JP2003286070A - Semiconducting ceramic and holding member and tool for magnetic disk substrate using the same - Google Patents

Semiconducting ceramic and holding member and tool for magnetic disk substrate using the same

Info

Publication number
JP2003286070A
JP2003286070A JP2002093194A JP2002093194A JP2003286070A JP 2003286070 A JP2003286070 A JP 2003286070A JP 2002093194 A JP2002093194 A JP 2002093194A JP 2002093194 A JP2002093194 A JP 2002093194A JP 2003286070 A JP2003286070 A JP 2003286070A
Authority
JP
Japan
Prior art keywords
magnetic disk
disk substrate
mgo
semiconductive ceramic
sio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002093194A
Other languages
Japanese (ja)
Other versions
JP4090771B2 (en
Inventor
Katsuto Hashimoto
勝人 橋本
Tetsuji Hayazaki
哲治 早崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2002093194A priority Critical patent/JP4090771B2/en
Publication of JP2003286070A publication Critical patent/JP2003286070A/en
Application granted granted Critical
Publication of JP4090771B2 publication Critical patent/JP4090771B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Holding Or Fastening Of Disk On Rotational Shaft (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconducting ceramic constituted so that bending strength, Young's modulus, hardness and fracture toughness which affect the workability are controlled to have a value in a suitable range, prescribed semiconductivity and a coefficient of thermal expansion are attained and such inconvenience that the chipping easily occurs by various shocks is reduced and durability is improved in the semiconducting ceramic having 2MgO.SiO<SB>2</SB>(forstelite) as an essential crystal phase and iron oxide as a sub-component, and to provide holding member and tool for a magnetic disk substrate using the semiconducting ceramic. <P>SOLUTION: The semiconducting ceramic is composed of a sintered compact having 2MgO.SiO<SB>2</SB>as an essential crystal phase and at least one kind of a crystal selected from MgFe<SB>2</SB>O<SB>4</SB>, Fe<SB>3</SB>O<SB>4</SB>and Fe<SB>2</SB>O<SB>3</SB>and the crystal of MgO as sub-components. The holding members (a spacer 12, a shim 11 and clamp 13) and tools for the magnetic disk substrate use the semiconducting ceramic. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、半導電性セラミッ
クス、並びにこれを用いた、複数の磁気ディスク基板を
所定の間隔に保持するスペーサ、シム、ハブなどの磁気
ディスク基板用保持部材及び治工具に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductive ceramic, a magnetic disk substrate holding member such as a spacer, a shim, a hub and the like for holding a plurality of magnetic disk substrates at predetermined intervals using the same and jigs. Regarding

【0002】[0002]

【従来の技術】従来、導電性セラミックスとして、アル
ミナやジルコニア等を主成分とし、導電性付与材として
のNi、Nb、Co、Ti、Zr、Ta、Hf等の金属
あるいはこれらの化合物をセラミックス材料中に添加し
て焼成した焼結体が知られている。これらの導電性セラ
ミックスは、セラミックスセンサ、あるいはプリンタの
分離爪、電子部品製造装置用部材、抵抗用基板等の静電
気除去部材として用いられていた(特開平2−2950
09号公報等参照)。
2. Description of the Related Art Conventionally, as conductive ceramics, alumina, zirconia or the like has been used as a main component, and metals such as Ni, Nb, Co, Ti, Zr, Ta and Hf or their compounds as conductivity imparting materials or their compounds are used as ceramic materials. A sintered body is known which is added and burned. These conductive ceramics have been used as a static electricity removing member such as a ceramics sensor, a separating claw of a printer, a member for an electronic component manufacturing apparatus, a resistance substrate, etc. (Japanese Patent Laid-Open No. 2-2950).
09, etc.).

【0003】一方、コンピューターの記録手段として磁
気記録装置が用いられており、この磁気記録装置にも静
電気除去部材が用いられている。図1は磁気記録装置の
概略断面図である。同図に示すように、この磁気記録装
置10は、回転軸14に固定されたハブ15に、複数の
ガラス製磁気ディスク基板16とスペーサ12を交互に
取り付け、シム11及びクランプ13で押さえ付けた
後、ネジ17にて締め付けることにより固定する構造に
なっている。
On the other hand, a magnetic recording device is used as a recording means of a computer, and a static electricity removing member is also used in this magnetic recording device. FIG. 1 is a schematic sectional view of a magnetic recording device. As shown in the figure, in this magnetic recording apparatus 10, a plurality of magnetic disk substrates 16 made of glass and spacers 12 are alternately attached to a hub 15 fixed to a rotating shaft 14 and pressed by shims 11 and clamps 13. After that, the structure is such that it is fixed by tightening with a screw 17.

【0004】情報の読み取りや書き込みを行うには、モ
ータ(図示せず)により回転軸14を回転させ、ハブ1
5に固定された複数の磁気ディスク基板16を高速回転
させて磁気ディスク基板16上の磁気ヘッド18を浮上
させ、この状態で磁気ヘッド18を磁気ディスク基板1
6上で走査させることにより、磁気ディスク基板16の
所定の位置に情報の書き込みや読み取りを行うようにな
っていた。
In order to read and write information, the rotating shaft 14 is rotated by a motor (not shown), and the hub 1
The magnetic heads 18 on the magnetic disk substrate 16 are levitated by rotating the plurality of magnetic disk substrates 16 fixed on the magnetic disk substrate 5 at a high speed.
Information is written or read at a predetermined position on the magnetic disk substrate 16 by scanning on the magnetic disk 6.

【0005】ところが、磁気ディスク基板16が帯電す
ると、放電時に書き込まれた情報が破壊されるため、磁
気ディスク基板16を所定の間隔に保持するスペーサ1
2やシム11あるいはクランプ13等の磁気ディスク基
板用保持部材を導電材料により形成することが提案され
ており、磁気ディスク基板用保持部材を形成する導電材
料として、チタニア系焼結体や、酸化チタン(Ti
2)、炭化チタン(TiC)、酸化錫(SnO、Sn
2)を含有したアルミナ質焼結体等の導電性セラミッ
クスが用いられていた(特開平6−168536号公
報、特開平11−228224号公報参照)。
However, when the magnetic disk substrate 16 is charged, the information written at the time of discharging is destroyed, so the spacer 1 for holding the magnetic disk substrate 16 at a predetermined interval.
It has been proposed to form the magnetic disk substrate holding member such as 2, the shim 11, the clamp 13 or the like with a conductive material. As the conductive material forming the magnetic disk substrate holding member, a titania-based sintered body or titanium oxide is used. (Ti
O 2 ), titanium carbide (TiC), tin oxide (SnO, Sn)
A conductive ceramic such as an alumina-based sintered body containing O 2 ) has been used (see JP-A-6-168536 and JP-A-11-228224).

【0006】しかしながら、アルミナやジルコニアを主
成分とし、これに導電性付与材を添加した焼結体からな
る導電性セラミックスでは、導電性付与材が高価である
ことや、還元雰囲気で焼成しなければならない等の特別
な焼成条件を必要とするため、コストダウンの要求があ
る中、製品化することは非常に困難であった。
[0006] However, in the case of a conductive ceramic comprising a sintered body containing alumina or zirconia as a main component and a conductivity-imparting material added thereto, the conductivity-imparting material is expensive and must be fired in a reducing atmosphere. Since it requires special firing conditions such as not happening, it has been very difficult to commercialize it while there is a demand for cost reduction.

【0007】また、アルミナやジルコニアを主成分とす
る焼結体やチタニア系焼結体からなる磁気ディスク基板
用保持部材では、ガラス製の磁気ディスク基板との間に
2〜5×10-6/℃程度の熱膨張係数の差があるため、
動作中の発熱により磁気ディスク基板16に歪みが生じ
たり、磁気ディスク基板16間の平面度が損なわれると
いった課題があった。
Further, in a magnetic disk substrate holding member made of a sintered body containing alumina or zirconia as a main component or a titania-based sintered body, 2 to 5 × 10 −6 / is provided between the magnetic disk substrate made of glass and the magnetic disk substrate. Since there is a difference in coefficient of thermal expansion of about ℃,
There are problems that the magnetic disk substrate 16 is distorted due to heat generated during operation, and the flatness between the magnetic disk substrates 16 is impaired.

【0008】そこで、これらの課題を解決するものとし
て、本発明者らは先に、フォルステライトを主成分と
し、導電性付与材として酸化鉄を添加した焼結体からな
る半導電性セラミックスと、この半導電性セラミックス
により磁気ディスク基板用保持部材を形成することを提
案した(特開平9−20560号公報、特許29841
99号公報、特開平11−343169号公報参照)。
これらの提案における半導電性セラミックスは、2Mg
O・SiO2、MgSiO3の結晶を有し、かつMgFe
24、Fe34のうち少なくとも1種の結晶を有してお
り、その体積固有抵抗値は107Ω・cm以下、曲げ強
度は100〜140MPa、ヤング率は100〜140
GPa程度であった。
In order to solve these problems, the present inventors have previously made a semi-conductive ceramic composed of a sintered body containing forsterite as a main component and iron oxide added as a conductivity-imparting material, It has been proposed to form a holding member for a magnetic disk substrate from this semi-conductive ceramic (Japanese Patent Laid-Open No. 9-20560, Patent 29841).
99, Japanese Patent Laid-Open No. 11-343169).
The semiconductive ceramics in these proposals are 2Mg
Has O.SiO 2 and MgSiO 3 crystals, and MgFe
It has at least one kind of crystal of 2 O 4 and Fe 3 O 4 , and has a volume resistivity value of 10 7 Ω · cm or less, a bending strength of 100 to 140 MPa, and a Young's modulus of 100 to 140.
It was about GPa.

【0009】上記フォルステライトを主成分とし、導電
性付与材として酸化鉄を添加した焼結体からなる半導電
性セラミックスは、主成分のMgと反応して生成される
MgFe24や未反応分の酸化鉄が導電性に寄与してい
ることが明らかとなっており、前述のアルミナやジルコ
ニアを主成分とする導電性セラミックスと比較して、酸
化鉄の添加量と導電性を有する結晶相(MgFe24
未反応分の酸化鉄)のX線回折のピーク強度との関係か
ら体積固有抵抗の調整がし易く、静電気除去部材に要求
されている104〜107Ω・cmを満足させることがで
きると共に、主成分のフォルステライトはMgOとSi
2の複合酸化物で、ガラス製の磁気ディスク基板16
との熱膨張係数を近似させることができるため、磁気デ
ィスク基板16に熱歪みが発生することを防止し、磁気
ディスク基板16間の平面度を高精度に保つことができ
るといった利点がある。
The semiconductive ceramics made of a sintered body containing forsterite as a main component and iron oxide as a conductivity-imparting material is reacted with Mg as a main component, MgFe 2 O 4 and unreacted. It has been clarified that the amount of iron oxide contributes to the conductivity, and compared with the above-mentioned conductive ceramics containing alumina or zirconia as the main component, the added amount of iron oxide and the crystalline phase having conductivity. From the relationship with the peak intensity of X-ray diffraction of (MgFe 2 O 4 and unreacted iron oxide), it is easy to adjust the volume resistivity, and 10 4 to 10 7 Ω · cm required for the static electricity removing member can be obtained. In addition to being satisfied, the main components of forsterite are MgO and Si.
O 2 composite oxide, glass magnetic disk substrate 16
Since the coefficient of thermal expansion can be approximated to the above, there is an advantage that thermal strain is prevented from occurring in the magnetic disk substrate 16 and the flatness between the magnetic disk substrates 16 can be maintained with high accuracy.

【0010】[0010]

【発明が解決しようとする課題】近年、ますます磁気デ
ィスク装置10の高記録密度化が進むに従って、磁気ヘ
ッド18と磁気ディスク基板16の浮上隙間が極小化
し、現在は浮上隙間が0.02μmより小さな領域とな
っている。このように浮上隙間の極小化が進むと、磁気
ディスク基板16間の平面度をより高精度に保つため
に、磁気ディスク基板16を固定するためのシム11、
スペーサ12、クランプ13およびハブ15自体の加工
精度をさらに向上させたいという要求が高まっていた。
また、上記加工精度の課題以外に、様々な衝撃によって
焼結体に欠けが発生しやすいという不具合が生じること
があった。
In recent years, as the recording density of the magnetic disk device 10 has become higher and higher, the floating gap between the magnetic head 18 and the magnetic disk substrate 16 has been minimized. Currently, the floating gap is less than 0.02 μm. It is a small area. When the levitation gap is minimized in this way, the shim 11 for fixing the magnetic disk substrate 16 in order to maintain the flatness between the magnetic disk substrates 16 with higher accuracy,
There has been a growing demand for further improving the processing accuracy of the spacer 12, the clamp 13, and the hub 15 itself.
Further, in addition to the above-mentioned problem of processing accuracy, there is a problem that cracks are likely to occur in the sintered body due to various impacts.

【0011】[0011]

【発明の目的】本発明の目的は、2MgO・SiO
2(フォルステライト)を主結晶相とし、副成分として
酸化鉄を有する半導電性セラミックスにおいて、加工性
に影響する曲げ強度、ヤング率、硬度および破壊靱性値
をより好適な範囲とし、且つ所望の半導電性及び熱膨張
係数を得ることができ、さらに様々な衝撃で欠けが発生
しやすいという不具合を低減し耐久性を向上させること
ができる半導電性セラミックス、並びにこれを用いた磁
気ディスク基板用保持部材及び治工具を提供することで
ある。
OBJECT OF THE INVENTION The object of the present invention is to obtain 2MgO.SiO.
2 (Forsterite) as a main crystal phase and iron oxide as a sub-component in a semiconductive ceramic, the bending strength, Young's modulus, hardness and fracture toughness value that affect workability are set in a more preferable range, and Semi-conductive ceramics capable of obtaining semi-conductivity and coefficient of thermal expansion, further reducing defects such as chipping easily caused by various impacts, and improving durability, and a magnetic disk substrate using the same To provide a holding member and a jig.

【0012】[0012]

【課題を解決するための手段】本発明者らは、加工精度
および耐久性に関する上記課題を解決すべく鋭意研究を
重ねた結果、2MgO・SiO2(フォルステライト)
を主結晶相とし、副成分として酸化鉄を有する半導電性
セラミックスにおいて、この焼結体中に2MgO・Si
2だけでなく、MgOをも析出させることにより焼結
体の加工性に影響を与える機械的特性をより好適な範囲
にすることができるという新たな事実を見出し、本発明
を完成するに至った。
The inventors of the present invention have conducted extensive studies to solve the above problems relating to processing accuracy and durability, and as a result, 2MgO.SiO 2 (forsterite)
In a semi-conductive ceramic having as a main crystal phase and iron oxide as a subcomponent, 2MgO.Si is contained in this sintered body.
By discovering not only O 2 but also MgO, the new fact that the mechanical properties that affect the workability of the sintered body can be made into a more suitable range was found, and the present invention was completed. It was

【0013】すなわち、本発明にかかる半導電性セラミ
ックスは、2MgO・SiO2を主結晶相とし、副結晶
相としてMgFe24、Fe34及びFe23から選ば
れる少なくとも1種の結晶とMgOの結晶とを有する焼
結体からなることを特徴とする。
That is, the semiconductive ceramic according to the present invention has 2MgO.SiO 2 as a main crystal phase and at least one kind selected from MgFe 2 O 4 , Fe 3 O 4 and Fe 2 O 3 as a sub crystal phase. It is characterized by comprising a sintered body having crystals and MgO crystals.

【0014】本発明の半導電性セラミックスでは、前記
半導電性セラミックスをX線回折により分析して得られ
るMgO結晶相の2θ=43゜付近におけるピーク強度
を1としたとき、MgFe24、Fe34及びFe23
の結晶相が混在する2θ=35〜36゜付近のピーク強
度(以下、「ピーク強度比」という。)が0.2〜4で
あるのが好ましい。
In the semiconductive ceramic of the present invention, when the peak intensity at 2θ = 43 ° of the MgO crystal phase obtained by analyzing the semiconductive ceramic by X-ray diffraction is 1, MgFe 2 O 4 , Fe 3 O 4 and Fe 2 O 3
It is preferable that the peak intensity in the vicinity of 2θ = 35 to 36 ° (hereinafter, referred to as “peak intensity ratio”) in which the crystal phases of (2) are mixed is 0.2 to 4.

【0015】また、本発明の半導電性セラミックスで
は、前記半導電性セラミックス中に含まれるMgがMg
O換算で40〜68重量%、SiがSiO2換算で1
4.5〜30重量%、FeがFe23換算で10〜40
重量%であるのが好ましい。
In the semiconductive ceramic of the present invention, Mg contained in the semiconductive ceramic is Mg.
40 to 68% by weight in terms of O, Si is 1 in terms of SiO 2.
4.5 to 30% by weight, Fe is 10 to 40 in terms of Fe 2 O 3.
It is preferably wt%.

【0016】さらに、本発明の半導電性セラミックスで
は、前記半導電性セラミックスの体積固有抵抗が104
〜107Ω・cm、曲げ強度が150MPa以上、ヤン
グ率が200GPa以上、硬度が8GPa以上、破壊靱
性値が1.5MPa・m0.5以上であるのが好ましい。
Further, in the semiconductive ceramic of the present invention, the volume resistivity of the semiconductive ceramic is 10 4
It is preferable that it is -10 7 Ω · cm, bending strength is 150 MPa or more, Young's modulus is 200 GPa or more, hardness is 8 GPa or more, and fracture toughness value is 1.5 MPa · m 0.5 or more.

【0017】本発明にかかる磁気ディスク基板用保持部
材は、磁気ディスク基板を所定の位置に保持するための
保持部材であって、前記半導電性セラミックスにより形
成され、前記磁気ディスク基板との接触面の平面度が3
μm以下であることを特徴とする。
A holding member for a magnetic disk substrate according to the present invention is a holding member for holding the magnetic disk substrate at a predetermined position, and is formed of the semiconductive ceramic and has a contact surface with the magnetic disk substrate. Has a flatness of 3
It is characterized by being less than or equal to μm.

【0018】本発明にかかる治工具は、前記半導電性セ
ラミックスにより形成したことを特徴とする。
A jig / tool according to the present invention is characterized by being formed of the semiconductive ceramic.

【0019】[0019]

【発明の実施の形態】以下、本発明の実施形態について
詳細に説明する。本発明にかかる導電性セラミックス
は、2MgO・SiO2を主結晶相とし、副結晶相とし
てMgFe24、Fe34及びFe23から選ばれる少
なくとも1種の結晶とMgOの結晶とを有する焼結体か
らなるものである。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described in detail below. The conductive ceramics according to the present invention include 2MgO.SiO 2 as a main crystal phase and at least one crystal selected from MgFe 2 O 4 , Fe 3 O 4 and Fe 2 O 3 as a sub-crystal phase and a MgO crystal. And a sintered body having

【0020】主結晶相である2MgO・SiO2(フォ
ルステライト)とMgOは、体積固有抵抗値の高い絶縁
性セラミックスであるが、この絶縁性セラミックスに導
電性付与材として酸化鉄(FeO、Fe23、Fe
34)を含有させることにより半導電性を付与すること
ができ、この体積固有抵抗値を静電気除去部材として要
求される104〜107Ω・cmとすることができる。
The main crystal phases 2MgO.SiO 2 (forsterite) and MgO are insulating ceramics having a high volume resistivity value. Iron oxide (FeO, Fe 2) is used as a conductivity-imparting material for the insulating ceramics. O 3 , Fe
By adding 3 O 4 ), semiconductivity can be imparted, and the volume resistivity value can be made 10 4 to 10 7 Ω · cm required for the static electricity removing member.

【0021】このように酸化鉄を含有させることによ
り、本発明の半導電性セラミックス中には、2MgO・
SiO2とMgOの結晶と、MgFe24、Fe34
びFe23から選ばれる少なくとも1種の結晶とが存在
している。また、この半導電性セラミックスのX線回折
による前記ピーク強度比は0.2〜4であるのが好まし
い。
By thus containing iron oxide, the semiconductive ceramic of the present invention contains 2MgO.
Crystals of SiO 2 and MgO and at least one crystal selected from MgFe 2 O 4 , Fe 3 O 4 and Fe 2 O 3 are present. Further, the peak intensity ratio by X-ray diffraction of this semiconductive ceramic is preferably 0.2 to 4.

【0022】このピーク強度比が0.2〜4の範囲内に
あれば、該セラミックスの曲げ強度、ヤング率、硬度等
の剛性と破壊靱性を向上させることができる。これによ
り、焼結体を磁気ディスク基板用保持部材や治工具の形
状に加工するための研削、研磨加工による部材表面の加
工精度をより向上させることが可能で、磁気ディスク基
板間にそれら保持部材を取り付け、磁気ディスク基板を
高速回転させた際の、ディスクの締め付け力や回転時の
遠心力やモーター発熱による歪みを極力小さくすること
ができる。また、剛性の向上により、例えば本発明の半
導電性セラミックスがノート型パソコンのハードディス
ク装置の磁気ディスク基板用保持部材として用いられた
場合でも、その持ち運びの際に生じる様々な衝撃によっ
て焼結体に欠けが発生するのを大幅に低減し、より耐久
性の優れたものとなる。
When the peak strength ratio is in the range of 0.2 to 4, the flexural strength, Young's modulus, hardness and other rigidity and fracture toughness of the ceramic can be improved. As a result, it is possible to further improve the processing accuracy of the surface of the member by grinding and polishing for processing the sintered body into the shape of a holding member for magnetic disk substrates or jigs and tools. It is possible to minimize the distortion due to the tightening force of the disk, the centrifugal force during rotation, and the heat generated by the motor when the magnetic disk substrate is rotated at a high speed. Further, due to the improved rigidity, even when the semiconductive ceramic of the present invention is used as a holding member for a magnetic disk substrate of a hard disk device of a notebook type personal computer, various impacts caused when carrying the sintered product will cause a change in the sintered body. The occurrence of chipping is greatly reduced, and the durability is further improved.

【0023】これに対して、前記ピーク強度比が0.2
未満であると、焼結体中に導電性を有するMgFe
24、Fe34、Fe23等の結晶の存在量が少なくな
り、所望の体積固有抵抗の値を得ることができなくなる
おそれがある。一方、前記ピーク強度比が4を超える
と、焼結体の機械的特性向上に寄与すると思われるMg
O結晶の存在量が少なくなり、曲げ強度、ヤング率、硬
度、破壊靱性等を向上させることができなくなるおそれ
がある。すなわち、焼結体中に、2MgO・SiO2
晶だけでなくMgO結晶をも析出させて剛性に優れるM
gO結晶を焼結体中に分散させた形で新たに存在させる
ことによって、焼結体の研削、研磨加工による加工精
度、並びに衝撃に対する焼結体の耐久性に影響を与える
機械的特性、すなわち曲げ強度、ヤング率、硬度及び破
壊靱性の値を向上させることができるものと推測され
る。
On the other hand, the peak intensity ratio is 0.2
If it is less than MgFe which has conductivity in the sintered body
The amount of crystals such as 2 O 4 , Fe 3 O 4 , Fe 2 O 3 and the like is reduced, which may make it impossible to obtain a desired volume resistivity value. On the other hand, when the peak intensity ratio exceeds 4, it is considered that Mg contributes to the improvement of mechanical properties of the sintered body.
There is a possibility that the amount of O crystals present decreases and it becomes impossible to improve bending strength, Young's modulus, hardness, fracture toughness and the like. That is, not only 2MgO.SiO 2 crystals but also MgO crystals are precipitated in the sintered body, and M which has excellent rigidity.
By newly presenting the gO crystal in the form of being dispersed in the sintered body, the mechanical properties that affect the processing accuracy of the sintered body by grinding and polishing, and the durability of the sintered body against impact, namely, It is presumed that the values of bending strength, Young's modulus, hardness and fracture toughness can be improved.

【0024】また、本発明の半導電性セラミックスで
は、この半導電性セラミックス中に含まれるMgがMg
O換算で40〜68重量%であるのが機械的特性を向上
させるためには好ましく、44〜65重量%であるのが
より好ましい。また、このとき、半導電性セラミックス
中に含まれるSiがSiO2換算で14.5〜30重量
%、FeがFe23換算で10〜40重量%であるのが
好ましい。
In the semiconductive ceramic of the present invention, Mg contained in the semiconductive ceramic is Mg.
It is preferably 40 to 68% by weight in terms of O for improving the mechanical properties, and more preferably 44 to 65% by weight. At this time, it is preferable that Si contained in the semiconductive ceramic is 14.5 to 30% by weight in terms of SiO 2 and Fe is 10 to 40% by weight in terms of Fe 2 O 3 .

【0025】半導電性セラミックス中に含まれるFeが
Fe23換算で10〜40重量%であることにより、1
4〜107Ω・cmの範囲の体積固有抵抗値を得ること
ができる。FeがFe23換算で10重量%未満となる
と、所望の体積固有抵抗値を得ることができず、40重
量%を超えるとセラミックス中に酸化鉄の結晶相が多く
存在することとなり、曲げ強度等の機械的特性が低下す
るおそれがある。また、セラミックスの特性をより向上
させるためにはFeがFe23換算で15〜35重量%
の範囲となるように添加するのがより好ましい。
Since Fe contained in the semiconductive ceramic is 10 to 40% by weight in terms of Fe 2 O 3 ,
A volume resistivity value in the range of 0 4 to 10 7 Ω · cm can be obtained. When Fe is less than 10% by weight in terms of Fe 2 O 3 , the desired volume resistivity cannot be obtained, and when it exceeds 40% by weight, a large amount of iron oxide crystal phase is present in the ceramic, which causes bending. Mechanical properties such as strength may decrease. Further, in order to further improve the characteristics of ceramics, Fe is 15 to 35% by weight in terms of Fe 2 O 3.
It is more preferable to add it so as to be within the range.

【0026】なお、本発明の半導電性セラミックスで
は、2MgO・SiO2とMgOの結晶、MgFe
24、Fe34及びFe23から選ばれる少なくとも1
種の結晶の他、結晶相としてMgSiO3(ステアタイ
ト)を含んでいてもよい。
In the semiconductive ceramics of the present invention, crystals of 2MgO.SiO 2 and MgO, MgFe
At least 1 selected from 2 O 4 , Fe 3 O 4 and Fe 2 O 3
In addition to the seed crystal, MgSiO 3 (steatite) may be included as a crystal phase.

【0027】更に本発明の導電性セラミックスでは、M
g、Si、Fe、O成分以外に、Al、Ti、Ca、M
n、S等の不純物が酸化物或いは窒化物等の化合物の形
でセラミックス全体の1重量%以下の範囲で含有されて
いてもよい。
Further, in the conductive ceramics of the present invention, M
In addition to g, Si, Fe, O components, Al, Ti, Ca, M
Impurities such as n and S may be contained in the form of a compound such as an oxide or a nitride in an amount of 1% by weight or less of the whole ceramic.

【0028】次に、本発明に係る半導電性セラミックス
の製造方法について説明する。まず、市販のMgOある
いはその化合物や水和物、シリカ複合酸化物(例えばタ
ルク(Mg3Si410(OH)2))、および酸化鉄
(FeO、Fe23、Fe34)の各粉末を所定の重量
で混合する。このとき、焼成後にMgOの結晶相を焼結
体中に析出させ、機械的特性を向上させるためには、焼
結体中におけるMgO/SiO2のモル比率が2より大
きく、好ましくは3以上となるように、MgOあるいは
その化合物や水和物及びシリカ複合酸化物の添加量を調
整する。このモル比が2以下になると、焼結体中にMg
Oが析出しない。
Next, a method of manufacturing the semiconductive ceramic according to the present invention will be described. First, commercially available MgO or its compound or hydrate, silica composite oxide (for example, talc (Mg 3 Si 4 O 10 (OH) 2 )), and iron oxide (FeO, Fe 2 O 3 , Fe 3 O 4 ) The respective powders are mixed in a predetermined weight. At this time, in order to precipitate a crystal phase of MgO in the sintered body after firing and improve mechanical properties, the molar ratio of MgO / SiO 2 in the sintered body is larger than 2, preferably 3 or more. The amount of MgO or its compound, hydrate, and silica composite oxide added is adjusted so that When this molar ratio is 2 or less, Mg is contained in the sintered body.
O does not precipitate.

【0029】ついで、上記混合粉末に水、水溶性バイン
ダー(ポリビニルアルコール、ポリエチレングリコー
ル、アクリル系樹脂等)等のバインダーを加え、ボール
ミル等で12時間以上粉砕混合した後、得られたスラリ
ーを排出し回収する。そしてこのスラリーをスプレード
ライヤー等の各種造粒法によりバインダーを含めた形で
造粒し、成形可能な粉末とした後、プレス成型法等を用
いて所定の形状に成形し、1500〜1700℃の焼成
温度で1〜2時間焼成し、本発明の半導電性セラミック
スを得る。
Then, a binder such as water or a water-soluble binder (polyvinyl alcohol, polyethylene glycol, acrylic resin, etc.) is added to the above-mentioned mixed powder, and the mixture is pulverized and mixed for 12 hours or more with a ball mill or the like, and the obtained slurry is discharged. to recover. Then, this slurry is granulated by a granulation method such as a spray dryer in a form including a binder to obtain a moldable powder, which is then molded into a predetermined shape using a press molding method or the like, and the temperature of 1500 to 1700 ° C. By firing at a firing temperature for 1 to 2 hours, the semiconductive ceramic of the present invention is obtained.

【0030】ここで、上記MgO/SiO2のモル比率
を3以上としたのは、このモル比率が3以上であればM
gO結晶を析出させて焼結体の機械的特性をより安定し
て向上させることができるからである。また、MgO比
率を抑えて焼成温度を低く保ち製造し易くするためには
上記モル比率を3〜5の範囲とするのがより好ましい。
Here, the above-mentioned MgO / SiO 2 molar ratio is set to 3 or more because if the molar ratio is 3 or more, M
This is because gO crystals can be precipitated to more stably improve the mechanical properties of the sintered body. Further, the molar ratio is more preferably in the range of 3 to 5 in order to suppress the MgO ratio and keep the firing temperature low to facilitate the production.

【0031】また、上記粉砕混合時間は12時間以上と
したが、MgOあるいはその化合物や水和物、シリカ複
合酸化物及び酸化鉄の分散性を高め、焼結性をより高め
るためには、粉砕後の粒度を1μm以下とするのがより
好適である。したがって、粉砕時間はこの1μm以下の
粒度が得られる範囲であれば特に限定されない。
Although the pulverization and mixing time is set to 12 hours or more, the pulverization is carried out in order to enhance the dispersibility of MgO or its compound, hydrate, silica composite oxide and iron oxide, and further enhance the sinterability. It is more preferable that the subsequent particle size be 1 μm or less. Therefore, the crushing time is not particularly limited as long as the particle size of 1 μm or less can be obtained.

【0032】また、上記焼成温度は酸化鉄の含有量及び
MgO/SiO2のモル比率にもよるが、アルキメデス
法等により求める焼結体の気孔率が0.5%以下と低く
できるような範囲が良く、MgO/SiO2モル比率3
以上の場合には1530〜1650℃がより好適範囲で
ある。なお、焼成雰囲気は、大気雰囲気に限らず、非酸
化性雰囲気や還元性雰囲気であっても構わない。
Although the firing temperature depends on the iron oxide content and the MgO / SiO 2 molar ratio, it is within a range such that the porosity of the sintered body obtained by the Archimedes method can be as low as 0.5% or less. Good, MgO / SiO 2 molar ratio 3
In the above cases, 1530 to 1650 ° C is a more preferable range. The firing atmosphere is not limited to the air atmosphere, but may be a non-oxidizing atmosphere or a reducing atmosphere.

【0033】以上のように、本発明の半導電性セラミッ
クスを用いれば、帯電する静電気を速やかに逃がすこと
ができるという特性に加え、曲げ強度、ヤング率、硬度
及び破壊靱性等の加工精度に影響する焼結体の機械的特
性を向上させることができる。
As described above, when the semiconductive ceramics of the present invention are used, in addition to the characteristic that the static electricity charged can be quickly released, the processing accuracy such as bending strength, Young's modulus, hardness and fracture toughness is affected. The mechanical properties of the sintered body can be improved.

【0034】また、例えば、磁気記録装置や、各種電子
部品の製造工程や取付工程において用いられるハンドリ
ング治具やピンセット等の治具において、少なくとも各
種部品との接触面を本発明の半導電性セラミックスで形
成すれば、静電気を取り除くことができるとともに、磁
性による悪影響を防止することもできる。
Further, for example, in a magnetic recording device or a jig such as a handling jig or tweezers used in the manufacturing process or mounting process of various electronic components, at least the contact surface with various components is the semiconductive ceramic of the present invention. If it is formed by, the static electricity can be removed and the adverse effect of magnetism can be prevented.

【0035】さらに、図1に示す磁気記録装置に組み込
まれている複数枚の磁気ディスク基板16を所定間隔に
位置決め保持するスペーサ12、シム11及びクランプ
13を本発明の半導電性セラミックスにより形成すれ
ば、磁気ディスク基板16に帯電する静電気を速やかに
除去することができる。さらに本発明の半導電性セラミ
ックスは、曲げ強度、ヤング率、硬度、破壊靱性に優れ
ることから、磁気ディスク基板16との接触面の平面度
を3μm以下の高精度に加工できるばかりか、それ以下
の高精度な加工、例えば1μm以下の高精度な領域の平
面度を得ることも可能であるので、磁気ディスク基板1
6が締め付け時や高速回転する際にディスクにブレや歪
みを生じることがない。したがって、本発明の半導電性
セラミックスにより磁気ディスク基板用保持部材を形成
すれば、常に安定した情報の書き込みや読み込みを実現
することができ、高密度記録が可能な磁気記録装置を容
易に製造することができる。
Further, spacers 12, shims 11 and clamps 13 for positioning and holding a plurality of magnetic disk substrates 16 incorporated in the magnetic recording apparatus shown in FIG. 1 at predetermined intervals are formed of the semiconductive ceramic of the present invention. For example, the static electricity charged on the magnetic disk substrate 16 can be quickly removed. Further, since the semiconductive ceramics of the present invention are excellent in bending strength, Young's modulus, hardness and fracture toughness, not only can the flatness of the contact surface with the magnetic disk substrate 16 be processed with high accuracy of 3 μm or less, It is also possible to obtain highly precise processing, for example, the flatness of a highly precise region of 1 μm or less, so that the magnetic disk substrate 1
The disc is not shaken or distorted when tightening or rotating at high speed. Therefore, if the magnetic disk substrate holding member is formed of the semiconductive ceramic of the present invention, stable writing and reading of information can be always realized, and a magnetic recording device capable of high density recording can be easily manufactured. be able to.

【0036】さらに、本発明の半導電性セラミックス
は、磁気テープの走行を案内する案内部材、自動車等の
塗装に使用される電着塗装用ノズル等の静電気除去部材
としても好適に使用できる他、セラミックセンサーやセ
ラミックヒーターあるいは半導体・薄膜プロセスの抵抗
評価用プローブとしても用いることができる。
Further, the semiconductive ceramics of the present invention can be suitably used as a guide member for guiding the running of a magnetic tape, a static electricity removing member such as an electrodeposition coating nozzle used for coating automobiles, etc. It can also be used as a ceramic sensor, a ceramic heater, or a probe for evaluating resistance in semiconductor / thin film processes.

【0037】[0037]

【実施例】ここで、本発明の半導電性セラミックスと従
来のフォルステライトを主成分とする半導電性セラミッ
クスとを用意し、体積固有抵抗、曲げ強度、ヤング率、
硬度、破壊靱性および熱膨張係数について比較する実験
を行った。
EXAMPLE Here, a semiconductive ceramic of the present invention and a conventional semiconductive ceramic containing forsterite as a main component were prepared, and the volume resistivity, bending strength, Young's modulus,
An experiment was conducted to compare hardness, fracture toughness and coefficient of thermal expansion.

【0038】出発原料として、市販のMgO、シリカ複
合酸化物(タルク(Mg3Si410(OH)2))、酸
化鉄(Fe23)をそれぞれ用意した。表1に示すよう
に、MgOとシリカ複合酸化物とは、MgO/SiO2
のモル比率が2、3または4となるように配合した。酸
化鉄の添加量は、MgO/SiO2モル比率が2のもの
(従来1および従来2)については25または30重量
%、MgO/SiO2モル比率が3または4のもの(試
料No.1〜12)については10、15、20、25、
30または40重量%になるようにそれぞれ調合を行っ
た。
Commercially available MgO, silica composite oxide (talc (Mg 3 Si 4 O 10 (OH) 2 )), and iron oxide (Fe 2 O 3 ) were prepared as starting materials. As shown in Table 1, MgO and silica composite oxide are MgO / SiO 2
Were blended so that the molar ratio thereof was 2, 3 or 4. The amount of iron oxide added was 25 or 30% by weight for those having a MgO / SiO 2 molar ratio of 2 (conventional 1 and conventional 2), and for those having a MgO / SiO 2 molar ratio of 3 or 4 (Sample No. 1 to No. 1). For 12), 10, 15, 20, 25,
Formulation was carried out so as to be 30 or 40% by weight, respectively.

【0039】上記で調合した各原料粉末、水及び分散剤
を直径がφ5〜10mmのアルミナボールを入れた所定
の容器に投入し、容器を所定速度で12時間回転させ、
粉砕・混合を行い、粒度を1μm以下とした後、得られ
たスラリーを回収し、これにバインダーとしてポリビニ
ルアルコールとポリエチレングリコールを加え、攪拌し
た後、噴霧造粒機(スプレードライヤー)により造粒を
行った。そして造粒後の粉体を所定の形状に成形し、1
500〜1700℃の間の温度で焼成し、アルキメデス
法により測定した気孔率の値が0.5%以下の焼結体を
それぞれ得た。得られた各焼結体のX線回折による分析
結果、並びに体積固有抵抗、曲げ強度、ヤング率、硬
度、破壊靱性及び熱膨張係数の各測定結果を表1、2に
示す。ここで、表1中の「X線回折ピーク強度比」と
は、前記したピーク強度比、すなわちX線回折における
MgO結晶相の2θ=43°付近におけるMgOピーク
強度を1としたとき、MgFe24、Fe34、Fe2
3等の結晶相が混在する2θ=35〜36°付近のピ
ーク強度のことをいう。なお、表1中の「−」を記入し
ている試料については、MgOが検出されなかったこと
を示す。
The above-prepared raw material powders, water and dispersant were put into a predetermined container containing alumina balls having a diameter of 5-10 mm, and the container was rotated at a predetermined speed for 12 hours,
After crushing and mixing to reduce the particle size to 1 μm or less, the obtained slurry is recovered, polyvinyl alcohol and polyethylene glycol are added as a binder to this, and the mixture is stirred and then granulated by a spray granulator (spray dryer). went. Then, the granulated powder is molded into a predetermined shape, and 1
Firing was performed at a temperature between 500 and 1700 ° C. to obtain sintered bodies each having a porosity value of 0.5% or less measured by the Archimedes method. Tables 1 and 2 show the results of X-ray diffraction analysis of each of the obtained sintered bodies and the measurement results of volume resistivity, bending strength, Young's modulus, hardness, fracture toughness, and thermal expansion coefficient. Here, the “X-ray diffraction peak intensity ratio” in Table 1 means the above-mentioned peak intensity ratio, that is, MgFe 2 when the MgO peak intensity in the vicinity of 2θ = 43 ° of the MgO crystal phase in X-ray diffraction is 1. O 4 , Fe 3 O 4 , Fe 2
It means the peak intensity around 2θ = 35 to 36 ° in which a crystal phase such as O 3 is mixed. In addition, about the sample in which "-" is written in Table 1, it shows that MgO was not detected.

【0040】また、上記分析および各測定は以下のよう
にして行った。 <X線回折による分析>理学社製の分析装置RINTを
用いて分析を行った。 <体積固有抵抗>JIS C 2141に準拠して行っ
た。 <曲げ強度>JIS R 1601に準拠して行った。 <ヤング率>JIS R 1602に準拠して行った。 <硬度>JIS R 1610に準拠して行った。 <破壊靱性>JIS R 1607に準拠して行った。 <熱膨張係数>JIS R 1618に準拠して行った。
The above analysis and each measurement were carried out as follows. <Analysis by X-ray diffraction> Analysis was performed using an analyzer RINT manufactured by Rigaku. <Volume resistivity> The specific resistance was measured according to JIS C 2141. <Bending strength> The bending strength was measured according to JIS R 1601. <Young's modulus> The measurement was performed according to JIS R 1602. <Hardness> The hardness was measured according to JIS R 1610. <Fracture toughness> The fracture toughness was measured according to JIS R 1607. <Thermal expansion coefficient> The thermal expansion coefficient was measured according to JIS R 1618.

【0041】[0041]

【表1】 [Table 1]

【表2】 [Table 2]

【0042】表1、2から、本発明の範囲に含まれる試
料No.1〜12は、X線回折においてMgO結晶相の
検出されない従来1及び従来2と比較して、曲げ強度、
ヤング率、硬度、破壊靱性が高かった。X線回折結果の
一例として試料No.3及びNo.9の各結晶ピークを
図2及び図3に示す。
From Tables 1 and 2, sample Nos. Included in the scope of the present invention. 1 to 12 are bending strengths as compared with Conventional 1 and Conventional 2 in which the MgO crystal phase is not detected by X-ray diffraction,
The Young's modulus, hardness and fracture toughness were high. As an example of the X-ray diffraction result, Sample No. 3 and No. Each crystal peak of 9 is shown in FIG. 2 and FIG.

【0043】また、上記方法により作製した焼結体をダ
イヤモンドホイールにより研磨加工した結果、試料N
o.1〜12については3μm以下の平面度が得られ
た。なお、平面度は、JIS B 0621に準拠して測
定した。
Further, as a result of polishing the sintered body produced by the above method with a diamond wheel, sample N
o. For 1 to 12, flatness of 3 μm or less was obtained. The flatness was measured according to JIS B 0621.

【0044】以上の試験結果から、2MgO・SiO2
を主結晶相とし、MgFe24、Fe23、Fe34
結晶を有する半導電性セラミックスに、新たにMgO結
晶を焼結体中に析出させることにより、曲げ強度、ヤン
グ率、硬度、破壊靱性等の機械的特性が向上することが
確認された。このことから、本発明範囲内の試料No.
1〜12は、磁気ディスク基板用保持部材として非常に
優れており、好適に用いることができるといえる。
From the above test results, 2MgO.SiO 2
Bending strength and Young's modulus are obtained by newly depositing MgO crystals in a sintered body in a semiconductive ceramic having MgFe 2 O 4 , Fe 2 O 3 , and Fe 3 O 4 as a main crystal phase. It was confirmed that mechanical properties such as hardness, fracture toughness and the like were improved. From this, sample No. within the scope of the present invention.
It can be said that 1 to 12 are very excellent as magnetic disk substrate holding members and can be suitably used.

【0045】[0045]

【発明の効果】本発明によれば、焼結体の加工性に影響
を与える機械的特性をより好適な範囲、すなわち、曲げ
強度が150MPa以上、ヤング率が200GPa以
上、硬度が8GPa以上、破壊靱性値が1.5MPa・
0.5以上とすることができ、しかも体積固有抵抗を磁
気ディスク基板用保持部材として必要な104〜107Ω
・cmとすることができ、所望の熱膨張係数を得ること
ができる。さらに、様々な衝撃に対しても欠けが発生し
やすいという不具合を低減し耐久性を向上させることが
できるという効果がある。
According to the present invention, the mechanical properties that affect the workability of the sintered body are in a more preferable range, that is, the bending strength is 150 MPa or more, the Young's modulus is 200 GPa or more, the hardness is 8 GPa or more, and the fracture is caused. Toughness value is 1.5 MPa
m 0.5 or more, and a volume resistivity of 10 4 to 10 7 Ω required as a holding member for a magnetic disk substrate.
It can be set to cm, and a desired coefficient of thermal expansion can be obtained. Further, there is an effect that it is possible to improve the durability by reducing the problem that chipping easily occurs even under various impacts.

【0046】また、本発明の半導電性セラミックスを磁
気ディスク基板用保持部材として用いる場合に、磁気デ
ィスク基板用保持部材の加工精度及び衝撃に対する耐久
性をより向上させることができる。具体的には、保持部
材における磁気ディスク基板との接触面の平面度を3μ
m以下の高精度に加工することが可能であるため、保持
する磁気ディスク基板が高速回転した際もその平面度を
高精度に保つことができるとともに、衝撃が加わっても
欠けが生じ難いため、掛けに伴う破片が磁気ディスク基
板と磁気ヘッドにかみ込むのを防ぐことができるので、
データを記録、再生する際のエラー発生を防止すること
ができるという効果がある。
Further, when the semiconductive ceramic of the present invention is used as a holding member for a magnetic disk substrate, the processing accuracy of the holding member for a magnetic disk substrate and the durability against impact can be further improved. Specifically, the flatness of the contact surface of the holding member with the magnetic disk substrate is set to 3 μm.
Since it can be processed with a high accuracy of m or less, the flatness of the magnetic disk substrate to be held can be maintained with high accuracy even when the magnetic disk substrate is held at a high speed, and chipping is less likely to occur even when an impact is applied. Since it is possible to prevent the debris associated with hanging from biting into the magnetic disk substrate and the magnetic head,
There is an effect that it is possible to prevent an error from occurring when recording and reproducing data.

【0047】更に、磁気記録装置や、各種電子部品の製
造工程や取付工程において用いられるハンドリング治具
やピンセット等の治工具において、少なくとも各種部品
との接触面を本発明の半導電性セラミックスで形成すれ
ば、静電気を取り除くことができるとともに、磁性によ
る悪影響を防止することができるという効果がある。
Further, in a magnetic recording device, jigs such as handling jigs and tweezers used in the manufacturing process and mounting process of various electronic components, at least the contact surface with various components is formed of the semiconductive ceramic of the present invention. By doing so, it is possible to remove static electricity and prevent the adverse effect of magnetism.

【図面の簡単な説明】[Brief description of drawings]

【図1】磁気ディスク基板用保持部材を組み込んだ磁気
記録装置の断面を示す図である。
FIG. 1 is a view showing a cross section of a magnetic recording device incorporating a holding member for a magnetic disk substrate.

【図2】本発明の実施例に示す、試料No.3のX線回
折における結晶ピークを示すスペクトル図である。
FIG. 2 shows a sample No. shown in the embodiment of the present invention. FIG. 3 is a spectrum diagram showing crystal peaks in X-ray diffraction of Sample No. 3.

【図3】本発明の実施例に示す、試料No.9のX線回
折における結晶ピークを示すスペクトル図である。
FIG. 3 shows a sample No. shown in an example of the present invention. 9 is a spectrum diagram showing crystal peaks in X-ray diffraction of Sample No. 9. FIG.

【符号の説明】[Explanation of symbols]

10:磁気ディスク装置 11:シム 12:スペ−サ 13:クランプ 14:回転軸 15:ハブ 16:磁気ディスク基板 17:ねじ 18:磁気ヘッド 10: Magnetic disk device 11: Sim 12: Spacer 13: Clamp 14: Rotation axis 15: Hub 16: Magnetic disk substrate 17: Screw 18: Magnetic head

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G030 AA07 AA27 AA37 BA02 GA03 GA04 GA05 GA09 GA14 GA15 GA22 GA27 HA08 5D138 UA03 UA11 UA26 UA29 5G301 CA02 CA12 CA18 CA24 CA25 CA28 CA30 CD10 CE02    ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 4G030 AA07 AA27 AA37 BA02 GA03                       GA04 GA05 GA09 GA14 GA15                       GA22 GA27 HA08                 5D138 UA03 UA11 UA26 UA29                 5G301 CA02 CA12 CA18 CA24 CA25                       CA28 CA30 CD10 CE02

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】2MgO・SiO2を主結晶相とし、副結
晶相としてMgFe24、Fe34及びFe23から選
ばれる少なくとも1種の結晶とMgOの結晶とを有する
焼結体からなることを特徴とする半導電性セラミック
ス。
1. Sintering having 2MgO.SiO 2 as a main crystal phase and at least one crystal selected from MgFe 2 O 4 , Fe 3 O 4 and Fe 2 O 3 and a crystal of MgO as a sub crystal phase. A semiconductive ceramic characterized by comprising a body.
【請求項2】前記半導電性セラミックスをX線回折によ
り分析して得られるMgO結晶相の2θ=43゜付近に
おけるピーク強度を1としたとき、MgFe24、Fe
34及びFe23の結晶相が混在する2θ=35〜36
゜付近のピーク強度が0.2〜4である請求項1記載の
半導電性セラミックス。
2. When the peak intensity in the vicinity of 2θ = 43 ° of the MgO crystal phase obtained by analyzing the semiconductive ceramic by X-ray diffraction is 1, MgFe 2 O 4 , Fe
3 crystal phase of O 4 and Fe 2 O 3 are mixed 2 [Theta] = 35-36
The semiconductive ceramic according to claim 1, which has a peak intensity of around 0.2 to 4.
【請求項3】前記半導電性セラミックス中に含まれるM
gがMgO換算で40〜68重量%、SiがSiO2
算で14.5〜30重量%、FeがFe23換算で10
〜40重量%である請求項1または2記載の半導電性セ
ラミックス。
3. M contained in the semiconductive ceramics.
g is 40 to 68 wt% in terms of MgO, Si is 14.5 to 30 wt% in terms of SiO 2 , and Fe is 10 in terms of Fe 2 O 3.
The content of the semiconductive ceramic according to claim 1 is 2 to 40% by weight.
【請求項4】前記半導電性セラミックスの体積固有抵抗
が104〜107Ω・cm、曲げ強度が150MPa以
上、ヤング率が200GPa以上、硬度が8GPa以
上、破壊靱性値が1.5MPa・m0.5以上である請求
項1〜3のいずれかに記載の半導電性セラミックス。
4. The volume resistivity of the semiconductive ceramic is 10 4 to 10 7 Ω · cm, the bending strength is 150 MPa or more, the Young's modulus is 200 GPa or more, the hardness is 8 GPa or more, and the fracture toughness value is 1.5 MPa · m. It is 0.5 or more, The semiconductive ceramics in any one of Claims 1-3.
【請求項5】磁気ディスク基板を所定の位置に保持する
ための保持部材であって、請求項1〜4のいずれかに記
載の半導電性セラミックスにより形成され、前記磁気デ
ィスク基板との接触面の平面度が3μm以下であること
を特徴とする磁気ディスク基板用保持部材。
5. A holding member for holding a magnetic disk substrate at a predetermined position, which is made of the semiconductive ceramic according to any one of claims 1 to 4, and is a contact surface with the magnetic disk substrate. The magnetic disk substrate holding member is characterized by having a flatness of 3 μm or less.
【請求項6】請求項1〜4のいずれかに記載の半導電性
セラミックスにより形成したことを特徴とする治工具。
6. A jig or tool formed of the semiconductive ceramic according to any one of claims 1 to 4.
JP2002093194A 2002-03-28 2002-03-28 Semiconductive ceramic, and magnetic disk substrate holding member and jig using the same Expired - Fee Related JP4090771B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002093194A JP4090771B2 (en) 2002-03-28 2002-03-28 Semiconductive ceramic, and magnetic disk substrate holding member and jig using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002093194A JP4090771B2 (en) 2002-03-28 2002-03-28 Semiconductive ceramic, and magnetic disk substrate holding member and jig using the same

Publications (2)

Publication Number Publication Date
JP2003286070A true JP2003286070A (en) 2003-10-07
JP4090771B2 JP4090771B2 (en) 2008-05-28

Family

ID=29237776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002093194A Expired - Fee Related JP4090771B2 (en) 2002-03-28 2002-03-28 Semiconductive ceramic, and magnetic disk substrate holding member and jig using the same

Country Status (1)

Country Link
JP (1) JP4090771B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017052983A (en) * 2015-09-08 2017-03-16 株式会社高純度化学研究所 Sputtering target
CN110945640A (en) * 2017-07-28 2020-03-31 京瓷株式会社 Substrate holding member and semiconductor manufacturing apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017052983A (en) * 2015-09-08 2017-03-16 株式会社高純度化学研究所 Sputtering target
CN110945640A (en) * 2017-07-28 2020-03-31 京瓷株式会社 Substrate holding member and semiconductor manufacturing apparatus
CN110945640B (en) * 2017-07-28 2023-10-31 京瓷株式会社 Substrate holding member and semiconductor manufacturing apparatus

Also Published As

Publication number Publication date
JP4090771B2 (en) 2008-05-28

Similar Documents

Publication Publication Date Title
JPH0622053B2 (en) Substrate material
JPS62278164A (en) Material for magnetic head slider
JP2008084520A (en) Substrate for magnetic head, magnetic head, and recording medium-drive
JP4025791B2 (en) Magnetic head slider material, magnetic head slider, and method for manufacturing magnetic head slider material
JP5148502B2 (en) Ceramic sintered body, magnetic head substrate and magnetic head using the same, and recording medium driving apparatus
JP2003342058A (en) Ceramic substrate material for thin film magnetic head
WO2007105477A1 (en) Magnetic head substrate, magnetic head and recording medium driving device
JP4090771B2 (en) Semiconductive ceramic, and magnetic disk substrate holding member and jig using the same
JP4009292B2 (en) Magnetic head slider material, magnetic head slider, and method for manufacturing magnetic head slider material
JP5037798B2 (en) Ceramic sintered body and magnetic head substrate
JP2006018905A (en) Magnetic head slider material, magnetic head slider, and manufacturing method of magnetic head slider material
JP2007223842A (en) Alumina sintered compact and magnetic head machining and assembling tool using the same
JPH10212164A (en) Substrate material for magnetic head
JPH0740350B2 (en) Magnetic disk substrate
JP5295109B2 (en) SUBSTRATE FOR MAGNETIC HEAD, MAGNETIC HEAD, AND RECORDING MEDIUM DRIVE DEVICE
JP4549031B2 (en) Magnetic disk substrate holding member and method of manufacturing the same
JPH05254938A (en) Ceramic sintered compact
JP3860681B2 (en) Conductive ceramics, antistatic member using the same, and magnetic disk drive
JP3085623B2 (en) Non-magnetic ceramics for recording / reproducing head and method for producing the same
JP5020210B2 (en) Substrate for magnetic head, magnetic head, and magnetic recording apparatus
JPH11189463A (en) Semiconductive ceramic, and jig and tool, holder for magnetic disk substrate and magnetic disk by using the same
JP3502683B2 (en) Substrate for recording media disk
JPH05246763A (en) Ceramic sintered compact
JPH07296377A (en) Substrate for hard disc and production thereof
JP2008108411A (en) Substrate for magnetic head, magnetic head and recording medium driving device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070717

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080227

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120307

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120307

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130307

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130307

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140307

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees