JP2003286510A - Method for mixing pulverized coal to be blown into blast furnace - Google Patents

Method for mixing pulverized coal to be blown into blast furnace

Info

Publication number
JP2003286510A
JP2003286510A JP2002092542A JP2002092542A JP2003286510A JP 2003286510 A JP2003286510 A JP 2003286510A JP 2002092542 A JP2002092542 A JP 2002092542A JP 2002092542 A JP2002092542 A JP 2002092542A JP 2003286510 A JP2003286510 A JP 2003286510A
Authority
JP
Japan
Prior art keywords
coal
pulverized coal
hgi
pipe
protective layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002092542A
Other languages
Japanese (ja)
Inventor
Takeshi Ota
武 太田
Kenji Katayama
賢治 片山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2002092542A priority Critical patent/JP2003286510A/en
Publication of JP2003286510A publication Critical patent/JP2003286510A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Iron (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To simultaneously solve such problems of both abrasion and plugging that a hard pulverized coal employed for being blown into a blast furnace, abrades the pipe wall of a transport pipe, and a soft pulverized coal clogs in the transport pipe due to the viscosity. <P>SOLUTION: In the figure, ○ indicates excellence, μ plugging, and Δ abrasion, of which the latter two signs mean failure. This method is characterized by mixing different sorts of pulverized coals so as to satisfy the condition of 3X-105≤Y≤3X+50. Then, the method makes a protective layer of an appropriate amount of the pulverized coal adhere onto the pipe wall of a transport pipe, and restrains the pipe wall from being abraded due to the protective layer. The pulverized coal simultaneously has an effect of grinding the pipe wall as well, because of having an appropriately lowered Hardglove index. For that reason, the method prevents both plugging and the abrasion for a long term, because the pulverized coal balances growth of the protective layer in the pipe with an action of grinding the protective layer. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は高炉吹込み用微粉炭
の混合方法、特に輸送管の詰り及び摩耗を減らすことの
できる微粉炭の混合方法に関する。 【0002】 【従来の技術】例えば、特開平5−214417号公報
「高炉羽口への微粉炭吹き込み操業方法」の図1に、高
炉11(符号は公報記載のまま。以下同じ)へ輸送配管
7を通じて微粉炭を吹込む技術が示されている。このよ
うな高炉への微粉炭吹込みは、安価な石炭を高炉に直接
使用することで、製銑コストを低減することを目的とし
た技術である。微粉炭は石炭を破砕して得るが、石炭は
周知の通り、産地により炭種が異なり、炭種が異なるこ
とにより、発熱量、比重、硬度、付着力などの化学的及
び物理的性質が異なる。そのうちで硬度が高すぎると輸
送配管に穴が開くというトラブルが発生する。 【0003】そこで、上述の特開平5−214417号
公報では、微粉炭の粒度を所定範囲にする、又は摩擦係
数を所定範囲にして、輸送配管における摩耗を軽減する
というものである。 【0004】 【発明が解決しようとする課題】しかし、粒度又は摩擦
係数を所定範囲に保った微粉炭にあっても、付着力が高
ければ輸送配管の内壁に付着し、成長して、結果として
管が詰まることがある。従って、粒度又は摩擦係数の管
理では対策が不十分であるといえる。そこで、本発明の
目的は、輸送管の詰り及び摩耗の両方を同時に減らすこ
とのできる技術を提供することにある。 【0005】 【課題を解決するための手段】本発明者らは、上記目的
を達成するために、各種の実験を繰り返すなかで、ハー
ドグローブ指数が、輸送管の摩耗性のみならず詰り性に
も強い影響を及ぼす因子であることを突き止めた。な
お、ハードグローブ指数は、JISM8801で規定さ
れる石炭の破砕性を示す指標であり、値が大きいほど破
砕が容易であり、値が小さいほど破砕が困難であること
を表す。 【0006】従って、ハードグローブ指数が大きけれ
ば、軟質であって輸送管での摩耗は軽微となり、逆に、
指数が小さければ、硬質であって輸送管での摩耗は顕著
となる。そこで、本発明者らは、炭種の異なる多数の微
粉炭を準備し、これらを種々混合し、詰りや摩耗を調べ
た。以下その詳細を説明する。 【0007】[表1]は、準備した微粉炭とそれのハー
ドグローブ指数(以下「HGI」と略記する。)とを示
す表であり、準備した炭種はA炭〜G炭の7種であり、
それらのHGIは87、44、66・・・のごとく互いに
相違する。 【0008】 【表1】 【0009】[表2]は、輸送管の詰りや摩耗を調査す
るために前記炭種を適宜混合した具体例を示す。 【0010】 【表2】【0011】表は左から右へ、サンプル、混合比率、平
均HGI及び結果を記載した。すなわち、サンプルは1
〜14までを用意した。サンプル1は、F炭100%と
したので、表1から平均HGIは84のままとなる。 【0012】サンプル2はA炭が80%、B炭が5%、
C炭15%の混合比率とした。平均HGI=(A炭のH
GI×80%)+(B炭のHGI×5%)+(C炭のH
GI×15%)=87×0.8+44×0.05+66
×0.15=81.7=約82、の算式により、サンプ
ル2の平均HGIは82とした。サンプル3〜14も同
様の計算により、平均HGIを求め、表に記載した。 【0013】次に、これらのサンプルの各々を用いて、
高炉に吹込みを実施した。超音波式詰り検知器で定期的
に配管の局部的な詰り現象をチェックし、詰り現象が認
められたら「閉塞」と判定するとともに、HGIを低H
GIに変更して詰りを解消させるようにした。また、超
音波式厚さ計で配管の肉厚を1週間毎に計測し、1ヶ月
を経過した時点で一定値以上の摩耗が認められないとき
は摩耗なし、それ以前に一定値を超える摩耗が認められ
たときには「摩耗」と判定するとともに、HGIを高H
GIに変更して摩耗を軽減させるようにした。 【0014】1ヶ月経過後に配管を分解し、管内を目視
検査した。摩耗なしと判断したものは、管壁に一定厚さ
の微粉炭層が貼付いていて、この微粉炭層が耐摩耗作用
を発揮することがわかった。閉塞、摩耗共に認められな
いものは「良好」と判定する。以上の判断基準で評価し
たところ、[表2]の結果の欄に示す通りに、サンプル
1〜3は「閉塞」、サンプル4〜11が「良好」、サン
プル12〜14が「摩耗」と判定することができた。 【0015】以上の結果をグラフ化して考察する。図1
