JP2003282967A - Thermoelectric conversion material and thermoelectric conversion element - Google Patents

Thermoelectric conversion material and thermoelectric conversion element

Info

Publication number
JP2003282967A
JP2003282967A JP2002084435A JP2002084435A JP2003282967A JP 2003282967 A JP2003282967 A JP 2003282967A JP 2002084435 A JP2002084435 A JP 2002084435A JP 2002084435 A JP2002084435 A JP 2002084435A JP 2003282967 A JP2003282967 A JP 2003282967A
Authority
JP
Japan
Prior art keywords
thermoelectric conversion
conversion material
thermoelectric
examples
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002084435A
Other languages
Japanese (ja)
Other versions
JP4257633B2 (en
Inventor
Noboru Ichinose
昇 一ノ瀬
Shohei Fukuda
昇平 福田
Toshiteru Ueno
寿輝 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokushin Industries Corp
Hokushin Industry Co Ltd
Original Assignee
Hokushin Industries Corp
Hokushin Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokushin Industries Corp, Hokushin Industry Co Ltd filed Critical Hokushin Industries Corp
Priority to JP2002084435A priority Critical patent/JP4257633B2/en
Publication of JP2003282967A publication Critical patent/JP2003282967A/en
Application granted granted Critical
Publication of JP4257633B2 publication Critical patent/JP4257633B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thermoelectric conversion material which can be stably used at a high temperature of 500°C or higher and which has a low toxicity and to provide a thermoelectric conversion element. <P>SOLUTION: The thermoelectric conversion material contains an oxide represented by the formula: (Ca<SB>1-x</SB>M1<SB>x</SB>)2(Co<SB>1-y</SB>Ga<SB>y</SB>)<SB>2</SB>O<SB>5</SB>(wherein M1 is La, Sr or Ba, 0≤x≤0.07 and 0.2≤y<0.5), or (Ca<SB>1-p</SB>M2<SB>p</SB>)<SB>2</SB>(Co<SB>1-q</SB>Fe<SB>q</SB>)<SB>2</SB>O<SB>5</SB>(wherein M2 is La, Sr or Ba, 0≤p<0.1, and 0.2≤q<1.0). <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ゼーベック効果に
よる熱電発電や、ペルチェ効果による電子冷凍等のいわ
ゆる熱電効果(可動部の無いエネルギーの直接変換)に
利用される高温用熱電変換材料及び熱電変換素子に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermoelectric conversion material for high temperature and thermoelectric conversion used for thermoelectric power generation by the Seebeck effect and so-called thermoelectric effect (direct conversion of energy without moving parts) such as electronic freezing by the Peltier effect. Regarding the device.

【0002】[0002]

【従来の技術】熱電変換材料を用いた熱電発電や電子冷
凍等の熱電変換は、振動、騒音、摩耗等を生じる可動部
分が全くなく、構造が簡単で信頼性が高く、高寿命で保
守が容易であるという特徴を持った簡略化されたエネル
ギー直接変換装置の作製を可能とするものであり、例え
ば、各種化石燃料等の燃焼によらず直接的に直流電力を
得たり、冷媒を用いないで温度制御したりするのに適し
ている。
2. Description of the Related Art Thermoelectric conversion using thermoelectric conversion materials such as thermoelectric generation and electronic refrigeration has no moving parts that cause vibration, noise, wear, etc., has a simple structure, is highly reliable, and has a long service life and maintenance. It enables the production of a simplified energy direct conversion device that has the characteristic of being easy. For example, it is possible to directly obtain DC power without using various fossil fuels, etc., or to use a refrigerant. Suitable for temperature control.

【0003】ところで、熱電変換材料において特性を評
価するにあたり、以下の式で表される電力因子Qや性能
指数Zが使用される。
By the way, in evaluating the characteristics of thermoelectric conversion materials, the power factor Q and the performance index Z represented by the following equations are used.

【0004】[0004]

【数1】 [Equation 1]

【0005】[0005]

【数2】 [Equation 2]

【0006】ここで、α:ゼーベック係数、σ:電気伝
導率、κ:熱伝導率である。熱電変換材料では、この性
能指数Zが大きいこと、すなわちゼーベック係数αが高
く、電気伝導率σが高く、熱伝導率κが低いことが望ま
れる。
Here, α is the Seebeck coefficient, σ is the electrical conductivity, and κ is the thermal conductivity. In the thermoelectric conversion material, it is desired that the figure of merit Z is large, that is, the Seebeck coefficient α is high, the electrical conductivity σ is high, and the thermal conductivity κ is low.

【0007】例えば、熱電変換材料を熱電発電などに用
いる場合、熱電変換材料としては、Z=3×10−3
/K以上の高い性能指数を有し、使用環境下で長期間安
定に作動することが望まれる。また、車載用や排熱利用
向けの熱電発電装置を量産するには、特に高温で十分な
耐熱性・強度を有し、特性劣化が生じない材料と、これ
を安価に効率良く生産出来る製造方法が望まれる。
For example, when the thermoelectric conversion material is used for thermoelectric power generation, the thermoelectric conversion material is Z = 3 × 10 −3 1.
It is desired to have a high performance index of / K or more and to operate stably for a long period of time under a use environment. In addition, for mass-production of thermoelectric power generators for in-vehicle use or exhaust heat utilization, a material that has sufficient heat resistance and strength at high temperature and does not cause characteristic deterioration, and a manufacturing method that can efficiently produce this at low cost. Is desired.

【0008】従来、このような熱電変換材料としてはP
bTe、あるいはMSi(M:Cr、Mn、Fe、C
o)等のシリサイド化合物やそれらの混合物等のシリサ
イド系材料などが用いられている。
Conventionally, P has been used as such a thermoelectric conversion material.
bTe or MSi 2 (M: Cr, Mn, Fe, C
Silicide compounds such as o) and the like, and silicide-based materials such as a mixture thereof are used.

【0009】また、TSb(T:Co、Ir、Ru)
などのSb化合物を用いた例、例えば、化学組成におい
てCoSbを主成分とする材料に電気導電型を決定す
るための不純物を添加した熱電材料が報告されている
(L.D.Dudkin and N.Kh.AbrikoSov, Soviet Physics So
lid State Physics(1959)pp.126)B.N.Zobrinaand, L.D.
Dudkin , Soviet Physics Solid State Physics(1960)p
p1668)K.Matsubara, T.Iyanaga, T.Tsubouchi, K.Kishi
moto and T.Koyanagi,American Institute of Physics
(1995)pp226-229)。
Further, TSb 3 (T: Co, Ir, Ru)
Examples using Sb compounds such as, for example, thermoelectric materials obtained by adding impurities for determining the electric conductivity type to a material containing CoSb 3 as a main component in the chemical composition have been reported (LD Dudkin and N.Kh. AbrikoSov. , Soviet Physics So
lid State Physics (1959) pp.126) BNZobrinaand, LD
Dudkin, Soviet Physics Solid State Physics (1960) p
p. 1668) K. Matsubara, T. Iyanaga, T. Tsubouchi, K. Kishi
moto and T. Koyanagi, American Institute of Physics
(1995) pp226-229).

【0010】[0010]

【発明が解決しようとする課題】しかしながら、PbT
eよりなる熱電変換材料は、熱電特性の指標となる性能
指数Zが400℃前後で約1×10−31/Kと大きい
ものの、材料組成に揮発成分であるTeを含むため、融
点が低く化学的安定性にも欠けるため、500℃以上で
の高温では使用できないという問題がある。さらに、揮
発成分であるTeを含むことから製造過程が複雑となる
ため、組成変動による特性のばらつきが発生しやすく効
率良く量産することが出来ないという問題点がある。ま
たさらには、原料自体が高価であり、強い毒性を有する
ものであるという問題があった。
However, the PbT
The thermoelectric conversion material composed of e has a large figure of merit Z, which is an index of thermoelectric properties, of about 1 × 10 −3 1 / K at around 400 ° C., but has a low melting point because it contains Te as a volatile component in the material composition. Since it also lacks chemical stability, there is a problem that it cannot be used at a high temperature of 500 ° C. or higher. Further, since Te, which is a volatile component, is included, the manufacturing process becomes complicated, and therefore, there is a problem in that variations in characteristics due to compositional variations are likely to occur and mass production cannot be performed efficiently. Furthermore, there is a problem that the raw material itself is expensive and has a strong toxicity.

【0011】一方、MSi(M=Cr、Mn、Fe、
Co)等のシリサイド化合物やそれらの混合物等のシリ
サイド系材料は、原料が安価で毒性を含まず化学的に安
定で800℃程度の温度領域でも使用可能であり、例え
ば『西田勲夫、上村欣一:熱電半導体とその応用(19
83)pp.176−180 』に記載されているよう
に比較的安価な製法で製造できることが知られている。
しかし、シリサイド系材料の熱電特性はPbTeに比べ
性能指数Zで1〜2×10−41/K 程度と一桁程度
低く、PbTeに匹敵するような十分な熱電特性が得ら
れていない。
On the other hand, MSi 2 (M = Cr, Mn, Fe,
Silicide compounds such as Co) and the like, and silicide-based materials such as a mixture thereof are inexpensive and chemically stable without toxicity, and can be used even in a temperature range of about 800 ° C., for example, “Norio Nishida, Kinichi Uemura. : Thermoelectric semiconductors and their applications (19
83) pp. 176-180 ", it is known that it can be manufactured by a relatively inexpensive manufacturing method.
However, the thermoelectric property of the silicide-based material is lower than that of PbTe by a figure of merit Z of about 1 to 2 × 10 −4 1 / K, which is about one order of magnitude lower, and sufficient thermoelectric properties comparable to PbTe have not been obtained.

【0012】TSb(T:Co、Ir、Ru)などの
Sb化合物、例えば、化学組成においてCoSbを主
成分とした熱電材料では、使用する原料が比較的安価で
毒性を含むものがなく、また比較的高い性能指数(<1
×10−31/K)を有していることが知られている。
For Sb compounds such as TSb 3 (T: Co, Ir, Ru), for example, thermoelectric materials containing CoSb 3 as a main component in their chemical composition, the raw materials used are relatively inexpensive and have no toxicity. A relatively high figure of merit (<1
It is known to have x10 −3 1 / K).

【0013】ここで、従来から知られているような化学
組成CoSbを有する熱電変換材料では、得られる材
料が立方晶型のCoSb結晶相のみを構成結晶相と
し、それ以外の結晶相(CoSb、CoSb、Sb)
は熱電特性を低下させる作用があるため除去する必要が
あるとされている。しかし、実際には、CoSbを溶
製して得る方法では、凝固の際にCoSb以外の異相
(CoSb、CoSb、Sb)が析出することが知ら
れており、このような溶製材をCoSb単相にするに
は、600℃前後の温度にて約200時間程度の熱処理
が必要となり製造工程が長期化するという問題がある。
Here, in a thermoelectric conversion material having a chemical composition CoSb 3 as conventionally known, the obtained material has only a cubic CoSb 3 crystal phase as a constituent crystal phase and other crystal phases ( CoSb, CoSb 2 , Sb)
Has the effect of degrading thermoelectric properties and is said to be required to be removed. However, in practice, it is known that in the method of obtaining CoSb 3 by smelting, a different phase (CoSb, CoSb 2 , Sb) other than CoSb 3 is precipitated during solidification. In order to make CoSb 3 single phase, there is a problem that heat treatment at a temperature of about 600 ° C. for about 200 hours is required, and the manufacturing process becomes long.

【0014】さらに、CoSb溶製材を粉砕・焼結す
る方法では、溶製時に析出した異相、すなわちCoSb
よりも高い密度を有するCoSb、CoSbが焼成
時にCoSbへ相変化するため、体膨張が発生し焼結
が進行しないという問題がある。例えば、圧力5×10
kg/cm、温度600℃の条件でホットプレスし
た場合でも十分に緻密化した材料は得られていない(参
考文献:K.Matsubara,T.Iyanaga, T.Tsubouchi, K.Kish
imoto and T.Koyanagi, American Instituteof Physics
(1995)pp226-229)。立方晶型CoSbの理論密度が
7.64g/cmであるのに対し、文献報告値は最大
で5.25g/cmとなっている。その結果、焼結体
は著しく脆い材質となり、高温での材料強度が不十分な
材料しか得られない。
Further, in the method of crushing and sintering CoSb 3 ingot, the different phase precipitated during melting, that is, CoSb
Since CoSb and CoSb 2 having a density higher than 3 undergo a phase change to CoSb 3 during firing, there is a problem that body expansion occurs and sintering does not proceed. For example, pressure 5 × 10
A sufficiently densified material has not been obtained even when hot pressed under the conditions of 3 kg / cm 2 and temperature of 600 ° C. (Reference: K. Matsubara, T. Iyanaga, T. Tsubouchi, K. Kish
imoto and T. Koyanagi, American Instituteof Physics
(1995) pp226-229). The theoretical density of cubic CoSb 3 is 7.64 g / cm 3 , whereas the maximum value reported in the literature is 5.25 g / cm 3 . As a result, the sintered body becomes an extremely brittle material, and only a material having insufficient material strength at high temperature can be obtained.

【0015】BiやTe、Se、Pbなどの重元素から
なる材料を産業プロセス排ガスに晒した場合の耐久性
や、高温反応雰囲気における構成成分の気化蒸発とそれ
による汚染の問題から、低コストで高温まで安定に使用
でき環境負荷の小さい新素材が求められている。
[0015] Durability at the time of exposing a material composed of heavy elements such as Bi, Te, Se, Pb, etc. to industrial process exhaust gas, and the problem of vaporization and evaporation of constituent components in a high temperature reaction atmosphere and the resulting contamination, resulting in low cost. New materials that can be used stably at high temperatures and have a low environmental impact are required.

【0016】このような背景から、酸化物を熱電材料と
して使用しようという気運が急速に高まっている。酸化
物は一般に移動度が低く、普通は1019cm−3程度
のキャリア濃度では金属的伝導を示さないため、熱電変
換材料にはならないというのがこれまでの「常識」であ
った。しかし、1997年、層状酸化物NaCo
が低い抵抗率を持ちながら、予想外に大きな熱起電力を
持つことが見出された(特開2000−211971号
公報)。この系の熱電特性は、他の酸化物に比べ群を抜
いて高く、従来の既存実用材料に迫る性能を示すもので
ある。
From such a background, oxides are regarded as thermoelectric materials.
The motivation to use it is increasing rapidly. Oxidation
Objects generally have low mobility, usually 1019cm-3degree
Since it does not show metallic conductivity at the carrier concentration of
The conventional wisdom is that it cannot be replaced.
It was. However, in 1997, the layered oxide NaCoTwoO Four
Has an unexpectedly large thermoelectromotive force while having a low resistivity.
It was found to have (Japanese Patent Laid-Open No. 2000-211971)
Gazette). The thermoelectric properties of this system are outstanding compared to other oxides.
It has high performance and is close to the performance of existing practical materials.
is there.

【0017】しかしながら、焼結時にNaが揮散するた
め作成条件によって熱電特性が大きく異なるという問題
を有する。また、高温で使用するとNa揮散して熱電特
性が低下し、空気中に放置すると抵抗率が増加するとい
う問題もある。さらに、Naが空気中の水分と反応しや
すく性能が劣化する虞がある。
However, since Na is volatilized during sintering, there is a problem that the thermoelectric characteristics greatly differ depending on the preparation conditions. Further, when used at high temperature, Na is volatilized to lower the thermoelectric property, and when left in the air, the resistivity increases. In addition, Na easily reacts with moisture in the air, which may deteriorate the performance.

【0018】一方、ブラウンミラーライト構造であるC
1.95La0.05Co2-xAlx5について、Co系では
じめて負の熱起電力を観測したと報告されている(小林
航、寺崎一郎、「Ca1.95La0.05Co2-xAlx5
の伝導機構」、熱電変換シンポジウム2001(TEC
2001))。
On the other hand, C having a brown mirror light structure
It was reported that a negative thermoelectromotive force was observed for the first time in the Co system for a 1.95 La 0.05 Co 2-x Al x O 5 (Kou Kobayashi, Ichiro Terasaki, “Ca 1.95 La 0.05 Co 2-x Al x O 5). Five
Conduction Mechanism ", Thermoelectric Conversion Symposium 2001 (TEC
2001)).

【0019】しかしながら、この場合にも低温から室温
まででの観測であり、高温での使用はできないという問
題がある。
However, even in this case, there is a problem that the observation is carried out from a low temperature to a room temperature and it cannot be used at a high temperature.

【0020】本発明はこのような事情に鑑み、500℃
以上の高温でも安定して使用でき且つ毒性が低い熱電変
換材料及び熱電変換素子を提供することを課題とする。
The present invention has been made in view of the above circumstances and has a temperature of 500 ° C.
An object of the present invention is to provide a thermoelectric conversion material and a thermoelectric conversion element that can be stably used even at the above high temperature and have low toxicity.

【0021】[0021]

【課題を解決するための手段】前記課題を解決する本発
明の第1の態様は、(Ca1-xM1x2(Co1-y
y25(M1:La、Sr又はBa、0≦x<0.
07、0.2≦y<0.5)で表される酸化物からなる
ことを特徴とする熱電変換材料にある。
[Means for Solving the Problems] The present invention for solving the above problems
The first aspect of Ming is (Ca1-xM1x)2(Co1-yG
a y)2OFive(M1: La, Sr or Ba, 0 ≦ x <0.
07, 0.2 ≦ y <0.5)
The thermoelectric conversion material is characterized in that

【0022】本発明の第2の態様は、第1の態様の熱電
変換材料を用いたことを特徴とする熱電変換素子にあ
る。
A second aspect of the present invention is a thermoelectric conversion element characterized by using the thermoelectric conversion material of the first aspect.

【0023】本発明の第3の態様は、(Ca1-pM2p
2(Co1-qFeq25(M2:La、Sr又はBa、
0≦p<0.1、0.2≦q<1.0)で表される酸化
物からなることを特徴とする熱電変換材料にある。
The third aspect of the present invention is (Ca 1-p M2 p ).
2 (Co 1-q Fe q ) 2 O 5 (M2: La, Sr or Ba,
A thermoelectric conversion material characterized by comprising an oxide represented by 0 ≦ p <0.1, 0.2 ≦ q <1.0).

【0024】本発明の第4の態様は、第3の態様の熱電
変換材料を用いたことを特徴とする熱電変換素子にあ
る。
A fourth aspect of the present invention is a thermoelectric conversion element characterized by using the thermoelectric conversion material of the third aspect.

【0025】本発明は、Ca1.95La0.05Co2-xAlx
5のAlを他の13族の元素に置換した結果、Gaを
用いた(Ca1-xLax2(Co1-yGay25は、ブ
ラウンミラーライト構造(Brownmillerri
te構造)をとり、500℃以上の高温でも安定して使
用でき且つ毒性も低いという利点を有するものであるこ
という知見に基づいて完成されたものである。
The present invention relates to Ca 1.95 La 0.05 Co 2-x Al x
Of Al O 5 result of replacing the other Group 13 elements, with Ga (Ca 1-x La x ) 2 (Co 1-y Ga y) 2 O 5 is brown mirror light structure (Brownmillerri
It has been completed based on the finding that it has a te structure) and can be stably used even at a high temperature of 500 ° C. or higher and has low toxicity.

【0026】ここで、(Ca1-xM1x2(Co1-yGa
y25のM1がLaの場合及びM1が存在しない場合
についてのX線回折図を図1に示す。この結果、何れも
ブラウンミラーライト構造をとることが確認された。ま
た、本発明の熱電変換材料の母相であるCa2(Co
2-2yGa2y)O5について、Gaの量に対する熱起電
力の挙動を調べたところ、図2に示す結果となった。こ
の結果、何れの場合も温度を上昇すると、負の熱起電力
(N型)から正の熱起電力(P型)に変化するが、Ga
の量が少ないほどNからPへの転移温度が低温側に移動
することが確認された。また、Gaが少ない方が電気抵
抗も小さくなることが確認された。一方、カルシウムサ
イトにLaをドープすると、キャリアが形成されて電気
抵抗が低下するが、添加量が多くなるほど熱起電力が低
下していくので、少ないドープ量とするのが好ましいこ
とが確認された。
Here, (Ca 1-x M1 x ) 2 (Co 1-y Ga
An X-ray diffraction diagram for the case where M1 of y ) 2 O 5 is La and the case where M1 does not exist is shown in FIG. As a result, it was confirmed that all had a brown mirror light structure. In addition, Ca 2 (Co) which is the mother phase of the thermoelectric conversion material of the present invention
When the behavior of the thermoelectromotive force with respect to the amount of Ga was examined for 2−2y Ga 2y ) O 5 , the results shown in FIG. 2 were obtained. As a result, in any case, when the temperature rises, the negative thermoelectromotive force (N type) changes to the positive thermoelectromotive force (P type).
It was confirmed that the transition temperature from N to P shifts to the lower temperature side as the amount of is smaller. It was also confirmed that the smaller the Ga, the smaller the electric resistance. On the other hand, when the calcium site is doped with La, carriers are formed and the electric resistance is lowered, but the thermoelectromotive force is lowered as the added amount is increased, so it was confirmed that a small doping amount is preferable. .

【0027】また、Gaの代わりにFeを用いた(Ca
1-pM2p2(Co1-qFeq25についても、ブラウ
ンミラーライト構造をとって、高温においても良好な熱
起電力を示すことが確認された。このように、非常に安
価なFeCo系の母材において、熱起電力が確認された
のは初めてであり、今後の有効利用が期待できる。ま
た、カルシウムサイトにLaをドープすると、キャリア
が形成されて電気抵抗が低下するが、添加量が多くなる
ほど熱起電力が低下していくので、少ないドープ量とす
るのが好ましいことが確認された。なお、カルシウムサ
イトにLaの代わりにSrをドープしても同様な効果が
得られたので、Srの代わりにBaを用いても同様な効
果が得られることが予想される。また、Gaを用いた場
合にも、Laの代わりにSrやBaを用いても同様な効
果が得られることが予想される。
Fe was used instead of Ga (Ca
It was confirmed that 1-p M2 p ) 2 (Co 1-q Fe q ) 2 O 5 also exhibits a good thermoelectromotive force even at a high temperature by adopting the brown mirror light structure. As described above, the thermoelectromotive force has been confirmed for the very inexpensive FeCo-based base material for the first time, and effective utilization in the future can be expected. It was also confirmed that when the calcium site is doped with La, carriers are formed to lower the electric resistance, but the thermoelectromotive force decreases as the added amount increases, so it is preferable to use a small doping amount. . It should be noted that since similar effects were obtained by doping Sr instead of La in the calcium site, it is expected that similar effects can be obtained by using Ba instead of Sr. Further, when Ga is used, it is expected that similar effects can be obtained by using Sr or Ba instead of La.

【0028】なお、本発明の熱電変換材料は、C軸方向
に配向していてもよい。これにより、層状構造に起因し
て層の平行方向と垂直方向による物性、特に電気抵抗率
の異方性により、熱電特性が改善されることが予想され
る。ここで、C軸方向に配向させる配向制御は、ホット
プレス法やプラズマ放電等の周知の方法により行うこと
ができる。
The thermoelectric conversion material of the present invention may be oriented in the C-axis direction. As a result, it is expected that the thermoelectric properties are improved due to the physical properties in the parallel and vertical directions of the layers due to the layered structure, particularly the anisotropy of electrical resistivity. Here, the orientation control for orienting in the C-axis direction can be performed by a known method such as a hot pressing method or plasma discharge.

【0029】本発明のGaを用いた熱電変換材料におい
て、Gaは、ブラウンミラーライト構造を保つことがで
きる限界量以上で、できるだけ少ない方が望ましく、
0.2≦y<0.5の範囲、好ましくは0.2≦y≦
0.4の範囲である。yが0.2より小さいとブラウン
ミラーライト構造を安定して保つことができず、一方、
yが0.5以上では不純物が析出してしまうからであ
る。一方、La、Sr又はBaの量は、0≦x<0.0
7の範囲であり、好ましくは、0.01≦x≦0.02
の範囲である。
In the thermoelectric conversion material using Ga of the present invention, it is preferable that Ga is equal to or more than the limit amount capable of maintaining the brown mirror light structure and is as small as possible.
Range of 0.2 ≦ y <0.5, preferably 0.2 ≦ y ≦
It is in the range of 0.4. If y is less than 0.2, the brown mirror light structure cannot be stably maintained, while
This is because impurities are precipitated when y is 0.5 or more. On the other hand, the amount of La, Sr, or Ba is 0 ≦ x <0.0.
7 and preferably 0.01 ≦ x ≦ 0.02
Is the range.

【0030】一方、本発明のFeを用いた熱電変換材料
においては、Feは、コストの面から多い方が好ましい
が、0.2≦q<1.0、好ましくはq<0.75、さ
らに好ましくはq≦0.5である。これより多いと、結
晶型が崩れてしまうからである。一方、La、Sr又は
Baの量は、p<0.1、好ましくは、p<0.075
である。
On the other hand, in the thermoelectric conversion material using Fe of the present invention, it is preferable that the amount of Fe is large in terms of cost, but 0.2 ≦ q <1.0, preferably q <0.75, and further Preferably q ≦ 0.5. This is because if the amount is larger than this, the crystal form will collapse. On the other hand, the amount of La, Sr or Ba is p <0.1, preferably p <0.075.
Is.

【0031】(Ca1-pM2p2(Co1-qFeq25
において、M2がLaの場合はキャリアが形成されて電
気抵抗が減少する。M2がBaまたはSrの場合は直接
添加によるキャリアの変化はないが、Feが価数で2価
と3価として存在し、母体自身の抵抗が低下している。
Feの量が多くなると、Feの3価が増え抵抗は増大
し、出力因子が低下するためFeはqが1.0未満であ
ることが望ましい。
(Ca 1-p M2 p ) 2 (Co 1-q Fe q ) 2 O 5
In, when M2 is La, carriers are formed and the electric resistance decreases. When M2 is Ba or Sr, there is no change in the carrier due to direct addition, but Fe exists as divalent and trivalent valences, and the resistance of the matrix itself is lowered.
When the amount of Fe increases, the trivalence of Fe increases, the resistance increases, and the output factor decreases. Therefore, it is desirable that q of Fe be less than 1.0.

【0032】以上説明した本発明の熱電変換材料を用い
ることにより、熱電特性の優れた熱電変換素子を構成す
ることができる。熱電変換素子の構成は特に限定され
ず、従来から公知の構造を採用することができ、例え
ば、温度差から起電力を取り出す構造や、電力を加えて
ヒートポンプとして冷却又は加熱する構造を採用するこ
とができる。
By using the thermoelectric conversion material of the present invention described above, a thermoelectric conversion element having excellent thermoelectric characteristics can be constructed. The structure of the thermoelectric conversion element is not particularly limited, and a conventionally known structure can be adopted. For example, a structure for extracting electromotive force from a temperature difference or a structure for cooling or heating as a heat pump by applying electric power is adopted. You can

【0033】[0033]

【発明の実施の態様】以下、本発明を実施例に基づいて
説明するが、本発明はこれに限定されるものではない。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described below based on Examples, but the present invention is not limited thereto.

【0034】(実施例1及び2)純度99.99%のC
aCO、純度99.9%のCo、純度99.9
%のLaO、純度99.99%Ga23の粉末を、
(Ca1-xLax2(Co1 -yGay25のx=0、y
=0.25(実施例1)、x=0、y=0.35(実施
例2)、x=0.0125、y=0.25(実施例
3)、x=0.025、y=0.25(実施例4)及び
x=0.05、y=0.25(実施例5)となる混合比
(化学量論組成)で秤量し、めのう乳鉢で30分程度混
合し、大気中1000℃で12時間仮焼きを行った。こ
れをめのう乳鉢で30分程度粉砕し、約1.2gの試料
を一軸加圧成形法により成形し、成形品を大気中105
0℃で12時間本焼きして焼結体とした。
(Examples 1 and 2) C having a purity of 99.99%
aCO 3 , Co 3 O 4 with a purity of 99.9%, purity 99.9
% LaO 3 , a powder of purity 99.99% Ga 2 O 3 ,
(Ca 1-x La x) 2 (Co 1 -y Ga y) of 2 O 5 x = 0, y
= 0.25 (Example 1), x = 0, y = 0.35 (Example 2), x = 0.125, y = 0.25 (Example 3), x = 0.025, y = 0.25 (Example 4) and x = 0.05, y = 0.25 (Example 5) were weighed at a mixing ratio (stoichiometric composition), mixed in an agate mortar for about 30 minutes, and then in the air. It was calcined at 1000 ° C. for 12 hours. This is crushed for about 30 minutes in an agate mortar, and about 1.2 g of a sample is molded by a uniaxial pressure molding method, and the molded product is stored in the atmosphere at 105
This was baked at 0 ° C. for 12 hours to obtain a sintered body.

【0035】(比較例1)比較のため、x=0、y=
0.5(比較例1)、x=0.075、y=0.25
(比較例2)となる混合比で秤量し、同様に焼結体を作
製した。
Comparative Example 1 For comparison, x = 0 and y =
0.5 (Comparative Example 1), x = 0.075, y = 0.25
The mixture was weighed at a mixing ratio of (Comparative Example 2), and a sintered body was prepared in the same manner.

【0036】(試験例1)XRD測定 実施例1〜4及び比較例1の焼結体の同定を、X線回折
で行った。測定にはマックサイエンス社製MXPでC
uターゲットを用いた。測定条件は、以下の通りとし
た。
(Test Example 1) XRD measurement The sintered bodies of Examples 1 to 4 and Comparative Example 1 were identified by X-ray diffraction. C for MXP 3 manufactured by Mac Science Co., Ltd.
u target was used. The measurement conditions were as follows.

【0037】測定範囲:5.0〜60.6deg サンプリング間隔:0.02deg スキャン速度:3.0/min 測定法:通常法(BG測定なし) 発生電圧:40kV 発生電流:30mA 発散スリット:1.0deg 散乱スリット:1.0deg 発光スリット:0.15mm この結果は図1に示す。Measuring range: 5.0 to 60.6 deg Sampling interval: 0.02 deg Scan speed: 3.0 / min Measurement method: Normal method (without BG measurement) Generated voltage: 40 kV Generated current: 30mA Divergence slit: 1.0 deg Scattering slit: 1.0 deg Emitting slit: 0.15mm The result is shown in FIG.

【0038】この結果、実施例1〜4では、何れもブラ
ウンミラーライト構造をとることが確認されたが、Ga
がy=0.5と多くなると(比較例1)単相が得られな
くなることが確認された。
As a result, it was confirmed that all of Examples 1 to 4 had the brown mirror light structure.
It was confirmed that when y was as large as y = 0.5 (Comparative Example 1), a single phase could not be obtained.

【0039】(試験例2)実施例3〜5並びに比較例2
の焼結体について、以下の通り、熱起電力(ゼーベック
係数)の温度依存性を測定した。
(Test Example 2) Examples 3 to 5 and Comparative Example 2
The temperature dependence of the thermoelectromotive force (Seebeck coefficient) of the sintered body was measured as follows.

【0040】(T<300K)切りだした試料を銀ペー
ストで二枚の銅板上に跨るように固定し、液体ヘリウム
を用いて室温から徐々に冷却しながら、一方に銅板にあ
るヒータによって試料両端に温度差ΔT(約5K)をつ
け、そのときの起電力を読みとり測定した。計測線には
Cu、熱電対にはCu−Ct、温度計はCernox温
度計、ヒータはひずみゲージを用いた。
(T <300K) A sample cut out was fixed with silver paste so as to straddle two copper plates, and while gradually cooling from room temperature with liquid helium, one end of the sample was heated by a heater on the copper plate on one side. A temperature difference ΔT (about 5 K) was applied to the sample, and the electromotive force at that time was read and measured. Cu was used for the measurement line, Cu-Ct for the thermocouple, a Cernox thermometer for the thermometer, and a strain gauge for the heater.

【0041】(T>300K)管状炉の片方にヒータを
置いて炉全体の温度勾配を利用して試料両端に温度差Δ
T(約20K)をつけた以外は、T<300Kの場合と
ほぼ同様に行った。
(T> 300K) A heater is placed on one side of the tubular furnace, and the temperature difference Δ across the sample is utilized by utilizing the temperature gradient of the entire furnace.
Except for adding T (about 20K), the procedure was almost the same as for T <300K.

【0042】この結果を図3に示す。この結果、Laの
含有量が多くなると、ゼーベック係数が低下する傾向に
あり、Laの添加量はy=0.07程度が限界であるこ
とがわかった。なお、y=0.075の比較例2では、
X線回折図は示していないが、単相ではなくなり、ブラ
ウンミラー結晶構造が安定して得られないこともわかっ
ている。
The results are shown in FIG. As a result, it was found that the Seebeck coefficient tends to decrease as the content of La increases, and the amount of La added is limited to about y = 0.07. In Comparative Example 2 in which y = 0.075,
Although an X-ray diffraction diagram is not shown, it is also known that the phase is not a single phase and a brown mirror crystal structure cannot be obtained stably.

【0043】(試験例3)実施例3〜5の焼結体につい
て、直流四端子法により、電気抵抗率の温度依存性を測
定した。この結果を図4に示す。
(Test Example 3) With respect to the sintered bodies of Examples 3 to 5, the temperature dependence of the electrical resistivity was measured by the DC four-terminal method. The result is shown in FIG.

【0044】この結果より、電気抵抗率はLaの添加量
が小さいほど小さいことが確認された。
From these results, it was confirmed that the electrical resistivity was smaller as the amount of La added was smaller.

【0045】(試験例4)実施例3及び4の焼結体につ
いて出力因子の温度依存性を測定した結果を図5に示
す。なお、出力因子は、P=α/ρにより算出した。
Test Example 4 The results of measuring the temperature dependence of the output factor for the sintered bodies of Examples 3 and 4 are shown in FIG. The output factor was calculated by P = α 2 / ρ.

【0046】(実施例6〜8)純度99.99%のCa
CO、純度99.9%のCo、純度99.99
%Fe23の粉末を、(Ca1-pLap2(Co1-qFe
q25のp=0、q=0.375(実施例6)、p=
0、q=0.5(実施例7)、p=0、q=0.75
(実施例8)となる混合比(化学量論組成)で秤量し、
めのう乳鉢で30分程度混合し、大気中1000℃で1
2時間仮焼きを行った。これをめのう乳鉢で30分程度
粉砕し、約1.2gの試料を一軸加圧成形法により成形
し、成形品を大気中1100℃で12時間本焼きして焼
結体とした。
(Examples 6 to 8) Ca having a purity of 99.99%
CO 3 , Co 3 O 4 with a purity of 99.9%, purity 99.99
% Fe 2 O 3 powder to (Ca 1-p La p ) 2 (Co 1-q Fe
q ) 2 O 5 p = 0, q = 0.375 (Example 6), p =
0, q = 0.5 (Example 7), p = 0, q = 0.75
(Example 8) was weighed at a mixing ratio (stoichiometric composition),
Mix in an agate mortar for about 30 minutes, and in air at 1000 ° C for 1
It was calcined for 2 hours. This was crushed for about 30 minutes in an agate mortar, and a sample of about 1.2 g was molded by a uniaxial pressure molding method, and the molded product was baked in the air at 1100 ° C. for 12 hours to obtain a sintered body.

【0047】(比較例3)比較のため、p=0、q=
1.0(比較例3)となる混合比で秤量し、同様に焼結
体を作製した。
Comparative Example 3 For comparison, p = 0 and q =
The mixture was weighed at a mixing ratio of 1.0 (Comparative Example 3), and a sintered body was prepared in the same manner.

【0048】(実施例9〜12)純度99.99%のC
aCO、純度99.9%のCo、純度99.9
%のLaO、純度99.99%Fe23の粉末を、
(Ca1-pLap2(Co1 -qFeq25のp=0.0
125、q=0.5(実施例9)、p=0.025、q
=0.5(実施例10)、p=0.0375、q=0.
5(実施例11)及びp=0.05、q=0.5(実施
例12)となる混合比(化学量論組成)で秤量し、めの
う乳鉢で30分程度混合し、大気中1000℃で12時
間仮焼きを行った。これをめのう乳鉢で30分程度粉砕
し、約1.2gの試料を一軸加圧成形法により成形し、
成形品を大気中1100℃で12時間本焼きして焼結体
とした。
(Examples 9 to 12) C having a purity of 99.99%
aCO 3 , Co 3 O 4 with a purity of 99.9%, purity 99.9
% LaO 3 , powder of purity 99.99% Fe 2 O 3 ,
(Ca 1-p La p ) 2 (Co 1 -q Fe q ) 2 O 5 p = 0.0
125, q = 0.5 (Example 9), p = 0.025, q
= 0.5 (Example 10), p = 0.0375, q = 0.
5 (Example 11) and p = 0.05 and q = 0.5 (Example 12) were weighed at a mixing ratio (stoichiometric composition), mixed in an agate mortar for about 30 minutes, and then 1000 ° C. in the atmosphere. It was calcined for 12 hours. This is crushed in an agate mortar for about 30 minutes, and a sample of about 1.2 g is molded by a uniaxial pressure molding method.
The molded product was fired in the air at 1100 ° C. for 12 hours to obtain a sintered body.

【0049】(実施例13、14)純度99.99%の
CaCO、純度99.9%のCo、純度99.
9%のSrCO、純度99.99%Fe23の粉末
を、(Ca1-pSrp2(Co1-qFeq25のp=
0.0125、q=0.5(実施例13)、p=0.0
25、q=0.5(実施例14)となる混合比(化学量
論組成)で秤量し、めのう乳鉢で30分程度混合し、大
気中1000℃で12時間仮焼きを行った。これをめの
う乳鉢で30分程度粉砕し、約1.2gの試料を一軸加
圧成形法により成形し、成形品を大気中1100℃で1
2時間本焼きして焼結体とした。
(Examples 13 and 14) CaCO 3 having a purity of 99.99%, Co 3 O 4 having a purity of 99.9%, and a purity of 99.
Powder of 9% SrCO 3 and purity 99.99% Fe 2 O 3 was added to (Ca 1-p Sr p ) 2 (Co 1-q Fe q ) 2 O 5 with p =
0.0125, q = 0.5 (Example 13), p = 0.0
25, q = 0.5 (Example 14) were weighed at a mixing ratio (stoichiometric composition), mixed in an agate mortar for about 30 minutes, and calcined in the air at 1000 ° C. for 12 hours. This is crushed in an agate mortar for about 30 minutes, and about 1.2 g of a sample is molded by a uniaxial pressure molding method, and the molded product is subjected to 1 atmosphere at 1100 ° C. for 1 minute.
It was fired for 2 hours to obtain a sintered body.

【0050】(試験例5)XRD測定 実施例6〜14及び比較例3の焼結体の同定を、試験例
1と同様に行った。この結果を図6〜図8に示す。
(Test Example 5) XRD Measurement The sintered bodies of Examples 6 to 14 and Comparative Example 3 were identified in the same manner as in Test Example 1. The results are shown in FIGS.

【0051】この結果、実施例6〜14では、何れもブ
ラウンミラーライト構造をとることが確認されたが、F
eがq=1.0と多くなると(比較例3)ブラウンミラ
ーライト構造が得られなくなることが確認された。
As a result, it was confirmed that all of Examples 6 to 14 had a brown mirror light structure.
It was confirmed that when e was as large as q = 1.0 (Comparative Example 3), the brown mirror light structure could not be obtained.

【0052】(試験例6)実施例6、7及び9〜14の
焼結体について、試験例2と同様にして、熱起電力(ゼ
ーベック係数)の温度依存性を測定した。
(Test Example 6) With respect to the sintered bodies of Examples 6, 7 and 9 to 14, the temperature dependence of the thermoelectromotive force (Seebeck coefficient) was measured in the same manner as in Test Example 2.

【0053】この結果を図9〜図11に示す。この結
果、CoをFeで置換するほど、熱起電力が大きくなる
ことがわかった。また、CaサイトにLaの含有量が多
くなると、ゼーベック係数が低下する傾向にあるが、S
rを添加した場合には、未添加と同等の熱起電力を示す
ことがわかった。
The results are shown in FIGS. As a result, it was found that the thermoelectromotive force increased as the Co was replaced with Fe. Moreover, when the content of La in the Ca site increases, the Seebeck coefficient tends to decrease, but S
It was found that when r was added, a thermoelectromotive force equivalent to that when not added was exhibited.

【0054】(試験例7)実施例6、7及び9〜14の
焼結体について、直流四端子法により、電気抵抗率の温
度依存性を測定した。この結果を図12〜図14に示
す。
(Test Example 7) With respect to the sintered bodies of Examples 6, 7 and 9 to 14, the temperature dependence of the electrical resistivity was measured by the DC four-terminal method. The results are shown in FIGS.

【0055】この結果より、電気抵抗率は、Feの置換
量が少ない方が小さいことがわかった。また、カルシウ
ムサイトの置換では、電気抵抗率は、特に高温ではLa
又はSrの添加量が少ないほど小さいことが確認され
た。
From these results, it was found that the electric resistivity was smaller when the Fe substitution amount was smaller. In addition, when the calcium site is replaced, the electrical resistivity becomes La at high temperature.
Alternatively, it was confirmed that the smaller the added amount of Sr, the smaller the amount.

【0056】(試験例8)実施例7、9、13及び14
の焼結体について出力因子の温度依存性を測定した結果
を図15及び16に示す。なお、出力因子は、P=α
/ρにより算出した。
(Test Example 8) Examples 7, 9, 13 and 14
15 and 16 show the results of measuring the temperature dependence of the output factor for the sintered body of No. 1. The output factor is P = α 2
Calculated by / ρ.

【0057】[0057]

【発明の効果】以上説明したように、本発明によれば、
500℃以上の高温でも安定して使用でき且つ毒性が低
い熱電変換材料及び熱電変換素子を提供することができ
る。
As described above, according to the present invention,
A thermoelectric conversion material and a thermoelectric conversion element that can be stably used even at a high temperature of 500 ° C. or higher and have low toxicity can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例及び比較例に係る熱電変換材料
のX線回折図である。
FIG. 1 is an X-ray diffraction diagram of thermoelectric conversion materials according to Examples and Comparative Examples of the present invention.

【図2】本発明に係る熱電変換材料の熱起電力の温度依
存性を示す図である。
FIG. 2 is a diagram showing temperature dependence of thermoelectromotive force of the thermoelectric conversion material according to the present invention.

【図3】本発明の実施例及び比較例に係る熱電変換材料
の熱起電力を示す図である。
FIG. 3 is a diagram showing thermoelectromotive force of thermoelectric conversion materials according to Examples and Comparative Examples of the present invention.

【図4】本発明の実施例に係る熱電変換材料の電気抵抗
率の温度依存性を示す図である。
FIG. 4 is a diagram showing temperature dependence of electric resistivity of thermoelectric conversion materials according to examples of the present invention.

【図5】本発明の実施例に係る熱電変換材料の出力因子
の温度依存性を示す図である。
FIG. 5 is a diagram showing temperature dependence of an output factor of a thermoelectric conversion material according to an example of the present invention.

【図6】本発明の実施例及び比較例に係る熱電変換材料
のX線回折図である。
FIG. 6 is an X-ray diffraction diagram of thermoelectric conversion materials according to Examples and Comparative Examples of the present invention.

【図7】本発明の実施例に係る熱電変換材料のX線回折
図である。
FIG. 7 is an X-ray diffraction diagram of a thermoelectric conversion material according to an example of the present invention.

【図8】本発明の実施例に係る熱電変換材料のX線回折
図である。
FIG. 8 is an X-ray diffraction diagram of a thermoelectric conversion material according to an example of the present invention.

【図9】本発明の実施例に係る熱電変換材料の熱起電力
の温度依存性を示す図である。
FIG. 9 is a diagram showing temperature dependence of thermoelectromotive force of thermoelectric conversion materials according to examples of the present invention.

【図10】本発明の実施例に係る熱電変換材料の熱起電
力の温度依存性を示す図である。
FIG. 10 is a diagram showing temperature dependence of thermoelectromotive force of thermoelectric conversion materials according to examples of the present invention.

【図11】本発明の実施例に係る熱電変換材料の熱起電
力の温度依存性を示す図である。
FIG. 11 is a diagram showing temperature dependence of thermoelectromotive force of thermoelectric conversion materials according to examples of the present invention.

【図12】本発明の実施例に係る熱電変換材料の電気抵
抗率の温度依存性を示す図である。
FIG. 12 is a diagram showing the temperature dependence of the electrical resistivity of the thermoelectric conversion material according to the example of the present invention.

【図13】本発明の実施例に係る熱電変換材料の電気抵
抗率の温度依存性を示す図である。
FIG. 13 is a diagram showing the temperature dependence of the electrical resistivity of the thermoelectric conversion material according to the example of the present invention.

【図14】本発明の実施例に係る熱電変換材料の電気抵
抗率の温度依存性を示す図である。
FIG. 14 is a diagram showing temperature dependence of electric resistivity of thermoelectric conversion materials according to examples of the present invention.

【図15】本発明の実施例に係る熱電変換材料の出力因
子の温度依存性を示す図である。
FIG. 15 is a diagram showing the temperature dependence of the output factor of the thermoelectric conversion material according to the example of the present invention.

【図16】本発明の実施例に係る熱電変換材料の出力因
子の温度依存性を示す図である。
FIG. 16 is a diagram showing the temperature dependence of the output factor of the thermoelectric conversion material according to the example of the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 上野 寿輝 神奈川県横浜市鶴見区尻手2丁目3番6号 北辰工業株式会社内   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Touki Ueno             2-3-3 Shirate, Tsurumi-ku, Yokohama-shi, Kanagawa               Hokushin Industry Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 (Ca1-xM1x2(Co1-yGay2
5(M1:La、Sr又はBa、0≦x<0.07、
0.2≦y<0.5)で表される酸化物からなることを
特徴とする熱電変換材料。
[Claim 1] (Ca 1-x M1 x) 2 (Co 1-y Ga y) 2 O
5 (M1: La, Sr or Ba, 0 ≦ x <0.07,
A thermoelectric conversion material comprising an oxide represented by 0.2 ≦ y <0.5).
【請求項2】 請求項1の熱電変換材料を用いたことを
特徴とする熱電変換素子。
2. A thermoelectric conversion element comprising the thermoelectric conversion material according to claim 1.
【請求項3】 (Ca1-pM2p2(Co1-qFeq2
5(M2:La、Sr又はBa、0≦p<0.1、0.
2≦q<1.0)で表される酸化物からなることを特徴
とする熱電変換材料。
3. (Ca 1-p M2 p ) 2 (Co 1-q Fe q ) 2 O
5 (M2: La, Sr or Ba, 0 ≦ p <0.1, 0.
A thermoelectric conversion material comprising an oxide represented by 2 ≦ q <1.0).
【請求項4】 請求項3の熱電変換材料を用いたことを
特徴とする熱電変換素子。
4. A thermoelectric conversion element comprising the thermoelectric conversion material according to claim 3.
JP2002084435A 2002-03-25 2002-03-25 Thermoelectric conversion material and thermoelectric conversion element Expired - Fee Related JP4257633B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002084435A JP4257633B2 (en) 2002-03-25 2002-03-25 Thermoelectric conversion material and thermoelectric conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002084435A JP4257633B2 (en) 2002-03-25 2002-03-25 Thermoelectric conversion material and thermoelectric conversion element

Publications (2)

Publication Number Publication Date
JP2003282967A true JP2003282967A (en) 2003-10-03
JP4257633B2 JP4257633B2 (en) 2009-04-22

Family

ID=29231787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002084435A Expired - Fee Related JP4257633B2 (en) 2002-03-25 2002-03-25 Thermoelectric conversion material and thermoelectric conversion element

Country Status (1)

Country Link
JP (1) JP4257633B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009105101A (en) * 2007-10-19 2009-05-14 Furukawa Electric Co Ltd:The Thermoelement and manufacturing method therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009105101A (en) * 2007-10-19 2009-05-14 Furukawa Electric Co Ltd:The Thermoelement and manufacturing method therefor

Also Published As

Publication number Publication date
JP4257633B2 (en) 2009-04-22

Similar Documents

Publication Publication Date Title
KR101680763B1 (en) Thermoelectric materials, and thermoelectric module and thermoelectric device comprising same
KR101663183B1 (en) Thermoelectric materials, and thermoelectric module and thermoelectric device comprising same
KR101688528B1 (en) Thermoelectric materials, and thermoelectric module and thermoelectric device comprising same
He et al. Thermoelectric properties of La1− xAxCoO3 (A= Pb, Na)
US6777609B2 (en) Thermoelectric conversion material and thermoelectric conversion device
JP3596643B2 (en) Thermoelectric conversion material and thermoelectric conversion element
JP4024294B2 (en) Thermoelectric conversion material, thermoelectric conversion element using the same, and electronic device and cooling device provided with the element
JP2006062951A (en) Thermoelectric conversion material and its manufacturing method
KR101688529B1 (en) Thermoelectric materials, and thermoelectric module and thermoelectric apparatus comprising same
Dura et al. The effect of nanostructure on the thermoelectric figure-of-merit of La0. 875Sr0. 125CoO3
US10937939B2 (en) Thermoelectric conversion material and thermoelectric conversion element
JP2003142742A (en) Manganese oxide thermoelectric converting material
JP3922651B2 (en) Thermoelectric conversion material, thermoelectric conversion element using the same, and electronic device and cooling device provided with the element
JP2000012915A (en) Thermoelectric conversion material
Dehkordi An Experimental Investigation Towards Improvement of Thermoelectric Properties of Strontium Titanate Ceramics
JP4257633B2 (en) Thermoelectric conversion material and thermoelectric conversion element
JP2001019544A (en) Thermoelectric conversion material and production of composite oxide sintered body
JP2007149996A (en) Layered oxide thermoelectric material having delafossite structure
JP2808580B2 (en) Thermoelectric semiconductor materials
Zhou et al. High temperature thermoelectric properties of (Ca, Ce) 4Mn3O10
JP2010228927A (en) Cobalt-manganese compound oxide
JP3586716B2 (en) Composite oxide with high thermoelectric conversion efficiency
Sotojima et al. Thermoelectric properties and phase transition of (ZnxCu2− x) V2O7
Singh et al. Investigation of the Thermoelectric Properties of ZnV $ _ {2} $ O $ _ {4} $ Compound in High Temperature Region
JP4275172B2 (en) Layered oxide thermoelectric material with delafossite structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050322

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070511

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080806

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090121

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090122

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120213

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees