JP2003282835A - Lower electrode for ferroelectric memory, ferroelectric capacitor using it, and method of manufacturing lower electrode - Google Patents

Lower electrode for ferroelectric memory, ferroelectric capacitor using it, and method of manufacturing lower electrode

Info

Publication number
JP2003282835A
JP2003282835A JP2002084794A JP2002084794A JP2003282835A JP 2003282835 A JP2003282835 A JP 2003282835A JP 2002084794 A JP2002084794 A JP 2002084794A JP 2002084794 A JP2002084794 A JP 2002084794A JP 2003282835 A JP2003282835 A JP 2003282835A
Authority
JP
Japan
Prior art keywords
ferroelectric
lower electrode
noble metal
thin film
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002084794A
Other languages
Japanese (ja)
Inventor
Yuji Takatsuka
裕二 高塚
Noriyuki Nakayama
徳行 中山
Shoji Takanashi
昌二 高梨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2002084794A priority Critical patent/JP2003282835A/en
Publication of JP2003282835A publication Critical patent/JP2003282835A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Memories (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lower electrode for ferroelectric thin film capacitor that can reveal a high ferroelectric property, and to provide a capacitor using the electrode and a method of manufacturing the electrode. <P>SOLUTION: The uppermost part of this lower electrode which comes into contact with a ferroelectric substance is constituted of a polycrystalline film of a noble metal and crystal grains constituting the polycrystalline film are oriented. The (111)-orientation axis of the crystal grains is inclined with respect to the (111)-orientation surface of the polycrystalline film by 5-20°C. At the time of producing the lower electrode for ferromagnetic memory, a substrate, an SiO<SB>2</SB>layer, a Ti layer, and the polycrystalline film of the noble metal are laminated upon another in this order and, after the Ti layer is formed, heat treatment is performed for 20-60 minutes under an oxygen-coexisting condition or an oxygen atmosphere of ≥0.01 MPa in pressure at a temperature of 800-1,200°C. Thereafter, a ferroelectric thin film having the composition of SrxBiyTa<SB>2</SB>O<SB>9</SB>(wherein, x denotes ≥0.6 and <0.8 and y denotes ≥2.05 and <2.4) is provided on the electrode film composed of the noble metal. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、強誘電体特性を利
用した不揮発性メモリなどの各種デバイスに供する、残
留分極に優れる強誘電体薄膜キャパシタに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ferroelectric thin film capacitor excellent in remanent polarization for use in various devices such as a non-volatile memory utilizing ferroelectric characteristics.

【0002】[0002]

【従来の技術】近年、PZTなどのPb系ペロブスカイ
ト型酸化物、あるいはSBTなどのBi系層状ペロブス
カイト型酸化物の強誘電体薄膜を不揮発性メモリに応用
する研究が盛んに行われている。特にSBTは、PZT
と比較して、分極反転疲労特性に優れ、低電圧での分極
反転が可能であるという特徴を有することから注目を集
めているが、その反面、残留分極値が低い点が問題とさ
れている。メモリの高集積化が進めば、高い残留分極値
が不可欠となるため、残留分極値の向上がますます重要
な課題となっている。
2. Description of the Related Art In recent years, much research has been conducted on applying a ferroelectric thin film of a Pb-based perovskite oxide such as PZT or a Bi-based layered perovskite oxide such as SBT to a nonvolatile memory. Especially SBT is PZT
Compared with the above, it has attracted attention because it has the characteristics of excellent polarization reversal fatigue characteristics and is capable of reversing polarization at low voltage, but on the other hand, it has a problem of low residual polarization value. . Since the higher remanent polarization value becomes indispensable as the integration density of the memory advances, the improvement of the remanent polarization value becomes an increasingly important issue.

【0003】これらの強誘電体は特定の結晶方向への原
子位置が変位する、あるいは結晶が回転する事により強
誘電性が発現する。そのため薄膜での強誘電特性は、膜
の配向により、大きく変わることが知られている。
Ferroelectricity is exhibited in these ferroelectrics by displacing the atomic position in a specific crystal direction or rotating the crystal. Therefore, it is known that the ferroelectric characteristics of a thin film change greatly depending on the orientation of the film.

【0004】一般に強誘電性メモリデバイスでは、強誘
電体が酸化物であるため、強誘電体膜の作成時の電極の
酸化を防ぐためPt、Ir、Ru等の貴金属を電極とし
て用いる。これらの膜は結晶方向が(111)に強く配
向する事が知られている。この強誘電体薄膜は、例えば
SBTではa軸とb軸方向に強誘電性を示すが、この配
向電極膜上に積層された強誘電体は結晶方向がランダム
になるため強誘電体の特性は単結晶と比較して配向軸比
で平均化された値、具体的には2/3が理論上の最高値
として期待される。
Generally, in a ferroelectric memory device, since the ferroelectric substance is an oxide, a noble metal such as Pt, Ir or Ru is used as an electrode in order to prevent oxidation of the electrode when forming the ferroelectric film. It is known that the crystal orientation of these films is strongly oriented to (111). This ferroelectric thin film exhibits ferroelectricity in the a-axis and b-axis directions in, for example, SBT, but the ferroelectric layered on this oriented electrode film has random crystal directions, so the characteristics of the ferroelectric are A value averaged by the orientation axis ratio as compared with the single crystal, specifically, 2/3 is expected as the theoretical maximum value.

【0005】[0005]

【発明が解決しようとする課題】本発明は、下部電極の
貴金属層の配向軸を(111)からずらすことにより、
実質的に強誘電体膜の配向を変え、もって大きな強誘電
性を持つ強誘電体薄膜キャパシタ用下部電極とこれを用
いたキャパシタ、および下部電極の製造方法の提供を目
的とする。
According to the present invention, the alignment axis of the noble metal layer of the lower electrode is shifted from (111),
An object of the present invention is to provide a lower electrode for a ferroelectric thin film capacitor which substantially changes the orientation of the ferroelectric film and has a large ferroelectricity, a capacitor using the same, and a method for manufacturing the lower electrode.

【0006】[0006]

【課題を解決するための手段】発明者らは、従来の強誘
電体薄膜キャパシタの作製工程を変えたときに、貴金属
電極の配向が微妙に変化する事を見いだした。さらに貴
金属電極の配向と上記強誘電体薄膜、特にSBTの構成
元素からなる金属酸化物薄膜を強誘電体薄膜に結晶化さ
せた時に該強誘電体薄膜を構成する結晶の配向との間に
一定の関係があることを見いだして本発明に至った。
The inventors have found that the orientation of the noble metal electrode slightly changes when the manufacturing process of the conventional ferroelectric thin film capacitor is changed. Further, there is a constant value between the orientation of the noble metal electrode and the orientation of the crystals forming the ferroelectric thin film when the ferroelectric thin film, particularly the metal oxide thin film composed of the constituent elements of SBT is crystallized into the ferroelectric thin film. The present invention has been accomplished by finding out that there is a relationship.

【0007】上記課題を解決する本第一の発明は、強誘
電体メモリ用の下部電極であり、その強誘電体と接する
下部電極最上部が貴金属の多結晶膜で構成され、該貴金
属多結晶膜を構成する結晶粒子が配向を示し、その(1
11)配向軸が、本来当該貴金属多結晶膜が示す(11
1)配向面に対して5〜20度傾いていることを特徴と
する強誘電体メモリ用下部電極である。なお、本発明に
おいて貴金属としてPt,Ir,Ruを構成材料として
用いると強誘電体層形成時の酸化による電気抵抗値の上
昇を防止するという点からより好ましい。
The first invention for solving the above-mentioned problems is a lower electrode for a ferroelectric memory, wherein the uppermost part of the lower electrode in contact with the ferroelectric is composed of a noble metal polycrystalline film. The crystal grains that make up the film show an orientation,
11) The orientation axis is originally shown by the precious metal polycrystalline film (11
1) A lower electrode for a ferroelectric memory, which is tilted 5 to 20 degrees with respect to the orientation plane. In the present invention, it is more preferable to use Pt, Ir, Ru as a noble metal as a constituent material from the viewpoint of preventing an increase in electric resistance value due to oxidation during the formation of the ferroelectric layer.

【0008】本第二の発明は、上記下部電極の製造方法
であり、下部電極を作成するに際して、基板、Si
2、Ti、Ptの順に積層し、Ti層の形成後に温度
800〜1200℃、酸素共存下、もしくは0.01M
Pa以上の酸素雰囲気中で20〜60分間熱処理するこ
とを特徴とするものである。なお、上記方法において直
流スパッタリング法、高周波スパッタリング法、マグネ
トロンスパッタ法、ECRプラズマスパッタ法等の乾式
成膜法の何れかを用いてSiO2、Ti、Pt等を積層
するとより好ましい結果が得られる。
A second aspect of the present invention is a method of manufacturing a lower electrode as described above, wherein a substrate, Si and
O 2 , Ti, and Pt are stacked in this order, and after forming the Ti layer, the temperature is 800 to 1200 ° C., in the coexistence of oxygen, or 0.01 M.
The heat treatment is performed for 20 to 60 minutes in an oxygen atmosphere of Pa or more. In the above method, more preferable results can be obtained by stacking SiO 2 , Ti, Pt and the like using any one of dry film forming methods such as DC sputtering method, high frequency sputtering method, magnetron sputtering method and ECR plasma sputtering method.

【0009】そして、本第三の発明は、強誘電体キャパ
シタであり、本第一の発明の下部貴金属電極構造を有す
る強誘電体キャパシタにおいて、該貴金属電極膜上に強
誘電体がもうけられ、その強誘電体の組成がSrxBi
yTa29 、xが0.6以上0.8未満、yが2.0
5以上2.4未満のものである。
The third invention is a ferroelectric capacitor, and in the ferroelectric capacitor having the lower noble metal electrode structure of the first invention, a ferroelectric is provided on the noble metal electrode film, The composition of the ferroelectric is SrxBi
yTa 2 O 9 , x is 0.6 or more and less than 0.8, y is 2.0
It is 5 or more and less than 2.4.

【0010】なお、本発明において貴金属膜の配向は普
通のθ−2θのX線回折では分かり難いため逆格子マッ
ピング法を用いて測定を行う。
In the present invention, the orientation of the noble metal film is difficult to understand by ordinary .theta.-2.theta. X-ray diffraction, and therefore the reciprocal lattice mapping method is used for the measurement.

【0011】[0011]

【発明の実施の形態】以下に本発明の実施の形態を詳細
に説明する。本第一の発明は強誘電体メモリ用の下部電
極において、その強誘電体と接する下部電極最上部が、
貴金属の多結晶膜で構成され、該貴金属多結晶膜を構成
する結晶粒子が配向を示し、その(111)配向軸が、
本来当該貴金属多結晶膜が示す(111)配向面に対し
て5〜20度傾いていることを特徴とする強誘電体メモ
リ用下部電極である。5〜20度傾くとは、当該結晶面
の垂線が本来当該貴金属結多晶膜の垂線より5〜20度
傾いていることを言う。(111)結晶軸が膜面に対し
てこの傾きの範囲内にあると、25μC/cm2以上の
極めて高い残留分極値を示す強誘電体薄膜キャパシタを
得ることが可能である。なお、この値は当該組成の単結
晶が有する残留分極の期待される理論値に近いものであ
る。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described in detail below. The first invention is a lower electrode for a ferroelectric memory, in which the uppermost portion of the lower electrode in contact with the ferroelectric is
A noble metal polycrystal film is formed, and the crystal grains constituting the noble metal polycrystal film exhibit orientation, and the (111) orientation axis thereof is
The lower electrode for a ferroelectric memory is characterized in that it is originally inclined by 5 to 20 degrees with respect to the (111) orientation plane of the noble metal polycrystalline film. The inclination of 5 to 20 degrees means that the perpendicular of the crystal plane is originally inclined by 5 to 20 degrees from the perpendicular of the noble metal polycrystal film. When the (111) crystal axis is within the range of this inclination with respect to the film surface, it is possible to obtain a ferroelectric thin film capacitor exhibiting an extremely high remanent polarization value of 25 μC / cm 2 or more. This value is close to the expected theoretical value of remanent polarization possessed by the single crystal having the composition.

【0012】上記において、貴金属としてはPt、I
r、Ru等が用いられるが、酸化防止するという観点か
らPtを用いることがより好ましい。
In the above, Pt and I are used as the noble metal.
Although r, Ru and the like are used, it is more preferable to use Pt from the viewpoint of preventing oxidation.

【0013】本第二の発明は、上記下部電極の製造方法
である。従来、強誘電体薄膜キャパシタの作製工程と
は、(1)SiO2上にTi薄膜からなる密着層を形成する
工程、(2)該密着層上にPt,Ir,Ru等の貴金属薄
膜からなる下部電極層を形成する工程、(3)該下部電極
層上に強誘電体材料の構成金属元素からなる金属酸化物
薄膜層を形成する 工程(4)その後熱処理を施して結晶
化させることによって金属酸化物薄膜を強誘電体薄膜層
に する工程(以下、強誘電体薄膜層形成工程と略
す)、(5)強誘電体薄膜層上に金属薄膜または伝導性酸
化物薄膜からなる上部電極層を形成する 工程、(6)エ
ッチング加工してキャパシタ構造を形成する工程、(7)
必要に応じて再熱処理する工程によって構成される。
A second aspect of the present invention is a method of manufacturing the above lower electrode. Conventionally, the manufacturing process of a ferroelectric thin film capacitor includes (1) a process of forming an adhesion layer made of a Ti thin film on SiO 2 , and (2) a noble metal thin film of Pt, Ir, Ru or the like on the adhesion layer. A step of forming a lower electrode layer, (3) a step of forming a metal oxide thin film layer made of a constituent metal element of a ferroelectric material on the lower electrode layer, and (4) a heat treatment to crystallize the metal. Step of forming oxide thin film into ferroelectric thin film layer (hereinafter abbreviated as ferroelectric thin film layer forming step), (5) Upper electrode layer consisting of metal thin film or conductive oxide thin film on ferroelectric thin film layer Forming process, (6) etching process to form a capacitor structure, (7)
It is constituted by a step of re-heat treatment if necessary.

【0014】本発明では、上記従来の(1) に示される
Ti薄膜からなる密着層形成工程と(2) に示される金属
薄膜からなる下部電極層を形成する工程との間に所定の
条件下で熱処理をする工程を加える。それにより、爾後
に形成される金属薄膜の結晶粒子が配向を示し、その
(111)配向軸が本来当該貴金属多結晶膜が示す(1
11)配向面に対して5〜20度ずらすことを可能とす
る。
According to the present invention, a predetermined condition is provided between the step of forming a contact layer made of a Ti thin film shown in (1) and the step of forming a lower electrode layer made of a metal thin film shown in (2). A step of heat treatment is added. As a result, the crystal grains of the metal thin film formed afterward show the orientation, and the (111) orientation axis originally shows the noble metal polycrystalline film (1
11) It is possible to shift the orientation plane by 5 to 20 degrees.

【0015】所定の条件としては、温度を800〜12
00℃、酸素共存下、あるいは酸素分圧を0.01MP
a以上とし、処理時間を20〜60分とするものであ
る。
As a predetermined condition, the temperature is 800 to 12
Oxygen coexistence at 00 ° C or oxygen partial pressure 0.01MP
The processing time is 20 to 60 minutes.

【0016】ここで、熱処理の温度を800℃以上とし
た理由は、後の実施例でも示すように、800℃未満で
は爾後にもうけられる金属薄膜に(111)配向軸のず
れが上記範囲に入らないからである。また1200℃を
越えるとSi基板の変形が生じる。更にSiの水素処理
温度が1000℃以下であることを考慮すると1000
℃以下がより好ましい。
Here, the reason why the heat treatment temperature is set to 800 ° C. or higher is that the metal thin film produced after 800 ° C. has a deviation of the (111) orientation axis within the above range, as will be shown in later examples. Because there is no. If the temperature exceeds 1200 ° C, the Si substrate is deformed. Further, considering that the hydrogen treatment temperature of Si is 1000 ° C. or lower, 1000
C. or less is more preferable.

【0017】本発明において酸素共存下、あるいは酸素
分圧を0.01MPa以上とした理由についても同様
で、この条件をはずすと充分な効果が得られないためで
ある。なお、SBTの結晶化のための熱処理時に適用さ
れる酸素分圧以上とすれば、爾後の操作において金属薄
膜の(111)配向軸の更なるずれが生じないので好ま
しい。
The reason why the present invention is used in the coexistence of oxygen or the oxygen partial pressure is set to 0.01 MPa or more is also the same, because if these conditions are not removed, a sufficient effect cannot be obtained. It is preferable that the oxygen partial pressure applied during the heat treatment for crystallization of SBT be equal to or higher than the oxygen partial pressure, because the (111) orientation axis of the metal thin film will not be further displaced in the subsequent operation.

【0018】Tiの熱処理に用いることのできる炉とし
ての制限は特にないが、雰囲気の調節が可能であること
を要する。処理物量が少ない場合には、例えば本実施例
で示されているように一定の温度に保った管状炉を用い
ることが可能である。熱処理時間は20分未満ではTi
のアニール効果が不十分であり、短時間での処理を考え
ると60分以下が好ましい。
There is no particular limitation on the furnace that can be used for the heat treatment of Ti, but it is necessary that the atmosphere can be adjusted. When the amount of processed material is small, it is possible to use, for example, a tubular furnace maintained at a constant temperature as shown in this example. If the heat treatment time is less than 20 minutes, Ti
The annealing effect is insufficient, and considering the treatment in a short time, 60 minutes or less is preferable.

【0019】本発明の熱処理工程の付加は、SBT強誘
電体薄膜を直流スパッタリング法、高周波スパッタリン
グ法、マグネトロンスパッタ法、ECRプラズマスパッ
タ法等の各種の方法で形成する場合に、その効果が著し
い。
The effect of the addition of the heat treatment step of the present invention is remarkable when the SBT ferroelectric thin film is formed by various methods such as a DC sputtering method, a high frequency sputtering method, a magnetron sputtering method and an ECR plasma sputtering method.

【0020】そして、本第三の発明の強誘電体キャパシ
タは、本発明1の下部貴金属電極構造を有する強誘電体
キャパシタであって、貴金属電極膜上に強誘電体がもう
けられ、強誘電体がSrxBiyTa29 、xが0.
6以上0.8未満、yが2.05以上2.4未満のもの
である。貴金属としてはPt、Ir、Ru等が用いられ
るが、酸化防止という観点からPtを用いることがより
好ましいことは上記したとおりである。
The ferroelectric capacitor of the third aspect of the present invention is the ferroelectric capacitor having the lower noble metal electrode structure of the first aspect of the present invention, in which the ferroelectric substance is provided on the noble metal electrode film, There SrxBiyTa 2 O 9, x is 0.
It is 6 or more and less than 0.8, and y is 2.05 or more and less than 2.4. Pt, Ir, Ru or the like is used as the noble metal, but it is more preferable to use Pt from the viewpoint of preventing oxidation as described above.

【0021】本発明がなぜ有効なのかについては、正確
なところはわからない。しかしながら、本発明者らは、
本発明の下部電極構造を有する強誘電体薄膜キャパシタ
では、貴金属層の(111)配向軸が膜面より5〜20
度傾くことにより、該貴金属層表面の微細構造が変化
し、該貴金属表面にランダム配向で設けられる強誘電体
多結晶そのものが強制的に傾けられ、相対的に該多結晶
で構成される強誘電体膜のc軸成分の効果が薄められ、
a軸、b軸の効果が強められて、結果として強誘電性特
性が向上すると想定している。
It is not known exactly as to why the present invention is effective. However, we have
In the ferroelectric thin film capacitor having the lower electrode structure of the present invention, the (111) orientation axis of the noble metal layer is 5 to 20 from the film surface.
The inclination causes the fine structure of the surface of the noble metal layer to change, and the ferroelectric polycrystal itself provided with random orientation on the surface of the noble metal is forcibly tilted, and the ferroelectric composed relatively of the polycrystal. The effect of the c-axis component of the body membrane is diluted,
It is assumed that the effects of the a-axis and the b-axis are strengthened, and as a result, the ferroelectric characteristics are improved.

【0022】[0022]

【実施例】次に実施例を用いて本発明をさらに説明す
る。 (実施例1〜5)強誘電体薄膜キャパシタを以下の方法
で作製した。 (1)まず、Si基を熱酸化法で処理してその表面に膜厚
500nmのSiO2膜を形成し た。 (2)このSiO2/Siウェハー上に、直径6inchの
Tiターゲットを使用し、DC マグネトロンスパッタ
リングによって、出力200W、Ar圧0.3Paの条
件にて膜 厚50nmのTi薄膜を形成した。 (3)その後、800(実施例1)、900(実施例
2)、1000(実施例3)、110 0(実施例
4)、1200(実施例5)℃の各温度で、それぞれ酸
素雰囲気中(0.1 MPa)で30分間熱処理(以
下、Pre−Annealと呼ぶ)を行った。 (4)続いて直径6inchのPtターゲットを使用し、
RFマグネトロンスパッタリング によって出力100
W、Ar圧0.3Paの条件にて膜厚100nmのPt
薄膜をTi 薄膜の上に形成した。 (5)さらに、それぞれのPt薄膜上に、φ6inchの
組成がSr0.60Bi2.23Ta2.00yターゲットを使
用し、RFマグネトロンスパッタリング法によって、出
力200W 、Ar圧3.0Paの条件にて膜厚200
nmのSBT構成金属元素からなる金属酸化 物薄膜を
形成した。 (6)次に、これらを800℃、酸素中にて30分間熱処
理してその金属酸化物薄膜を結晶 化させ、SBT薄膜
を得た。 (7)この上に、上記(4) のPt薄膜形成と同じ条件で、
直径0.5mm、膜厚100nm のPt薄膜を形成し
た。 (8)最後に600℃、酸素中で30分間再熱処理を行っ
た。
EXAMPLES Next, the present invention will be further described with reference to examples. (Examples 1 to 5) Ferroelectric thin film capacitors were manufactured by the following method. (1) First, a Si group was treated by a thermal oxidation method to form a SiO 2 film having a film thickness of 500 nm on the surface thereof. (2) A Ti thin film having a film thickness of 50 nm was formed on the SiO 2 / Si wafer by DC magnetron sputtering using a Ti target having a diameter of 6 inches under the conditions of an output of 200 W and an Ar pressure of 0.3 Pa. (3) After that, at 800 (Example 1), 900 (Example 2), 1000 (Example 3), 1100 (Example 4), 1200 (Example 5) ° C., in an oxygen atmosphere, respectively. A heat treatment (hereinafter referred to as Pre-anneal) was performed at (0.1 MPa) for 30 minutes. (4) Then, using a Pt target with a diameter of 6 inches,
Output 100 by RF magnetron sputtering
Pt with a film thickness of 100 nm under the conditions of W and Ar pressure of 0.3 Pa
A thin film was formed on the Ti thin film. (5) Further, on each Pt thin film, a Sr 0.60 Bi 2.23 Ta 2.00 O y target having a composition of φ6 inch was used, and a film thickness of 200 was obtained under the conditions of an output of 200 W and an Ar pressure of 3.0 Pa by an RF magnetron sputtering method.
A metal oxide thin film composed of the SBT constituent metal element having a thickness of nm was formed. (6) Next, these were heat-treated at 800 ° C. in oxygen for 30 minutes to crystallize the metal oxide thin film to obtain an SBT thin film. (7) On top of this, under the same conditions as the Pt thin film formation in (4) above,
A Pt thin film having a diameter of 0.5 mm and a film thickness of 100 nm was formed. (8) Finally, reheat treatment was performed at 600 ° C. in oxygen for 30 minutes.

【0023】なお、このようにして作製したSBT強誘
電体薄膜の組成をICP発行分光分析法によって分析し
たところ、いずれもSr/Bi/Ta=0.70/2.
19/2.00であった。
When the composition of the SBT ferroelectric thin film thus produced was analyzed by ICP emission spectroscopy, it was found that Sr / Bi / Ta = 0.70 / 2.
It was 19 / 2.00.

【0024】次に、得られた各強誘電体薄膜キャパシタ
の強誘電体特性を印加電圧5Vの条件で評価した。用い
た装置はドイツのaixACCT社製TF ANALY
ZER2000FEである。得られた結果を表1にしめ
した。また、上記(4) の工程で得られた各Pt膜の逆格
子マップをフィリプス社製 X‘Pert−ProMP
Dを用いて測定し、(111)配向面の膜面よりの傾き
を求めた。得られた結果を表1に示した。なお、結果の
一例として900℃でTi膜を熱処理したものの逆格子
マッピングを図1に示した。図1とTi膜を熱処理して
いない場合の図2を比較するとΨ=0、θ−2θでの測
定ではPtのピーク位置に変化は見られないが、Ψ方向
でのX線回折強度の等高線図を見ると図1ではPtのピ
−クがΨ=0からずれていることがわかる。θ=40
°、Pt(111)の回折線でのPtのピーク位置のΨ
方向へのずれ量を(111)配向面の傾きとした。
Next, the ferroelectric characteristics of each of the obtained ferroelectric thin film capacitors were evaluated under the condition of an applied voltage of 5V. The equipment used was TF ANALY made by aixACCT in Germany.
It is ZER2000FE. The results obtained are shown in Table 1. In addition, the reciprocal lattice map of each Pt film obtained in the above step (4) is used as X'Pert-ProMP manufactured by Philips.
The measurement was performed using D, and the inclination of the (111) oriented surface from the film surface was obtained. The obtained results are shown in Table 1. In addition, as an example of the result, the reciprocal lattice mapping of the heat-treated Ti film at 900 ° C. is shown in FIG. Comparing FIG. 1 and FIG. 2 in the case where the Ti film is not heat-treated, there is no change in the peak position of Pt in the measurement at Ψ = 0, θ−2θ, but the contour line of the X-ray diffraction intensity in the Ψ direction. It can be seen from FIG. 1 that the peak of Pt deviates from Ψ = 0. θ = 40
°, Ψ of Pt peak position in Pt (111) diffraction line
The amount of deviation in the direction was defined as the inclination of the (111) orientation plane.

【0025】 表1 熱処理温度 残留分極値(2Pr) (111)配向面の傾き ℃ μC/cm2 度 800 28.7 7 900 29.3 9 1000 29.5 11 1100 29.8 12 1200 30.1 14Table 1 Heat treatment temperature Remanent polarization value (2Pr) (111) Inclination of orientation plane ° C μC / cm 2 degrees 800 28.7 7 900 29.3 9 1000 29.5 11 1100 29.8 12 1200 30.1 14

【0026】(実施例6〜8)Pre−Anneal時
の酸素分圧を0.01MPa(実施例6)、0.02M
Pa(実施例7)、0.05MPa(実施例8)とした
以外は実施例2と同様にして強誘電体薄膜キャパシタを
作成した。得られた残留分極値(2Pr)と(111)
配向面の傾きを表2に示した。 表2 酸素分圧 残留分極値(2Pr) (111)配向面の傾き MPa μC/cm2 度 0.01 27.8 5 0.02 28.2 6 0.05 28.5 7
(Examples 6 to 8) The oxygen partial pressure at the time of Pre-anneal is 0.01 MPa (Example 6), 0.02M.
A ferroelectric thin film capacitor was prepared in the same manner as in Example 2 except that Pa (Example 7) and 0.05 MPa (Example 8) were used. Obtained remanent polarization values (2Pr) and (111)
The tilt of the orientation plane is shown in Table 2. Table 2 Oxygen partial pressure Remanent polarization value (2Pr) (111) Inclination of orientation plane MPa μC / cm 2 degree 0.01 27.8 5 0.02 28.2 6 0.05 28.5 7

【0027】(実施例9〜11)Pre−Anneal
時の処理時間を20分(実施例9)、40分(実施例1
0)、60分(実施例11)とした以外は実施例2と同
様にして強誘電体薄膜キャパシタを作成した。得られた
残留分極値(2Pr)と(111)配向面の傾きを表3
に示した。 表3 処理時間 残留分極値(2Pr) (111)配向面の傾き 分 μC/cm2 度 20 26.3 5 40 28.9 7 60 29.3 9
(Examples 9 to 11) Pre-anneal
Processing time of 20 minutes (Example 9), 40 minutes (Example 1)
A ferroelectric thin film capacitor was prepared in the same manner as in Example 2 except that the time was 0) and 60 minutes (Example 11). The obtained remanent polarization value (2Pr) and the inclination of the (111) oriented surface are shown in Table 3.
It was shown to. Table 3 Processing time Remanent polarization value (2Pr) (111) Inclination of orientation plane μC / cm 2 degrees 20 26.3 5 40 28.9 7 60 60 29.3 9

【0028】(実施例12)Ptの代わりにIrを用い
た以外は実施例2と同様にして強誘電体薄膜キャパシタ
を作成した。得られた残留分極値(2Pr)は28.3
μC/cm2となっていた。
(Example 12) A ferroelectric thin film capacitor was prepared in the same manner as in Example 2 except that Ir was used instead of Pt. The obtained residual polarization value (2Pr) was 28.3.
It was μC / cm 2 .

【0029】(実施例13)Ptの代わりにRuを用い
た以外は実施例2と同様にして強誘電体薄膜キャパシタ
を作成した。得られた残留分極値(2Pr)は27.9
μC/cm2となっていた。
(Example 13) A ferroelectric thin film capacitor was prepared in the same manner as in Example 2 except that Ru was used instead of Pt. The obtained residual polarization value (2Pr) is 27.9.
It was μC / cm 2 .

【0030】(比較例1〜3)Pre−Anneal時
の温度を400℃(比較例1)、500℃(比較例
2)、700℃(比較例3)とした以外は実施例1と同
様にして強誘電体薄膜キャパシタを作製した。なお、こ
のようにして作製したSBT強誘電体薄膜の組成をIC
P発行分光分析法によって分析したところ、いずれもS
r/Bi/Ta=0.70/2.19/2.00であっ
た。
(Comparative Examples 1 to 3) The same as Example 1 except that the temperatures during the Pre-anneal were 400 ° C. (Comparative Example 1), 500 ° C. (Comparative Example 2) and 700 ° C. (Comparative Example 3). As a result, a ferroelectric thin film capacitor was manufactured. The composition of the SBT ferroelectric thin film thus prepared is
When analyzed by P issue spectroscopy
It was r / Bi / Ta = 0.70 / 2.19 / 2.00.

【0031】次に、得られた各強誘電体薄膜キャパシタ
の強誘電体特性を印加電圧5Vの条件で評価した。用い
た装置はドイツのaixACCT社製TF ANALY
ZER2000FEである。得られた結果を表3にしめ
した。また、上記(4) の工程で得られた各Pt膜の逆格
子マップをフィリップ社製X‘Pert−Pro MP
Dを用いて測定し、(111)配向面の膜面よりの傾き
を求めた。得られた結果を表4に示した。なお、結果の
一例として500℃でTi膜を熱処理したものの逆格子
マッピングを図2に示した。
Next, the ferroelectric characteristics of each of the obtained ferroelectric thin film capacitors were evaluated under the condition of an applied voltage of 5V. The equipment used was TF ANALY made by aixACCT in Germany.
It is ZER2000FE. The results obtained are shown in Table 3. In addition, the reciprocal lattice map of each Pt film obtained in the above step (4) is a X'Pert-Pro MP manufactured by Philip Company.
The measurement was performed using D, and the inclination of the (111) oriented surface from the film surface was obtained. The obtained results are shown in Table 4. In addition, as an example of the result, the reciprocal lattice mapping of the heat-treated Ti film at 500 ° C. is shown in FIG.

【0032】 表4 熱処理温度 残留分極値(2Pr) (111)配向面の傾き ℃ μC/cm2 度 400 18.1 0 500 25.1 0 700 25.7 2Table 4 Heat treatment temperature Remanent polarization value (2Pr) (111) Inclination of orientation plane ° C μC / cm 2 degree 400 18.1 0 500 25.1 0 700 700 25.7 2

【0033】(比較例4〜5)Pre−Anneal時
の酸素分圧を0.001MPa(比較例4)とした以外
は比較例1と同様にして強誘電体薄膜キャパシタを作成
した。得られた残留分極値(2Pr)と(111)配向
面の傾きを表5に示した。 表5 酸素分圧 残留分極値(2Pr) (111)配向面の傾き MPa μC/cm2 度 0.001 25.1 0
(Comparative Examples 4 to 5) Ferroelectric thin film capacitors were prepared in the same manner as in Comparative Example 1 except that the oxygen partial pressure during Pre-anneal was 0.001 MPa (Comparative Example 4). Table 5 shows the obtained remanent polarization value (2Pr) and the inclination of the (111) oriented surface. Table 5 Oxygen partial pressure Remanent polarization value (2Pr) (111) Inclination of orientation plane MPa μC / cm 2 degrees 0.001 25.1 0

【0034】(比較例5〜6)Pre−Anneal時
の処理時間を10分(比較例9)、120分(比較例1
0)とした以外は比較例1と同様にして強誘電体薄膜キ
ャパシタを作成した。得られた残留分極値(2Pr)と
(111)配向面の傾きを表6に示した。 表6 処理時間 残留分極値(2Pr) (111)配向面の傾き 分 μC/cm2 度 10 25.3 3 120 29.6 13
(Comparative Examples 5 to 6) The processing time at the time of Pre-anneal was 10 minutes (Comparative Example 9) and 120 minutes (Comparative Example 1).
A ferroelectric thin film capacitor was prepared in the same manner as in Comparative Example 1 except that it was set to 0). Table 6 shows the obtained remanent polarization value (2Pr) and the inclination of the (111) oriented surface. Table 6 Treatment time Remanent polarization value (2Pr) (111) Gradient of orientation plane μC / cm 2 degrees 10 25.3 3 120 29.6 13

【0035】以上の結果より、本発明の実施例では極め
て高い残留分極値を示す強誘電体キャパシタを得ること
が可能であることがわかった。なお、比較例6は良好な
残留分極値を得るもののアニール時間として120分と
いう長時間処理は経済性より現実的ではなく本発明の範
囲外とした。このことから、Ti薄膜形成後の熱処理
が、SBT強誘電体薄膜の残留分極値の向上に非常に有
効であることが明らかである。なお、本発明の強誘電体
薄膜の組成はSr/Bi/Ta=0.70/2.19/
2.00であり、かつわずかながらSrと酸素の欠乏状
態となっている。そのため該組成の強誘電体を単結晶と
したときに想定される残留分極値2Prは、2001年
に発行されたフィジカル レビュー B 63巻 21
4102によると40μC/cm2程度、よってランダ
ムな多結晶膜としたときの理論残留分極値2Prはその
2/3の26.7μC/cm2程度となる。
From the above results, it was found that it is possible to obtain a ferroelectric capacitor having an extremely high remanent polarization value in the examples of the present invention. In Comparative Example 6, although a good remanent polarization value was obtained, a long treatment of 120 minutes as an annealing time was not realistic from the economical point of view and was out of the range of the present invention. From this, it is clear that the heat treatment after forming the Ti thin film is very effective in improving the remanent polarization value of the SBT ferroelectric thin film. The composition of the ferroelectric thin film of the present invention is Sr / Bi / Ta = 0.70 / 2.19 /
It is 2.00, and a slight amount of Sr and oxygen is deficient. Therefore, the remanent polarization value 2Pr assumed when a ferroelectric material having the composition is a single crystal is a physical review B 2001 Vol.
According to 4102 40 .mu.C / cm 2 or so, thus the theoretical residual polarization value 2Pr when formed into a random polycrystalline film will be 26.7μC / cm 2 about two thirds.

【0036】[0036]

【発明の効果】以上、詳述した通り、本発明の強誘電体
薄膜キャパシタ作成法によれば、強誘電体薄膜キャパシ
タを構成する下部貴金属層の(111)配向軸が膜面よ
り5〜20度傾くことにより、該貴金属層表面の微細構
造が変化し、該貴金属表面にランダム配向で設けられる
強誘電体多結晶そのものが強制的に傾けられ、相対的に
該多結晶で構成される強誘電体膜のc軸成分の効果が薄
められ、a軸、b軸の効果が強められて、極めて高い残
留分極値を示す強誘電体薄膜を持つ強誘電体薄膜キャパ
シタを再現性良く形成することが可能である。
As described in detail above, according to the method for producing a ferroelectric thin film capacitor of the present invention, the (111) orientation axis of the lower noble metal layer constituting the ferroelectric thin film capacitor is 5 to 20 from the film surface. The inclination causes the fine structure of the surface of the noble metal layer to change, and the ferroelectric polycrystal itself provided with random orientation on the surface of the noble metal is forcibly tilted, and the ferroelectric composed relatively of the polycrystal. The effect of the c-axis component of the body film is weakened, and the effects of the a-axis and the b-axis are strengthened, and a ferroelectric thin film capacitor having a ferroelectric thin film exhibiting an extremely high remanent polarization value can be formed with good reproducibility. It is possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例2の逆格子マップピング結果を示した図
である。
FIG. 1 is a diagram showing a result of reciprocal lattice mapping according to a second embodiment.

【図2】比較例2の逆格子マップピング結果を示した図
である。
FIG. 2 is a diagram showing a result of reciprocal lattice mapping in Comparative Example 2.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5F083 FR01 JA14 JA17 JA38 JA39 JA43 PR22 PR33    ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 5F083 FR01 JA14 JA17 JA38 JA39                       JA43 PR22 PR33

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】強誘電体メモリ用の下部電極において、強
誘電体と接する下部電極最上部が貴金属の多結晶膜で構
成され、該貴金属多結晶膜を構成する結晶粒子が配向を
示し、その(111)配向軸が本来当該貴金属多結晶膜
が示す(111)配向面に対して5〜20度傾いている
ことを特徴とする強誘電体メモリ用下部電極。
1. In a lower electrode for a ferroelectric memory, the uppermost part of the lower electrode in contact with the ferroelectric is composed of a noble metal polycrystal film, and the crystal grains forming the noble metal polycrystal film exhibit orientation. A lower electrode for a ferroelectric memory, wherein a (111) orientation axis is originally inclined by 5 to 20 degrees with respect to a (111) orientation plane indicated by the noble metal polycrystalline film.
【請求項2】貴金属がPt,Ir,Ruで構成されてい
ることを特徴とする請求項1記載の強誘電体メモリ用下
部電極。
2. The lower electrode for a ferroelectric memory according to claim 1, wherein the noble metal is composed of Pt, Ir, Ru.
【請求項3】請求項1〜2の下部貴金属電極構造を有す
る強誘電体キャパシタであって、該貴金属電極膜上に強
誘電体がもうけられ、その強誘電体がSrxBiyTa
29、xが0.6以上0.8未満、yが2.05以上
2.4未満の組成で構成される事を特徴とする強誘電体
キャパシタ。
3. A ferroelectric capacitor having a lower noble metal electrode structure according to claim 1, wherein a ferroelectric substance is provided on the noble metal electrode film, and the ferroelectric substance is SrxByTa.
A ferroelectric capacitor having a composition of 2 O 9 , x of 0.6 or more and less than 0.8, and y of 2.05 or more and less than 2.4.
【請求項4】下部電極を作成するに際して、基板、Si
2、Ti、Ptの順に積層し、Ti層の形成後に酸素
共存下で800〜1200℃の温度でアニールする事を
特徴とする強誘電体メモリ用下部電極の製造方法。
4. A substrate, Si, for forming a lower electrode.
A method for manufacturing a lower electrode for a ferroelectric memory, which comprises laminating O 2 , Ti, and Pt in this order, and annealing after forming a Ti layer at a temperature of 800 to 1200 ° C. in the coexistence of oxygen.
【請求項5】酸素分圧0.01MPa以上でアニールす
る事を特徴とする請求項4記載の下部電極の製造方法。
5. The method of manufacturing a lower electrode according to claim 4, wherein the annealing is performed at an oxygen partial pressure of 0.01 MPa or more.
【請求項6】積層方法が直流スパッタリング法、高周波
スパッタリング法、マグネトロンスパッタ法、ECRプ
ラズマスパッタ法等の方法の少なくとも一種である請求
項4〜5記載の製造方法。
6. The manufacturing method according to claim 4, wherein the laminating method is at least one of a DC sputtering method, a high frequency sputtering method, a magnetron sputtering method, an ECR plasma sputtering method and the like.
JP2002084794A 2002-03-26 2002-03-26 Lower electrode for ferroelectric memory, ferroelectric capacitor using it, and method of manufacturing lower electrode Pending JP2003282835A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002084794A JP2003282835A (en) 2002-03-26 2002-03-26 Lower electrode for ferroelectric memory, ferroelectric capacitor using it, and method of manufacturing lower electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002084794A JP2003282835A (en) 2002-03-26 2002-03-26 Lower electrode for ferroelectric memory, ferroelectric capacitor using it, and method of manufacturing lower electrode

Publications (1)

Publication Number Publication Date
JP2003282835A true JP2003282835A (en) 2003-10-03

Family

ID=29231988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002084794A Pending JP2003282835A (en) 2002-03-26 2002-03-26 Lower electrode for ferroelectric memory, ferroelectric capacitor using it, and method of manufacturing lower electrode

Country Status (1)

Country Link
JP (1) JP2003282835A (en)

Similar Documents

Publication Publication Date Title
JP3159255B2 (en) Sputter growth method for electrodes used in ferroelectric capacitors
JP3133922B2 (en) Ferroelectric thin film coated substrate, method of manufacturing the same, and capacitor structure element
JP3832617B2 (en) Lead germanate ferroelectric structure of multilayer electrode and its deposition method
JPH08306231A (en) Substrate covered with thin film of ferroelectric substance, its manufacture, and nonvolatile memory constructed the substrate
JPH08161933A (en) Ferroelectric thin film and ferroelectric thin film coated board and manufacture of ferroelectric thin film
EP0849780A2 (en) Method for manufacturing ferroelectric thin film, substrate covered with ferroelectric thin film, and capacitor
JP3435633B2 (en) Thin film laminate, thin film capacitor, and method of manufacturing the same
JP3474352B2 (en) Thin film capacitor and semiconductor device
JPWO2004079059A1 (en) Method for forming (001) oriented perovskite film and apparatus having such perovskite film
JPH09232532A (en) Manufacturing method of ferroelectrics memory
JP3608459B2 (en) Thin film laminate, ferroelectric thin film element, and manufacturing method thereof
JPH1117126A (en) Deposition of ferroelectric film and ferroelectric capacitor element
JP4928098B2 (en) Method for manufacturing ferroelectric capacitor
JPH0649638A (en) Production of ferrodielectric thin film
JPH11261028A (en) Thin film capacitor
JP2003282835A (en) Lower electrode for ferroelectric memory, ferroelectric capacitor using it, and method of manufacturing lower electrode
JPH1187634A (en) Thin-film capacitor
JP2003092296A (en) Manufacturing method for dielectric capacitor
JP2006319358A (en) Ferroelectric capacitor and its fabrication process
JPH107495A (en) Formation of thin film
JP3480767B2 (en) Thin film capacitors
JPH1093029A (en) Thin-film dielectric element
JP3085285B2 (en) Method of forming ferroelectric film
JPH11274419A (en) Thin film capacitor
JP4513193B2 (en) Thin film laminate manufacturing method and ferroelectric thin film element manufacturing method