JP2003286001A - Method of activating hydrogen absorbing body, method of housing hydrogen absorbing body in hydrogen storage apparatus and hydrogen storage apparatus - Google Patents

Method of activating hydrogen absorbing body, method of housing hydrogen absorbing body in hydrogen storage apparatus and hydrogen storage apparatus

Info

Publication number
JP2003286001A
JP2003286001A JP2002091236A JP2002091236A JP2003286001A JP 2003286001 A JP2003286001 A JP 2003286001A JP 2002091236 A JP2002091236 A JP 2002091236A JP 2002091236 A JP2002091236 A JP 2002091236A JP 2003286001 A JP2003286001 A JP 2003286001A
Authority
JP
Japan
Prior art keywords
hydrogen storage
hydrogen
inert gas
alloy
storage body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002091236A
Other languages
Japanese (ja)
Inventor
Yasuaki Kawai
泰明 河合
Yoshitsugu Kojima
由継 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2002091236A priority Critical patent/JP2003286001A/en
Publication of JP2003286001A publication Critical patent/JP2003286001A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of simply activating a hydrogen absorbing alloy before a hydrogen absorbing body containing the hydrogen absorbing alloy is housed in a hydrogen storage apparatus. <P>SOLUTION: The method of activating the hydrogen absorbing body is constituted so as to include a hydrogen absorbing body preparing process for preparing the hydrogen absorbing body containing the hydrogen absorbing alloy and an inert gas treating process for housing the hydrogen absorbing body in a treating vessel and holding at ≥100°C under an inert gas atmosphere. The hydrogen absorbing alloy is easily activated by carrying out the inert gas treatment even if an activation treatment at a high temperature under the pressurizing of hydrogen is not carried out. It is needless to carry out the conventional activation in the hydrogen storage apparatus by housing the hydrogen absorbing body treated with the insert gas in the hydrogen storage apparatus as the hydrogen absorbing body is under the inert gas atmosphere. Then, a heating apparatus is unnecessary in the hydrogen storage apparatus to realize a small sized lightweight hydrogen storage apparatus. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、水素吸蔵合金を含
む水素吸蔵体を活性化させる活性化処理方法、その活性
化処理方法を利用した水素吸蔵体の水素貯蔵装置への収
容方法および水素貯蔵装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an activation treatment method for activating a hydrogen storage body containing a hydrogen storage alloy, a method for accommodating a hydrogen storage body in a hydrogen storage device and a hydrogen storage using the activation treatment method. Regarding the device.

【0002】[0002]

【従来の技術】水素エネルギーは、例えば、電気自動車
用電源等に利用される燃料電池を始めとして、様々な用
途への利用が期待されている。水素エネルギーを実用化
するためには、水素を安全に貯蔵・輸送する技術が重要
となる。水素を貯蔵する技術として、例えば、水素を吸
蔵・放出可能な材料を容器に充填しておき、その材料に
水素を吸蔵させて貯蔵する方法がある。ここで、水素を
吸蔵・放出可能な材料としては、例えば、所定の条件下
で気体の水素を水素化物という固体の形で吸蔵し、別の
条件下で水素を放出する水素吸蔵合金が知られている。
2. Description of the Related Art Hydrogen energy is expected to be used in various applications such as fuel cells used as power sources for electric vehicles. In order to put hydrogen energy into practical use, technology for safely storing and transporting hydrogen is important. As a technique for storing hydrogen, for example, there is a method of filling a container with a material capable of storing and releasing hydrogen and storing the hydrogen by storing hydrogen in the material. Here, as a material capable of storing and releasing hydrogen, for example, a hydrogen storage alloy that stores hydrogen in a solid state called a hydride under predetermined conditions and releases hydrogen under another condition is known. ing.

【0003】水素吸蔵合金は、空気や水分等の水素以外
の物質に接すると、水素吸蔵合金の表面に酸素等のガス
が吸着され、酸化物等の被膜が形成されるため、水素吸
蔵能が低下する。したがって、水素吸蔵合金を水素貯蔵
材料として使用する場合には、水素貯蔵装置における容
器に水素吸蔵合金を収容した後、その容器内部を高温、
水素加圧による高圧等とするいわゆる活性化処理を行っ
て、水素吸蔵合金の水素吸蔵能を高める必要がある。水
素吸蔵合金の活性化処理は、その合金の種類により異な
るが、例えば、特開平11−311400号公報には、
TiCrV合金について、真空引きをして60℃の温度
下で1時間保持した後、水素加圧約1MPa、0℃下で
1時間保持するという処理を3回繰り返す方法が示され
ている。また、特開平9−31585号公報には、Ti
VMn合金の活性化処理として、500℃程度の高温で
行う方法が示されている。
When a hydrogen storage alloy comes into contact with a substance other than hydrogen such as air or water, a gas such as oxygen is adsorbed on the surface of the hydrogen storage alloy to form a film such as an oxide. descend. Therefore, when the hydrogen storage alloy is used as a hydrogen storage material, after storing the hydrogen storage alloy in a container in the hydrogen storage device, high temperature inside the container,
It is necessary to increase the hydrogen storage capacity of the hydrogen storage alloy by carrying out so-called activation treatment such as high pressure by hydrogen pressure. The activation treatment of the hydrogen storage alloy differs depending on the type of the alloy, but, for example, in JP-A-11-311400,
A method is shown in which the TiCrV alloy is evacuated and held at a temperature of 60 ° C. for 1 hour, and then held under hydrogen pressure of about 1 MPa and 0 ° C. for 1 hour, which is repeated three times. Further, in Japanese Patent Laid-Open No. 9-31585, Ti is
As a method of activating the VMn alloy, a method of performing it at a high temperature of about 500 ° C. is shown.

【0004】[0004]

【発明が解決しようとする課題】上記従来の活性化処理
は、水素吸蔵合金を水素貯蔵装置に収容した後に行われ
るものである。このため、水素貯蔵装置には、水素吸蔵
合金を収容する容器の他、活性化処理のために容器を加
熱・冷却する加熱装置や冷却装置等の付帯設備が必要と
なる。つまり、水素貯蔵装置自体が大きくなり、重量も
重くなる。このことは、水素貯蔵装置を自動車等の移動
体へ搭載することを想定した場合に大きな問題となる。
The conventional activation treatment described above is performed after the hydrogen storage alloy is housed in the hydrogen storage device. For this reason, the hydrogen storage device requires auxiliary equipment such as a heating device and a cooling device for heating / cooling the container for activation treatment, in addition to the container for storing the hydrogen storage alloy. That is, the hydrogen storage device itself becomes large and heavy. This becomes a big problem when it is assumed that the hydrogen storage device is mounted on a moving body such as an automobile.

【0005】本発明は、上記実状に鑑みてなされたもの
であり、水素吸蔵合金を含む水素吸蔵体を水素貯蔵装置
に収容する前に行うことが可能であって、水素吸蔵合金
を簡便に活性化することのできる方法を提供することを
課題とする。また、水素吸蔵合金を含む水素吸蔵体を水
素貯蔵装置へ収容する方法として、水素吸蔵体を水素貯
蔵装置に収容した後に活性化処理を行う必要のない収容
方法を提供することを課題とする。さらに、水素吸蔵体
が収容された容器を加熱するための加熱装置が不要であ
り、小型で軽量な水素貯蔵装置を提供することを課題と
する。
The present invention has been made in view of the above circumstances, and can be carried out before the hydrogen storage device containing the hydrogen storage alloy is housed in the hydrogen storage device, and the hydrogen storage alloy can be easily activated. It is an object to provide a method that can be realized. Another object of the present invention is to provide a method for accommodating a hydrogen storage body containing a hydrogen storage alloy in a hydrogen storage device that does not require activation treatment after the hydrogen storage body is stored in the hydrogen storage device. Another object of the present invention is to provide a compact and lightweight hydrogen storage device that does not require a heating device for heating a container containing a hydrogen storage body.

【0006】[0006]

【課題を解決するための手段】本発明の水素吸蔵体の活
性化処理方法は、水素吸蔵合金を含む水素吸蔵体を準備
する水素吸蔵体準備工程と、該水素吸蔵体を処理容器に
収容し不活性ガス雰囲気にて100℃以上の温度で保持
する不活性ガス処理工程とを含むことを特徴とする。
A method for activating a hydrogen storage material according to the present invention comprises a hydrogen storage material preparing step of preparing a hydrogen storage material containing a hydrogen storage alloy, and the hydrogen storage material being housed in a processing container. And an inert gas treatment step of maintaining the temperature at 100 ° C. or higher in an inert gas atmosphere.

【0007】水素吸蔵体を構成する水素吸蔵合金は、上
述のように、空気等に曝されると、表面に空気中の酸素
や窒素等が吸着されることに加え、酸化物等の被膜が形
成され、水素吸蔵能が低下する。本発明の活性化処理方
法では、水素吸蔵合金を含む水素吸蔵体を不活性ガス雰
囲気等の所定の条件で処理することにより、水素吸蔵合
金の低下した水素吸蔵能を回復させる。つまり、水素吸
蔵合金を活性化させる。本発明の活性化処理方法のメカ
ニズムは明らかではないが、水素吸蔵合金を含む水素吸
蔵体を不活性ガス雰囲気にて100℃以上の温度で保持
する(本明細書では「不活性ガス処理」と表す。)と、
水素吸蔵合金の表面に吸着している酸素等が取り除かれ
ると考えられる。また、上記不活性ガス処理を行うこと
により、水素吸蔵合金の表面には、微細なひび(クラッ
ク)が生じると考えられる。ひびが生じると、後に水素
吸蔵合金が水素を吸蔵・放出する際に、水素吸蔵合金が
割れ易くなる。その結果、水素吸蔵合金の微粉化が促進
され、水素吸蔵・放出能の高い活性面が多く表出するた
め、水素の吸蔵・放出能が高くなる。このように、不活
性ガス処理を行うことで、従来のような高温、水素加圧
下での活性化処理を行わなくても、水素吸蔵合金を容易
に活性化することができる。
As described above, when the hydrogen storage alloy constituting the hydrogen storage body is exposed to air or the like, oxygen and nitrogen in the air are adsorbed on the surface, and a film such as an oxide is formed on the surface. Formed, the hydrogen storage capacity is reduced. In the activation treatment method of the present invention, the reduced hydrogen storage capacity of the hydrogen storage alloy is recovered by treating the hydrogen storage body containing the hydrogen storage alloy under predetermined conditions such as an inert gas atmosphere. That is, the hydrogen storage alloy is activated. Although the mechanism of the activation treatment method of the present invention is not clear, the hydrogen storage material containing the hydrogen storage alloy is held at a temperature of 100 ° C. or higher in an inert gas atmosphere (referred to as “inert gas treatment” in the present specification). Represents)),
It is considered that oxygen and the like adsorbed on the surface of the hydrogen storage alloy are removed. Further, it is considered that fine cracks (cracks) are generated on the surface of the hydrogen storage alloy by performing the above-mentioned inert gas treatment. When cracks occur, the hydrogen storage alloy is likely to crack when the hydrogen storage alloy later stores and releases hydrogen. As a result, pulverization of the hydrogen storage alloy is promoted, and many active surfaces having high hydrogen storage / release capacity are exposed, resulting in high hydrogen storage / release capacity. As described above, by performing the inert gas treatment, the hydrogen storage alloy can be easily activated without performing the activation treatment under high temperature and hydrogen pressure as in the conventional case.

【0008】また、本発明の水素吸蔵体の水素貯蔵装置
への収容方法は、水素吸蔵合金を含む水素吸蔵体を準備
する水素吸蔵体準備工程と、該水素吸蔵体を処理容器に
収容し不活性ガス雰囲気にて100℃以上の温度で保持
する不活性ガス処理工程と、不活性ガス処理を施した水
素吸蔵体を不活性ガス雰囲気のまま水素貯蔵装置へ収容
する水素吸蔵体収容工程とを含むことを特徴とする。
The method for accommodating a hydrogen storage device in a hydrogen storage device according to the present invention comprises a hydrogen storage device preparation step of preparing a hydrogen storage device containing a hydrogen storage alloy, and the hydrogen storage device not being stored in a processing container. An inert gas treatment step of maintaining the temperature at 100 ° C. or higher in an active gas atmosphere, and a hydrogen storage material accommodation step of accommodating the hydrogen storage material subjected to the inert gas treatment in the hydrogen storage device in the inert gas atmosphere. It is characterized by including.

【0009】すなわち、本発明の水素貯蔵装置への収容
方法は、上記本発明の活性化処理方法における不活性ガ
ス処理が施された水素吸蔵体を、不活性ガス雰囲気のま
ま水素貯蔵装置へ収容する方法である。水素吸蔵体に含
まれる水素吸蔵合金が不活性ガス雰囲気のまま水素貯蔵
装置へ収容されることで、水素吸蔵合金の活性化された
状態が維持される。つまり、水素吸蔵体を水素貯蔵装置
へ収容した後、従来のような高温、水素加圧下での活性
化処理を行う必要はない。したがって、本発明の水素貯
蔵装置への収容方法によれば、水素吸蔵合金の活性化が
容易にできることに加え、水素貯蔵装置に収容した後に
水素吸蔵合金の活性化処理を行う必要がないため、水素
貯蔵装置を小型化かつ軽量化することができる。
That is, according to the method for accommodating the hydrogen storage device of the present invention, the hydrogen storage body subjected to the inert gas treatment in the activation treatment method of the present invention is accommodated in the hydrogen storage device in an inert gas atmosphere. Is the way to do. By storing the hydrogen storage alloy contained in the hydrogen storage body in the hydrogen storage device in the inert gas atmosphere, the activated state of the hydrogen storage alloy is maintained. In other words, it is not necessary to carry out activation treatment under high temperature and hydrogen pressure as in the prior art after accommodating the hydrogen absorber in the hydrogen storage device. Therefore, according to the method of accommodating the hydrogen storage device of the present invention, in addition to being able to easily activate the hydrogen storage alloy, it is not necessary to perform activation treatment of the hydrogen storage alloy after accommodating in the hydrogen storage device, It is possible to reduce the size and weight of the hydrogen storage device.

【0010】さらに、本発明の水素貯蔵装置は、貯蔵容
器と、該貯蔵容器に収容された水素吸蔵体とを含む水素
貯蔵装置であって、前記水素吸蔵体は、不活性ガス雰囲
気にて100℃以上の温度で保持された水素吸蔵合金を
含むものであることを特徴とする。
Further, the hydrogen storage device of the present invention is a hydrogen storage device comprising a storage container and a hydrogen storage material housed in the storage container, wherein the hydrogen storage material is 100% in an inert gas atmosphere. It is characterized by containing a hydrogen storage alloy held at a temperature of ℃ or more.

【0011】すなわち、本発明の水素貯蔵装置における
水素吸蔵体は、上記本発明の活性化処理方法における不
活性ガス処理が施された水素吸蔵合金を含むものであ
る。つまり、水素吸蔵体を構成する水素吸蔵合金は既に
活性化されているため、水素貯蔵装置に収容された状態
での活性化処理は必要ない。したがって、従来必要とさ
れた加熱装置は不要となる。例えば、水素吸蔵合金とし
てチタン系合金を使用した場合には、水素の吸蔵・放出
を常温で行うことができる。この場合、本発明の水素貯
蔵装置は、常温で使用が可能であり、小型で軽量な水素
貯蔵装置となる。このような利点を有する本発明の水素
貯蔵装置は、自動車等の移動体に搭載される用途に特に
好適である。なお、水素貯蔵装置を自動車に搭載する場
合には、−30〜60℃の温度範囲で使用されることが
想定される。本明細書において常温で使用が可能という
場合は、上記温度範囲で使用が可能であることを意味す
る。
That is, the hydrogen storage device in the hydrogen storage device of the present invention contains the hydrogen storage alloy that has been subjected to the inert gas treatment in the activation treatment method of the present invention. That is, since the hydrogen storage alloy that constitutes the hydrogen storage body has already been activated, it is not necessary to perform the activation treatment in the state of being stored in the hydrogen storage device. Therefore, the heating device conventionally required becomes unnecessary. For example, when a titanium-based alloy is used as the hydrogen storage alloy, hydrogen can be stored and released at room temperature. In this case, the hydrogen storage device of the present invention can be used at room temperature, and is a compact and lightweight hydrogen storage device. The hydrogen storage device of the present invention having such advantages is particularly suitable for use in a mobile body such as an automobile. When the hydrogen storage device is mounted on an automobile, it is assumed that the hydrogen storage device is used in a temperature range of -30 to 60 ° C. In the present specification, when it can be used at room temperature, it means that it can be used in the above temperature range.

【0012】[0012]

【発明の実施の形態】以下、本発明の水素吸蔵体の活性
化処理方法、水素吸蔵体の水素貯蔵装置への収容方法お
よび水素貯蔵装置を詳細に説明する。なお、説明する実
施形態は一実施形態にすぎず、本発明の水素吸蔵体の活
性化処理方法、水素吸蔵体の水素貯蔵装置への収容方法
および水素貯蔵装置が、下記の実施形態に限定されるも
のではない。下記実施形態を始めとして、当業者が行い
得る変更、改良等を施した種々の形態にて実施すること
ができる。
BEST MODE FOR CARRYING OUT THE INVENTION The method for activating the hydrogen storage material, the method for accommodating the hydrogen storage material in the hydrogen storage device, and the hydrogen storage device according to the present invention will be described in detail below. The embodiment to be described is only one embodiment, and the activation processing method of the hydrogen storage material, the method for accommodating the hydrogen storage material in the hydrogen storage device, and the hydrogen storage device of the present invention are limited to the following embodiments. Not something. The present invention can be implemented in various forms including modifications and improvements that can be made by those skilled in the art, including the following embodiment.

【0013】〈水素吸蔵体の活性化処理方法〉本発明の
水素吸蔵体の活性化処理方法は、水素吸蔵体準備工程と
不活性ガス処理工程とを含んで構成される。以下、各工
程について説明する。
<Method for activating hydrogen storage body> The method for activating the hydrogen storage body of the present invention comprises a hydrogen storage body preparation step and an inert gas treatment step. Hereinafter, each step will be described.

【0014】(1)水素吸蔵体準備工程 本工程は、水素吸蔵合金を含む水素吸蔵体を準備する工
程である。水素吸蔵体を構成する水素吸蔵合金は、その
種類が特に限定されるものではなく、既に公知の水素吸
蔵合金を使用すればよい。例えば、チタン系合金、希土
類系合金、マグネシウム系合金等が挙げられる。なかで
も、常温で水素を吸蔵・放出することができるという理
由から、チタン系合金を用いることが望ましい。具体的
には、例えば、TiFe、TiCo、TiNi、TiM
2、TiCr2、TiV、TiCrV、TiCrMn等
が好適である。
(1) Hydrogen Storage Body Preparation Step This step is a step of preparing a hydrogen storage body containing a hydrogen storage alloy. The type of the hydrogen storage alloy forming the hydrogen storage body is not particularly limited, and a known hydrogen storage alloy may be used. For example, titanium-based alloys, rare earth-based alloys, magnesium-based alloys, etc. may be mentioned. Above all, it is desirable to use a titanium-based alloy because hydrogen can be stored and released at room temperature. Specifically, for example, TiFe, TiCo, TiNi, TiM
N 2 , TiCr 2 , TiV, TiCrV, TiCrMn and the like are suitable.

【0015】水素吸蔵体は水素吸蔵合金のみからなるも
のでもよく、水素吸蔵合金に加えて他の材料を含むもの
でもよい。例えば、水素吸蔵体として多孔質炭素材料を
含む態様を採用することが望ましい。多孔質炭素材料を
含むことにより、水素吸蔵合金の活性化がより促進され
ると考えられる。すなわち、後の不活性ガス処理工程に
おいて、水素吸蔵体を不活性ガス処理することにより水
素吸蔵合金が活性化される。この場合、水素吸蔵体に多
孔質炭素材料が含まれていると還元雰囲気が形成され易
くなる。したがって、水素吸蔵合金の表面に吸着してい
る酸素等が除去され易くなる。さらに、多孔質炭素材料
が有するガスの吸着作用によっても、水素吸蔵合金の表
面に吸着している二酸化炭素や酸素等のガスが吸着され
除去される。
The hydrogen storage body may be made of only the hydrogen storage alloy, or may contain other materials in addition to the hydrogen storage alloy. For example, it is desirable to adopt an aspect including a porous carbon material as the hydrogen storage material. It is considered that the inclusion of the porous carbon material further promotes the activation of the hydrogen storage alloy. That is, in the subsequent inert gas treatment step, the hydrogen storage alloy is activated by treating the hydrogen storage body with the inert gas. In this case, if the hydrogen storage material contains the porous carbon material, a reducing atmosphere is easily formed. Therefore, oxygen and the like adsorbed on the surface of the hydrogen storage alloy are easily removed. Further, the gas such as carbon dioxide and oxygen adsorbed on the surface of the hydrogen storage alloy is also adsorbed and removed by the gas adsorption function of the porous carbon material.

【0016】多孔質炭素材料としては、例えば、活性
炭、カーボンナノチューブ、グラファイトナノファイバ
ー等を用いることができる。特に、二酸化炭素や酸素等
の吸着能が高いという理由から、比表面積が1000m
2/g以上であるものが望ましい。例えば、活性炭を用
いると好適である。なお、本明細書では、比表面積は、
BET式吸着法により測定した値を採用する。具体的に
は、測定する多孔質炭素材料をサンプル管に入れ、N2
とHeとの混合ガスを流してN2を吸着させる。そし
て、多孔質炭素材料のN2吸着量を熱伝導度セルにより
検出し、BET理論で仮定する吸着等温線から多孔質炭
素材料の比表面積を算出する方法である。水素吸蔵体と
して多孔質炭素材料を含んだ態様を採用する場合、水素
吸蔵体における多孔質炭素材料の含有割合は、5重量%
以上50重量%であることが望ましい。多孔質炭素材料
の含有割合が5重量%未満の場合には、多孔質炭素材料
を含めたことによる上記効果が充分に得られないからで
ある。一方、多孔質炭素材料の含有割合が50重量%を
超えると、全体として嵩高くなり実用的ではないからで
ある。
As the porous carbon material, for example, activated carbon, carbon nanotube, graphite nanofiber or the like can be used. In particular, the specific surface area is 1000m because of its high adsorption capacity for carbon dioxide and oxygen.
It is preferably 2 / g or more. For example, it is suitable to use activated carbon. In this specification, the specific surface area is
The value measured by the BET adsorption method is adopted. Specifically, the porous carbon material to be measured is put in a sample tube, and N 2
A mixed gas of He and He is caused to flow to adsorb N 2 . Then, the N 2 adsorption amount of the porous carbon material is detected by a thermal conductivity cell, and the specific surface area of the porous carbon material is calculated from the adsorption isotherm assumed by the BET theory. When the embodiment containing the porous carbon material as the hydrogen storage material is adopted, the content ratio of the porous carbon material in the hydrogen storage material is 5% by weight.
It is preferably 50% by weight or more. This is because when the content ratio of the porous carbon material is less than 5% by weight, the above effect due to the inclusion of the porous carbon material cannot be sufficiently obtained. On the other hand, if the content ratio of the porous carbon material exceeds 50% by weight, the bulk as a whole becomes bulky and not practical.

【0017】また、水素吸蔵体として、水素吸蔵合金と
多孔質炭素材料とを結着する結着剤を含む態様を採用す
ることができる。結着剤を含むことで、水素吸蔵合金と
多孔質炭素材料との均一な混合状態を維持することがで
きる。また、水素吸蔵体を所定の形状に成形する場合に
は成形が容易となる利点もある。結着剤は、その種類が
特に限定されるものではない。例えば、ポリテトラフル
オロエチレン(PTFE)、ポリクロロトリフルオロエ
チレン(PCTFE)、ポリフッ化ビニリデン(PVD
F)等のフッ素樹脂、エチレン−プロピレン−ジエン共
重合体、スチレンブタジエンゴム、カルボキシセルロー
ス等を用いることができる。水素吸蔵体は、後の不活性
ガス処理工程で加熱される。したがって、加熱されるこ
とを考慮すると、結着剤を含む場合には、その結着剤が
ある程度の耐熱性を有することが望まれる。このような
観点から、上記例示したもののなかでも耐熱性が高く、
成形がより容易である等の利点を有するフッ素樹脂を用
いることが望ましい。特に、ポリテトラフルオロエチレ
ン(PTFE)は、溶剤を用いずに混合することができ
るため好適である。水素吸蔵体における結着剤の含有割
合は、10重量%以下であることが望ましい。結着剤は
水素吸蔵放出能を有しないため、結着剤の含有割合が1
0重量%を超えると、水素吸蔵体の水素吸蔵量が減少す
るからである。より望ましくは5重量%以下である。ま
た、結着剤を含有することにより得られる上記効果を有
効に発揮させるためには、含有割合は0.2重量%以上
であることが望ましい。
Further, it is possible to adopt a mode in which the hydrogen storage body contains a binder for binding the hydrogen storage alloy and the porous carbon material. By including the binder, it is possible to maintain a uniform mixed state of the hydrogen storage alloy and the porous carbon material. Further, when the hydrogen storage body is formed into a predetermined shape, there is an advantage that the formation becomes easy. The type of the binder is not particularly limited. For example, polytetrafluoroethylene (PTFE), polychlorotrifluoroethylene (PCTFE), polyvinylidene fluoride (PVD)
Fluororesin such as F), ethylene-propylene-diene copolymer, styrene-butadiene rubber, carboxycellulose and the like can be used. The hydrogen storage body is heated in a subsequent inert gas treatment step. Therefore, in consideration of being heated, when the binder is included, it is desired that the binder has a certain degree of heat resistance. From this point of view, high heat resistance among those exemplified above,
It is desirable to use a fluororesin, which has advantages such as easier molding. In particular, polytetrafluoroethylene (PTFE) is suitable because it can be mixed without using a solvent. The content ratio of the binder in the hydrogen storage material is preferably 10% by weight or less. Since the binder does not have the ability to absorb and release hydrogen, the content ratio of the binder is 1
This is because if it exceeds 0% by weight, the hydrogen storage amount of the hydrogen storage material decreases. More preferably, it is 5% by weight or less. Further, in order to effectively exert the above effects obtained by containing the binder, the content ratio is preferably 0.2% by weight or more.

【0018】水素吸蔵体を、水素吸蔵合金と多孔質炭素
材料とを含むものとする場合、例えば、粉末状の水素吸
蔵合金および多孔質炭素材料を混合し、両者を分散させ
た態様で水素吸蔵体を準備すればよい。混合は、例え
ば、ボールミル、ロッキングミル等を用いて行えばよ
い。また、粉末状の水素吸蔵合金および多孔質炭素材料
の個々の粒子を機械的剪断力により結合させ、複合体と
した態様で水素吸蔵体を準備することもできる。この場
合、例えば、メカニカルアロイング、メカノヒュージョ
ン等の方法により水素吸蔵合金と多孔質炭素材料とを複
合化すればよい。さらに、水素吸蔵合金と多孔質炭素材
料等との混合材料を高圧圧縮処理して水素吸蔵体を得る
ことができる。この場合、水素吸蔵体を円柱状、球状、
ラグビーボール状等のペレットに成形すればよい。水素
吸蔵体を予めペレットに成形しておくことで、水素吸蔵
体を処理容器等に収容する際に、水素吸蔵合金と多孔質
炭素材料とを均一に分散させることができる。高圧圧縮
処理は、その方法や条件等が特に限定されるものではな
い。例えば、水素吸蔵合金と多孔質炭素材料等との混合
材料を所定の圧力、温度下で圧縮して行うことができ
る。処理圧力は、100MPa以上2000MPa以下
とすればよい。高圧圧縮処理は、室温で行ってもよく、
200℃程度までの高温下で行ってもよい。また、空気
中で行ってもよく、不活性ガス雰囲気で行ってもよい。
処理時間は、上記処理圧力に達してからその圧力を保持
する時間として数秒〜10分程度とすればよい。処理回
数は、処理条件等にもよるが、1回〜50回程度行えば
よい。高圧圧縮処理は、例えば、油圧プレス等の圧縮成
形機を用いて行えばよい。
When the hydrogen storage material contains a hydrogen storage alloy and a porous carbon material, for example, the powder hydrogen storage alloy and the porous carbon material are mixed, and both are dispersed to form the hydrogen storage material. Just prepare. The mixing may be performed using, for example, a ball mill, a rocking mill or the like. Alternatively, the hydrogen storage alloy in powder form and the individual particles of the porous carbon material may be bonded together by mechanical shearing force to prepare the hydrogen storage body in a composite form. In this case, for example, the hydrogen absorbing alloy and the porous carbon material may be compounded by a method such as mechanical alloying or mechanofusion. Furthermore, a mixed material of a hydrogen storage alloy and a porous carbon material or the like can be subjected to a high pressure compression treatment to obtain a hydrogen storage body. In this case, the hydrogen storage material is cylindrical, spherical,
It may be formed into pellets such as rugby balls. By forming the hydrogen storage body into pellets in advance, the hydrogen storage alloy and the porous carbon material can be uniformly dispersed when the hydrogen storage body is housed in a processing container or the like. The high-pressure compression treatment is not particularly limited in its method and conditions. For example, it can be performed by compressing a mixed material of a hydrogen storage alloy and a porous carbon material under a predetermined pressure and temperature. The processing pressure may be 100 MPa or more and 2000 MPa or less. The high-pressure compression treatment may be performed at room temperature,
It may be performed at a high temperature up to about 200 ° C. Further, it may be carried out in air or in an inert gas atmosphere.
The processing time may be about several seconds to 10 minutes as the time for holding the processing pressure after reaching the processing pressure. The number of times of treatment depends on the treatment conditions and the like, but may be about 1 to 50 times. The high-pressure compression process may be performed using a compression molding machine such as a hydraulic press.

【0019】(2)不活性ガス処理工程 本工程は、前記水素吸蔵体準備工程で準備された水素吸
蔵体を処理容器に収容し不活性ガス雰囲気にて100℃
以上の温度で保持する工程である。処理容器は、耐熱性
や気密性が良好であれば、その材質が特に限定されるも
のではない。例えば、石英ガラス製、ステンレス製等の
容器を使用すればよい。なお、水素貯蔵装置における貯
蔵容器を処理容器として使用することもできる。この場
合には、軽量等の理由からアルミニウム合金製等の容器
を処理容器として使用すればよい。処理容器には、処理
容器内への不活性ガスの導入、不活性ガス雰囲気の維持
等のためバルブを設置することが望ましい。また、水素
吸蔵体を加熱保持できるよう、例えば、処理容器の外側
にヒーター等の熱源を設けることが望ましい。
(2) Inert gas treatment step In this step, the hydrogen storage material prepared in the hydrogen storage material preparation step is placed in a processing container and 100 ° C. in an inert gas atmosphere.
This is a process of holding at the above temperature. The material of the processing container is not particularly limited as long as it has good heat resistance and airtightness. For example, a container made of quartz glass or stainless steel may be used. The storage container in the hydrogen storage device can also be used as the processing container. In this case, a container made of aluminum alloy or the like may be used as the processing container for reasons such as light weight. It is desirable to install a valve in the processing container in order to introduce an inert gas into the processing container and maintain an inert gas atmosphere. Further, for example, it is desirable to provide a heat source such as a heater outside the processing container so that the hydrogen storage body can be heated and held.

【0020】水素吸蔵体を処理容器に収容した後、不活
性ガスを導入し、処理容器内を不活性ガス雰囲気とす
る。この場合、不活性ガスを所定の流量で流してもよ
く、また、予め真空引きしておいた処理容器に不活性ガ
スを充満させてもよい。前者の場合、不活性ガスの流量
は特に限定されるものではなく、例えば、容積500m
l程度の処理容器に対して、20〜50ml/min程
度の流量とすればよい。不活性ガスとしては、アルゴ
ン、窒素、ネオン、キセノン、クリプトン等を使用すれ
ばよい。特に、入手し易く扱い易いという理由からアル
ゴンを使用することが望ましい。
After accommodating the hydrogen storage material in the processing container, an inert gas is introduced to make the inside of the processing container an inert gas atmosphere. In this case, the inert gas may be caused to flow at a predetermined flow rate, or the processing container previously evacuated may be filled with the inert gas. In the case of the former, the flow rate of the inert gas is not particularly limited, and for example, the volume is 500 m.
A flow rate of about 20 to 50 ml / min may be applied to a processing container of about 1 l. As the inert gas, argon, nitrogen, neon, xenon, krypton or the like may be used. In particular, it is desirable to use argon because it is easily available and easy to handle.

【0021】上記水素吸蔵体を収容した処理容器を加熱
し、100℃以上の温度で保持する。処理容器を上記ヒ
ーター等で加熱する場合には、処理容器の外壁表面にお
ける温度が100℃以上となっていればよい。水素吸蔵
合金の活性化をより促進する観点から、保持温度は高い
方が望ましく、保持温度を200℃以上とすることが望
ましい。300℃以上とするとより好適であり、500
℃以上とするさらに好適である。保持温度は、100℃
以上であれば特に制限されるものではないが、水素吸蔵
合金の融点以下とすることが望ましい。例えば、水素吸
蔵合金としてチタン系合金のTiCr2を使用する場合
には、700℃以下とすることが望ましい。また、保持
する時間は、処理する水素吸蔵体の量にもよるが、例え
ば、50g以下の水素吸蔵体を処理する場合には、1時
間程度でよい。100g以上の水素吸蔵体を処理する場
合には、2時間以上とすることが望ましい。
The processing container containing the hydrogen storage material is heated and kept at a temperature of 100 ° C. or higher. When the processing container is heated by the heater or the like, the temperature on the outer wall surface of the processing container may be 100 ° C. or higher. From the viewpoint of further activating the hydrogen storage alloy, the holding temperature is preferably higher, and the holding temperature is preferably 200 ° C. or higher. A temperature of 300 ° C. or higher is more preferable, and 500
It is more preferable that the temperature is not less than ° C. Hold temperature is 100 ℃
There is no particular limitation as long as it is at least the above, but it is desirable that the melting point be not higher than the melting point of the hydrogen storage alloy. For example, when titanium-based alloy TiCr 2 is used as the hydrogen storage alloy, the temperature is preferably 700 ° C. or lower. The holding time depends on the amount of the hydrogen storage material to be treated, but for example, when processing 50 g or less of the hydrogen storage material, it may be about 1 hour. When treating 100 g or more of a hydrogen storage material, it is desirable that the time is 2 hours or more.

【0022】不活性ガス処理を行った後は、水素吸蔵体
を処理容器中で自然冷却すればよい。冷却は、不活性ガ
スを流しながら行うことが望ましく、この場合、冷却時
間は上記保持時間の2〜3倍程度の時間とすればよい。
After performing the inert gas treatment, the hydrogen storage body may be naturally cooled in the treatment container. Cooling is preferably performed while flowing an inert gas. In this case, the cooling time may be about 2 to 3 times the holding time.

【0023】〈水素吸蔵体の水素貯蔵装置への収容方
法〉本発明の水素吸蔵体の水素貯蔵装置への収容方法
は、水素吸蔵体準備工程と不活性ガス処理工程と水素吸
蔵体収容工程とを含んで構成される。水素吸蔵体準備工
程と不活性ガス処理工程とは、上記本発明の水素吸蔵体
の活性化処理方法における各工程と同様であるため省略
し、ここでは、水素吸蔵体収容工程について説明する。
なお、本発明の水素吸蔵体の水素貯蔵装置への収容方法
においても、上述した本発明の水素吸蔵体の活性化処理
方法における好適な態様を採用することが望ましい。
<Accommodating Method of Hydrogen Absorber in Hydrogen Storage Device> The method of accommodating the hydrogen absorbing device in the hydrogen storage device of the present invention comprises a hydrogen absorber preparing step, an inert gas treatment step, and a hydrogen absorber accommodating step. It is configured to include. The hydrogen storage body preparation step and the inert gas treatment step are omitted because they are the same as the steps in the hydrogen storage body activation treatment method of the present invention, and the hydrogen storage body accommodation step will be described here.
In addition, also in the method for accommodating the hydrogen storage body of the present invention in the hydrogen storage device, it is desirable to employ the preferred aspect of the method for activating the hydrogen storage body of the present invention described above.

【0024】本発明の水素吸蔵体の水素貯蔵装置への収
容方法における水素吸蔵体収容工程は、不活性ガス処理
を施した水素吸蔵体を不活性ガス雰囲気のまま水素貯蔵
装置へ収容する工程である。不活性ガス処理を施した水
素吸蔵体に含まれる水素吸蔵合金は既に活性化されてい
る。このため、その活性を維持すべく、水素吸蔵体を不
活性ガス雰囲気にて水素貯蔵装置へ収容する。なお、不
活性ガス処理工程では、水素吸蔵体が加熱されているた
め、例えば、不活性ガスを流して水素吸蔵体を冷却して
から収容することが望ましい。水素吸蔵体の水素貯蔵装
置への収容方法は、収容する際に不活性ガス雰囲気が確
保されていれば、特に限定されるものではない。例え
ば、不活性ガス雰囲気にしたグローブボックス内で、不
活性ガス処理後の処理容器から水素貯蔵装置の貯蔵容器
に水素吸蔵体を移し替えればよい。また、水素貯蔵装置
の貯蔵容器を不活性ガス雰囲気にしておき、貯蔵容器と
処理容器とを完全に外気を遮断する接合状態で連結し、
反応容器中の水素吸蔵体を貯蔵容器へ移し替えればよ
い。
The step of accommodating the hydrogen storage material in the hydrogen storage device according to the present invention is a step of accommodating the hydrogen storage material subjected to the inert gas treatment in the hydrogen storage device in an inert gas atmosphere. is there. The hydrogen storage alloy contained in the hydrogen storage body subjected to the inert gas treatment is already activated. Therefore, in order to maintain its activity, the hydrogen storage material is housed in the hydrogen storage device in an inert gas atmosphere. In addition, in the inert gas treatment step, since the hydrogen storage body is heated, it is desirable to flow the inert gas to cool the hydrogen storage body before storing it. The method for accommodating the hydrogen storage device in the hydrogen storage device is not particularly limited as long as an inert gas atmosphere is ensured at the time of storage. For example, the hydrogen storage material may be transferred from the processing container after the inert gas treatment to the storage container of the hydrogen storage device in the glove box in the inert gas atmosphere. Further, the storage container of the hydrogen storage device is kept in an inert gas atmosphere, and the storage container and the processing container are connected in a joined state in which the outside air is completely shut off,
The hydrogen storage material in the reaction container may be transferred to the storage container.

【0025】また、水素吸蔵体として、水素吸蔵合金の
他に多孔質炭素材料等を含む態様を採用した場合、不活
性ガス処理工程の後、多孔質炭素材料等を取り除き、水
素吸蔵合金のみを水素貯蔵装置に収容する態様をも採用
することができる。本態様を採用することで、水素吸蔵
合金のみを水素吸蔵体として水素貯蔵装置に収容する場
合でも、不活性ガス処理において水素吸蔵合金の活性化
を促進させることができる。
Further, in the case where the hydrogen storage body adopts a mode containing a porous carbon material and the like in addition to the hydrogen storage alloy, the porous carbon material and the like are removed after the inert gas treatment step, and only the hydrogen storage alloy is obtained. A mode in which the hydrogen storage device is housed can also be adopted. By adopting this mode, activation of the hydrogen storage alloy can be promoted in the inert gas treatment even when only the hydrogen storage alloy is stored in the hydrogen storage device as the hydrogen storage body.

【0026】〈水素貯蔵装置〉本発明の水素貯蔵装置
は、貯蔵容器と、該貯蔵容器に収容された水素吸蔵体と
を含む水素貯蔵装置であって、前記水素吸蔵体は、不活
性ガス雰囲気にて100℃以上の温度で保持された水素
吸蔵合金を含むものである。貯蔵容器は、高圧下で使用
できるものであれば、特に限定されるものではない。通
常用いられるアルミニウム合金製等の耐圧容器、ボンベ
等種々の容器を使用すればよい。また、上述したよう
に、貯蔵容器を不活性ガス処理を行う処理容器と兼用す
ることもできる。
<Hydrogen Storage Device> The hydrogen storage device of the present invention is a hydrogen storage device including a storage container and a hydrogen storage material housed in the storage container, wherein the hydrogen storage material is an inert gas atmosphere. The hydrogen storage alloy is kept at a temperature of 100 ° C. or higher. The storage container is not particularly limited as long as it can be used under high pressure. It is possible to use various pressure vessels such as aluminum alloy pressure vessels and cylinders that are commonly used. Further, as described above, the storage container can also be used as the processing container for performing the inert gas processing.

【0027】本発明の水素貯蔵装置は、活性化された水
素吸蔵合金を含む水素吸蔵体を収容したものであるた
め、高温、水素加圧下での従来の活性化処理のための加
熱装置は必要ない。用いる水素吸蔵合金の種類にもよる
が、本発明の水素貯蔵装置は、常温で使用可能であり、
また、使用圧力は1〜35MPa程度とすることが望ま
しい。なお、本発明の水素貯蔵装置は、例えば、水素吸
蔵合金の水素吸蔵に伴う発熱を緩和させるための冷却装
置や、貯蔵容器内を減圧するための真空ポンプ等を含ん
で構成してもよい。
Since the hydrogen storage device of the present invention accommodates a hydrogen storage body containing an activated hydrogen storage alloy, a heating device for conventional activation treatment under high temperature and hydrogen pressure is required. Absent. Depending on the type of hydrogen storage alloy used, the hydrogen storage device of the present invention can be used at room temperature,
Further, it is desirable that the working pressure is about 1 to 35 MPa. The hydrogen storage device of the present invention may be configured to include, for example, a cooling device for reducing heat generation due to hydrogen storage of the hydrogen storage alloy, a vacuum pump for reducing the pressure in the storage container, and the like.

【0028】本発明の水素貯蔵装置を構成する水素吸蔵
体についても、上述した本発明の水素吸蔵体の活性化処
理方法における好適な態様を採用することが望ましい。
通常、水素吸蔵合金は、水素を吸蔵・放出する際に微粉
化して凝集する傾向がある。このため、水素を吸蔵する
際の発熱により温度が局部的に上昇するおそれがある。
したがって、水素吸蔵体を多孔質炭素材料を含む態様と
した場合には、多孔質炭素材料は熱伝導が大きいため、
水素吸蔵合金が水素を吸蔵する際に生ずる熱の拡散が容
易となり、上記発熱による温度上昇を抑制することがで
きる。さらに、多孔質炭素材料は水素の吸蔵・放出が可
能な材料であるため、水素吸蔵体の水素吸蔵量も大きく
なる。
Also for the hydrogen storage material constituting the hydrogen storage device of the present invention, it is desirable to adopt the preferred embodiment of the above-described hydrogen storage material activation treatment method of the present invention.
Usually, a hydrogen storage alloy tends to be pulverized and agglomerated when storing and releasing hydrogen. For this reason, there is a possibility that the temperature locally rises due to heat generation when hydrogen is absorbed.
Therefore, when the hydrogen storage material is configured to include the porous carbon material, the porous carbon material has high heat conduction,
Diffusion of heat generated when the hydrogen storage alloy stores hydrogen is facilitated and the temperature rise due to the heat generation can be suppressed. Further, since the porous carbon material is a material capable of storing and releasing hydrogen, the hydrogen storage amount of the hydrogen storage body also becomes large.

【0029】[0029]

【実施例】上記実施の形態に基づいて、種々の水素吸蔵
体について本発明の活性化処理を行った。その後、各水
素吸蔵体を不活性ガス雰囲気のまま水素吸蔵・放出量測
定装置に収容し、各々の水素吸蔵・放出量を測定するこ
とにより活性化の程度を評価した。以下、水素吸蔵体の
活性化処理、水素吸蔵体の水素吸蔵・放出量の測定およ
び活性化の程度の評価について説明する。
Example Based on the above-mentioned embodiment, various hydrogen storage materials were subjected to the activation treatment of the present invention. After that, each hydrogen storage body was housed in a hydrogen storage / release amount measuring device in an inert gas atmosphere, and the degree of activation was evaluated by measuring each hydrogen storage / release amount. Hereinafter, the activation treatment of the hydrogen storage body, the measurement of the hydrogen storage / release amount of the hydrogen storage body, and the evaluation of the degree of activation will be described.

【0030】〈水素吸蔵体の活性化処理〉 (1)#1の水素吸蔵体 水素吸蔵合金としてチタン系合金であるTiCrVを、
多孔質炭素材料として活性炭MSC30(関西熱化学社
製、比表面積約3200m2/g)をそれぞれ使用して
水素吸蔵体とした。TiCrVは、水冷銅ハースを用い
たアルゴンガス中でのアーク溶解で約20gのインゴッ
トを作製し、そのインゴットを空気中で数ミリ角に粉砕
したものを使用した。1gのTiCrVと1gの活性炭
MSC30とを重量比で1:1となるように混合し、T
iCrVと活性炭MSC30とからなる粉末状の水素吸
蔵体を準備した。混合は乳鉢を使用し、アルゴンガス雰
囲気にて約5分間行った。準備した水素吸蔵体を、処理
容器である石英管(外径30mm、内径25mm、長さ
600m)に収容し、不活性ガス処理した。不活性ガス
処理は、上記石英管内にアルゴンガスを流速50ml/
minで流しながら、200℃の温度で1時間保持する
ものとした。なお、上記保持温度は、石英管の中央付近
を外側からヒーターで加熱した時の石英管の外壁表面の
温度である。不活性ガス処理の後、さらにアルゴンガス
を流しながら2時間程度放置して冷却した。本活性化処
理方法で活性化された水素吸蔵体を#1の水素吸蔵体と
した。
<Activation Treatment of Hydrogen Storage Body> (1) Hydrogen Storage Body of # 1 As a hydrogen storage alloy, TiCrV which is a titanium-based alloy,
Activated carbon MSC30 (manufactured by Kansai Thermal Chemical Co., Ltd., specific surface area: about 3200 m 2 / g) was used as a porous carbon material to obtain a hydrogen storage material. For TiCrV, an ingot of about 20 g was produced by arc melting in a argon gas using a water-cooled copper hearth, and the ingot was crushed into several millimeters square in air and used. 1 g of TiCrV and 1 g of activated carbon MSC30 were mixed in a weight ratio of 1: 1 and T
A powdery hydrogen storage material composed of iCrV and activated carbon MSC30 was prepared. Mixing was performed in an argon gas atmosphere for about 5 minutes using a mortar. The prepared hydrogen storage body was housed in a quartz tube (outer diameter 30 mm, inner diameter 25 mm, length 600 m) as a processing container, and treated with an inert gas. For the inert gas treatment, argon gas was flown into the quartz tube at a flow rate of 50 ml /
The temperature was kept at 200 ° C. for 1 hour while flowing at min. The holding temperature is the temperature of the outer wall surface of the quartz tube when the vicinity of the center of the quartz tube is heated from the outside by a heater. After the treatment with the inert gas, the mixture was left to cool for about 2 hours while flowing argon gas. The hydrogen storage material activated by this activation treatment method was designated as # 1 hydrogen storage material.

【0031】(2)#2〜#5の水素吸蔵体 上記(1)で説明した活性化処理方法において、不活性
ガス処理の保持温度を100℃、150℃、300℃、
500℃とそれぞれ変更した以外は、すべて同様に行っ
て水素吸蔵体を活性化した。活性化された水素吸蔵体を
保持温度の低い順に#2〜#5の水素吸蔵体とした。
(2) Hydrogen absorbers # 2 to # 5 In the activation treatment method described in (1) above, the holding temperature for the inert gas treatment is 100 ° C, 150 ° C, 300 ° C,
The hydrogen storage material was activated in the same manner except that the temperature was changed to 500 ° C. The activated hydrogen storage bodies were designated as # 2 to # 5 hydrogen storage bodies in ascending order of holding temperature.

【0032】(3)#6の水素吸蔵体 上記(1)で説明した活性化処理方法において、水素吸
蔵合金と多孔質炭素材料との混合量を変更し、2.5g
のTiCrVと0.5gの活性炭MSC30とを重量比
で5:1となるように混合して水素吸蔵体とした以外
は、すべて同様に行って水素吸蔵体を活性化した。活性
化された水素吸蔵体を#6の水素吸蔵体とした。
(3) Hydrogen storage body of # 6 In the activation treatment method described in the above (1), the mixing amount of the hydrogen storage alloy and the porous carbon material was changed to 2.5 g.
Except that TiCrV and 0.5 g of activated carbon MSC30 were mixed at a weight ratio of 5: 1 to form a hydrogen storage material, and the hydrogen storage material was activated in the same manner. The activated hydrogen storage material was designated as # 6 hydrogen storage material.

【0033】(4)#7の水素吸蔵体 上記(1)で説明した活性化処理方法において、水素吸
蔵合金と多孔質炭素材料との混合量を変更し、3gのT
iCrVと0.3gの活性炭MSC30とを重量比で1
0:1となるように混合して水素吸蔵体とした以外は、
すべて同様に行って水素吸蔵体を活性化した。活性化さ
れた水素吸蔵体を#7の水素吸蔵体とした。
(4) Hydrogen storage body of # 7 In the activation treatment method described in (1) above, the mixing amount of the hydrogen storage alloy and the porous carbon material was changed to obtain 3 g of T.
1 weight ratio of iCrV and 0.3 g of activated carbon MSC30
Except that a hydrogen storage material was prepared by mixing so as to be 0: 1.
The hydrogen storage material was activated in the same manner. The activated hydrogen storage material was designated as # 7 hydrogen storage material.

【0034】(5)#8の水素吸蔵体 上記(1)で説明した活性化処理方法で活性化された水
素吸蔵体から、活性炭MSC30を取り除き水素吸蔵合
金のみからなる水素吸蔵体とした。この水素吸蔵体を#
8の水素吸蔵体とした。
(5) Hydrogen Storage Material of # 8 Activated carbon MSC30 was removed from the hydrogen storage material activated by the activation treatment method described in (1) above to obtain a hydrogen storage material consisting of only a hydrogen storage alloy. This hydrogen storage body #
8 was used as the hydrogen storage material.

【0035】(6)#9の水素吸蔵体 上記(1)で説明した活性化処理方法において、水素吸
蔵体を水素吸蔵合金のみからなるものとし、1gのTi
CrVを水素吸蔵体として準備した以外は、すべて同様
に行って水素吸蔵体を活性化した。活性化された水素吸
蔵体を#9の水素吸蔵体とした。
(6) Hydrogen storage material of # 9 In the activation treatment method described in (1) above, the hydrogen storage material is made of only a hydrogen storage alloy and 1 g of Ti is used.
The hydrogen storage material was activated in the same manner except that CrV was prepared as the hydrogen storage material. The activated hydrogen storage material was designated as # 9 hydrogen storage material.

【0036】(7)#10〜#12の水素吸蔵体 上記(1)で説明した活性化処理方法において、水素吸
蔵体を構成する多孔質炭素材料の種類を、活性炭M−1
5(大阪ガスケミカル社製、比表面積約1400m2
g)、活性炭MK−80(キャタラー工業社製、比表面
積約410m2/g)、黒鉛化メソカーボンマイクロビ
ーズ(大阪ガスケミカル社製、比表面積約10m2
g、以下「黒鉛化MCMB」と表す。)とそれぞれ変更
した以外は、すべて同様に行って水素吸蔵体を活性化し
た。活性化された水素吸蔵体を順に#10〜#12の水
素吸蔵体とした。
(7) Hydrogen absorbers # 10 to # 12 In the activation treatment method described in (1) above, the kind of porous carbon material constituting the hydrogen absorber is activated carbon M-1.
5 (Osaka Gas Chemical Co., specific surface area of about 1400 m 2 /
g), activated carbon MK-80 (manufactured by Cataler Industry Co., Ltd., specific surface area: about 410 m 2 / g), graphitized mesocarbon microbeads (manufactured by Osaka Gas Chemical Co., Ltd., specific surface area: about 10 m 2 /
g, hereinafter referred to as "graphitized MCMB". ), And the hydrogen absorbing material was activated in the same manner. The activated hydrogen storage bodies were sequentially designated as # 10 to # 12 hydrogen storage bodies.

【0037】(8)#13の水素吸蔵体 上記(1)で説明した活性化処理方法において、水素吸
蔵体を構成する水素吸蔵合金の種類をTiFe(高純度
化学社製)と変更した以外は、すべて同様に行って水素
吸蔵体を活性化した。活性化された水素吸蔵体を順に#
13の水素吸蔵体とした。
(8) Hydrogen storage body of # 13 In the activation treatment method described in (1) above, the type of the hydrogen storage alloy constituting the hydrogen storage body is changed to TiFe (manufactured by Kojundo Chemical Co., Ltd.). , And the hydrogen storage material was activated in the same manner. Activated hydrogen absorbers in order #
Thirteen hydrogen storage bodies were used.

【0038】(9)#14の水素吸蔵体 上記(1)で説明した活性化処理方法において、水素吸
蔵体を高圧圧縮処理により円柱状のペレットに成形して
準備した以外は、すべて同様に行って水素吸蔵体を活性
化した。具体的には、1gのTiCrVと1gの活性炭
MSC30とPTFEとを混合した混合物を圧縮成形機
により高圧圧縮処理し、直径約20mmの円柱状の水素
吸蔵体とした。結着剤であるPTFEの含有割合は0.
2重量%とした。高圧圧縮処理は室温下で、処理圧力を
734MPaとし、1回行った。活性化された水素吸蔵
体を#14の水素吸蔵体とした。
(9) Hydrogen absorber of # 14 The same procedure as in the above-mentioned (1) except that the hydrogen absorber was prepared by molding it into a cylindrical pellet by high-pressure compression treatment. Activated the hydrogen storage material. Specifically, a mixture of 1 g of TiCrV, 1 g of activated carbon MSC30 and PTFE was subjected to a high pressure compression treatment by a compression molding machine to obtain a cylindrical hydrogen storage body having a diameter of about 20 mm. The content ratio of PTFE as a binder is 0.
It was set to 2% by weight. The high-pressure compression treatment was performed once at room temperature at a treatment pressure of 734 MPa. The activated hydrogen storage material was designated as # 14 hydrogen storage material.

【0039】(10)#21の水素吸蔵体 上記TiCrVの1gと、上記活性炭MSC30の1g
とを重量比で1:1となるように混合して水素吸蔵体と
した。混合は乳鉢を使用し、アルゴンガス雰囲気にて約
5分間行った。この水素吸蔵体を#21の水素吸蔵体と
した。
(10) Hydrogen absorber of # 21 1 g of the above TiCrV and 1 g of the above activated carbon MSC30
And were mixed at a weight ratio of 1: 1 to obtain a hydrogen storage material. Mixing was performed in an argon gas atmosphere for about 5 minutes using a mortar. This hydrogen absorber was designated as # 21 hydrogen absorber.

【0040】(11)#22の水素吸蔵体 水素吸蔵体を1gの上記TiCrVのみからなるものと
し、この水素吸蔵体を#22の水素吸蔵体とした。
(11) Hydrogen absorber of # 22 The hydrogen absorber was made of only 1 g of the above TiCrV, and this hydrogen absorber was designated as the hydrogen absorber of # 22.

【0041】(12)#23の水素吸蔵体 上記TiCrVの1gと、上記活性炭MSC30の1g
とを重量比で1:1となるように混合して水素吸蔵体と
した。混合は乳鉢を使用し、アルゴンガス雰囲気にて約
5分間行った。その後、水素吸蔵体を容器に入れ、室温
下アルゴンガス雰囲気にて12時間保持した。この水素
吸蔵体を#23の水素吸蔵体とした。
(12) Hydrogen absorber of # 23 1 g of the above TiCrV and 1 g of the above activated carbon MSC30
And were mixed at a weight ratio of 1: 1 to obtain a hydrogen storage material. Mixing was performed in an argon gas atmosphere for about 5 minutes using a mortar. Then, the hydrogen storage material was placed in a container and kept at room temperature in an argon gas atmosphere for 12 hours. This hydrogen storage body was designated as # 23 hydrogen storage body.

【0042】(13)#24の水素吸蔵体 上記TiCrVの1gと、上記黒鉛化MCMBの1gと
を重量比で1:1となるように混合して水素吸蔵体とし
た。混合は乳鉢を使用し、アルゴンガス雰囲気にて約5
分間行った。その後、水素吸蔵体を容器に入れ、室温下
アルゴンガス雰囲気にて12時間放置した。この水素吸
蔵体を#24の水素吸蔵体とした。
(13) Hydrogen absorber of # 24 1 g of the above TiCrV and 1 g of the above graphitized MCMB were mixed in a weight ratio of 1: 1 to obtain a hydrogen absorber. Use a mortar for mixing, and use argon gas atmosphere for about 5
I went for a minute. Then, the hydrogen storage material was placed in a container and left at room temperature for 12 hours in an argon gas atmosphere. This hydrogen absorber was designated as # 24 hydrogen absorber.

【0043】(14)#25の水素吸蔵体 上記(1)で説明した活性化処理方法にて水素吸蔵体を
活性化した後、水素吸蔵体を大気中に1分間放置した。
この水素吸蔵体を#25の水素吸蔵体とした。
(14) Hydrogen absorber of # 25 After activating the hydrogen absorber by the activation treatment method described in (1) above, the hydrogen absorber was left in the atmosphere for 1 minute.
This hydrogen absorber was designated as # 25 hydrogen absorber.

【0044】〈水素吸蔵体の水素吸蔵・放出量の測定お
よび活性化の程度の評価〉 (A)水素吸蔵・放出量の測定 上記各々の水素吸蔵体について、水素吸蔵・放出量を測
定した。本発明の活性化処理方法により活性化した#1
〜#14の水素吸蔵体については、不活性ガス処理が終
了した後、石英管内部にアルゴンガスが充満した状態で
石英管を密閉し、アルゴンガス雰囲気のグローブボック
ス内で石英管から水素吸蔵量測定装置へ各水素吸蔵体を
移し替えた。また、#23、#24の水素吸蔵体につい
ても同様に、アルゴンガス雰囲気を維持したまま、容器
から水素吸蔵量測定装置へ水素吸蔵体を移し替えた。#
21、#22、#25の水素吸蔵体については、大気中
で水素吸蔵体を水素吸蔵量測定装置に収容した。各水素
吸蔵体の水素吸蔵・放出量の測定は、温度約20℃、圧
力0.05〜9MPaの範囲で3回行った。水素吸蔵・
放出量は、圧力−組成等温線(PCT線)に基づいて容
量法により求めた(JIS H 7201−1991)。
<Measurement of Hydrogen Storage / Desorption of Hydrogen Storage and Evaluation of Degree of Activation> (A) Measurement of Hydrogen Storage / Desorption The amount of hydrogen storage / release of each hydrogen storage was measured. # 1 activated by the activation treatment method of the present invention
For the hydrogen absorber of # 14, after the inert gas treatment is completed, the quartz tube is sealed in a state where the quartz tube is filled with argon gas, and the amount of hydrogen absorbed from the quartz tube in the argon gas atmosphere glove box. Each hydrogen storage material was transferred to the measuring device. Similarly, with respect to the hydrogen storage bodies of # 23 and # 24, the hydrogen storage bodies were transferred from the container to the hydrogen storage amount measuring device while maintaining the argon gas atmosphere. #
Regarding the hydrogen storage bodies of 21, # 22 and # 25, the hydrogen storage bodies were housed in the hydrogen storage amount measuring device in the atmosphere. The hydrogen storage / release amount of each hydrogen storage body was measured 3 times at a temperature of about 20 ° C. and a pressure of 0.05 to 9 MPa. Hydrogen storage
The released amount was obtained by the volume method based on the pressure-composition isotherm (PCT line) (JIS H 7201-991).

【0045】(B)活性化の程度の評価 上記3回の水素吸蔵・放出量の測定において、9MPa
での水素吸蔵量から各水素吸蔵体の活性化の程度を求め
た。活性化の程度は、使用した水素吸蔵体が充分活性化
されている場合の水素吸蔵量を100%とした時の相対
値として算出した。例えば、TiCrVと活性炭MSC
30とが重量比で1:1で混合された水素吸蔵体の場
合、充分活性化されている場合には、水素吸蔵量は1.
8wt%となる(20℃、9MPa)。したがって、同
様の組成である水素吸蔵体については、式[活性化の程
度(%)=(水素吸蔵量/1.8)×100]により活
性化の程度が算出される。水素吸蔵量の3回の測定にお
ける各水素吸蔵体の活性化の程度を表1に示す。
(B) Evaluation of degree of activation In the above-mentioned three measurements of hydrogen absorption / desorption amount, 9 MPa
The degree of activation of each hydrogen storage material was determined from the hydrogen storage capacity at. The degree of activation was calculated as a relative value when the hydrogen storage amount was 100% when the hydrogen storage material used was sufficiently activated. For example, TiCrV and activated carbon MSC
In the case of a hydrogen storage material in which 30 and 30 are mixed at a weight ratio of 1: 1, the hydrogen storage capacity is 1. when fully activated.
It becomes 8 wt% (20 ° C., 9 MPa). Therefore, for a hydrogen storage material having the same composition, the degree of activation is calculated by the formula [degree of activation (%) = (hydrogen storage amount / 1.8) × 100]. Table 1 shows the degree of activation of each hydrogen storage material in three measurements of the hydrogen storage capacity.

【0046】[0046]

【表1】 [Table 1]

【0047】表1より、本発明の活性化処理方法により
活性化した#1〜#14の水素吸蔵体は、1回目の測定
から活性化の程度が70%以上であり、それ以外の#2
1〜#25の水素吸蔵体と比較して極めて活性化の程度
が高いことがわかる。つまり、本発明の活性化処理方法
によれば、水素吸蔵合金を含む水素吸蔵体を充分に活性
化できることが確認できた。以下、各々の水素吸蔵体に
ついて比較検討する。
From Table 1, it can be seen that the hydrogen absorbers # 1 to # 14 activated by the activation treatment method of the present invention have a degree of activation of 70% or more from the first measurement, and other # 2.
It can be seen that the degree of activation is extremely high as compared with the hydrogen absorbers 1 to # 25. That is, according to the activation treatment method of the present invention, it was confirmed that the hydrogen storage body containing the hydrogen storage alloy could be sufficiently activated. Hereinafter, the respective hydrogen storage materials will be compared and examined.

【0048】まず、不活性ガス処理における保持温度が
異なる#1〜#5の水素吸蔵体に着目すると、いずれも
1回目の測定で活性化が70%以上進んでいることがわ
かる。そして、保持温度が高いほど活性化の程度が高い
ことがわかる。特に、500℃で保持した#5の水素吸
蔵体では、1回目の測定から活性化が100%であり、
活性化が充分になされていることがわかる。水素吸蔵体
は、水素を吸蔵・放出することによっても徐々に活性化
される。このため、例えば、200℃で保持した#1の
水素吸蔵体は3回目の測定で、300℃で保持した#4
の水素吸蔵体は2回目の測定で、それぞれ活性化が10
0%となった。一方、室温で保持した#23、#24の
水素吸蔵体は、いずれも活性化が50〜60%程度とな
り活性化の程度は低い。つまり、水素吸蔵体を不活性ガ
ス雰囲気にて保持するだけでは、活性化は不充分である
ことがわかる。以上より、不活性ガス処理における保持
温度を100℃以上とすれば、水素吸蔵・放出を3回繰
り返すことで80%以上の活性化が達成できることが確
認された。また、保持温度が高いほど活性化の程度が高
くなることも確認された。
First, focusing attention on the hydrogen storage bodies # 1 to # 5 having different holding temperatures in the inert gas treatment, it can be seen that the activation progresses by 70% or more in the first measurement. It can be seen that the higher the holding temperature, the higher the degree of activation. In particular, with the # 5 hydrogen storage material held at 500 ° C., the activation was 100% from the first measurement,
It can be seen that the activation is sufficient. The hydrogen storage body is gradually activated by storing and releasing hydrogen. Therefore, for example, the # 1 hydrogen storage material held at 200 ° C. was measured at the third measurement with # 4 hydrogen storage material held at 300 ° C.
In the second measurement, the hydrogen storage material of
It became 0%. On the other hand, the hydrogen storage bodies of # 23 and # 24 held at room temperature are both activated at a level of about 50 to 60%, which is low. That is, it is understood that the activation is insufficient only by holding the hydrogen storage body in the inert gas atmosphere. From the above, it was confirmed that when the holding temperature in the inert gas treatment is 100 ° C. or higher, 80% or higher activation can be achieved by repeating hydrogen storage / release 3 times. It was also confirmed that the higher the holding temperature, the higher the degree of activation.

【0049】次に、水素吸蔵体における多孔質炭素材料
の割合が異なる#1、#6、#7、#9の水素吸蔵体に
着目すると、#9の水素吸蔵体を除いた他の3種類の活
性化の程度は、1〜3回のいずれの測定においても同じ
値であることがわかる。そして、いずれも3回目の測定
で活性化が100%となった。一方、多孔質炭素材料を
含まない#9の水素吸蔵体は、多孔質炭素材料を含む他
の3種類の水素吸蔵体と比較して、活性化の程度がやや
低くなった。この結果から、多孔質炭素材料を含んで水
素吸蔵体とすることにより、水素吸蔵合金の活性化が促
進されることがわかる。また、活性化を促進するために
は、水素吸蔵体中に多孔質炭素材料が10重量%程度あ
ればよいことも確認できた。さらに、#8の水素吸蔵体
の活性化の程度も、上記#1、#6、#7の水素吸蔵体
と同じ値となった。つまり、多孔質炭素材料を含んだ状
態で活性化処理を行えば、その後に多孔質炭素材料を取
り除いて水素吸蔵体としたものであっても、水素吸蔵合
金の活性化の程度は変わらないことがわかる。
Next, focusing on the hydrogen absorbers # 1, # 6, # 7, and # 9 in which the proportion of the porous carbon material in the hydrogen absorber is different, three types other than the hydrogen absorber # 9 are excluded. It can be seen that the degree of activation of is the same value in any measurement of 1 to 3 times. And in each case, the activation was 100% in the third measurement. On the other hand, the # 9 hydrogen absorber containing no porous carbon material had a slightly lower degree of activation than the other three types of hydrogen absorber containing the porous carbon material. From this result, it is understood that the activation of the hydrogen storage alloy is promoted by including the porous carbon material in the hydrogen storage body. It was also confirmed that in order to accelerate the activation, it is sufficient that the hydrogen storage material contains about 10% by weight of the porous carbon material. Further, the degree of activation of the # 8 hydrogen absorber was also the same as that of the above # 1, # 6, and # 7 hydrogen absorbers. In other words, if the activation treatment is performed with the porous carbon material included, the degree of activation of the hydrogen storage alloy will not change even if the porous carbon material is removed to form a hydrogen storage material. I understand.

【0050】また、多孔質炭素材料の種類が異なる#
1、#10〜#12の水素吸蔵体に着目すると、比表面
積が1000m2/g以上である多孔質炭素材料を使用
した#1、#10の水素吸蔵体は、比表面積が小さい多
孔質炭素材料を使用した#11、#12の水素吸蔵体と
比較して、活性化の程度が高いことがわかる。このよう
に、比表面積が大きな多孔質炭素材料を使用すると、水
素吸蔵合金の表面に吸着した二酸化炭素や酸素等のガス
の吸着能が高い等の理由から、より活性化が促進される
と考えられる。さらに、水素吸蔵合金の種類が異なる#
1の水素吸蔵体と、#13の水素吸蔵体とを比較した場
合、TiFeを使用した#13の水素吸蔵体の活性化の
程度が若干低くなった。これは、水素吸蔵合金の種類に
より活性化のし易さが異なるためである。また、高圧圧
縮処理により成形した#14の水素吸蔵体における活性
化の程度は、粉末状である#1の水素吸蔵体と同じ値と
なった。これより、水素吸蔵体が粉末状であっても成形
体であっても活性化の程度は変わらないことがわかる。
Further, the types of porous carbon materials are different.
Focusing on the hydrogen absorbers # 1 and # 10 to # 12, the hydrogen absorbers # 1 and # 10 using the porous carbon material having a specific surface area of 1000 m 2 / g or more are porous carbon having a small specific surface area. It can be seen that the degree of activation is higher than that of the # 11 and # 12 hydrogen storage materials using the material. As described above, when a porous carbon material having a large specific surface area is used, it is considered that the activation is further promoted because the adsorption capacity of the gas such as carbon dioxide and oxygen adsorbed on the surface of the hydrogen storage alloy is high. To be In addition, different types of hydrogen storage alloy
When the hydrogen absorber of No. 1 and the hydrogen absorber of # 13 were compared, the degree of activation of the hydrogen absorber of # 13 using TiFe was slightly lower. This is because the ease of activation differs depending on the type of hydrogen storage alloy. The degree of activation of the # 14 hydrogen storage body molded by the high-pressure compression treatment was the same as that of the powdery # 1 hydrogen storage body. From this, it can be seen that the degree of activation does not change regardless of whether the hydrogen storage material is a powder or a molded product.

【0051】なお、#25の水素吸蔵体は、本発明の活
性化処理方法により活性化したものの、その活性化の程
度は極めて低い。その理由は、水素吸蔵量測定装置への
収容方法が、#1〜#14の水素吸蔵体と異なるからで
ある。#1〜#14の水素吸蔵体については、不活性ガ
ス処理の後、不活性ガス雰囲気にて水素吸蔵量測定装置
へ収容した。一方、#25の水素吸蔵体は、不活性ガス
処理の後大気中に1分間放置し、大気中で水素吸蔵体を
水素吸蔵量測定装置に収容した。したがって、水素吸蔵
体は、本発明の活性化処理により一旦活性化されたが、
その後大気中に置かれることにより、空気や水分等が水
素吸蔵合金の表面に吸着して、失活したと考えられる。
すなわち、本発明の活性化処理方法により活性化した水
素吸蔵体を、その高い活性化状態を維持したまま容器等
に収容するためには、不活性ガス雰囲気を維持すること
が必要であることが確認できた。
Although the # 25 hydrogen absorber was activated by the activation treatment method of the present invention, the degree of activation was extremely low. The reason is that the storage method in the hydrogen storage amount measuring device is different from that of the hydrogen storage bodies # 1 to # 14. The hydrogen storage bodies # 1 to # 14 were stored in the hydrogen storage amount measuring device in an inert gas atmosphere after the inert gas treatment. On the other hand, the # 25 hydrogen absorber was left in the atmosphere for 1 minute after being treated with an inert gas, and the hydrogen absorber was housed in the hydrogen storage amount measuring device in the atmosphere. Therefore, although the hydrogen storage material was once activated by the activation treatment of the present invention,
It is considered that when it is subsequently placed in the atmosphere, air, water and the like are adsorbed on the surface of the hydrogen storage alloy and deactivated.
That is, it is necessary to maintain an inert gas atmosphere in order to store the hydrogen storage material activated by the activation treatment method of the present invention in a container or the like while maintaining its high activation state. It could be confirmed.

【0052】[0052]

【発明の効果】本発明の水素吸蔵体の活性化処理方法で
は、水素吸蔵合金を含む水素吸蔵体を不活性ガス雰囲気
にて100℃以上の温度で保持することにより、水素吸
蔵合金の表面に吸着している酸素等を取り除き、水素吸
蔵合金表面の酸化物層を割れ易くする。したがって、従
来のような高温、水素加圧下での活性化処理を行わなく
ても、水素吸蔵合金を容易に活性化することができる。
また、本発明の水素貯蔵装置への収容方法では、上記本
発明の活性化処理方法における不活性ガス処理が施され
た水素吸蔵体を、不活性ガス雰囲気のまま水素貯蔵装置
へ収容する。活性化された水素吸蔵合金がそのまま水素
貯蔵装置へ収容されるため、水素貯蔵装置において従来
のような活性化処理を行う必要はない。このため、水素
貯蔵装置を小型化かつ軽量化することができる。さら
に、本発明の水素貯蔵装置は、上記本発明の活性化処理
方法における不活性ガス処理が施された水素吸蔵合金を
含む水素吸蔵体を貯蔵容器に収容したものである。水素
貯蔵装置において水素吸蔵合金の活性化を行う必要がな
いため、従来必要とされた加熱装置が不要となる。よっ
て、小型で軽量な水素貯蔵装置となる。
According to the method for activating the hydrogen storage alloy of the present invention, the hydrogen storage alloy containing the hydrogen storage alloy is held on the surface of the hydrogen storage alloy at a temperature of 100 ° C. or higher in an inert gas atmosphere. The adsorbed oxygen and the like are removed, and the oxide layer on the surface of the hydrogen storage alloy is easily cracked. Therefore, the hydrogen storage alloy can be easily activated without performing a conventional activation treatment under high temperature and hydrogen pressure.
Further, in the method for accommodating the hydrogen storage device according to the present invention, the hydrogen absorber subjected to the inert gas treatment in the activation treatment method according to the present invention is accommodated in the hydrogen storage device in an inert gas atmosphere. Since the activated hydrogen storage alloy is stored in the hydrogen storage device as it is, it is not necessary to perform activation treatment in the hydrogen storage device as in the conventional case. Therefore, the hydrogen storage device can be reduced in size and weight. Further, the hydrogen storage device of the present invention is one in which a hydrogen storage body containing a hydrogen storage alloy that has been subjected to the inert gas treatment in the activation treatment method of the present invention is stored in a storage container. Since it is not necessary to activate the hydrogen storage alloy in the hydrogen storage device, the heating device conventionally required becomes unnecessary. Therefore, the hydrogen storage device is small and lightweight.

フロントページの続き Fターム(参考) 3E072 EA10 4G066 AA02B AA04B AA10D BA26 CA38 FA18 FA34 FA37 GA14 4G140 AA02 AA22 AA36 AA43 AA48Continued front page    F-term (reference) 3E072 EA10                 4G066 AA02B AA04B AA10D BA26                       CA38 FA18 FA34 FA37 GA14                 4G140 AA02 AA22 AA36 AA43 AA48

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 水素吸蔵合金を含む水素吸蔵体を準備す
る水素吸蔵体準備工程と、 該水素吸蔵体を処理容器に収容し不活性ガス雰囲気にて
100℃以上の温度で保持する不活性ガス処理工程とを
含む水素吸蔵体の活性化処理方法。
1. A hydrogen storage body preparation step of preparing a hydrogen storage body containing a hydrogen storage alloy, and an inert gas for accommodating the hydrogen storage body in a processing container and holding the hydrogen storage body at a temperature of 100 ° C. or higher in an inert gas atmosphere. A method for activating a hydrogen storage body, the method including: a treatment step.
【請求項2】 前記水素吸蔵体は、多孔質炭素材料を含
む請求項1に記載の水素吸蔵体の活性化処理方法。
2. The method for activating a hydrogen storage body according to claim 1, wherein the hydrogen storage body contains a porous carbon material.
【請求項3】 前記多孔質炭素材料は比表面積が100
0m2/g以上である請求項2に記載の水素吸蔵体の活
性化処理方法。
3. The specific surface area of the porous carbon material is 100.
The method for activating the hydrogen storage material according to claim 2, wherein the method is 0 m 2 / g or more.
【請求項4】 前記水素吸蔵体における前記多孔質炭素
材料の含有割合は、5重量%以上50重量%である請求
項2に記載の水素吸蔵体の活性化処理方法。
4. The method for activating a hydrogen storage material according to claim 2, wherein a content ratio of the porous carbon material in the hydrogen storage material is 5% by weight or more and 50% by weight or more.
【請求項5】 前記水素吸蔵体は、前記水素吸蔵合金と
前記多孔質炭素材料とを結着する結着剤を含む請求項2
に記載の水素吸蔵体の活性化処理方法。
5. The hydrogen storage body contains a binder for binding the hydrogen storage alloy and the porous carbon material.
The method for activating the hydrogen storage material according to item 1.
【請求項6】 前記水素吸蔵体は、高圧圧縮処理するこ
とにより得られたものである請求項2に記載の水素吸蔵
体の活性化処理方法。
6. The method for activating the hydrogen storage body according to claim 2, wherein the hydrogen storage body is obtained by high-pressure compression treatment.
【請求項7】 前記水素吸蔵合金は、チタン系合金であ
る請求項1に記載の水素吸蔵体の活性化処理方法。
7. The activation treatment method for a hydrogen storage body according to claim 1, wherein the hydrogen storage alloy is a titanium alloy.
【請求項8】 水素吸蔵合金を含む水素吸蔵体を準備す
る水素吸蔵体準備工程と、 該水素吸蔵体を処理容器に収容し不活性ガス雰囲気にて
100℃以上の温度で保持する不活性ガス処理工程と、 不活性ガス処理を施した水素吸蔵体を不活性ガス雰囲気
のまま水素貯蔵装置へ収容する水素吸蔵体収容工程とを
含む水素吸蔵体の水素貯蔵装置への収容方法。
8. A hydrogen storage body preparation step for preparing a hydrogen storage body containing a hydrogen storage alloy, and an inert gas for accommodating the hydrogen storage body in a processing container and holding the hydrogen storage body at a temperature of 100 ° C. or higher in an inert gas atmosphere. A method for accommodating a hydrogen storage device in a hydrogen storage device, comprising: a treatment process; and a hydrogen storage device accommodation process in which the hydrogen storage device subjected to the inert gas treatment is stored in the hydrogen storage device in an inert gas atmosphere.
【請求項9】 貯蔵容器と、該貯蔵容器に収容された水
素吸蔵体とを含む水素貯蔵装置であって、 前記水素吸蔵体は、不活性ガス雰囲気にて100℃以上
の温度で保持された水素吸蔵合金を含むものである水素
貯蔵装置。
9. A hydrogen storage device comprising a storage container and a hydrogen storage material housed in the storage container, wherein the hydrogen storage material is held at a temperature of 100 ° C. or higher in an inert gas atmosphere. A hydrogen storage device including a hydrogen storage alloy.
JP2002091236A 2002-03-28 2002-03-28 Method of activating hydrogen absorbing body, method of housing hydrogen absorbing body in hydrogen storage apparatus and hydrogen storage apparatus Pending JP2003286001A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002091236A JP2003286001A (en) 2002-03-28 2002-03-28 Method of activating hydrogen absorbing body, method of housing hydrogen absorbing body in hydrogen storage apparatus and hydrogen storage apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002091236A JP2003286001A (en) 2002-03-28 2002-03-28 Method of activating hydrogen absorbing body, method of housing hydrogen absorbing body in hydrogen storage apparatus and hydrogen storage apparatus

Publications (1)

Publication Number Publication Date
JP2003286001A true JP2003286001A (en) 2003-10-07

Family

ID=29236373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002091236A Pending JP2003286001A (en) 2002-03-28 2002-03-28 Method of activating hydrogen absorbing body, method of housing hydrogen absorbing body in hydrogen storage apparatus and hydrogen storage apparatus

Country Status (1)

Country Link
JP (1) JP2003286001A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006218348A (en) * 2005-02-08 2006-08-24 Honda Motor Co Ltd Method of activating hydrogen adsorption material
WO2021187286A1 (en) * 2020-03-16 2021-09-23 三浦工業株式会社 Boiler
CN114440123A (en) * 2022-02-14 2022-05-06 有研工程技术研究院有限公司 Hydrogen storage bed body element for solid hydrogen storage tank

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006218348A (en) * 2005-02-08 2006-08-24 Honda Motor Co Ltd Method of activating hydrogen adsorption material
WO2021187286A1 (en) * 2020-03-16 2021-09-23 三浦工業株式会社 Boiler
US11326772B2 (en) 2020-03-16 2022-05-10 Miura Co., Ltd. Boiler with a heat generation body that stores hydrogen
CN114440123A (en) * 2022-02-14 2022-05-06 有研工程技术研究院有限公司 Hydrogen storage bed body element for solid hydrogen storage tank

Similar Documents

Publication Publication Date Title
EP1837385A2 (en) Process for Manufacture of a latent heat storage device
CN101066559A (en) Hydrogen storage powder and process for preparing the same
JP4986101B2 (en) Hydrogen storage material and method for producing the same
CN105779848A (en) Ferrotitanium-based hydrogen storage alloy
US7842275B2 (en) Hydrogen absorbing material, method for producing the same, and hydrogen storage container
JP2008266781A (en) METHOD FOR MANUFACTURING Mg-Al BASED HYDROGEN STORAGE ALLOY POWDER AND Mg-Al BASED HYDROGEN STORAGE ALLOY POWDER OBTAINED BY THE MANUFACTURING METHOD
JP4602926B2 (en) Method for producing alloy powder
JP2003286001A (en) Method of activating hydrogen absorbing body, method of housing hydrogen absorbing body in hydrogen storage apparatus and hydrogen storage apparatus
JP2008013375A (en) Composite material of hydride, and hydrogen storage material
WO2005080266A1 (en) Method for producing a reversible hydrogen storage medium with high storage capacity and ultrafast kinetics
JP2009011987A (en) Method for regenerating hydrogen storage material
US20090208406A1 (en) Low temperature activation of metal hydrides
JPH0244763B2 (en)
JP4823750B2 (en) Method for producing gas-adsorbing substance
JP2008239367A (en) Method for producing hydrogen storage material
JP2003047843A (en) Carbon material for hydrogen storage and method of producing the same
EP0749170A2 (en) Hydrogen occluding alloy and electrode made of the alloy
RU2542256C2 (en) Method of protecting powders of hydride-forming alloys for hydrogen storage, preventing passivation by air components and other gaseous media
JP2003277037A (en) Porous activated carbon for hydrogen storage and manufacturing method thereof
JP4124700B2 (en) Hydrogen storage alloy and hydrogen storage material
JP4417805B2 (en) Hydrogen storage alloy and hydrogen storage container
JP2003172499A (en) Hydrogen storage device
JP3862594B2 (en) Method for activating hydrogen storage material
JP2005126273A (en) Hydrogen storage material precursor and its manufacturing method
JPH0210210B2 (en)