は本発明の実験で得た平均HGIの分散グラフであり、
横軸はサンプル番号、縦軸は平均HGIを示す。グラフ
に、サンプル毎の平均HGIを黒点でプロットした。次
に、「閉塞」と「良好」の境目からのごとく破線を立
ち上げたところ、縦軸の目盛りが80の点で上下に閉塞
と良好とを区分けすることができた。このことから、平
均HGI=80に閉塞と良好とを仕切るしきい値がある
ことがわかった。 【0016】同様に、「良好」と「摩耗」の境目から
のごとく破線を立ち上げたところ、縦軸の目盛りが60
の点で上下に良好と摩耗とを区分けすることができた。
このことから、平均HGI=60に良好と摩耗とを仕切
るしきい値があることがわかった。 【0017】以上のことから、平均HGIが60〜80
となるように微粉炭の混合比率を管理すれば良いことに
なるが、これには次の点がネックとなる。仮に平均HG
I=70を得るには、HGI=60とHGI=80とを
等量混合することや、HGI=90とHGI=50を等
量混合することが考えられる。前者(HGI=60とH
GI=80とを等量混合物)が良好な結果になることは
容易に推定できるが、後者(HGI=90とHGI=5
0を等量混合物)は閉塞と摩耗の何れかが発生する可能
性が強く、前者と同様に良好な結果が得られるとは言い
難い。このことがネックとなる。そこで、より正しい管
理を行うために次の実験を行った。 【0018】図2は本発明で使用した実験装置の原理図
であり、実験装置10は、混合済みの微粉炭11を貯留
する微粉炭タンク12と、この微粉炭タンク12の底か
ら延ばした輸送管13と、輸送管13の先に設けたサイ
クロン14と、サイクロン14の底に接続した回収タン
ク15と、回収タンク15の底に配置した排出弁16
と、前記サイクロン14の上部から延ばした排気管17
と、排気管17の先に取付けたバグフィルタ18と、輸
送エネルギーを賄うために接続した第1窒素吹込み管2
1及び第2窒素吹込み管22とからなる。 【0019】そして、HGIが87であるA炭と、HG
Iが44であるB炭と,HGIが66であるC炭(何れ
も表1参照)とを準備し、これらを種々の比率で混合し
たものを微粉炭タンク12に供給し、第1・第2窒素吹
込み管21,22から高圧の窒素ガスを供給すること
で、微粉炭を輸送管13及びサイクロン14を介して回
収タンク15まで移動させる。移動後の微粉炭は回収タ
ンク15の底に溜まり、窒素ガスは排気管17及びバグ
フィルタ18を通じて大気に放出する。バグフィルタ1
8で炭の微粒を捕獲させるため、綺麗なガスだけが放出
される。回収タンク15に溜まった微粉炭は排出弁16
を適宜開くことでタンク外へ放出することができる。従
って、連続して輸送管13に微粉炭を流すことができ、
前述した要領で、輸送管13の閉塞や摩耗の有無を調べ
ることができる。 【0020】図3(a)〜(c)はA〜C炭による実験
結果を示すグラフである。(a)では、A炭比率+B炭
比率=100%の条件で実験した。横軸をB炭比率、縦
軸をA炭比率とすれば、Y=−X+100の直線上に結
果を表示することができる。実験結果を×(閉塞)、○
(良好)又は△(摩耗)で区別して、表示した。 【0021】(b)では、C炭比率を20%に固定し、
残りの80%をA炭比率+B炭比率として実験した。結
果は、Y=−X+80の直線上に結果を表示することが
できる。実験結果を×(閉塞)、○(良好)又は△(摩
耗)で区別して表示した。 【0022】(c)では、C炭比率を40%に固定し、
残りの60%をA炭比率+B炭比率として実験した。結
果は、Y=−X+60の直線上に結果を表示することが
できる。実験結果を×(閉塞)、○(良好)又は△(摩
耗)で区別して表示した。 【0023】以上を考察すると、(a)において、Y=
−X+100の直線の第1象限における長さをL1と
し、その上の○群の長さをL2とすれば、このL2はL
1の約40%となる。このL2から外れないようにし
て、A、B炭比率を定めなければならずその制御は面倒
になる。これはA炭のHGIが87で、B炭のそれが4
4であり、両方とも好ましいHGI値(60〜80)か
ら外れているからである。 【0024】一方、(c)において、Y=−X+60の
直線の第1象限における長さをL3とし、その上の○群
の長さをL4とすれば、このL4はL3の約60%とな
る。このL2から外れないようにして、A、B炭比率を
定めることはそれ程難しくはない。好ましいC炭(HG
I=66)の比率が40%であるため、A炭(HGI=
87)やB炭(HGI=44)の比率の制御に自由度が
高まることを意味する。 【0025】図4は図3(a)〜(c)の合成グラフで
あり、図3(a)〜(c)の3枚のグラフを合成した。
すると、○群と×群の境界をY=3X+50の直線で区
切ることができ、同様に○群と△群の境界をY=3X−
105の直線で区切ることができる。 【0026】前記図1からHGIが80を超えた微粉炭
及びHGIが60を下回る微粉炭は閉塞や摩耗の点で厳
密に管理する必要があることがわかり、図4からはY>
3X+50の領域及びY<3X−105の領域は閉塞や
摩耗のトラブルがでることがわかった。これらのことか
ら、本発明を次のようにまとめることができる。 【0027】すなわち、請求項1は、2種類以上の異な
る炭種の微粉炭を混ぜて高炉に吹込むに際し、微粉炭の
うちハードグローブ指数が60を下回るものの比率の合
計をX%とし、ハードグローブ指数が80を上回るもの
の比率の合計をYとしたときに、3X−105≦Y≦3
X+50の条件を満たすようにして異なる炭種の微粉炭
を混ぜることを特徴とする。 【0028】微粉炭のうちハードグローブ指数が60を
下回るものの比率の合計をX%とし、ハードグローブ指
数が80を上回るものの比率の合計をYとしたときに、
3X−105≦Y≦3X+50の条件を満たすようにし
て異なる炭種の微粉炭を混ぜることで,HGIが80を
上回る微粉炭により、輸送管の管壁に適量の微粉炭の保
護層を貼付かせることができ、この微粉炭層が保護層と
なって、摩耗を抑えることができる。同時に、ハードグ
ローブ指数が60を下回る微粉炭により、管壁を削る作
用を併せ持つ。そのため、微粉炭による管内の保護層成
長とこの保護層を削る作用がバランスし、長期間にわた
って閉塞と摩耗の双方を防止することができる。 【0029】 【実施例】本発明が実機(高炉)に適用できるか否かを
確認するための検証を行う。以下に掲げる[表3]は前
述の[表1]と同じであり、[表4]は前述の[表2]
とほぼ同じであるが、便利のために再掲する。 【0030】 【表3】【0031】 【表4】 【0032】上記[表3]から、HGIが60〜80の
ものを除去する。そして、HGIが60を下回っている
ものを「低HGI炭」、HGIが80を上回っているも
のを「高HGI炭」として、整理したのが次の[表5]
である。 【0033】 【表5】 【0034】この[表5]に基づいて前記[表4]の混
合比率の欄を整理する。すなわち、[表4]から低HG
I炭及び高HGI炭を残し、それ以外を削除すること
で、次の[表6]を作成した。 【0035】 【表6】【0036】[表6]は左から右へ、サンプル、低HG
I炭、高HGI炭、(低HGI炭,高HGI炭)及び表
記の欄を設けた。例えば表4のサンプル2においてのA
炭、B炭、C炭のうち、[表5]には存在しないC炭1
5%は除外する。そして、B炭5%を[表6]のサンプ
ル2の行の低HGI炭の欄に振分け、A炭80%を[表
6]の高HGI炭の欄に振分ける。同様に、他のサンプ
ルについて振分け作業を行った。次に(低HGI,高H
GI)の欄に各パーセントを座標(X,Y)の形態で表
す。例えばサンプル2は(5,80)となる。最右欄の
表記は、サンプル1〜3が「閉塞」([表4]参照)で
あったから、×1〜×3と表す。同様にサンプル4〜1
1は○4〜○11、サンプル12〜14は△12〜△1
4とする。なお、○は「良好」、△は「摩耗」の意味す
る。 【0037】図5は本発明に係る実験結果の分散グラフ
であり、横軸を低HGI炭比率、縦軸を高HGI炭比率
とし、そこに[表6]の(低HGI,高HGI)を×、
○、△を用いてプロットした。このプロットは[表6]
の表記と一致する。そして、グラフにY=3X−105
及びY=3X+50の直線を書き加えた。この結果、○
群は全てY=3X−105とY=3X+50との間にあ
り、×群並びに△群は全て外にあった。 【0038】このことから、微粉炭のうちハードグロー
ブ指数が60を下回るものの比率の合計をX%とし、ハ
ードグローブ指数が80を上回るものの比率の合計をY
としたときに、3X−105≦Y≦3X+50の条件を
満たすようにして異なる炭種の微粉炭を混ぜることによ
り、良好な結果が得られることが確認できた。 【0039】 【発明の効果】本発明は上記構成により次の効果を発揮
する。請求項1は、微粉炭のうちハードグローブ指数が
60を下回るものの比率の合計をX%とし、ハードグロ
ーブ指数が80を上回るものの比率の合計をYとしたと
きに、3X−105≦Y≦3X+50の条件を満たすよ
うにして異なる炭種の微粉炭を混ぜることで,HGIが
80を上回る微粉炭により、輸送管の管壁に適量の微粉
炭の保護層を貼付かせることができ、この微粉炭層が保
護層となって、摩耗を抑えることができる。同時に、ハ
ードグローブ指数が60を下回る微粉炭により、管壁を
削る作用を併せ持つ。そのため、微粉炭による管内の保
護層成長とこの保護層を削る作用がバランスし、長期間
にわたって閉塞と摩耗の双方を防止することができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of mixing pulverized coal for blowing into a blast furnace, and more particularly to a method of mixing pulverized coal capable of reducing clogging and abrasion of a transport pipe. 2. Description of the Related Art For example, in FIG. 1 of Japanese Unexamined Patent Publication No. Hei 5-214417, "Method of Injecting Pulverized Coal into Tuyere of Blast Furnace", a transportation pipe to blast furnace 11 (the reference numeral is described in the gazette; the same applies hereinafter). 7 shows a technique for injecting pulverized coal. Such pulverized coal injection into the blast furnace is a technique aimed at reducing the cost of iron making by directly using inexpensive coal in the blast furnace. Pulverized coal is obtained by crushing coal, but as is well known, coal has different types of coal depending on the production area, and different types of coal have different chemical and physical properties such as calorific value, specific gravity, hardness, and adhesion. . If the hardness is too high, there will be a problem that a hole is formed in the transport piping. Therefore, in the above-mentioned Japanese Patent Application Laid-Open No. 5-214417, the particle size of the pulverized coal is set in a predetermined range, or the friction coefficient is set in a predetermined range, so as to reduce the abrasion in the transportation pipe. [0004] However, even with pulverized coal whose grain size or coefficient of friction is kept within a predetermined range, if the adhesive force is high, it adheres to the inner wall of the transport pipe and grows. The tube may be clogged. Therefore, it can be said that measures for controlling the particle size or the friction coefficient are insufficient. Accordingly, an object of the present invention is to provide a technique capable of simultaneously reducing both clogging and abrasion of a transport pipe. [0005] To achieve the above object, the present inventors have repeated various experiments and found that the hard glove index shows not only the abrasion but also the clogging of the transport pipe. Is also a strong influence factor. The hard globe index is an index indicating the friability of coal defined by JIS M8801, and a larger value indicates that crushing is easier, and a smaller value indicates that crushing is more difficult. [0006] Therefore, if the hard glove index is large, the material is soft and wear in the transport pipe is slight, and conversely,
If the index is small, it is hard and wear on the transport pipe becomes significant. Therefore, the present inventors prepared a large number of pulverized coals having different coal types, mixed these variously, and examined clogging and wear. The details will be described below. Table 1 is a table showing the prepared pulverized coal and its hard glove index (hereinafter abbreviated as "HGI"). The prepared coal types are A coal to G coal. Yes,
The HGIs are different from each other, such as 87, 44, 66. [Table 1] [0009] Table 2 shows specific examples in which the above-mentioned coal types are appropriately mixed in order to investigate clogging and wear of the transport pipe. [Table 2] The table lists, from left to right, the samples, mixing ratios, average HGI and results. That is, the sample is 1
~ 14 were prepared. Since sample 1 was 100% F coal, the average HGI from Table 1 remains at 84. Sample 2 is 80% coal A, 5% coal B,
The mixing ratio was 15% for C coal. Average HGI = (H of A charcoal
GI × 80%) + (HGI of coal B × 5%) + (H of coal C
(GI × 15%) = 87 × 0.8 + 44 × 0.05 + 66
× 0.15 = 81.7 = about 82, the average HGI of Sample 2 was set to 82. The average HGI of Samples 3 to 14 was determined by the same calculation, and the average HGI was described in the table. Next, using each of these samples,
The blast furnace was blown. The ultrasonic clogging detector periodically checks the pipe for local clogging phenomena. If a clogging phenomenon is observed, it is judged as "blockage" and the HGI is set to low H.
Changed to GI to eliminate clogging. In addition, the thickness of the pipe is measured every week with an ultrasonic thickness gauge. If no more than a certain amount of wear is observed after one month, there is no wear and the wear exceeds a certain value before that. Is judged as "wear" and HGI is set to high H.
GI was changed to reduce wear. After one month, the pipe was disassembled and the inside of the pipe was visually inspected. When it was judged that there was no wear, the pulverized coal layer having a constant thickness was stuck to the pipe wall, and it was found that this pulverized coal layer exerts the abrasion resistance. If neither blockage nor wear is recognized, it is judged as “good”. When evaluated according to the above criteria, as shown in the results column of [Table 2], samples 1 to 3 were determined to be "closed", samples 4 to 11 were determined to be "good", and samples 12 to 14 were determined to be "wear". We were able to. The above results will be discussed in the form of a graph. FIG.
Is a dispersion graph of the average HGI obtained in the experiment of the present invention,
The horizontal axis indicates the sample number, and the vertical axis indicates the average HGI. The average HGI for each sample was plotted on the graph as a black point. Next, when a dashed line was started up from the boundary between “occlusion” and “good”, it was possible to distinguish between occlusion and good at the point where the scale on the vertical axis was 80. From this, it was found that the average HGI = 80 had a threshold value for partitioning between closed and good. Similarly, when a broken line is set up from the boundary between “good” and “wear”, the scale on the vertical axis is 60
In terms of the above, good and abrasion could be distinguished vertically.
From this, it was found that the average HGI = 60 had a threshold value for separating good from abrasion. From the above, the average HGI is 60-80.
It is only necessary to control the mixing ratio of the pulverized coal so that If the average HG
In order to obtain I = 70, it is conceivable to mix equal amounts of HGI = 60 and HGI = 80 or to mix equal amounts of HGI = 90 and HGI = 50. The former (HGI = 60 and H
It can be easily estimated that a good mixture of GI = 80 and GI = 80 gives good results, but the latter (HGI = 90 and HGI = 5).
(Equivalent mixture of 0) has a strong possibility that any one of clogging and abrasion occurs, and it is hard to say that good results are obtained as in the former case. This is a bottleneck. Then, the following experiment was performed in order to perform more correct management. FIG. 2 is a principle diagram of the experimental apparatus used in the present invention. The experimental apparatus 10 includes a pulverized coal tank 12 for storing mixed pulverized coal 11 and a transport extending from the bottom of the pulverized coal tank 12. A pipe 13, a cyclone 14 provided at the end of the transport pipe 13, a collection tank 15 connected to the bottom of the cyclone 14, and a discharge valve 16 disposed at the bottom of the collection tank 15.
And an exhaust pipe 17 extending from the upper part of the cyclone 14.
And a bag filter 18 attached at the end of the exhaust pipe 17, and a first nitrogen blowing pipe 2 connected to supply transportation energy.
The first and second nitrogen blowing pipes 22 are provided. Then, A coal having an HGI of 87 and HG
B coal having an I of 44 and C coal having an HGI of 66 (all shown in Table 1) are prepared, and a mixture of these in various ratios is supplied to the pulverized coal tank 12, and the first and second coals are prepared. By supplying high-pressure nitrogen gas from the 2 nitrogen blowing pipes 21 and 22, the pulverized coal is moved to the collection tank 15 via the transport pipe 13 and the cyclone 14. The moved pulverized coal accumulates at the bottom of the recovery tank 15, and the nitrogen gas is discharged to the atmosphere through the exhaust pipe 17 and the bag filter 18. Bag filter 1
At 8, only fine gas is released to capture the fine particles of charcoal. The pulverized coal accumulated in the recovery tank 15 is discharged
Can be released to the outside of the tank by opening as appropriate. Therefore, pulverized coal can be continuously flowed into the transport pipe 13,
In the manner described above, the presence or absence of blockage or wear of the transport pipe 13 can be checked. FIGS. 3 (a) to 3 (c) are graphs showing the results of experiments using AC coal. In (a), the experiment was carried out under the condition of A coal ratio + B coal ratio = 100%. If the horizontal axis is the B coal ratio and the vertical axis is the A coal ratio, the results can be displayed on a straight line of Y = −X + 100. X (obstruction), ○
(Good) or △ (wear) are indicated. In (b), the C coal ratio is fixed at 20%,
The remaining 80% was tested as the ratio of coal A to the ratio of coal B. The result can be displayed on a straight line of Y = −X + 80. The experimental results are indicated by X (closed), ((good) or Δ (wear). In (c), the C coal ratio is fixed at 40%,
The remaining 60% was tested as the ratio of coal A to the ratio of coal B. The result can be displayed on a straight line of Y = −X + 60. The experimental results are indicated by X (closed), ((good) or Δ (wear). Considering the above, in (a), Y =
Assuming that the length of the straight line of −X + 100 in the first quadrant is L1, and the length of the group of ○ thereon is L2, this L2 is L
1 is about 40%. The ratio of A and B coals must be determined so as not to deviate from L2, and the control becomes troublesome. This is the HGI of coal A is 87 and that of coal B is 4
4, which is out of the preferred HGI value (60-80). On the other hand, in (c), if the length of the straight line of Y = −X + 60 in the first quadrant is L3 and the length of the group of ○ on it is L4, this L4 is about 60% of L3. Become. It is not so difficult to determine the A and B coal ratios without deviating from L2. Preferred C coal (HG
I = 66) is 40%, so that coal A (HGI =
87) or B coal (HGI = 44) means that the degree of freedom is increased. FIG. 4 is a composite graph of FIGS. 3 (a) to 3 (c), and three graphs of FIGS. 3 (a) to 3 (c) are composited.
Then, the boundary between the group ○ and the group X can be separated by a straight line of Y = 3X + 50. Similarly, the boundary between the group ○ and the group Δ can be divided by Y = 3X−
It can be divided by 105 straight lines. FIG. 1 shows that pulverized coal having an HGI of more than 80 and pulverized coal having an HGI of less than 60 must be strictly controlled in terms of clogging and abrasion, and FIG.
It has been found that the area of 3X + 50 and the area of Y <3X-105 cause troubles of blockage and wear. From these, the present invention can be summarized as follows. [0027] More specifically, when pulverized coal of two or more different coal types is mixed and injected into a blast furnace, the sum of the ratios of pulverized coal having a hard globe index of less than 60 is defined as X%, Assuming that the sum of the ratios of the globe indexes exceeding 80 is Y, 3X−105 ≦ Y ≦ 3
It is characterized in that pulverized coal of different coal types is mixed so as to satisfy the condition of X + 50. When the total ratio of pulverized coal having a hard globe index of less than 60 is X% and the total ratio of pulverized coal having a hard globe index of more than 80 is Y,
By mixing pulverized coal of different coal types so as to satisfy the condition of 3X−105 ≦ Y ≦ 3X + 50, a pulverized coal having an HGI of more than 80 allows an appropriate amount of pulverized coal protective layer to be adhered to the pipe wall of the transport pipe. This pulverized coal layer serves as a protective layer, and abrasion can be suppressed. At the same time, pulverized coal having a hard glove index of less than 60 has an effect of shaving the pipe wall. Therefore, the growth of the protective layer in the pipe by the pulverized coal and the action of shaving this protective layer are balanced, and it is possible to prevent both blockage and wear for a long period of time. EXAMPLE A verification for confirming whether the present invention can be applied to an actual machine (blast furnace) is performed. The following [Table 3] is the same as the above [Table 1], and [Table 4] is the above [Table 2]
Approximately the same as above, but reprinted for convenience. [Table 3] [Table 4] From Table 3 above, those having an HGI of 60 to 80 are removed. The following Table 5 summarizes those with an HGI below 60 as "low HGI coal" and those with an HGI above 80 as "high HGI coal".
It is. [Table 5] Based on this [Table 5], the columns of the mixing ratio in [Table 4] are arranged. That is, from Table 4, it can be seen that the low HG
The following [Table 6] was created by leaving coal I and high HGI coal and deleting the rest. [Table 6] Table 6 shows, from left to right, samples, low HG
I coal, high HGI coal, (low HGI coal, high HGI coal) and the notation column were provided. For example, A in sample 2 of Table 4
Among coal, coal B and coal C, coal 1 not present in [Table 5]
Exclude 5%. Then, 5% of coal B is allocated to the column of low HGI coal in the row of sample 2 of [Table 6], and 80% of coal A is allocated to the column of high HGI coal of [Table 6]. Similarly, sorting work was performed on other samples. Next (low HGI, high H
In the column of (GI), each percentage is represented in the form of coordinates (X, Y). For example, sample 2 is (5,80). The notation in the rightmost column is represented by × 1 to × 3 since Samples 1 to 3 were “closed” (see [Table 4]). Similarly, samples 4-1
1 is 44 to 、 11, samples 12 to 14 are △ 12 to △ 1
4 is assumed. In addition, ○ means “good” and Δ means “wear”. FIG. 5 is a dispersion graph of the experimental results according to the present invention. The horizontal axis represents the low HGI coal ratio, the vertical axis represents the high HGI coal ratio, and (low HGI, high HGI) in [Table 6]. ×,
プ ロ ッ ト and △ were plotted. This plot is shown in Table 6
Matches the notation. And the graph shows Y = 3X-105
And a straight line of Y = 3X + 50 was added. As a result,
All groups were between Y = 3X-105 and Y = 3X + 50, and groups X and △ were all outside. From the above, it is assumed that the sum of the ratios of pulverized coal having a hard globe index of less than 60 is X%, and the sum of the ratios of pulverized coal having a hard globe index of more than 80 is Y%.
It was confirmed that good results could be obtained by mixing pulverized coal of different coal types so as to satisfy the condition of 3X−105 ≦ Y ≦ 3X + 50. According to the present invention, the following effects can be obtained by the above-described structure. Claim 1 shows that when the sum of the ratios of the pulverized coal whose hard glove index is less than 60 is X% and the sum of the ratios of the hard glove index exceeding 80 is Y, 3X−105 ≦ Y ≦ 3X + 50. By mixing pulverized coal of different coal types so as to satisfy the conditions of the above, the pulverized coal having an HGI of more than 80 enables a protective layer of an appropriate amount of pulverized coal to be adhered to the pipe wall of the transport pipe. Can serve as a protective layer to suppress wear. At the same time, pulverized coal having a hard glove index of less than 60 has an effect of shaving the pipe wall. Therefore, the growth of the protective layer in the pipe by the pulverized coal and the action of shaving this protective layer are balanced, and it is possible to prevent both blockage and wear for a long period of time.

【図面の簡単な説明】 【図1】本発明の実験で得た平均HGIの分散グラフ 【図2】本発明で使用した実験装置の原理図 【図3】A〜C炭による実験結果を示すグラフ 【図4】図3(a)〜(c)の合成グラフ 【図5】本発明に係る実験結果の分散グラフ 【符号の説明】 10…実験装置、11…微粉炭」、13…輸送管。[Brief description of the drawings] FIG. 1 is a dispersion graph of an average HGI obtained in an experiment of the present invention. FIG. 2 is a diagram illustrating the principle of the experimental apparatus used in the present invention. FIG. 3 is a graph showing the results of experiments using AC coal. FIG. 4 is a composite graph of FIGS. 3 (a) to 3 (c). FIG. 5 is a dispersion graph of experimental results according to the present invention. [Explanation of symbols] 10: experimental apparatus, 11: pulverized coal ", 13: transport pipe.

Claims (1)

【特許請求の範囲】 【請求項1】 2種類以上の異なる炭種の微粉炭を混ぜ
て高炉に吹込むに際し、前記微粉炭のうちハードグロー
ブ指数が60を下回るものの比率の合計をX%とし、ハ
ードグローブ指数が80を上回るものの比率の合計をY
としたときに、3X−105≦Y≦3X+50の条件を
満たすようにして前記異なる炭種の微粉炭を混ぜること
を特徴とする高炉吹込み用微粉炭の混合方法。
Claims 1. When mixing and pulverized coal of two or more different types of coal into a blast furnace, the total of the pulverized coal whose hard glove index is less than 60 is defined as X%. , The sum of the ratios of those with a hard globe index exceeding 80 is Y
Wherein pulverized coal of a different coal type is mixed so as to satisfy the condition of 3X−105 ≦ Y ≦ 3X + 50.
JP2002092542A 2002-03-28 2002-03-28 Method for mixing pulverized coal to be blown into blast furnace Pending JP2003286510A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002092542A JP2003286510A (en) 2002-03-28 2002-03-28 Method for mixing pulverized coal to be blown into blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002092542A JP2003286510A (en) 2002-03-28 2002-03-28 Method for mixing pulverized coal to be blown into blast furnace

Publications (1)

Publication Number Publication Date
JP2003286510A true JP2003286510A (en) 2003-10-10

Family

ID=29237341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002092542A Pending JP2003286510A (en) 2002-03-28 2002-03-28 Method for mixing pulverized coal to be blown into blast furnace

Country Status (1)

Country Link
JP (1) JP2003286510A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012057821A (en) * 2010-09-06 2012-03-22 Kobe Steel Ltd Pulverized coal combustion method, and pulverized coal combustion apparatus
CN103900950A (en) * 2014-04-04 2014-07-02 山西潞安环保能源开发股份有限公司 Experimental method for evaluating pulverized coal properties of spray-blow coal
JP2015187294A (en) * 2014-03-27 2015-10-29 Jfeスチール株式会社 Pulverized coal for injection into blast furnace, method for manufacturing the same, and blast furnace operating method
JP2019005708A (en) * 2017-06-26 2019-01-17 三菱日立パワーシステムズ株式会社 Mixing judging method of solid fuel and solid fuel pulverizing device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05214417A (en) * 1992-01-31 1993-08-24 Sumitomo Metal Ind Ltd Method for injection-operating pulverized coal into tuyere in blast furnace
JPH1060508A (en) * 1996-08-22 1998-03-03 Nkk Corp Production of pulverized fine coal for blowing from tuyere in blast furnace
JP2002105516A (en) * 2000-09-29 2002-04-10 Nkk Corp Method for operating blast furnace

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05214417A (en) * 1992-01-31 1993-08-24 Sumitomo Metal Ind Ltd Method for injection-operating pulverized coal into tuyere in blast furnace
JPH1060508A (en) * 1996-08-22 1998-03-03 Nkk Corp Production of pulverized fine coal for blowing from tuyere in blast furnace
JP2002105516A (en) * 2000-09-29 2002-04-10 Nkk Corp Method for operating blast furnace

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012057821A (en) * 2010-09-06 2012-03-22 Kobe Steel Ltd Pulverized coal combustion method, and pulverized coal combustion apparatus
JP2015187294A (en) * 2014-03-27 2015-10-29 Jfeスチール株式会社 Pulverized coal for injection into blast furnace, method for manufacturing the same, and blast furnace operating method
CN103900950A (en) * 2014-04-04 2014-07-02 山西潞安环保能源开发股份有限公司 Experimental method for evaluating pulverized coal properties of spray-blow coal
JP2019005708A (en) * 2017-06-26 2019-01-17 三菱日立パワーシステムズ株式会社 Mixing judging method of solid fuel and solid fuel pulverizing device

Similar Documents

Publication Publication Date Title
JP2003286510A (en) Method for mixing pulverized coal to be blown into blast furnace
TWI374777B (en)
JP5515288B2 (en) Raw material charging method to blast furnace
JP2005290511A (en) Method for operating blast furnace
EP3896177A1 (en) Method for charging raw material into bell-less blast furnace, and blast furnace operation method
EP3760744B1 (en) Method for loading raw materials into blast furnace
CN110726638B (en) Quantitative detection method for cleanliness of waste oil pipelines
CN105441612B (en) A kind of defeated device for coal of blast furnace granular coal injection
CA2825511A1 (en) Subaqueous mining tailings placement
JP6852679B2 (en) Manufacturing method of molded product for ferro-coke and manufacturing method of ferro-coke
JP2012021227A (en) Method for operating blast furnace, and top bunker
JP2011068926A (en) Method for charging raw material into blast furnace
JP5741319B2 (en) Pulverized coal injection method
CN206203111U (en) It is a kind of to prevent metallurgical furnace from locking the device that wind coal-supply system is blocked
JP2010084221A (en) Method for operating blast furnace
CN207468660U (en) Pressure measuring unit under high concentrate dust
CN110023453A (en) Wear-resistant propping agent compound and its component
CN214811785U (en) Cyclone separation device for testing bonding effect of metal powder coating
JP2010150644A (en) Method for charging raw material to blast furnace
JP2010150642A (en) Method for charging raw material to blast furnace
Halt Factors influencing material loss during iron ore pellet handling
JP2022143141A (en) Blast furnace operation method
JP2024007329A (en) Operation method for blast furnace and pulverized coal for blowing in blast furnace
JP6627717B2 (en) Raw material charging method for blast furnace
Barnum et al. DESIGNING FURNACE FEED SYSTEMS THAT WORK

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040426

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050421

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050614

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060725

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060922

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060927

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20061117