JP2003285059A - Control method of ozone supply in water treatment using ozone oxidation and membrane filtration - Google Patents
Control method of ozone supply in water treatment using ozone oxidation and membrane filtrationInfo
- Publication number
- JP2003285059A JP2003285059A JP2002088934A JP2002088934A JP2003285059A JP 2003285059 A JP2003285059 A JP 2003285059A JP 2002088934 A JP2002088934 A JP 2002088934A JP 2002088934 A JP2002088934 A JP 2002088934A JP 2003285059 A JP2003285059 A JP 2003285059A
- Authority
- JP
- Japan
- Prior art keywords
- ozone
- membrane filtration
- treatment
- water
- concentration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Treatment Of Water By Oxidation Or Reduction (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、水中に含まれる汚
濁物質を分離除去するために行う、オゾン酸化及び膜ろ
過を利用した水処理におけるオゾンの供給制御方法に関
する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling ozone supply in water treatment using ozone oxidation and membrane filtration, which is carried out to separate and remove pollutants contained in water.
【0002】[0002]
【従来の技術】被処理水中の汚濁物質を除去する方法と
して、膜ろ過を利用した水処理方法がよく知られてい
る。この膜ろ過を用いた水処理においては、水処理運転
の継続に伴い、膜の表面に汚濁物質の付着層が生じ、目
詰まり、固形物による流路閉塞などのファウリングが起
こり、ろ過性能が低下する問題がある。そのため、安定
した処理水量が得られないか、もしくは安定した処理水
量を得るために膜の薬品洗浄頻度を上げなければならな
いという問題があった。2. Description of the Related Art As a method for removing pollutants in water to be treated, a water treatment method utilizing membrane filtration is well known. In the water treatment using this membrane filtration, as the water treatment operation is continued, an adhered layer of pollutants is generated on the surface of the membrane, clogging, fouling such as flow path clogging due to solid matter occurs, and filtration performance is improved. There is a problem of decline. Therefore, there is a problem that a stable amount of treated water cannot be obtained, or the frequency of chemical cleaning of the membrane must be increased in order to obtain a stable amount of treated water.
【0003】近年、上記の膜処理性能低下を防止するた
めに、膜ろ過処理の前段でオゾン酸化処理を実施し、膜
面上にオゾンを残留させてろ過する水処理方法が提案さ
れている。この方法によれば、膜面上にオゾンが残留す
ることにより、膜及び膜への付着物質をオゾンにより酸
化除去することが可能となり、膜性能の低下を防止する
ことができる。In recent years, in order to prevent the above-mentioned deterioration of the membrane treatment performance, a water treatment method has been proposed in which ozone oxidation treatment is carried out before the membrane filtration treatment and ozone is left on the membrane surface for filtration. According to this method, since ozone remains on the film surface, it is possible to oxidize and remove the film and the substances attached to the film by ozone, and it is possible to prevent deterioration of the film performance.
【0004】しかしながら、上記のようなオゾン酸化及
び膜ろ過を利用した水処理方法においては、膜ろ過水中
の溶存オゾン濃度を所定値に制御することが困難である
ために、変動がある際にも、目標以上の溶存オゾン濃度
となるように過剰にオゾンを入れることが必要であった
ため、オゾンの有効利用の観点からすれば、オゾン供給
量をできるだけ削減することが望まれていた。However, in the above-mentioned water treatment method utilizing ozone oxidation and membrane filtration, it is difficult to control the concentration of dissolved ozone in the membrane filtration water to a predetermined value, and therefore even when there is a fluctuation. Since it was necessary to add an excessive amount of ozone so that the concentration of dissolved ozone exceeds the target, it was desired to reduce the ozone supply amount as much as possible from the viewpoint of effective use of ozone.
【0005】これに対し、特開2000−107777
号公報には、オゾン供給量削減を図る水処理方法とし
て、膜ろ過水中の溶存オゾン濃度を連続的に測定し、そ
の測定値に基づいて、膜ろ過処理水中の溶存オゾン濃度
が所定範囲内となるようにオゾン供給量を制御する方法
が開示されている。On the other hand, Japanese Patent Laid-Open No. 2000-107777.
In the publication, as a water treatment method for reducing the ozone supply amount, the dissolved ozone concentration in the membrane-filtered water is continuously measured, and the dissolved ozone concentration in the membrane-filtered water falls within a predetermined range based on the measured value. A method of controlling the ozone supply amount so as to achieve the above is disclosed.
【0006】[0006]
【発明が解決しようとする課題】特開2000−107
777号公報に記載された方法においては、溶存オゾン
濃度を監視してその時点のオゾン供給量を制御しようと
している。しかし、実際にはオゾン供給量の増減や、そ
れに伴う溶存オゾン濃度の変化の応答速度が遅く、タイ
ムラグがあり、また、逆洗や空気洗浄時のろ過水が溶存
オゾン濃度検出器に流れてこない時間の対応や、物理洗
浄による膜汚染の回復による溶存オゾン濃度の急激な変
化への対応もなされないために、オゾン濃度を一定に保
つことが難しく、オゾンを過剰に注入してしまう傾向が
あった。DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
In the method described in Japanese Patent No. 777, the dissolved ozone concentration is monitored to control the ozone supply amount at that time. However, in reality, the response speed of the ozone supply amount change and the change of the dissolved ozone concentration accompanying it is slow, there is a time lag, and the filtered water at the time of backwashing and air washing does not flow to the dissolved ozone concentration detector. It is difficult to keep the ozone concentration constant because it is difficult to keep the ozone concentration constant due to the lack of time and the sudden change of the dissolved ozone concentration due to the recovery of the film contamination by the physical cleaning. It was
【0007】本発明は、上記従来技術の問題点に鑑みて
なされたもので、必要最小限のオゾン供給量により、ろ
過性能が低下することなく安定した水処理が実現可能な
オゾン酸化及び膜ろ過を利用した水処理におけるオゾン
の供給制御方法を提供することを目的とする。The present invention has been made in view of the above-mentioned problems of the prior art, and ozone oxidation and membrane filtration capable of realizing stable water treatment without deteriorating the filtration performance by a necessary minimum ozone supply amount. It is an object of the present invention to provide a method for controlling ozone supply in water treatment using water.
【0008】[0008]
【課題を解決するための手段】すなわち、本発明は、被
処理水をオゾン酸化処理した後、膜ろ過処理を行い、更
に所定の膜ろ過処理時間毎にろ過膜の洗浄を行うことを
1サイクルとし、膜ろ過処理水中の溶存オゾン濃度を測
定し、この測定値に基づいて、膜ろ過処理水中の溶存オ
ゾン濃度が所定範囲内となるように、オゾン供給量を制
御するオゾン酸化及び膜ろ過を利用した水処理における
オゾンの供給制御方法において、前記1サイクルの膜ろ
過処理開始後、所定時間毎に膜ろ過処理水中の溶存オゾ
ン濃度を測定し、この測定値と所定の溶存オゾン濃度目
標値との差に基づいて、次のサイクルの膜ろ過処理開始
後の所定時間毎におけるオゾン供給量の増減量を予め設
定し、次のサイクルの膜ろ過処理開始後から所定時間毎
におけるオゾン供給量を、前記増減量によって補正した
値になるように制御することを特徴とするオゾン酸化及
び膜ろ過を利用した水処理におけるオゾンの供給制御方
法を提供するものである。That is, according to the present invention, after subjecting the water to be treated to ozone oxidation, a membrane filtration treatment is carried out, and further, the filtration membrane is washed at a predetermined membrane filtration treatment time for one cycle. Then, the dissolved ozone concentration in the membrane filtration treated water is measured, and based on this measured value, ozone oxidation and membrane filtration for controlling the ozone supply amount are performed so that the dissolved ozone concentration in the membrane filtration treated water is within a predetermined range. In the ozone supply control method for water treatment used, the dissolved ozone concentration in the membrane-filtered water is measured every predetermined time after the start of the one-cycle membrane filtration process, and the measured value and the predetermined dissolved ozone concentration target value are used. Based on the difference between the two values, the increase / decrease amount of the ozone supply amount for each predetermined time after the start of the membrane filtration process of the next cycle is set in advance, and the ozone supply for the predetermined time after the start of the membrane filtration process of the next cycle is set. Amounts, there is provided a supply control method of the ozone in the water treatment using ozone oxidation and membrane filtration, wherein the controller controls such that a value obtained by correcting the increment or decrement.
【0009】本発明によれば、溶存オゾン濃度を監視し
てその時点のオゾン供給量を制御するのではなく、1サ
イクルにおける所定時間毎の溶存オゾン濃度を測定し、
その値に基づいて次のサイクルにおける所定時間毎のオ
ゾン供給量を制御することにより、応答速度が遅いこと
によるタイムラグや、物理洗浄による溶存オゾン濃度の
急激な変化などの影響を受けることなく、溶存オゾン濃
度をより一定にすることが可能となり、必要最小限のオ
ゾン供給量で膜の目詰まりを防止して、ろ過性能を低下
させることなく、安定した水処理を行うことができる。According to the present invention, the dissolved ozone concentration is not monitored and the ozone supply amount at that time is controlled, but the dissolved ozone concentration is measured every predetermined time in one cycle,
By controlling the ozone supply amount for each predetermined time in the next cycle based on that value, the dissolved time is not affected by the time lag due to the slow response speed and the rapid change in dissolved ozone concentration due to physical cleaning. It is possible to make the ozone concentration more constant, prevent clogging of the membrane with the minimum required ozone supply amount, and perform stable water treatment without lowering the filtration performance.
【0010】本発明においては、前記所定時間毎の各点
間におけるオゾン供給量が直線的もしくは段階的に増減
するように制御することが好ましい。これによれば、所
定時間毎の各点間におけるオゾン供給量も、より好まし
い濃度になるように制御されるので、オゾン消費量をよ
り節約しながら、溶存オゾン濃度をより一定にすること
ができる。In the present invention, it is preferable to control so that the ozone supply amount between the points at the predetermined time intervals increases or decreases linearly or stepwise. According to this, since the ozone supply amount between each point for each predetermined time is also controlled to be a more preferable concentration, it is possible to make the dissolved ozone concentration more constant while further saving the ozone consumption amount. .
【0011】なお、本発明において、前記オゾン供給量
は、オゾンガスの流量又はオゾンガスの濃度によって調
整することができる。In the present invention, the ozone supply amount can be adjusted by the flow rate of ozone gas or the concentration of ozone gas.
【0012】[0012]
【発明の実施の形態】本発明において、オゾン供給量の
制御は、一般的にはオゾン流量を一定としておき、供給
オゾン濃度を変化させ、膜ろ過水中の溶存オゾン濃度が
所定値になるように制御するのが容易であるが、同じ濃
度のオゾンの供給量を変えることにより制御することも
有効である。また、オゾンは、一般的には、オゾンガス
として供給することが好ましい。BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, the control of the ozone supply amount is generally performed by keeping the ozone flow rate constant and changing the supplied ozone concentration so that the dissolved ozone concentration in the membrane filtration water becomes a predetermined value. It is easy to control, but it is also effective to control by changing the supply amount of ozone of the same concentration. In addition, it is generally preferable to supply ozone as ozone gas.
【0013】本発明においては、1サイクルの膜ろ過処
理開始後の所定時間毎における膜ろ過処理水中の溶存オ
ゾン濃度を測定し、一般的にはこの測定値と所定の溶存
オゾン濃度目標値との差に基づいて、次のサイクルの膜
ろ過処理開始後の所定時間毎におけるオゾン供給量の増
減量を予め設定する。In the present invention, the dissolved ozone concentration in the membrane filtration treated water is measured every predetermined time after the start of one cycle of the membrane filtration treatment. Generally, the measured value and the predetermined dissolved ozone concentration target value are Based on the difference, the increase / decrease amount of the ozone supply amount for each predetermined time after the start of the membrane filtration process in the next cycle is set in advance.
【0014】また、本発明においては、所定時間毎の各
点間におけるオゾン供給量が直線的もしくは段階的に増
減するように制御することが好ましい。すなわち、本発
明は、1サイクルの中で、所定時間毎に何点か設定して
オゾンの供給を制御するものであるが、各時点でオゾン
供給量を制御するだけでなく、それらの間の時間におい
てもより適切な供給量に制御することが望まれる。Further, in the present invention, it is preferable to control so that the ozone supply amount between each point for every predetermined time increases or decreases linearly or stepwise. That is, in the present invention, the ozone supply is controlled by setting some points every predetermined time in one cycle. However, not only the ozone supply amount is controlled at each time point but also the ozone supply amount between them is controlled. It is desirable to control the supply amount more appropriately in terms of time.
【0015】この方法の一つとして、その間のオゾン供
給量を直線的に増減して制御する方法があり、各時点間
(例えば、膜ろ過処理開始5分後と10分後を各時点と
したとき、この間の5分間)を単純に直線的な形で増減
するように制御する。また、もう一つの方法として、そ
の間のオゾン供給量を段階的に増減して制御する方法で
あってもよく、例えば、上記5分間を1分毎に差分の2
0%ずつ増減するように制御する。As one of the methods, there is a method in which the ozone supply amount during that period is linearly increased and decreased to be controlled, and each time point (for example, 5 minutes and 10 minutes after the start of the membrane filtration treatment is set as each time point). At this time, the control is performed so as to increase / decrease in a linear manner for 5 minutes during this time. Further, as another method, a method of controlling the ozone supply amount during that time by increasing or decreasing in stages may be used.
It is controlled to increase or decrease by 0%.
【0016】また、本発明において、オゾン供給量の増
減量を予め設定するに際しては、前のサイクルの所定経
過時間におけるオゾン供給量に対する、次のサイクルの
対応する経過時間におけるオゾン供給量の増減倍率
(%)として設定しておくのが便利である。したがっ
て、次のサイクルの膜ろ過処理開始後から所定時間にお
けるオゾン供給量が、その前の1サイクルの膜ろ過処理
開始後の所定時間のオゾン供給量に前記増減倍率(%)
を乗じた値になるように制御することが好ましい。Further, in the present invention, when setting the increase / decrease amount of the ozone supply amount in advance, the increase / decrease ratio of the ozone supply amount at the corresponding elapsed time of the next cycle with respect to the ozone supply amount at the predetermined elapsed time of the previous cycle. It is convenient to set it as (%). Therefore, the increase / decrease rate (%) of the ozone supply amount in the predetermined time after the start of the membrane filtration process in the next cycle is the ozone supply amount in the predetermined time after the start of the membrane filtration process in the previous cycle.
It is preferable to control so as to obtain a value obtained by multiplying by.
【0017】以下、図1に基づき、本発明の一実施形態
を挙げて更に詳しく説明する。図1には、本発明の一実
施形態によるシステム系統が示されている。図1におい
て、原水運転タンク1に流入した被処理水としての原水
は、原水ポンプ2により、膜ろ過処理装置としての膜モ
ジュール4に供給される。この供給ライン上で、オゾン
発生器8において生成したオゾンガスを、スタティック
ミキサー3を介して原水中に溶解させる。オゾンが溶解
した原水は、膜モジュール4において膜ろ過処理され、
ろ過水タンク7に給水される。Hereinafter, one embodiment of the present invention will be described in more detail with reference to FIG. FIG. 1 shows a system system according to an embodiment of the present invention. In FIG. 1, raw water as raw water to be treated which has flowed into the raw water operation tank 1 is supplied by a raw water pump 2 to a membrane module 4 as a membrane filtration treatment device. On this supply line, the ozone gas generated in the ozone generator 8 is dissolved in the raw water via the static mixer 3. Raw water in which ozone is dissolved is subjected to membrane filtration in the membrane module 4,
Water is supplied to the filtered water tank 7.
【0018】このライン上に、溶存オゾン濃度計5を設
け、膜ろ過水中の溶存オゾン濃度を測定する。なお、ろ
過水タンク7の処理水は、活性炭処理や、必要に応じて
後オゾン処理などの次工程へ給水される。A dissolved ozone concentration meter 5 is provided on this line to measure the dissolved ozone concentration in the membrane-filtered water. The treated water in the filtered water tank 7 is supplied to the next process such as activated carbon treatment and, if necessary, post ozone treatment.
【0019】膜ろ過処理装置の運転は、例えば、電磁流
量計6からの信号により原水運転ポンプ2を制御して定
流量ろ過とする。また、1サイクルのろ過時間を例えば
20分とし、20分毎に逆洗ポンプ9を駆動して逆洗し
た後、コンプレッサー10を駆動して空気洗浄を行い、
その後原水ポンプ2を駆動してフラッシングを行う。For the operation of the membrane filtration treatment apparatus, for example, the raw water operation pump 2 is controlled by a signal from the electromagnetic flow meter 6 to perform constant flow rate filtration. Further, the filtration time for one cycle is set to, for example, 20 minutes, the backwash pump 9 is driven every 20 minutes for backwashing, and then the compressor 10 is driven for air washing.
After that, the raw water pump 2 is driven to perform flushing.
【0020】膜ろ過水中の溶存オゾン濃度を溶存オゾン
濃度計5により測定し、測定結果を供給オゾン濃度制御
装置11に送り、この制御装置11からの出力信号によ
り、オゾン発生器8からのオゾン供給量を制御する。通
常、オゾン発生器8からのガス流量は一定で、この場合
には供給オゾン濃度を変化させ、膜ろ過水中の溶存オゾ
ン濃度が所定値になるように制御する。The dissolved ozone concentration in the membrane-filtered water is measured by the dissolved ozone concentration meter 5, the measurement result is sent to the supply ozone concentration control device 11, and the output signal from this control device 11 causes the ozone supply from the ozone generator 8. Control the amount. Normally, the gas flow rate from the ozone generator 8 is constant, and in this case, the supplied ozone concentration is changed so that the dissolved ozone concentration in the membrane filtration water is controlled to a predetermined value.
【0021】なお、本発明において、オゾン供給量の増
減量は、例えば前回の出力値を基準とした増減倍率
(%)で表したとき、通常100%前後で十分である。
その理由は、余程の急激な変動がない限り、前回の出力
値とあまり変動させる必要はないからである。In the present invention, the amount of increase / decrease in the ozone supply amount is usually about 100% when expressed in terms of the increase / decrease ratio (%) based on the previous output value.
The reason is that it is not necessary to change the output value from the previous value so much, unless there is a drastic change.
【0022】また、本発明において、被処理水をオゾン
処理した後、膜ろ過処理を行い、更に所定の膜ろ過処理
時間毎にろ過膜の洗浄を行う1サイクルにかける時間
は、通常15分〜60分であることが好ましく、洗浄は
およそ2分程度、あるいはそれ以下でも可能である。Further, in the present invention, after subjecting the water to be treated to ozone treatment, a membrane filtration treatment is carried out, and one cycle of washing the filtration membrane at a predetermined membrane filtration treatment time is usually 15 minutes to It is preferably 60 minutes, and the washing can be performed for about 2 minutes or less.
【0023】更に、本発明では、上記1サイクルにおけ
る膜ろ過処理開始後の所定時間を何点か設定するのであ
るが、設定点が多いほど制御自体は厳密にはなるが、制
御機器のメモリ容量やコストの問題なども総合的に考慮
すれば、3〜7分程度に1点位とすることが、制御も容
易でかつ実用的であり好ましい。Further, in the present invention, some points are set as the predetermined time after the start of the membrane filtration process in the above-mentioned one cycle. However, the more the set points are, the stricter the control itself becomes, but the memory capacity of the control device is increased. In consideration of the problem of cost and cost, it is preferable to set the score to about 1 point in about 3 to 7 minutes because the control is easy and practical.
【0024】[0024]
【実施例】図2に、本発明の一実施例における制御時の
溶存オゾン濃度及び供給オゾン濃度の経時変化を示す。
この実施例においては、膜ろ過水中の溶存オゾン濃度の
目標値を0.5mg/リットルとして運転している。ま
た、1サイクルのろ過時間を20分とし、20分毎に図
2の矢印Pで示すように逆洗、空気洗浄及びフラッシン
グを行っている。EXAMPLE FIG. 2 shows changes with time in dissolved ozone concentration and supply ozone concentration during control in one example of the present invention.
In this example, the target value of the dissolved ozone concentration in the membrane-filtered water is set to 0.5 mg / liter. Further, the filtration time for one cycle is set to 20 minutes, and the backwashing, the air washing, and the flushing are performed every 20 minutes as shown by an arrow P in FIG.
【0025】図2の実施例の制御方法について以下に述
べる。まず、1サイクル20分の膜ろ過処理開始5分
後、10分後、15分後、20分後に、供給オゾン濃度
制御装置11に、溶存オゾン濃度計5により測定された
それぞれの溶存オゾン濃度値を取り込む。この値に基づ
いて、次のサイクルの膜ろ過処理開始5分後、10分
後、15分後、20分後におけるオゾン発生器8の出力
値を設定する。すなわち、前のサイクルの供給オゾン濃
度を基準にして、それに対して何%増減するかを決定す
る。The control method of the embodiment shown in FIG. 2 will be described below. First, after 5 minutes, 10 minutes, 15 minutes, and 20 minutes after the start of the membrane filtration treatment for 20 minutes in one cycle, each of the dissolved ozone concentration values measured by the dissolved ozone concentration meter 5 in the supply ozone concentration control device 11 was measured. Take in. Based on this value, the output value of the ozone generator 8 after 5 minutes, 10 minutes, 15 minutes, and 20 minutes after the start of the membrane filtration process in the next cycle is set. That is, based on the supply ozone concentration in the previous cycle, it is determined how much to increase / decrease.
【0026】なお、これらの各点間における供給オゾン
濃度に関しては、それぞれの供給オゾン濃度が直線的に
増減するように制御している。ここで、その増減倍率
(%)は、膜ろ過水中の溶存オゾン濃度により、処理プ
ラントに応じてあらかじめ設定しておき、例えば下記表
1に示すような増減率とする。The supply ozone concentration between these points is controlled so that the supply ozone concentration increases or decreases linearly. Here, the increase / decrease rate (%) is set in advance according to the treatment plant depending on the concentration of dissolved ozone in the membrane filtration water, and for example, an increase / decrease rate as shown in Table 1 below.
【0027】[0027]
【表1】 [Table 1]
【0028】表1によれば、溶存オゾン濃度を、その目
標値0.5mg/リットルの前後に6段階に分け、供給
オゾン濃度の前回の出力値を基準とした増減倍率(%)
を設定している。なお、溶存オゾン濃度の測定値と所定
の溶存オゾン濃度目標値との差は、表1の溶存オゾン濃
度の値から目標値0.5mg/リットルを差し引いた値
となる。According to Table 1, the dissolved ozone concentration is divided into 6 stages before and after the target value of 0.5 mg / liter, and the increase / decrease rate (%) based on the previous output value of the supplied ozone concentration.
Is set. In addition, the difference between the measured value of the dissolved ozone concentration and the predetermined target value of the dissolved ozone concentration is a value obtained by subtracting the target value of 0.5 mg / liter from the value of the dissolved ozone concentration in Table 1.
【0029】表1によれば、例えば、n回目の膜ろ過処
理開始5分後の膜ろ過水中の溶存オゾン濃度値が0.5
48mg/リットルであったとすると、次のサイクルの
膜ろ過処理開始5分後における供給オゾン濃度は、前回
の供給オゾン濃度の98%になるように、オゾン発生器
8の出力(供給オゾン濃度)を制御する。According to Table 1, for example, the dissolved ozone concentration value in the membrane filtration water 5 minutes after the start of the nth membrane filtration treatment is 0.5.
If it is 48 mg / liter, the output (supply ozone concentration) of the ozone generator 8 is adjusted so that the supply ozone concentration 5 minutes after the start of the membrane filtration process in the next cycle becomes 98% of the previous supply ozone concentration. Control.
【0030】同様にして、膜ろ過処理開始10分後、1
5分後、20分後においても同様の制御をすることによ
り、常に膜面上に所定量のオゾンが残留して膜の汚染を
防止でき、過剰なオゾン注入を避けることが可能とな
る。Similarly, 10 minutes after the start of the membrane filtration treatment, 1
By performing the same control after 5 minutes and 20 minutes, a predetermined amount of ozone is always left on the film surface, so that the film can be prevented from being contaminated and excessive ozone injection can be avoided.
【0031】図2において、−■−は供給オゾン濃度の
制御による変化を示し、●はそれによって変動した溶存
オゾン濃度を示している。このように、前のサイクルの
所定時間毎の溶存オゾンガス濃度を測定し、その測定値
に基づいて、次のサイクルの所定時間毎の供給オゾン濃
度を制御することにより、溶存オゾン濃度をほぼ一定に
保つことができる。In FIG. 2,-(-)-indicates the change due to control of the supplied ozone concentration, and-indicates the dissolved ozone concentration varied thereby. Thus, by measuring the dissolved ozone gas concentration for each predetermined time in the previous cycle and controlling the supplied ozone concentration for each predetermined time in the next cycle based on the measured value, the dissolved ozone concentration is made almost constant. Can be kept.
【0032】[0032]
【発明の効果】以上説明したように、本発明によれば、
被処理水をオゾン酸化処理した後、膜ろ過処理を行い、
更に所定の膜ろ過処理時間毎にろ過膜の洗浄を行うこと
を1サイクルとし、膜ろ過処理水中の溶存オゾン濃度を
測定し、この測定値に基づいて、膜ろ過処理水中の溶存
オゾン濃度が所定範囲内となるように、オゾン供給量を
制御するオゾン酸化及び膜ろ過を利用した水処理におけ
るオゾンの供給制御方法において、1サイクルにおける
所定時間毎の溶存オゾン濃度を測定し、その値に基づい
て次のサイクルにおける所定時間毎のオゾン供給量を制
御することにより、応答速度が遅いことによるタイムラ
グや、物理洗浄による溶存オゾン濃度の急激な変化など
の影響を受けることなく、溶存オゾン濃度をより一定に
することが可能となり、必要最小限のオゾン供給量で膜
の目詰まりを防止して、ろ過性能を低下させることな
く、安定した水処理を行うことができ、過剰なオゾン注
入を避けることが可能となって、運転コストの低減が図
れる。As described above, according to the present invention,
After subjecting the water to be treated to ozone oxidation, membrane filtration is performed,
Further, washing the filtration membrane at every predetermined membrane filtration treatment time is set as one cycle, the dissolved ozone concentration in the membrane filtration treated water is measured, and the dissolved ozone concentration in the membrane filtration treated water is determined based on the measured value. In the ozone supply control method in the water treatment using ozone oxidation and membrane filtration to control the ozone supply amount so that it is within the range, the dissolved ozone concentration is measured every predetermined time in one cycle, and based on the value By controlling the amount of ozone supply for each predetermined time in the next cycle, the dissolved ozone concentration can be kept more constant without being affected by the time lag due to the slow response speed and the rapid change in the dissolved ozone concentration due to physical cleaning. It is possible to prevent water from clogging the membrane with the minimum required ozone supply, and to achieve stable water treatment without lowering filtration performance. Can be done, it is possible to avoid excessive ozone injection, it can be reduced operating costs.
【図1】 本発明の一実施形態によるシステム系統を示
す説明図である。FIG. 1 is an explanatory diagram showing a system system according to an embodiment of the present invention.
【図2】 本発明の一実施例による溶存オゾン濃度及び
供給オゾン濃度の経時変化を示す説明図である。FIG. 2 is an explanatory diagram showing changes over time in dissolved ozone concentration and supply ozone concentration according to an embodiment of the present invention.
1:原水タンク 2:原水運転ポンプ 3:スタティックミキサー 4:膜モジュール 5:溶存オゾン濃度計 6:電磁流量計 7:ろ過水タンク 8:オゾン発生器 9:逆洗ポンプ 10:コンプレッサー 11:供給オゾン濃度制御装置 1: Raw water tank 2: Raw water operation pump 3: Static mixer 4: Membrane module 5: Dissolved ozone concentration meter 6: Electromagnetic flow meter 7: Filtered water tank 8: Ozone generator 9: Backwash pump 10: Compressor 11: Supply ozone concentration control device
───────────────────────────────────────────────────── フロントページの続き (71)出願人 000005234 富士電機株式会社 神奈川県川崎市川崎区田辺新田1番1号 (72)発明者 須田 昇一 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 峯岸 寅太郎 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 森 吉彦 静岡県富士市鮫島2−1 旭化成株式会社 内 (72)発明者 橋野 昌年 静岡県富士市鮫島2−1 旭化成株式会社 内 (72)発明者 磯村 欽三 東京都港区虎ノ門一丁目1番3号 磯村豊 水機工株式会社内 (72)発明者 中谷 健治 東京都港区虎ノ門一丁目1番3号 磯村豊 水機工株式会社内 (72)発明者 角川 功明 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 (72)発明者 高橋 和孝 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 Fターム(参考) 4D006 GA02 JA53A JA64A KA02 KA33 KB30 KC02 KC03 KC13 KC14 KD21 KE02P KE02Q PA01 PB02 4D050 AA01 BB02 BD03 BD06 BD08 CA09 ─────────────────────────────────────────────────── ─── Continued front page (71) Applicant 000005234 Fuji Electric Co., Ltd. 1-1 Tanabe Nitta, Kawasaki-ku, Kawasaki-shi, Kanagawa (72) Inventor Shoichi Suda 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Main Steel Pipe Co., Ltd. (72) Inventor Torataro Minegishi 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Main Steel Pipe Co., Ltd. (72) Inventor Yoshihiko Mori Asahi Kasei Corporation 2-1 Samejima, Fuji City, Shizuoka Prefecture Within (72) Inventor Masatoshi Hashino Asahi Kasei Corporation 2-1 Samejima, Fuji City, Shizuoka Prefecture Within (72) Inventor Kinzo Isomura 1-3-1 Toranomon, Minato-ku, Tokyo Yutaka Isomura Mizukiko Co., Ltd. (72) Inventor Kenji Nakatani 1-3-1 Toranomon, Minato-ku, Tokyo Yutaka Isomura Mizukiko Co., Ltd. (72) Inventor Noriaki Kadokawa 1-1 Tanabe Nitta, Kawasaki-ku, Kawasaki-shi, Kanagawa Within Fuji Electric Co., Ltd. (72) Inventor Kazutaka Takahashi 1-1 Tanabe Nitta, Kawasaki-ku, Kawasaki-shi, Kanagawa Within Fuji Electric Co., Ltd. F-term (reference) 4D006 GA02 JA53A JA64A KA02 KA33 KB30 KC02 KC03 KC13 KC14 KD21 KE02P KE02Q PA01 PB02 4D050 AA01 BB02 BD03 BD06 BD08 CA09
Claims (3)
過処理を行い、更に所定の膜ろ過処理時間毎にろ過膜の
洗浄を行うことを1サイクルとし、膜ろ過処理水中の溶
存オゾン濃度を測定し、この測定値に基づいて、膜ろ過
処理水中の溶存オゾン濃度が所定範囲内となるように、
オゾン供給量を制御するオゾン酸化及び膜ろ過を利用し
た水処理におけるオゾンの供給制御方法において、 前記1サイクルの膜ろ過処理開始後、所定時間毎に膜ろ
過処理水中の溶存オゾン濃度を測定し、 この測定値と所定の溶存オゾン濃度目標値との差に基づ
いて、次のサイクルの膜ろ過処理開始後の所定時間毎に
おけるオゾン供給量の増減量を予め設定し、 次のサイクルの膜ろ過処理開始後から所定時間毎におけ
るオゾン供給量を、前記増減量によって補正した値にな
るように制御することを特徴とするオゾン酸化及び膜ろ
過を利用した水処理におけるオゾンの供給制御方法。1. Dissolved ozone concentration in water subjected to membrane filtration treatment is defined as one cycle in which treated water is subjected to ozone oxidation treatment, then membrane filtration treatment is carried out, and the filtration membrane is further washed at predetermined membrane filtration treatment times. Is measured, based on this measurement value, so that the concentration of dissolved ozone in the membrane filtration treated water is within a predetermined range,
In the ozone supply control method in water treatment using ozone oxidation and membrane filtration for controlling ozone supply amount, after starting the membrane filtration treatment of the one cycle, the dissolved ozone concentration in the membrane filtration treated water is measured every predetermined time, Based on the difference between this measured value and the predetermined dissolved ozone concentration target value, the increase / decrease amount of the ozone supply amount for each predetermined time after the start of the membrane filtration process of the next cycle is set in advance, and the membrane filtration process of the next cycle is performed. A method for controlling ozone supply in water treatment using ozone oxidation and membrane filtration, which comprises controlling an ozone supply amount at a predetermined time interval from the start to a value corrected by the increase / decrease amount.
供給量が直線的もしくは段階的に増減するように制御す
る請求項1記載のオゾン酸化及び膜ろ過を利用した水処
理におけるオゾンの供給制御方法。2. The ozone supply control in water treatment using ozone oxidation and membrane filtration according to claim 1, wherein the ozone supply amount between each point at each predetermined time is controlled so as to increase or decrease linearly or stepwise. Method.
又はオゾンガスの濃度によって調整する請求項1又は2
記載のオゾンの供給制御方法。3. The ozone supply amount is adjusted by the flow rate of ozone gas or the concentration of ozone gas.
The ozone supply control method described above.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002088934A JP2003285059A (en) | 2002-03-27 | 2002-03-27 | Control method of ozone supply in water treatment using ozone oxidation and membrane filtration |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002088934A JP2003285059A (en) | 2002-03-27 | 2002-03-27 | Control method of ozone supply in water treatment using ozone oxidation and membrane filtration |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2003285059A true JP2003285059A (en) | 2003-10-07 |
Family
ID=29234657
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002088934A Pending JP2003285059A (en) | 2002-03-27 | 2002-03-27 | Control method of ozone supply in water treatment using ozone oxidation and membrane filtration |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2003285059A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008015939A1 (en) | 2006-08-01 | 2008-02-07 | Metawater Co., Ltd. | Method of reutilizing wastewater |
JP2015024409A (en) * | 2009-03-27 | 2015-02-05 | メタウォーター株式会社 | Reclaimed water production method and reclaimed water production system |
CN104817218A (en) * | 2015-04-17 | 2015-08-05 | 北京建筑大学 | Ozone pre-oxidation water treatment method |
WO2016049675A1 (en) * | 2014-10-01 | 2016-04-07 | Deltacore Gmbh | Device and method for filtering water |
KR20220086020A (en) | 2020-12-16 | 2022-06-23 | 한국건설기술연구원 | Bidirectional water treatment equipment of integrated type using ceramic membrane and ozone oxidation reaction, and water treatment method for the same |
RU2794657C1 (en) * | 2022-07-13 | 2023-04-24 | Общество С Ограниченной Ответственностью "Керамикфильтр" | Filtration ozone-membrane system for water purification and disinfection |
-
2002
- 2002-03-27 JP JP2002088934A patent/JP2003285059A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008015939A1 (en) | 2006-08-01 | 2008-02-07 | Metawater Co., Ltd. | Method of reutilizing wastewater |
JP2015024409A (en) * | 2009-03-27 | 2015-02-05 | メタウォーター株式会社 | Reclaimed water production method and reclaimed water production system |
US9028695B2 (en) | 2009-03-27 | 2015-05-12 | Metawater Co., Ltd. | Process for producing reclaimed water and system for producing reclaimed water |
WO2016049675A1 (en) * | 2014-10-01 | 2016-04-07 | Deltacore Gmbh | Device and method for filtering water |
AT516359B1 (en) * | 2014-10-01 | 2021-06-15 | Deltacore Gmbh | Device for the filtration of water with a filter arrangement |
CN104817218A (en) * | 2015-04-17 | 2015-08-05 | 北京建筑大学 | Ozone pre-oxidation water treatment method |
KR20220086020A (en) | 2020-12-16 | 2022-06-23 | 한국건설기술연구원 | Bidirectional water treatment equipment of integrated type using ceramic membrane and ozone oxidation reaction, and water treatment method for the same |
RU2794657C1 (en) * | 2022-07-13 | 2023-04-24 | Общество С Ограниченной Ответственностью "Керамикфильтр" | Filtration ozone-membrane system for water purification and disinfection |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20070084795A1 (en) | Method and system for treating wastewater | |
RU2015143998A (en) | METHOD AND APPARATUS FOR MAXIMUM REMOVAL OF NITROGEN FROM WASTE WATER | |
JP2003334433A (en) | Continuous dissolving device, continuous dissolving method and apparatus for supplying gas-dissolved water | |
US20160102003A1 (en) | Advanced control system for wastewater treatment plants with membrane bioreactors | |
KR102065275B1 (en) | Desalination apparatus and method for desalinizing using the same | |
JP2003285059A (en) | Control method of ozone supply in water treatment using ozone oxidation and membrane filtration | |
JP2015208708A (en) | Water treatment monitor system, water treatment system having the same and water treatment method | |
JP4743099B2 (en) | Defoaming method and defoaming control device | |
KR20090109957A (en) | Advanced wastewater treatment apparatus and method using a submerged type membrane adapted ultrasonic deaerator | |
JP4008694B2 (en) | Sewage treatment plant water quality controller | |
JP2009061349A (en) | Sewage treatment method by membrane separation activated sludge process | |
JP3826829B2 (en) | Water treatment method using membrane filtration | |
JP2006315004A (en) | Water quality control unit for sewage disposal plant | |
JP4190145B2 (en) | Efficient addition method of organic carbon source for denitrification | |
JP4017807B2 (en) | Ozone gas supply control method | |
JP2006082027A (en) | Water treatment method using filtration membrane and its apparatus | |
WO2021192088A1 (en) | Water treatment device and water treatment method | |
JP2002233716A (en) | Clean water treating method | |
KR101968525B1 (en) | A backwash method for a reverse osmosis membrane and a system for the same | |
JPH08126897A (en) | Nitrifying treatment device | |
JPH05177196A (en) | Active carbon feeding device in high grade water purification system | |
KR20120068663A (en) | Apparatus and method of improving forward osmosis membrane process performance using ultrasonic waves | |
JP4564204B2 (en) | Wastewater treatment method for wastewater treatment equipment | |
JP3260558B2 (en) | Control method of intermittent aeration type activated sludge method | |
JP3279008B2 (en) | Control method of intermittent aeration type activated sludge method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20041124 |
|
A131 | Notification of reasons for refusal |
Effective date: 20061107 Free format text: JAPANESE INTERMEDIATE CODE: A131 |
|
A02 | Decision of refusal |
Effective date: 20070313 Free format text: JAPANESE INTERMEDIATE CODE: A02 |