、セパレータの内部は、所
定の大きさの平均孔径が必要となる。一方、正極と負極
が電解液と接する箇所を少なくするとともに、電解液を
閉じ込めた形態にするためには、セパレータの表面は所
定の小ささの平均孔径にすることが必要であることが分
かる。これらのことから、セパレータの内部と表面と
で、平均孔径が実質的に2つ以上のピークを有するセパ
レータを用いる必要があることが分かる。 【0011】なお、水銀圧入法により測定された平均孔
径が0.3μm以下のセパレータはのバブルポイント値
は一般的に0.98MPa以上を示すことが多い。しか
しながら、上述のように、平均孔径が実質的に2つ以上
のピークを有して、これらの平均孔径が0.05μm〜
0.7μmの範囲内にあるようにし、かつ表面の平均孔
径が0.3μm以下になるようにコントロールして作製
したセパレータのバブルポイント値を0.29〜0.6
8MPaにすると、充電保存特性が向上することが明ら
かになった。 【0012】この場合、セパレータの材質は特に問わな
いが、ポリエチレン製セパレータであると、上述のよう
に平均孔径が実質的に2つ以上のピークを有し、これら
の平均孔径が0.05μm〜0.7μmの範囲内にあ
り、かつ表面の平均孔径が0.3μm以下で、バブルポ
イント値を0.29〜0.68MPaにコントロールす
ることが容易にできるので好ましい。なお、正極活物質
としては、非水電解質電池で使用できるものであれば何
でもよいが、リチウム含有遷移金属酸化物、特に、リチ
ウム含有コバルト酸化物(LiCoO2)であれば、充
電保存時の副反応の抑制効果が発揮できて好ましい。 【0013】また、負極活物質としては、非水電解質電
池で使用できるものであれば何でもよいが、特に黒鉛で
あれば、充電保存時の副反応の抑制効果が発揮できて好
ましい。また、電解液についても、非水電解質電池で使
用できるものであれば何でもよいが、特に、環状炭酸エ
ステルと鎖状炭酸エステルとの混合溶媒であると、充電
保存時の副反応の抑制効果が発揮できて好ましい。 【0014】 【発明の実施の形態】ついで、本発明の一実施の形態を
以下に説明する。なお、図1は本発明の非水電解質二次
電池に用いるセパレータの断面を模式的に示すイメージ
図である。 1.セパレータの作製 高密度ポリエチレンに可塑剤(例えば、流動パラフィ
ン)を添加して押出機に投入して溶融混練した。つい
で、コートハンガーダイを経て冷却ロール上に押出キャ
ストすることにより所定の厚みの高分子ゲルシートを得
た。得られた高分子ゲルシートを延伸をした後、可塑剤
を抽出除去して厚みが20μmのポリエチレン微多孔膜
を作製し、セパレータ10とした。このように作製され
たセパレータ10は、図1に模式的に示すように、断面
の表面近傍(図1のA部)では平均孔径が小さい微孔1
2が形成され、断面の中央部(図1のB部)では平均孔
径が大きい微孔11が形成されることとなる。 【0015】ここで、延伸条件や可塑剤の抽出条件をコ
ントロールして、下記の表1に示すような物性値を有す
るセパレータa,b,c,d,e,f,g,h,iを作
製した。なお、表1において、水銀圧入法でのA部およ
びB部の平均孔径(μm)は、ポロシメトリー(島津製
作所製ポアサイザ)を使用し、体積基準のメディアン径
(μm)の測定値であって、A部での平均孔径は、セパ
レータ10の断面の表面近傍(図1のA部)に形成され
た微孔12の平均孔径(μm)を表し、B部での平均孔
径はセパレータ10の断面の中央部(図1のB部)に形
成された微孔11の平均孔径(μm)を表している。 【0016】また、表面の平均孔径(μm)は、走査型
電子顕微鏡(SEM)にてセパレータの表面写真を撮影
し、実質的な表面の平均孔径を測定した値を示してい
る。さらに、バブルポイント(MPa)は、テスト液
(エタノール)中にセパレータを配置し、ガス圧を徐々
に加えてセパレータから最初に気泡が発生した時の圧力
値を測定(ASTM E−128−61に準拠)して求
めた値である。 【0017】 【表1】 【0018】2.正極の作製 800℃の温度で熱処理したリチウム含有二酸化コバル
ト(LiCoO2)を正極活物質として用い、この正極
活物質としてのリチウム含有二酸化コバルト(LiCo
2)85質量%と、導電剤としてのカーボン粉末10
質量%と、結着剤としてのポリフッ化ビニリデン(PV
dF)5質量%とを混合した。この後、この混合物にN
−メチル−2−ピロリドン(NMP)を加えて混合・混
練して正極活物質スラリーを作製した。ついで、この正
極活物質スラリーをアルミニウム箔からなる正極集電体
の両面にドクターブレード法により塗着した後、圧延後
の厚みが140μmとなるように圧延した。ついで、1
30℃の温度で真空乾燥した後、所定寸法に切断して、
正極集電体の表面に正極合剤層を備えた正極を作製し
た。 【0019】3.負極の作製 平均粒径10μmの天然黒鉛を負極活物質として用い、
この負極活物質としの天然黒鉛95質量%に、結着剤と
してのポリフッ化ビニリデン(PVdF)5質量%とを
混合した。この後、この混合物にN−メチル−2−ピロ
リドン(NMP)を加えて混合・混練して負極活物質ス
ラリーを作製した。ついで、この負極活物質スラリーを
銅箔からなる負極集電体の両面にドクターブレード法に
より塗着した後、圧延後の厚みが130μmとなるよう
に圧延した。ついで、130℃の温度で真空乾燥した
後、所定寸法に切断して、負極集電体の表面に負極合剤
層を備えた負極を作製した。 【0020】4.非水電解質二次電池の作製 ついで、上述のように作製したポリプロピレン製微多孔
膜からなる各セパレータa,b,c,d,e,f,g,
h,iを用い、これらの両側に上述のように作製した正
極と負極とを介在させて積層した後、これらを渦巻状に
それぞれ巻回して円柱状の渦巻電極群とした。ついで、
これらの円柱状の渦巻電極群を加圧して扁平な渦巻電極
群とした。ついで、これらをそれぞれ金属製の角形外装
缶に挿入した後、外装缶の開口部に蓋体を取り付けて気
密に封口した。 【0021】ついで、エチレンカーボネート(EC:以
下、単にECという)とエチルメチルカーボネート(E
MC:以下、単にEMCという)とを体積比で40:6
0となるように混合した混合溶媒に、LiPF6を1.
0モル/リットル溶解して非水電解液を調製した。この
後、蓋体の注液口から上述のように調製した非水電解液
を注入した。この後、注液口を封止して非水電解質二次
電池A〜Iをそれぞれ作製した。ここで、セパレータa
〜iを用いたものを各々電池A〜Iとした。なお、電池
Fにおいては、渦巻電極群を作製する際に短絡が生じた
ために、電池を作製することができなかったが、ここで
は便宜的に電池Fとした。 【0022】また、電解液の溶媒としては、ECおよび
EMC以外にも、プロピレンカーボネート(PC)、ブ
チレンカーボネート(BC)、ジメチルカーボネート
(DMC)、スルホラン(SL)、ビニレンカーボネー
ト(VC)、ジエチルカーボネート(DEC)、テトラ
ヒドロフラン(THF)、1,2−ジエトキシエタン
(DEE)、1,2−ジメトキシエタン(DME)、エ
トキシメトキシエタン(EME)、γ−ブチロラクトン
等の単体、あるいはこれらの二成分以上の混合溶媒を選
択して用いても良い。また、この溶媒に溶解される溶質
としては、LiPF 6以外にも、LiBF4、LiCF3
SO3、LiAsF6、LiN(CF3SO22、LiN
(C25SO22、LiC(CF3SO23、LiCF3
(CF23SO 3等を用いてもよい。 【0023】5.電池試験 (1)サイクル特性試験 これらの各電池A〜Iをそれぞれ用いて、室温(約25
℃)で、1It(Itは設計容量(mA)/1h(時
間)で表される数値)の充電電流で、電池電圧が4.2
Vになるまで定電流充電し、4.2Vの定電圧で電流値
が20mAに達するまで定電圧充電した。この後、1I
tの放電電流で、電池電圧が2.75Vに達するまで放
電させて、1サイクルとする充放電サイクルを200サ
イクル繰り返して行って、200サイクル目の放電容量
(mAh)を求めた。ついで、1サイクル目の放電容量
と200サイクル目の放電容量との比率(%)、即ち、
200サイクル後の容量残存率(%)をサイクル特性と
して求めると、下記の表2に示すような結果となった。 【0024】(2)充電保存特性試験 また、各電池A〜Iをそれぞれ用いて、室温(約25
℃)で、1Itの充電電流で、電池電圧が4.2Vにな
るまで定電流充電し、4.2Vの定電圧で電流値が20
mAに達するまで定電圧充電した。この後、60℃で2
0日間保存した後、1Itの放電電流で、電池電圧が
2.75Vに達するまで放電させて、充電保存後の放電
容量を測定し、保存前の放電容量残存率(%)を充電保
存特性として求めると、下記の表2に示すような結果と
なった。 【0025】 【表2】【0026】上記表2の結果から明らかなように、電池
A,B,C,Dは、サイクル特性および充電保存特性が
優れていることが分かる。このことから、水銀圧入法に
より測定した平均孔径(平均孔径AおよびB)が0.0
5μm〜0.7μmの範囲内にあるセパレータを用いる
と、サイクル特性および充電保存特性に優れた非水電解
質電池が得られるようになる。また、セパレータ表面の
平均孔径が0.3μm以下であると、充電保存特性が向
上することが分かる。さらに、バブルポイントが0.2
9〜0.68MPaの範囲ではサイクル特性および充電
保存特性が優れている。また、バブルポイントが0.2
9MPa未満あるいは0.68MPaより大きくなる
と、サイクル特性は良好であるが、保存特性が悪化する
ことが分かる。 【0027】 【発明の効果】以上のことから、平均孔径が実質的に2
つ以上のピークを有して、これらの平均孔径が0.05
μm〜0.7μmの範囲内にあるようにし、かつ表面の
平均孔径が0.3μm以下になるようにコントロールし
て作製したセパレータのバブルポイント値を0.29〜
0.68MPaにすると、サイクル特性が向上するとと
もに、充電保存特性も向上した非水電解質二次電池が得
られることが明らかになったということができる。 【0028】なお、上述した実施の形態においては、正
極活物質としてリチウム含有二酸化コバルト(LiCo
2)を用い、負極活物質として天然黒鉛を用いた非水
電解液二次電池に本発明のセパレータを適用する例につ
いて説明したが、本発明はこれに限らず種々の活物質を
選択して用いることができる。例えば、負極活物質とし
て天然黒鉛以外に、リチウムイオンを吸蔵・脱離し得る
カーボン系材料、例えば、カーボンブラック、コーク
ス、ガラス状炭素、炭素繊維、またはこれらの焼成体等
を用いるようにしてもよい。 【0029】また、正極活物質としてはLiCoO2
外に、リチウムイオンをゲストとして受け入れ得るリチ
ウム含有遷移金属化合物、例えば、LiNiO2、Li
CoXNi(1-X)2、LiCrO2、LiVO2、LiM
nO2、αLiFeO2、LiTiO2、LiScO2、L
iYO2、LiMn24等を用いるようにしてもよい。
特に、LiNiO2、LiCoXNi(1-X)2を単独で用
いるかあるいはこれらの二種以上を混合して用いるのが
好適である。
DETAILED DESCRIPTION OF THE INVENTION [0001] TECHNICAL FIELD The present invention relates to a positive electrode, a negative electrode,
A separator that separates these positive and negative electrodes and a non-aqueous electrolytic
Non-aqueous electrolyte secondary battery with
The present invention relates to a non-aqueous electrolyte secondary battery having excellent storage characteristics. [0002] 2. Description of the Related Art In recent years, small video cameras, mobile phones,
Used as a power source for portable electronic and communication devices such as laptop computers.
Small, lightweight and high capacity non-aqueous electrolyte secondary batteries
Is now available. Such non-aqueous electrolyte secondary battery
Uses graphite that can absorb and release lithium ions
Lithium-containing cobalt oxide (LiC
oO Two), Lithium-containing manganese oxide (LiMn)
TwoOFour) And other lithium-containing transition metal oxides
And dissolve lithium salt as a solute in an organic solvent
The battery is configured using the electrolyte solution. [0003] This type of non-aqueous electrolyte secondary battery has been used for a long time.
When charging and discharging are repeated, the decomposition reaction of the electrolytic solution occurs.
This causes clogging of the separator and battery
It is known to cause a decrease in performance. by the way,
The decomposition reaction of the electrolyte mainly occurs at the interface between the electrode and the separator
The reaction product causes clogging (clogging) of the separator.
Cause. In recent non-aqueous electrolyte secondary batteries, batteries
Graphite powder highly reactive with the anode material to increase the capacity of
And increase the bulk density of the active material.
You. Therefore, the clogging of the separator due to the generation of electrolyte decomposition products
There is a growing need for separators that are less likely to cause balling.
Have been. [0004] SUMMARY OF THE INVENTION Generally, a separator
Larger holes are more difficult to clog, so large holes
There is a tendency that a separator having a diameter is required. But
If the pore size of the separator is too large, removal of the electrode active material may occur.
Positive due to dendritic precipitates and dendrites of lithium
Problems such as a short circuit between the electrode and the negative electrode are likely to occur. Special
In addition, the fine particles of the electrode active material and
Dendrite generated on the negative electrode surface due to current concentration is
To enter the separator and form an internal short-circuit bridge.
This causes a problem of impairing the electrical insulation. [0005] In addition, it is necessary to increase the pore size of the separator.
The required strength cannot be obtained, and workability during battery assembly
Has also been reduced. In this way, the separation
Large hole diameter that is difficult to clog
And short circuit caused by electrode active material and dendrite penetration
It realizes a hole structure that is compatible with
Maintaining strength is quite difficult. Also,
If the pore size is large enough to prevent clogging, the cell
The parator has many places in contact with the electrolyte. others
When stored in a charged state,
This causes a problem that the charge storage characteristics deteriorate
Was. Accordingly, the present invention has been made to solve the above problems.
This was done for the purpose of
Use a parator to remove electrode active material and dendride
No short circuit, excellent cycle characteristics, and charging
A non-aqueous electrolyte secondary battery with excellent storage characteristics can be provided.
It is intended to be used. [0007] Means for Solving the Problems To achieve such an object
Therefore, the nonaqueous electrolyte secondary battery of the present invention
The average pore size measured has more than two peaks.
And their average pore size is 0.05μ
m to 0.7 μm, and the average pore diameter on the surface is
When the bubble point value is 0.39 μm or less, the bubble point value is 0.29 to 0.1 μm.
Equipped with a separator of 68 MPa between the positive electrode and the negative electrode
I am trying to. [0008] Here, the average pore measured by the mercury intrusion method
When a separator having a diameter of less than 0.05 μm is used, the electrolytic solution
Clogging due to the generation of decomposition products
The cycle characteristics are significantly reduced. In addition, the mercury intrusion method
Separator with an average pore size of greater than 0.7 μm
If used, the electrode active material may fall off or lithium dendrite
Short circuit is likely to occur and the required strength can be maintained.
And the workability during battery assembly is significantly reduced
You. Therefore, the average pore size measured by the mercury intrusion method is
Separators in the range of 0.05 μm to 0.7 μm
Must be used. The average pore diameter on the surface is 0.3 μm or less.
, It is in contact with the positive and negative electrodes even when stored in a charged state
There are fewer places in the separator that come into contact with the electrolyte
Therefore, it is possible to suppress the occurrence of decomposition reaction of the electrolytic solution due to side reactions.
I will be able to. As a result, the electrolyte solution in the separator
It is in a trapped form and holds a sufficient amount of electrolyte
As a result, the charge storage characteristics are improved. This is accompanied by the generation of decomposition products of the electrolytic solution.
To prevent clogging, the inside of the separator must be
A constant average pore size is required. Meanwhile, the positive and negative electrodes
Reduces the number of places where the
To achieve a confined configuration, the surface of the separator must be
It is clear that it is necessary to achieve a constant average pore size.
Call From these facts, the interior and surface of the separator
Having an average pore size of substantially two or more peaks.
It turns out that it is necessary to use a lator. The average pore measured by the mercury intrusion method
Bubble point value of separator with diameter of 0.3μm or less
Generally shows 0.98 MPa or more in many cases. Only
However, as described above, the average pore diameter is substantially two or more.
Having an average pore diameter of 0.05 μm to
Within the range of 0.7 μm and mean pores on the surface
Controlled so that the diameter is 0.3μm or less
The bubble point value of the separator
At 8 MPa, it is clear that the charge storage characteristics are improved.
Or it becomes. In this case, the material of the separator is not particularly limited.
However, if it is a polyethylene separator,
Has substantially two or more peaks in the average pore size,
Average pore size is in the range of 0.05 μm to 0.7 μm.
And the average pore size on the surface is 0.3 μm or less,
Control the int value to 0.29 to 0.68 MPa
This is preferable because it can be easily performed. The positive electrode active material
As long as it can be used in non-aqueous electrolyte batteries
However, lithium-containing transition metal oxides, especially lithium
Containing cobalt oxide (LiCoOTwo)
This is preferable because the effect of suppressing side reactions during electric storage can be exhibited. As the negative electrode active material, a non-aqueous electrolyte
Anything that can be used in a pond may be used, especially graphite.
If it is, it is possible to demonstrate the effect of suppressing side reactions during
Good. The electrolyte is also used in non-aqueous electrolyte batteries.
Anything can be used as long as it can be used.
Charging with a mixed solvent of steal and chain carbonate
This is preferable because the effect of suppressing side reactions during storage can be exhibited. [0014] Next, an embodiment of the present invention will be described.
This will be described below. FIG. 1 shows a non-aqueous electrolyte secondary battery according to the present invention.
Image schematically showing the cross section of the separator used for the battery
FIG. 1. Production of separator Plasticizer (eg, liquid paraffin)
Was added to an extruder and melt-kneaded. About
Through the coat hanger die onto the cooling roll.
To obtain a polymer gel sheet with a predetermined thickness.
Was. After stretching the obtained polymer gel sheet, a plasticizer
20μm thick microporous polyethylene membrane
Was prepared and used as the separator 10. Made in this way
The separator 10 has a cross-section as schematically shown in FIG.
In the vicinity of the surface (part A in FIG. 1), micropores 1 having a small average pore diameter
2 are formed, and an average hole is formed at the center of the cross section (portion B in FIG. 1).
The fine holes 11 having a large diameter are formed. [0015] Here, the stretching conditions and the conditions for extracting the plasticizer are controlled.
Have the physical properties shown in Table 1 below
Separators a, b, c, d, e, f, g, h, i
Made. In Table 1, in the mercury intrusion method, parts A and
The average pore size (μm) of parts B and B was determined by porosimetry (manufactured by Shimadzu Corporation).
Median diameter based on volume
(Μm), and the average pore size in part A is
Formed near the surface of the cross section of the radiator 10 (portion A in FIG. 1).
Represents the average pore diameter (μm) of the micropores 12, and the average pore in the B part.
The diameter is formed at the center (section B in FIG. 1) of the cross section of the separator 10.
The average pore diameter (μm) of the formed fine pores 11 is shown. The average pore size (μm) on the surface is determined by the scanning type.
Photograph of the surface of the separator with an electron microscope (SEM)
Shows the measured value of the average pore diameter of the substantial surface.
You. In addition, the bubble point (MPa)
Place the separator in (ethanol) and gradually increase the gas pressure
Pressure at the first bubble generation from the separator
Values (measured according to ASTM E-128-61)
Value. [0017] [Table 1] 2. Preparation of positive electrode Lithium-containing Kovar dioxide heat-treated at 800 ° C
(LiCoOTwo) As the positive electrode active material
Lithium-containing cobalt dioxide (LiCo as active material)
OTwo) 85% by mass and carbon powder 10 as a conductive agent
% By mass and polyvinylidene fluoride (PV
dF) 5% by mass. After this, the mixture
-Methyl-2-pyrrolidone (NMP)
The mixture was kneaded to prepare a positive electrode active material slurry. Then this positive
Positive electrode current collector made of aluminum foil with pole active material slurry
After rolling by doctor blade method on both sides of
Was rolled so as to have a thickness of 140 μm. Then 1
After vacuum drying at a temperature of 30 ° C., cut into predetermined dimensions,
A positive electrode having a positive electrode mixture layer on the surface of the positive electrode current collector was prepared.
Was. 3. Fabrication of negative electrode Using natural graphite having an average particle size of 10 μm as a negative electrode active material,
A binder was added to 95% by mass of natural graphite as the negative electrode active material.
5% by mass of polyvinylidene fluoride (PVdF)
Mixed. Thereafter, the mixture was added to N-methyl-2-pyro
Add lidon (NMP), mix and knead to mix negative active material
A rally was made. Next, this negative electrode active material slurry is
Doctor blade method on both sides of negative electrode current collector made of copper foil
After coating more, so that the thickness after rolling is 130μm
Rolled. Then, it was vacuum dried at a temperature of 130 ° C.
After that, cut to a predetermined size, the negative electrode mixture on the surface of the negative electrode current collector
A negative electrode having a layer was prepared. 4. Fabrication of non-aqueous electrolyte secondary battery Then, the microporous polypropylene made as described above
Each of the separators a, b, c, d, e, f, g,
h, i, using the positive
After laminating the electrode and the negative electrode, these are spirally formed.
Each was wound to form a columnar spiral electrode group. Then
These columnar spiral electrode groups are pressurized to flatten spiral electrodes.
Groups. Then, these are each made of metal square exterior
After inserting into the can, attach the lid to the opening of the
Sealed tightly. Next, ethylene carbonate (EC: hereinafter)
Below, simply called EC) and ethyl methyl carbonate (E
MC: hereinafter simply referred to as EMC) in a volume ratio of 40: 6.
0 in a mixed solvent mixed to be 061.
0 mol / liter was dissolved to prepare a non-aqueous electrolyte. this
After that, the non-aqueous electrolyte prepared as described above from the inlet of the lid
Was injected. After this, the inlet is sealed and the non-aqueous electrolyte secondary
Batteries A to I were produced, respectively. Here, the separator a
To i were used as batteries A to I, respectively. The battery
In F, a short circuit occurred when fabricating the spiral electrode group
Therefore, the battery could not be manufactured, but here
Is a battery F for convenience. The solvent for the electrolytic solution is EC or EC.
In addition to EMC, propylene carbonate (PC),
Tylene carbonate (BC), dimethyl carbonate
(DMC), sulfolane (SL), vinylene carbonate
(VC), diethyl carbonate (DEC), tetra
Hydrofuran (THF), 1,2-diethoxyethane
(DEE), 1,2-dimethoxyethane (DME),
Toximethoxyethane (EME), γ-butyrolactone
Or a mixed solvent of two or more of these.
You may use it selectively. Solutes dissolved in this solvent
As LiPF 6Besides, LiBFFour, LiCFThree
SOThree, LiAsF6, LiN (CFThreeSOTwo)Two, LiN
(CTwoFFiveSOTwo)Two, LiC (CFThreeSOTwo)Three, LiCFThree
(CFTwo)ThreeSO ThreeEtc. may be used. 5. Battery test (1) Cycle characteristics test At room temperature (about 25
° C) and 1It (It is the design capacity (mA) / 1h (hour
The battery voltage is 4.2 at the charging current of the numerical value represented by
Constant current charging until the voltage reaches V, and the current value at a constant voltage of 4.2 V
Until it reached 20 mA. After this, 1I
t until the battery voltage reaches 2.75V.
Charge / discharge cycle to 200 cycles
The discharge capacity at the 200th cycle
(MAh) was determined. Next, the discharge capacity of the first cycle
And the discharge capacity at the 200th cycle (%), that is,
The residual capacity ratio (%) after 200 cycles is defined as the cycle characteristic.
The results shown in Table 2 below were obtained. (2) Charging storage characteristic test Further, using each of the batteries A to I, the room temperature (about 25
° C), the battery voltage reaches 4.2 V with a charging current of 1 It.
Constant current charging until the current value reaches 20 at a constant voltage of 4.2V.
The battery was charged at a constant voltage until the current reached mA. Then, at 60 ° C, 2
After storing for 0 days, at a discharge current of 1 It, the battery voltage becomes
Discharge until reaching 2.75V, discharge after storage
Measure the capacity and charge the remaining capacity (%) before storage.
When it is obtained as the existing characteristic, the result shown in Table 2 below is obtained.
became. [0025] [Table 2]As is clear from the results in Table 2 above, the batteries
A, B, C, and D have cycle characteristics and charge storage characteristics.
It turns out that it is excellent. From this, the mercury intrusion method
Average pore diameter (average pore diameters A and B) measured by
Use a separator in the range of 5 μm to 0.7 μm
And non-aqueous electrolysis with excellent cycle characteristics and charge storage characteristics
Quality batteries can be obtained. In addition, the separator surface
When the average pore size is 0.3 μm or less, the charge storage characteristics are improved.
You can see that it goes up. In addition, the bubble point is 0.2
Cycle characteristics and charging in the range of 9 to 0.68 MPa
Excellent storage characteristics. The bubble point is 0.2
Less than 9MPa or more than 0.68MPa
And cycle characteristics are good, but storage characteristics deteriorate
You can see that. [0027] As described above, the average pore diameter is substantially 2
With one or more peaks and an average pore size of 0.05
μm to 0.7 μm and the surface
Control so that the average pore size is 0.3 μm or less.
The bubble point value of the separator prepared in
When the pressure is 0.68 MPa, the cycle characteristics are improved.
In particular, a non-aqueous electrolyte secondary battery with improved charge storage characteristics was obtained.
It can be said that it became clear. In the embodiment described above, the correct
Lithium-containing cobalt dioxide (LiCo
OTwo) And non-aqueous water using natural graphite as the negative electrode active material
An example of applying the separator of the present invention to an electrolyte secondary battery
However, the present invention is not limited to this.
Can be selected and used. For example, as a negative electrode active material
Can absorb and desorb lithium ions in addition to natural graphite
Carbon-based materials such as carbon black and coke
, Glassy carbon, carbon fiber, or a fired body of these
May be used. As the positive electrode active material, LiCoO is used.TwoLess than
In addition, Lichi can accept lithium ions as guests
Transition metal compounds such as LiNiOTwo, Li
CoXNi(1-X)OTwo, LiCrOTwo, LiVOTwo, LiM
nOTwo, ΑLiFeOTwo, LiTiOTwo, LiScOTwo, L
iYOTwo, LiMnTwoOFourEtc. may be used.
In particular, LiNiOTwo, LiCoXNi(1-X)OTwoUsed alone
Or a mixture of two or more of these
It is suitable.

【図面の簡単な説明】 【図1】 本発明の非水電解質二次電池に用いるセパレ
ータの断面を模式的に示すイメージ図である。 【符号の説明】 10…セパレータ、11…断面の中央部に形成された平
均孔径が大きい微孔、12…断面の表面近傍に形成され
た平均孔径が小さい微孔
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an image diagram schematically showing a cross section of a separator used for a non-aqueous electrolyte secondary battery of the present invention. DESCRIPTION OF SYMBOLS 10 ... Separator, 11 ... Micropore having a large average pore diameter formed at the center of the cross section, 12 ... Micropore having a small average pore diameter formed near the surface of the cross section

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5H021 EE04 HH03 HH06 5H029 AJ04 AJ05 AK03 AL07 AM03 AM05 AM07 DJ04 DJ13 EJ12 HJ06 HJ15    ────────────────────────────────────────────────── ─── Continuation of front page    F-term (reference) 5H021 EE04 HH03 HH06                 5H029 AJ04 AJ05 AK03 AL07 AM03                       AM05 AM07 DJ04 DJ13 EJ12                       HJ06 HJ15

Claims (1)

【特許請求の範囲】 【請求項1】 正極と、負極と、これらの正極と負極を
隔離するセパレータと、非水電解質とを備えた非水電解
質二次電池であって、 前記セパレータは水銀圧入法により測定した平均孔径が
実質的に2つ以上のピークを有するとともに、それらの
平均孔径はいずれも0.05μm〜0.7μmの範囲内
にあり、かつセパレータ表面の平均孔径が0.3μm以
下で、バブルポイント値が0.29〜0.68MPaで
あることを特徴とする非水電解質二次電池。
Claims: 1. A non-aqueous electrolyte secondary battery comprising a positive electrode, a negative electrode, a separator for separating the positive electrode and the negative electrode, and a non-aqueous electrolyte, wherein the separator has a mercury intrusion. The average pore size measured by the method has substantially two or more peaks, all of which are in the range of 0.05 μm to 0.7 μm, and the average pore size of the separator surface is 0.3 μm or less. , Wherein the bubble point value is 0.29 to 0.68 MPa.
JP2002088323A 2002-03-27 2002-03-27 Nonaqueous electrolyte secondary battery Expired - Fee Related JP4293756B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002088323A JP4293756B2 (en) 2002-03-27 2002-03-27 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002088323A JP4293756B2 (en) 2002-03-27 2002-03-27 Nonaqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2003288879A true JP2003288879A (en) 2003-10-10
JP4293756B2 JP4293756B2 (en) 2009-07-08

Family

ID=29234220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002088323A Expired - Fee Related JP4293756B2 (en) 2002-03-27 2002-03-27 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP4293756B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100861705B1 (en) 2006-05-29 2008-10-06 주식회사 엘지화학 Electrode Assembly with Excellent Structural Stability and Wetting Properties to Electrolyte and Secondary Battery Having the Same
JP5283383B2 (en) * 2005-09-28 2013-09-04 東レバッテリーセパレータフィルム株式会社 Method for producing polyethylene microporous membrane and battery separator
CN111697189A (en) * 2020-06-28 2020-09-22 佛山市金辉高科光电材料股份有限公司 Polyolefin microporous base membrane and preparation method thereof, diaphragm and battery
CN111801832A (en) * 2018-04-04 2020-10-20 株式会社东芝 Nonaqueous electrolyte battery and battery pack

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5283383B2 (en) * 2005-09-28 2013-09-04 東レバッテリーセパレータフィルム株式会社 Method for producing polyethylene microporous membrane and battery separator
KR100861705B1 (en) 2006-05-29 2008-10-06 주식회사 엘지화학 Electrode Assembly with Excellent Structural Stability and Wetting Properties to Electrolyte and Secondary Battery Having the Same
CN111801832A (en) * 2018-04-04 2020-10-20 株式会社东芝 Nonaqueous electrolyte battery and battery pack
CN111697189A (en) * 2020-06-28 2020-09-22 佛山市金辉高科光电材料股份有限公司 Polyolefin microporous base membrane and preparation method thereof, diaphragm and battery
CN111697189B (en) * 2020-06-28 2022-06-28 佛山市金辉高科光电材料股份有限公司 Polyolefin microporous base membrane and preparation method thereof, diaphragm and battery

Also Published As

Publication number Publication date
JP4293756B2 (en) 2009-07-08

Similar Documents

Publication Publication Date Title
CN108886139B (en) Negative electrode for lithium secondary battery comprising mesh-like insulating layer and lithium secondary battery comprising same
JP4878683B2 (en) Lithium secondary battery
KR102167590B1 (en) Non-aqueous electrolyte solution and lithium secondary battery comprising the same
KR101430617B1 (en) Electrode comprising niobium oxide and lithium battery using the same
JP4961654B2 (en) Nonaqueous electrolyte secondary battery
KR101582043B1 (en) Lithium secondary battery with improved output and cycling characteristics
WO2006082719A1 (en) Positive electrode and nonaqueous electrolyte secondary battery
JP2010062113A (en) Lithium ion secondary battery
JP2003282055A (en) Non-aqueous electrolyte secondary battery
KR20140135659A (en) Non-aqueous electrolyte solution and lithium secondary battery including the same
CN102361095A (en) Lithium ion battery with high specific power and preparation method for same
JP3244389B2 (en) Lithium secondary battery
KR20180036715A (en) Lithium secondary battery
JP5066804B2 (en) Lithium ion secondary battery
KR20130002333A (en) Non-aqueous electrolyte and non-aqueous electrolyte secondary battery using same
JP2006066298A (en) Lithium secondary battery
JP2002216744A (en) Nonaqueous electrolyte battery and manufacturing method of positive electrode for nonaqueous electrolyte battery
JP6646370B2 (en) Charge / discharge method of lithium secondary battery
KR101586681B1 (en) electrolyte for lithium secondary battery and lithium secondary battery containing the same
JP5125050B2 (en) Nonaqueous electrolyte secondary battery
JP4293756B2 (en) Nonaqueous electrolyte secondary battery
JPH08171934A (en) Lithium secondary battery
JP2010027386A (en) Negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery including the same
EP3121877A1 (en) Core-shell particles comprising elemental sulfur and manganese dioxide for cathodes of lithium sulfur cells and the synthesis of these particles
JP2008071746A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080902

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090310

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090407

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130417

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140417

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees