JP2001046842A - Power recovery method and apparatus in reverse osmosis membrane type seawater desalting apparatus - Google Patents

Power recovery method and apparatus in reverse osmosis membrane type seawater desalting apparatus

Info

Publication number
JP2001046842A
JP2001046842A JP11230573A JP23057399A JP2001046842A JP 2001046842 A JP2001046842 A JP 2001046842A JP 11230573 A JP11230573 A JP 11230573A JP 23057399 A JP23057399 A JP 23057399A JP 2001046842 A JP2001046842 A JP 2001046842A
Authority
JP
Japan
Prior art keywords
pressure
reverse osmosis
osmosis membrane
power recovery
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11230573A
Other languages
Japanese (ja)
Other versions
JP4341865B2 (en
Inventor
Shozo Kajio
省三 梶尾
Shinji Tabata
慎治 田畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP23057399A priority Critical patent/JP4341865B2/en
Publication of JP2001046842A publication Critical patent/JP2001046842A/en
Application granted granted Critical
Publication of JP4341865B2 publication Critical patent/JP4341865B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Abstract

PROBLEM TO BE SOLVED: To enhance the recovery ratio of energy on a conc. water side recovered by a power recovery turbine to a large extent while keeping a predetermined constant fresh water making ratio with respect to the supply amt. of seawater. SOLUTION: In the power recovery device in a reverse osmosis membrane type seawater desalting apparatus, seawater is supplied to the supply water side of a reverse osmosis membrane 1 by a water supply pump and fresh water is taken out of the reverse osmosis membrane 1 on the permeating water side thereof and a power recovery turbine 14 is provided on the conc. water side of the reverse osmosis membrane 1 to recover the energy possessed by conc. water. In this case, the pressure of the conc. water side is controlled to high pressure of a constant level or more within the range capable of being taken by the pressure on the conc. water side by controlling the flow rate on the permeating water side.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、逆浸透膜方式海水
淡水化装置において濃縮水側に動力回収タービンを設け
て濃縮水が有するエネルギーを回収できるようにした動
力回収方法および装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power recovery method and a power recovery system in which a power recovery turbine is provided on a concentrated water side of a reverse osmosis membrane type seawater desalination apparatus so that energy of the concentrated water can be recovered.

【0002】[0002]

【従来の技術】逆浸透膜(以下、RO膜と言うこともあ
る。)を有するRO膜モジュールユニットを用いて、供
給されてくる海水を一定の量割合で淡水化するシステム
が知られている。
2. Description of the Related Art There is known a system for desalinating supplied seawater at a constant rate using an RO membrane module unit having a reverse osmosis membrane (hereinafter, also referred to as an RO membrane). .

【0003】このシステムにおいては、図2に示すよう
に、通常、RO膜101での淡水化に必要な膜間差圧
(供給水側の圧力と透過水側の圧力との差圧)を確保す
るために、給水ポンプ102により比較的高圧でRO膜
モジュールユニット103の供給水側に海水を供給す
る。たとえば海水の塩濃度が3.5%の場合、供給水の
運転圧力は約55〜70kg/cm2 で運転されてい
る。また、供給水路104には、通常、一定の流量で海
水を供給するために、入口調整弁105が設けられてい
る。RO膜101の供給水側に供給された海水は、その
うちの所定割合(たとえば、40%)の量の海水が所定
の膜間差圧により透過水側に透過され、透過水路106
を介して淡水として取り出される。残りの海水(たとえ
ば、供給水に対し60%の量の海水)は濃縮水となり、
濃縮水路107を介して排出される。この濃縮水は、R
O膜モジュールユニット103で約1〜3kg/cm2
圧力が低下するものの、約52〜67kg/cm2 程度
の高圧に維持されている。高圧の濃縮水をそのまま排出
するのではエネルギーロスが大きいので、濃縮水路10
7に動力回収タービン108が設けられ、濃縮水によっ
て動力回収タービン108を駆動してそのエネルギーを
回収するようにしている。回収されたエネルギーは、た
とえば動力回収タービン108を給水ポンプ102駆動
用のモータ109に機械的に連結することにより(たと
えば、直結することにより)、給水ポンプ102駆動用
のエネルギーとして回収され、有効に利用される。
In this system, as shown in FIG. 2, a transmembrane pressure (differential pressure between a supply water side pressure and a permeate water side) required for desalination in the RO membrane 101 is normally secured. For this purpose, seawater is supplied to the supply water side of the RO membrane module unit 103 at a relatively high pressure by the water supply pump 102. For example, when the salt concentration of seawater is 3.5%, the operation pressure of the supply water is about 55 to 70 kg / cm 2 . In addition, the supply water passage 104 is usually provided with an inlet adjustment valve 105 for supplying seawater at a constant flow rate. In the seawater supplied to the supply water side of the RO membrane 101, a predetermined percentage (for example, 40%) of the seawater is transmitted to the permeated water side by a predetermined transmembrane pressure, and the permeated water passage 106 is formed.
Is taken out as fresh water. The remaining seawater (for example, seawater in an amount of 60% of the supply water) becomes concentrated water,
It is discharged via the condensing water channel 107. This concentrated water is R
About 1 to 3 kg / cm 2 with O membrane module unit 103
Although the pressure decreases, it is maintained at a high pressure of about 52 to 67 kg / cm 2 . If the high-pressure concentrated water is discharged as it is, energy loss is large.
7, a power recovery turbine 108 is provided, and the concentrated water drives the power recovery turbine 108 to recover its energy. The recovered energy is recovered as energy for driving the water supply pump 102 by, for example, mechanically connecting the power recovery turbine 108 to a motor 109 for driving the water supply pump 102 (for example, by directly connecting). Used.

【0004】このとき、後述の如く、従来システムでは
通常所定の淡水化性能を維持するために、RO膜モジュ
ールユニット103の入口圧力を所定圧力に制御する必
要が生じることから、その圧力を検出して、濃縮水路1
07に設けた制御弁110(減圧により圧力を制御する
弁)で制御するようにしている。
At this time, as will be described later, in the conventional system, it is usually necessary to control the inlet pressure of the RO membrane module unit 103 to a predetermined pressure in order to maintain a predetermined desalination performance. And concentrated water channel 1
The control is performed by a control valve 110 (a valve that controls the pressure by reducing the pressure) provided at 07.

【0005】[0005]

【発明が解決しようとする課題】ところが、上記のよう
な従来システムにおいては、海水の温度変動に伴う、以
下のような問題がある。
However, in the above-mentioned conventional system, there are the following problems due to seawater temperature fluctuation.

【0006】すなわち、海水の温度が変化すると、RO
膜の膜間差圧が変動する。海水を淡水化するためには、
通常、選定したRO膜に応じて、回収率(供給海水量に
対する淡水造水量の割合)を所定の一定の回収率に維持
することが求められ、この回収率が全ての運転条件に優
先する前提条件となっている。
That is, when the temperature of seawater changes, RO
The transmembrane pressure of the membrane fluctuates. To desalinate seawater,
Normally, it is required to maintain the recovery rate (the ratio of freshwater desalination amount to the supplied seawater amount) at a predetermined constant recovery rate in accordance with the selected RO membrane, and this recovery rate has a priority over all operating conditions. It is a condition.

【0007】このような回収率を前提条件とする場合、
海水の温度が、たとえば10℃〜30℃変動した場合
(この範囲は通常考えられる一般的な変動範囲であ
る)、維持されるべき膜間差圧はたとえば次のように試
算される。
When such a recovery rate is a precondition,
If the temperature of the seawater fluctuates, for example, by 10 ° C. to 30 ° C. (this range is a generally conceivable general fluctuation range), the transmembrane pressure to be maintained is calculated, for example, as follows.

【0008】つまり、海水温度が10℃の場合、RO膜
の膜間差圧としてはたとえば68kg/cm2 (回収率
40%、塩濃度3.5%)にされなければならず、海水
温度が30℃の場合、RO膜の膜間差圧としてはたとえ
ば56kg/cm2 (回収率40%、塩濃度3.5%)
にされなければならない。
That is, when the seawater temperature is 10 ° C., the transmembrane pressure of the RO membrane must be, for example, 68 kg / cm 2 (recovery rate 40%, salt concentration 3.5%). At 30 ° C., the transmembrane pressure difference of the RO membrane is, for example, 56 kg / cm 2 (recovery rate 40%, salt concentration 3.5%).
Must be done.

【0009】したがって、上記運転条件を満たすために
は、給水ポンプ102の仕様としては、10℃の海水の
場合での必要膜間差圧68kg/cm2 を確保するため
の揚程を有するものが必要となる。しかしこのような給
水ポンプ102を用いてそのまま30℃の海水を淡水化
しようとすると、RO膜101の膜間差圧としては56
kg/cm2 を確保しなければならないから、その膜間
差圧にするために入口調整弁105で減圧して運転する
ことになる。
Therefore, in order to satisfy the above-mentioned operating conditions, the water supply pump 102 must have a head having a head for ensuring a required transmembrane pressure of 68 kg / cm 2 in the case of seawater at 10 ° C. Becomes However, when seawater at 30 ° C. is desalinated as it is by using such a water supply pump 102, the transmembrane pressure difference of the RO membrane 101 becomes 56
Since kg / cm 2 must be secured, the operation is performed by reducing the pressure with the inlet adjustment valve 105 in order to obtain the transmembrane pressure difference.

【0010】このように海水の温度変化に応じてRO膜
の供給水側(入口側)の圧力を調整して運転する場合、
たとえば上記の如く膜間差圧が68〜56kg/cm2
となるように運転する場合、RO膜モジュールユニット
103での圧力低下分を考慮すると、たとえば約3kg
/cm2 の圧力低下分を考慮すると、RO膜モジュール
ユニット103の出口側における濃縮水路107の圧力
は65〜53kg/cm2 の範囲で変動することにな
る。濃縮水路107に設けられた動力回収タービン10
8で濃縮水が有するエネルギーを回収する場合には、通
常、動力回収タービン108をある一定入口圧力のもの
に設計する必要があるので、上記のように濃縮水路10
7の圧力(つまり、動力回収タービン108の入口へと
通じる流路の圧力)が65〜53kg/cm2 に変動す
る条件下においては、結局53kg/cm2 の圧力水の
エネルギーを回収するための動力回収タービン108と
する必要がある。すなわち、動力回収タービン108の
入口圧力としてとり得る範囲(または、濃縮水側の圧力
としてとり得る範囲)のうちの実質的に最低圧力に設定
される。その結果、給水ポンプ102で供給水に大きな
エネルギーを付与しておきながら、動力回収タービン1
08では53kg/cm2 の圧力水のエネルギー分しか
回収できないことになり、エネルギー回収率が低いとい
う問題を含んでいる。
As described above, when the operation is performed by adjusting the pressure on the supply water side (inlet side) of the RO membrane according to the temperature change of the seawater,
For example, as described above, the transmembrane pressure is 68 to 56 kg / cm 2.
When the operation is performed such that the pressure drop in the RO membrane module unit 103 is considered, for example, about 3 kg
Considering the pressure drop of / cm 2, the pressure of the concentrated water channel 107 at the outlet side of the RO membrane module unit 103 varies in the range of 65 to 53 kg / cm 2 . Power recovery turbine 10 provided in concentrated water channel 107
When the energy of the concentrated water is recovered in step 8, the power recovery turbine 108 usually needs to be designed to have a certain inlet pressure.
7 pressure (that is, the power recovery turbine 108 pressure channel leading to the inlet) is under the condition that varies 65~53Kg / cm 2, eventually 53kg / cm 2 of pressure water energy for recovering The power recovery turbine 108 needs to be used. That is, the pressure is set to a substantially lowest pressure in a range that can be taken as the inlet pressure of the power recovery turbine 108 (or a range that can be taken as the pressure on the concentrated water side). As a result, while supplying large energy to the supply water by the water supply pump 102, the power recovery turbine 1
In the case of 08, only energy of 53 kg / cm 2 of pressure water can be recovered, which involves a problem that the energy recovery rate is low.

【0011】そこで本発明の課題は、上記のような海水
の温度変化に起因する問題点に着目し、供給海水量に対
し所定の一定の淡水造水比率を維持しつつ、動力回収タ
ービンによって回収される濃縮水側のエネルギー回収率
を大幅に高めることにある。
Accordingly, an object of the present invention is to focus on the problems caused by the above-mentioned seawater temperature change, and to recover the water by a power recovery turbine while maintaining a predetermined constant freshwater desalination ratio with respect to the supplied seawater amount. The purpose is to significantly increase the energy recovery rate on the concentrated water side.

【0012】[0012]

【課題を解決するための手段】上記課題を解決するため
に、本発明に係る逆浸透膜方式における動力回収方法
は、逆浸透膜の供給水側に給水ポンプにより海水を供給
し、逆浸透膜の透過水側から淡水を取り出すとともに、
逆浸透膜の濃縮水側に動力回収タービンを設けて濃縮水
が有するエネルギーを回収するに際し、透過水側の流量
を制御することにより、濃縮水側の圧力を、該濃縮水側
の圧力がとり得る範囲内のうちの一定レベル以上の高圧
に制御することを特徴とする方法からなる。
In order to solve the above problems, a method for recovering power in a reverse osmosis membrane system according to the present invention comprises supplying seawater to a supply water side of a reverse osmosis membrane by a feedwater pump, Take out fresh water from the permeate side of
When a power recovery turbine is provided on the concentrated water side of the reverse osmosis membrane to recover the energy of the concentrated water, by controlling the flow rate on the permeated water side, the pressure on the concentrated water side is reduced. The method is characterized in that the pressure is controlled to a certain level or higher within the range obtained.

【0013】この方法においては、濃縮水側の圧力を、
海水の温度が変化した場合に供給海水量に対し予め定め
られた所定の淡水造水量の割合を達成するための逆浸透
膜の膜間差圧の変動範囲のうちの実質的に最高の圧力か
ら、供給水側から濃縮水側に至る間の圧力低下分を差し
引いた圧力に制御することが好ましい。たとえば逆浸透
膜の膜間差圧の変動範囲が前述と同じ68〜56kg/
cm2 で、圧力低下分が3kg/cm2 であるとする
と、動力回収タービンをその入口側圧力として65kg
/cm2 のものに設計することが好ましく、その圧力を
維持できるように透過水側の流量を制御するのである。
In this method, the pressure on the concentrated water side is
From the substantially highest pressure in the fluctuation range of the transmembrane differential pressure of the reverse osmosis membrane to achieve a predetermined ratio of freshwater desalination to the supplied seawater when the temperature of the seawater changes. It is preferable to control the pressure to a value obtained by subtracting the pressure drop from the supply water side to the concentrated water side. For example, the variation range of the transmembrane pressure difference of the reverse osmosis membrane is 68 to 56 kg /
cm 2 and the pressure drop is 3 kg / cm 2 , the power recovery turbine is set to 65 kg
/ Cm 2 is preferable, and the flow rate on the permeated water side is controlled so that the pressure can be maintained.

【0014】本発明に係る逆浸透膜方式海水淡水化装置
における動力回収装置は、逆浸透膜を有する逆浸透膜モ
ジュールユニットと、逆浸透膜モジュールユニットに給
水ポンプからの海水を供給する供給水路と、逆浸透膜モ
ジュールユニットからの透過水を淡水として取り出す透
過水路と、逆浸透膜モジュールユニットで濃縮された濃
縮水を排出する濃縮水路と、濃縮水路に設けられ、濃縮
水が有するエネルギーを回収する動力回収タービンとを
備えた装置において、透過水路に、濃縮水路における圧
力を予め定められた目標圧力に制御する流量制御弁を設
けたことを特徴とするものからなる。
A power recovery apparatus in a reverse osmosis membrane type seawater desalination apparatus according to the present invention includes a reverse osmosis membrane module unit having a reverse osmosis membrane, and a supply water channel for supplying seawater from a water supply pump to the reverse osmosis membrane module unit. A permeate passage for extracting permeated water from the reverse osmosis membrane module unit as fresh water, a concentrated water passage for discharging concentrated water concentrated in the reverse osmosis membrane module unit, and a concentrated water passage provided in the concentrated water passage to collect energy contained in the concentrated water. An apparatus provided with a power recovery turbine, characterized in that a flow control valve for controlling the pressure in the concentrated water channel to a predetermined target pressure is provided in the permeated water channel.

【0015】動力回収タービンによって回収されたエネ
ルギーは、たとえば電気的エネルギーの形態で有効利用
をはかることも可能であるが、給水ポンプ駆動用モータ
に動力回収タービンが機械的に連結されている構造に構
成しておけば、動力回収タービンによって回収されたエ
ネルギーをそのまま給水ポンプの駆動に利用することが
可能になる。
The energy recovered by the power recovery turbine can be effectively used, for example, in the form of electric energy. However, the energy recovery turbine has a structure in which the power recovery turbine is mechanically connected to a feed water pump driving motor. With this configuration, the energy recovered by the power recovery turbine can be directly used for driving the water supply pump.

【0016】上記のような本発明に係る動力回収方法お
よび装置においては、供給海水の温度が変化しても、供
給海水量に対し所定の一定比率の淡水造水量を確保する
ように、かつ、動力回収タービンの入口側圧力、つまり
RO膜の濃縮水側の圧力が一定レベル以上の所定の高圧
(たとえば、上記の如く65kg/cm2 )を維持でき
るように、透過水側の流量が制御される。換言すれば、
透過水側の流量を制御することによって、その流量制御
弁部分での圧力損失分も制御されることになり、この圧
力損失分が所望の膜間差圧に上乗せされることになっ
て、目標とする高圧のRO膜濃縮水側の圧力(動力回収
タービンの入口側圧力)が達成されるのである。すなわ
ち、供給海水の温度が低い場合には、流量制御弁での絞
り量を小さくすることによりこの部分での圧力損失が比
較的小さく制御され、所定の淡水造水率の条件下におい
て、目標とする比較的大きな膜間差圧が達成されると同
時に、濃縮水側の目標とする高圧が維持される。供給海
水の温度が高い場合には、流量制御弁での絞り量を大き
くすることによりこの部分での圧力損失が比較的大きく
制御され、所定の淡水造水率の条件下において、RO膜
の透過水側出口部分(流量制御弁の上流部分)での圧力
が比較的高く保たれ、それによって目標とする比較的小
さな膜間差圧に維持されつつ、濃縮水側の圧力として
は、海水の温度が低い場合と同じ高圧に維持することが
可能となる。
In the power recovery method and apparatus according to the present invention as described above, even if the temperature of the supplied seawater changes, the freshwater desalination at a predetermined constant ratio with respect to the supplied seawater is ensured, and The flow rate on the permeated water side is controlled such that the pressure on the inlet side of the power recovery turbine, that is, the pressure on the concentrated water side of the RO membrane can be maintained at a predetermined high pressure equal to or higher than a predetermined level (for example, 65 kg / cm 2 as described above). You. In other words,
By controlling the flow rate on the permeated water side, the pressure loss in the flow control valve portion is also controlled, and this pressure loss is added to the desired transmembrane pressure, and (The pressure on the inlet side of the power recovery turbine) on the high-pressure RO membrane concentrated water side. That is, when the temperature of the supplied seawater is low, the pressure loss in this portion is controlled to be relatively small by reducing the amount of throttle in the flow control valve, and under the condition of a predetermined freshwater desalination ratio, A relatively high transmembrane pressure is achieved, while the target high pressure on the concentrate side is maintained. When the temperature of the supplied seawater is high, the pressure loss in this portion is controlled to be relatively large by increasing the amount of restriction in the flow control valve, and the permeation of the RO membrane is controlled under the condition of a predetermined freshwater desalination rate. The pressure at the water outlet (upstream of the flow control valve) is kept relatively high, thereby maintaining the target relatively small transmembrane pressure, while the pressure on the concentrated water side is the seawater temperature. Can be maintained at the same high pressure as when the pressure is low.

【0017】したがって、海水温度の変化にかかわら
ず、濃縮水側の圧力、つまり動力回収タービンの入口側
圧力を、従来装置に比べ大幅に高い圧力に設定でき、そ
の高圧回収用の動力回収タービンを濃縮水路に設置する
ことが可能になる。動力回収タービンで回収対象となる
高圧水の圧力が高くなる結果、エネルギー回収率が大幅
に高められる。
Therefore, regardless of the change in the seawater temperature, the pressure on the concentrated water side, that is, the inlet side pressure of the power recovery turbine can be set to a much higher pressure than that of the conventional apparatus, and the power recovery turbine for high pressure recovery can be used. It becomes possible to install it in the concentrated water channel. As a result of an increase in the pressure of the high-pressure water to be recovered by the power recovery turbine, the energy recovery rate is greatly increased.

【0018】[0018]

【発明の実施の形態】以下に、本発明の望ましい実施の
形態を、図面を参照しながら説明する。図1は、本発明
の一実施態様に係る逆浸透膜方式海水淡水化装置におけ
る動力回収装置を示している。図1において、1はRO
膜を模式的に示しており、該RO膜1は、スパイラル状
膜や中空糸膜等の形態でモジュールとして形成され、そ
のモジュールが複数RO膜モジュールユニット2として
組み込まれている。このRO膜モジュールユニット2の
供給水室3(供給水側)に、供給水としての海水が、給
水ポンプ4により供給水路5を介して供給される。供給
水路5には、流量センサ6と入口調整弁7(主として流
量を制御する弁)が設けられており、本実施態様ではさ
らに、RO膜モジュールユニット2の入口側圧力を検知
する圧力センサ8が設けられている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a power recovery apparatus in a reverse osmosis membrane type seawater desalination apparatus according to one embodiment of the present invention. In FIG. 1, 1 is RO
The membrane is schematically shown, and the RO membrane 1 is formed as a module in the form of a spiral membrane, a hollow fiber membrane, or the like, and the module is incorporated as a plurality of RO membrane module units 2. Seawater as supply water is supplied to the supply water chamber 3 (supply water side) of the RO membrane module unit 2 by a supply water pump 4 via a supply water passage 5. The supply water channel 5 is provided with a flow rate sensor 6 and an inlet adjustment valve 7 (a valve for mainly controlling the flow rate). In the present embodiment, a pressure sensor 8 for detecting the inlet side pressure of the RO membrane module unit 2 is further provided. Is provided.

【0019】RO膜モジュールユニット2では、供給水
室3に供給された高圧の海水のうち、予め定められた所
定割合(たとえば、40%)の量の海水が、RO膜1を
透過され、塩濃度が十分に低い淡水として、透過水室9
から取り出される。このように造水された淡水は、透過
水路10を介して取り出されるが、この透過水路10
に、流量センサ11によって検知される透過水量が、供
給海水量に対し上記所定割合となるように制御可能な流
量制御弁12が設けられている。この流量制御弁12
は、本発明においては、同時に、RO膜1の濃縮水側の
圧力を、後述の動力回収タービンに応じた所定の高圧に
維持するように制御する。
In the RO membrane module unit 2, of the high-pressure seawater supplied to the supply water chamber 3, a predetermined amount (for example, 40%) of seawater is transmitted through the RO membrane 1, As fresh water having a sufficiently low concentration, the permeated water chamber 9
Taken out of The fresh water produced in this way is taken out through the permeate channel 10, and the permeate channel 10
In addition, a flow control valve 12 is provided which can be controlled so that the amount of permeated water detected by the flow sensor 11 becomes the above-mentioned predetermined ratio with respect to the amount of supplied seawater. This flow control valve 12
In the present invention, simultaneously, the pressure on the concentrated water side of the RO membrane 1 is controlled so as to be maintained at a predetermined high pressure corresponding to a power recovery turbine described later.

【0020】RO膜モジュールユニット2の供給水室3
からは、濃縮水路13を介して濃縮水が排出される。こ
の濃縮水路13に、動力回収タービン14が設けられて
いる。動力回収タービン14は、本実施態様では、給水
ポンプ4駆動用のモータ15に機械的に直結されてお
り、回収動力がそのまま給水ポンプ4の駆動用エネルギ
ーとして利用できるようになっている。
Water supply chamber 3 of RO membrane module unit 2
, The concentrated water is discharged through the concentrated water passage 13. A power recovery turbine 14 is provided in the concentrated water channel 13. In the present embodiment, the power recovery turbine 14 is mechanically directly connected to a motor 15 for driving the water supply pump 4, so that the recovered power can be used as it is as driving energy for the water supply pump 4.

【0021】なお本実施態様では、上記濃縮水路13に
圧力制御弁16が設けられており、前述の圧力センサ8
からの信号に基づいて、RO膜モジュールユニット2の
入口側圧力を所望の圧力にコントロールできるようにな
っている。ただし、この圧力制御系は、本発明において
は、流量制御弁12による濃縮水側の圧力制御によって
結果的にRO膜モジュールユニット2の入口側圧力も制
御されることになるから、省略することも可能である。
In this embodiment, a pressure control valve 16 is provided in the concentrated water channel 13 so that the pressure sensor 8 described above can be used.
, The pressure on the inlet side of the RO membrane module unit 2 can be controlled to a desired pressure. However, in the present invention, the pressure control on the concentrated water side by the flow rate control valve 12 results in that the pressure on the inlet side of the RO membrane module unit 2 is also controlled. It is possible.

【0022】上記のように構成された装置は、たとえば
次のように運転される。前述したと同様に、海水温度が
10℃の場合、RO膜1の膜間差圧として68kg/c
2 (回収率40%、塩濃度3.5%)、海水温度が3
0℃の場合、RO膜1の膜間差圧として56kg/cm
2 (回収率40%、塩濃度3.5%)にすることを運転
の絶対前提条件とすると、かつ、そのときのRO膜モジ
ュールユニット2における、供給水側から濃縮水側へと
至るときの圧力低下分を3kg/cm2 とすると、流量
制御弁12は、実質的に常時、RO膜モジュールユニッ
ト2への入口圧力が68kg/cm2 となるように、お
よび、動力回収タービン14の入口側圧力が65kg/
cm2 となるように制御される。つまり、とくに海水の
温度が上昇した場合のRO膜の膜間差圧の過剰分を調節
するように、流量制御弁12が制御され、RO膜モジュ
ールユニット2への入口圧力(RO膜1の供給水側圧
力)が最高圧を維持できるように制御される。
The apparatus configured as described above is operated, for example, as follows. As described above, when the seawater temperature is 10 ° C., the transmembrane pressure difference of the RO membrane 1 is 68 kg / c.
m 2 (recovery rate 40%, salt concentration 3.5%), seawater temperature 3
In the case of 0 ° C., the transmembrane pressure difference of the RO film 1 is 56 kg / cm.
2 (recovery rate 40%, salt concentration 3.5%) is an absolute prerequisite for the operation, and the RO membrane module unit 2 at that time is required to reach from the supply water side to the concentrated water side. Assuming that the pressure drop is 3 kg / cm 2 , the flow control valve 12 is controlled so that the inlet pressure to the RO membrane module unit 2 is substantially always 68 kg / cm 2 and the inlet side of the power recovery turbine 14. Pressure is 65kg /
cm 2 . That is, the flow control valve 12 is controlled so as to adjust the excess amount of the transmembrane pressure difference of the RO membrane particularly when the temperature of the seawater rises, and the inlet pressure (the supply of the RO membrane 1) to the RO membrane module unit 2 is adjusted. (Water side pressure) is controlled to maintain the maximum pressure.

【0023】このように入口圧力を最高圧、たとえば6
8kg/cm2 に維持できれば、RO膜モジュールユニ
ット2での圧力低下分(3kg/cm2 )を考慮する
と、動力回収タービン14の入口圧力(つまり、動力回
収タービン14のエネルギー回収対象となる高圧水の圧
力)を65kg/cm2 に設定することが可能となり、
この条件で運転を続けることが可能となる。
As described above, the inlet pressure is set to the maximum pressure, for example, 6
If the pressure can be maintained at 8 kg / cm 2 , considering the pressure drop (3 kg / cm 2 ) in the RO membrane module unit 2, the inlet pressure of the power recovery turbine 14 (that is, the high pressure water as the energy recovery target of the power recovery turbine 14) Pressure) can be set to 65 kg / cm 2 ,
Operation can be continued under these conditions.

【0024】この状態では、動力回収タービン14の回
収対象圧力が、前述した従来の53kg/cm2 から6
5kg/cm2 に高められ、エネルギー回収率を約1.
23倍(〔65kg/cm2 〕/〔53kg/c
2 〕)に上げることが可能となる。
In this state, the pressure to be recovered by the power recovery turbine 14 is increased from 53 kg / cm 2 to 6
5 kg / cm 2 and energy recovery rate of about 1.
23 times ([65 kg / cm 2 ] / [53 kg / c
m 2 ]).

【0025】上記動力回収タービン14の入口圧力65
kg/cm2 は、海水温度の変化にかかわらず常時維持
されることにより、海水温度の変化に起因する、制御す
べきRO膜膜間差圧の変動は、全て流量制御弁12部分
で調節される圧力損失分によって吸収されることにな
る。したがって、動力回収タービン14部分では、常時
高エネルギー回収率が達成される。
The inlet pressure 65 of the power recovery turbine 14
Since kg / cm 2 is constantly maintained irrespective of a change in seawater temperature, all fluctuations in the RO membrane transmembrane pressure to be controlled due to the change in seawater temperature are adjusted by the flow control valve 12. Pressure loss. Therefore, in the power recovery turbine 14 portion, a high energy recovery rate is always achieved.

【0026】なお、上記実施態様では、流量制御弁12
による流量制御系およびそれに伴う濃縮水側の圧力制御
系と、圧力制御弁16によるRO膜モジュールユニット
2の入口圧力制御系とが併存されているが、各制御系の
応答ゲインの調整により、たとえば流量制御弁12によ
る制御を主制御とし、圧力制御弁16による制御を従制
御とすることにより、各制御系が干渉し合ってハンチン
グ等を起こすことは防止でき、両制御系の併存により、
より正確に目標とする圧力制御が可能となる。
In the above embodiment, the flow control valve 12
And a pressure control system on the concentrated water side associated therewith, and an inlet pressure control system of the RO membrane module unit 2 by the pressure control valve 16 coexist. However, by adjusting the response gain of each control system, for example, By controlling the control by the flow control valve 12 as the main control and the control by the pressure control valve 16 as the sub-control, it is possible to prevent hunting or the like due to interference between the control systems.
Target pressure control can be performed more accurately.

【0027】また、上記実施態様の説明では、動力回収
タービン14の入口圧力を65kg/cm2 に設定した
が、膜間差圧からして濃縮水側のとり得る圧力の範囲の
うちの一定レベル以上の高圧に設定することにより、程
度の差こそあれ、エネルギー回収率の向上効果は得られ
る。
In the description of the above embodiment, the inlet pressure of the power recovery turbine 14 is set to 65 kg / cm 2. By setting the above high pressure, the effect of improving the energy recovery rate can be obtained to some extent.

【0028】[0028]

【発明の効果】以上説明したように、本発明の逆浸透膜
方式海水淡水化装置における動力回収方法および装置に
よれば、逆浸透膜の透過水側の流量を制御して濃縮水側
の圧力を一定レベル以上の高圧に制御することにより、
動力回収タービンによるエネルギー回収率を大幅に高め
ることができる。
As described above, according to the power recovery method and apparatus in the reverse osmosis membrane type seawater desalination apparatus of the present invention, the flow rate of the reverse osmosis membrane on the permeate side is controlled to control the pressure on the concentrated water side. By controlling the pressure to a certain level or higher,
The energy recovery rate by the power recovery turbine can be greatly increased.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施態様に係る逆浸透膜方式海水淡
水化装置における動力回収装置の機器系統図である。
FIG. 1 is a system diagram of a power recovery apparatus in a reverse osmosis membrane type seawater desalination apparatus according to an embodiment of the present invention.

【図2】従来の逆浸透膜方式海水淡水化装置における動
力回収装置の機器系統図である。
FIG. 2 is an equipment system diagram of a power recovery device in a conventional reverse osmosis membrane type seawater desalination apparatus.

【符号の説明】[Explanation of symbols]

1 逆浸透膜 2 逆浸透膜モジュールユニット 3 供給水室 4 給水ポンプ 5 供給水路 6 流量センサ 7 入口調節弁 8 圧力センサ 9 透過水室 10 透過水路 11 流量センサ 12 流量制御弁 13 濃縮水路 14 動力回収タービン 15 給水ポンプ駆動用モータ 16 圧力制御弁 REFERENCE SIGNS LIST 1 reverse osmosis membrane 2 reverse osmosis membrane module unit 3 supply water chamber 4 feed water pump 5 supply water path 6 flow sensor 7 inlet control valve 8 pressure sensor 9 permeate water chamber 10 permeate water path 11 flow sensor 12 flow control valve 13 concentrated water path 14 power recovery Turbine 15 Motor for driving feedwater pump 16 Pressure control valve

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4D006 GA03 HA01 HA61 JA53A JA64A KA14 KA63 KE03Q KE06P KE07P KE09Q KE16P MA01 MA03 PA01 PB03  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4D006 GA03 HA01 HA61 JA53A JA64A KA14 KA63 KE03Q KE06P KE07P KE09Q KE16P MA01 MA03 PA01 PB03

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 逆浸透膜の供給水側に給水ポンプにより
海水を供給し、逆浸透膜の透過水側から淡水を取り出す
とともに、逆浸透膜の濃縮水側に動力回収タービンを設
けて濃縮水が有するエネルギーを回収するに際し、透過
水側の流量を制御することにより、濃縮水側の圧力を、
該濃縮水側の圧力がとり得る範囲内のうちの一定レベル
以上の高圧に制御することを特徴とする、逆浸透膜方式
海水淡水化装置における動力回収方法。
1. A seawater is supplied to a supply water side of a reverse osmosis membrane by a water supply pump, fresh water is taken out from a permeated water side of the reverse osmosis membrane, and a power recovery turbine is provided on a concentrated water side of the reverse osmosis membrane. When recovering the energy that has, by controlling the flow rate on the permeated water side, the pressure on the concentrated water side,
A power recovery method in a reverse osmosis membrane type seawater desalination apparatus, wherein the high pressure is controlled to a predetermined level or more within a range in which the pressure on the concentrated water side can be taken.
【請求項2】 濃縮水側の圧力を、海水の温度が変化し
た場合に供給海水量に対し予め定められた所定の淡水造
水量の割合を達成するための逆浸透膜の膜間差圧の変動
範囲のうちの実質的に最高の圧力から、供給水側から濃
縮水側に至る間の圧力低下分を差し引いた圧力に制御す
る、請求項1の逆浸透膜方式海水淡水化装置における動
力回収方法。
2. The pressure of the reverse osmosis membrane for achieving a predetermined freshwater desalination ratio with respect to the supplied seawater amount when the temperature of the seawater is changed. The power recovery in the reverse osmosis membrane type seawater desalination apparatus according to claim 1, wherein the pressure is controlled to be a pressure obtained by subtracting a pressure drop from the supply water side to the concentrated water side from the substantially highest pressure in the fluctuation range. Method.
【請求項3】 逆浸透膜の供給水側の圧力を、濃縮水の
動力回収タービン前での減圧制御によって制御する、請
求項1または2の逆浸透膜方式海水淡水化装置における
動力回収方法。
3. The method for recovering power in a reverse osmosis membrane type seawater desalination apparatus according to claim 1 or 2, wherein the pressure on the supply water side of the reverse osmosis membrane is controlled by pressure reduction control before the power recovery turbine of the concentrated water.
【請求項4】 逆浸透膜を有する逆浸透膜モジュールユ
ニットと、逆浸透膜モジュールユニットに給水ポンプか
らの海水を供給する供給水路と、逆浸透膜モジュールユ
ニットからの透過水を淡水として取り出す透過水路と、
逆浸透膜モジュールユニットで濃縮された濃縮水を排出
する濃縮水路と、濃縮水路に設けられ、濃縮水が有する
エネルギーを回収する動力回収タービンとを備えた装置
において、透過水路に、濃縮水路における圧力を予め定
められた目標圧力に制御する流量制御弁を設けたことを
特徴とする、逆浸透膜方式海水淡水化装置における動力
回収装置。
4. A reverse osmosis membrane module unit having a reverse osmosis membrane, a supply channel for supplying seawater from a water supply pump to the reverse osmosis membrane module unit, and a permeate channel for extracting permeate from the reverse osmosis membrane module unit as fresh water. When,
In a device provided with a concentrated water channel for discharging the concentrated water concentrated by the reverse osmosis membrane module unit and a power recovery turbine provided in the concentrated water channel and recovering the energy of the concentrated water, the pressure in the concentrated water channel is changed to the permeated water channel. A power recovery device in a reverse osmosis type seawater desalination apparatus, comprising a flow control valve for controlling the pressure to a predetermined target pressure.
【請求項5】 給水ポンプ駆動用モータに動力回収ター
ビンが機械的に連結されている、請求項4の逆浸透膜方
式海水淡水化装置における動力回収装置。
5. The power recovery apparatus in a reverse osmosis membrane type seawater desalination apparatus according to claim 4, wherein a power recovery turbine is mechanically connected to a feed water pump driving motor.
JP23057399A 1999-08-17 1999-08-17 Power recovery method and apparatus for reverse osmosis membrane seawater desalination equipment Expired - Fee Related JP4341865B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23057399A JP4341865B2 (en) 1999-08-17 1999-08-17 Power recovery method and apparatus for reverse osmosis membrane seawater desalination equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23057399A JP4341865B2 (en) 1999-08-17 1999-08-17 Power recovery method and apparatus for reverse osmosis membrane seawater desalination equipment

Publications (2)

Publication Number Publication Date
JP2001046842A true JP2001046842A (en) 2001-02-20
JP4341865B2 JP4341865B2 (en) 2009-10-14

Family

ID=16909876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23057399A Expired - Fee Related JP4341865B2 (en) 1999-08-17 1999-08-17 Power recovery method and apparatus for reverse osmosis membrane seawater desalination equipment

Country Status (1)

Country Link
JP (1) JP4341865B2 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004276020A (en) * 2003-03-13 2004-10-07 Millipore Corp System and method for cleaning water, and module for the system
JP2007502702A (en) * 2003-08-17 2007-02-15 エフラティ,アヴィ Apparatus for continuous closed-circuit desalination with variable pressure in a single vessel
JP2007125527A (en) * 2005-11-07 2007-05-24 Kurita Water Ind Ltd Operation method of reverse osmosis membrane separator
WO2010131765A1 (en) * 2009-05-15 2010-11-18 株式会社 荏原製作所 Seawater desalination system and energy exchange chamber
JP2011083741A (en) * 2009-10-19 2011-04-28 Kyb Co Ltd Seawater desalination apparatus
WO2011114967A1 (en) 2010-03-15 2011-09-22 東レ株式会社 Method for producing fresh water
KR101085526B1 (en) 2008-10-24 2011-11-21 한국기계연구원 Pressure energy recovery device driven by gear type rotary valve
CN102399029A (en) * 2010-09-15 2012-04-04 株式会社东芝 Membrane filtration system
KR101175698B1 (en) 2010-11-22 2012-08-21 광주과학기술원 method for detecting biofouling of seawater desalination plant and system of the same
JP2012170839A (en) * 2011-02-17 2012-09-10 Hitachi Plant Technologies Ltd Compound desalination system
WO2013012115A1 (en) * 2011-07-20 2013-01-24 효성굿스프링스 주식회사 Energy recovery apparatus in a desalination system using reverse osmosis
KR101238909B1 (en) 2010-07-06 2013-03-06 최중인 Seawater desalination system and seawater desalination plant control method according to reverse osmosis
AU2011200368B2 (en) * 2010-03-12 2013-08-15 Kabushiki Kaisha Toshiba Seawater desalination system
JP2014180652A (en) * 2013-03-21 2014-09-29 Kayaba Ind Co Ltd Steam plant system
US9120688B2 (en) 2011-09-14 2015-09-01 Kabushiki Kaisha Toshiba Seawater desalination plant system
US9259686B2 (en) 2009-12-25 2016-02-16 Toray Industries, Inc. Water producing system and operation method therefor
WO2021208171A1 (en) * 2020-04-16 2021-10-21 江苏大学 Testing and detection device and testing method for seawater desalination pump and energy recovery integrated machine
CN114790059A (en) * 2022-04-11 2022-07-26 倍杰特集团股份有限公司 Device and method for concentrating and filtering concentrated water of synthetic ammonia and ethylene glycol wastewater
US11629072B2 (en) 2018-08-22 2023-04-18 Gradiant Corporation Liquid solution concentration system comprising isolated subsystem and related methods
US11667549B2 (en) 2020-11-17 2023-06-06 Gradiant Corporation Osmotic methods and systems involving energy recovery

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109095561A (en) * 2017-06-21 2018-12-28 北京天诚同创电气有限公司 Reverse osmosis seawater desalting method and system

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4688421B2 (en) * 2003-03-13 2011-05-25 ミリポア・コーポレイション Water purification system and method, and module for said system
JP2004276020A (en) * 2003-03-13 2004-10-07 Millipore Corp System and method for cleaning water, and module for the system
JP2007502702A (en) * 2003-08-17 2007-02-15 エフラティ,アヴィ Apparatus for continuous closed-circuit desalination with variable pressure in a single vessel
JP4751325B2 (en) * 2003-08-17 2011-08-17 デサリテック エル.ティー.ディー. Apparatus for continuous closed-circuit desalination with variable pressure in a single vessel
JP2007125527A (en) * 2005-11-07 2007-05-24 Kurita Water Ind Ltd Operation method of reverse osmosis membrane separator
KR101085526B1 (en) 2008-10-24 2011-11-21 한국기계연구원 Pressure energy recovery device driven by gear type rotary valve
WO2010131765A1 (en) * 2009-05-15 2010-11-18 株式会社 荏原製作所 Seawater desalination system and energy exchange chamber
US8771510B2 (en) 2009-05-15 2014-07-08 Ebara Corporation Seawater desalination system and energy exchange chamber
US9108162B2 (en) 2009-05-15 2015-08-18 Ebara Corporation Seawater desalination system and energy exchange chamber
JP2011083741A (en) * 2009-10-19 2011-04-28 Kyb Co Ltd Seawater desalination apparatus
US9259686B2 (en) 2009-12-25 2016-02-16 Toray Industries, Inc. Water producing system and operation method therefor
AU2011200368B2 (en) * 2010-03-12 2013-08-15 Kabushiki Kaisha Toshiba Seawater desalination system
WO2011114967A1 (en) 2010-03-15 2011-09-22 東レ株式会社 Method for producing fresh water
KR101238909B1 (en) 2010-07-06 2013-03-06 최중인 Seawater desalination system and seawater desalination plant control method according to reverse osmosis
CN102399029A (en) * 2010-09-15 2012-04-04 株式会社东芝 Membrane filtration system
US9932250B2 (en) 2010-09-15 2018-04-03 Kabushiki Kaisha Toshiba Membrane filtration system
KR101175698B1 (en) 2010-11-22 2012-08-21 광주과학기술원 method for detecting biofouling of seawater desalination plant and system of the same
JP2012170839A (en) * 2011-02-17 2012-09-10 Hitachi Plant Technologies Ltd Compound desalination system
WO2013012115A1 (en) * 2011-07-20 2013-01-24 효성굿스프링스 주식회사 Energy recovery apparatus in a desalination system using reverse osmosis
US9120688B2 (en) 2011-09-14 2015-09-01 Kabushiki Kaisha Toshiba Seawater desalination plant system
JP2014180652A (en) * 2013-03-21 2014-09-29 Kayaba Ind Co Ltd Steam plant system
US11629072B2 (en) 2018-08-22 2023-04-18 Gradiant Corporation Liquid solution concentration system comprising isolated subsystem and related methods
WO2021208171A1 (en) * 2020-04-16 2021-10-21 江苏大学 Testing and detection device and testing method for seawater desalination pump and energy recovery integrated machine
US11667549B2 (en) 2020-11-17 2023-06-06 Gradiant Corporation Osmotic methods and systems involving energy recovery
CN114790059A (en) * 2022-04-11 2022-07-26 倍杰特集团股份有限公司 Device and method for concentrating and filtering concentrated water of synthetic ammonia and ethylene glycol wastewater
CN114790059B (en) * 2022-04-11 2023-08-08 倍杰特集团股份有限公司 Concentrating and filtering device and method for synthetic ammonia and ethylene glycol wastewater concentrated water

Also Published As

Publication number Publication date
JP4341865B2 (en) 2009-10-14

Similar Documents

Publication Publication Date Title
JP2001046842A (en) Power recovery method and apparatus in reverse osmosis membrane type seawater desalting apparatus
US10052589B2 (en) Reverse osmosis system with control based on flow rates in the permeate and brine streams
US7686950B2 (en) Water purification system and method, and module for the system
EP2838642B1 (en) Reverse osmosis system with energy recovery devices
JP5050996B2 (en) Reverse osmosis membrane device
JP2008100219A (en) Desalination method and desalination apparatus
US20080105617A1 (en) Two pass reverse osmosis system
US20130118978A1 (en) Combined microfiltration or ultrafiltration and reverse osmosis processes
AU2018338433B2 (en) Method and system for operating a high recovery separation process
JP2008188540A (en) Operation method of membrane filter system
JP6159371B2 (en) Control device for energy generator
JPH06277665A (en) Producing apparatus for high purity water
JP5529491B2 (en) Seawater desalination equipment
JPH09299944A (en) Fresh water producing device having reverse-osmosis membrane
JP6930235B2 (en) Reverse osmosis membrane separation device
JP2008188541A (en) Operation method of membrane filter system
JP2002085941A (en) Fresh water making process and fresh water maker
KR200373511Y1 (en) Apparatus making fresh water from sea water using reverse osmosis
JP2000051663A5 (en)
JP2000218135A (en) Membrane separation apparatus and method
JP2005081254A (en) Reverse osmosis membrane apparatus
JPH0143595B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060626

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090612

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090703

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090703

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130717

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees