JP2003279858A - Optical axis correction device - Google Patents

Optical axis correction device

Info

Publication number
JP2003279858A
JP2003279858A JP2002085142A JP2002085142A JP2003279858A JP 2003279858 A JP2003279858 A JP 2003279858A JP 2002085142 A JP2002085142 A JP 2002085142A JP 2002085142 A JP2002085142 A JP 2002085142A JP 2003279858 A JP2003279858 A JP 2003279858A
Authority
JP
Japan
Prior art keywords
optical axis
hole
microscope
fitting
guide surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002085142A
Other languages
Japanese (ja)
Other versions
JP4135133B2 (en
JP2003279858A5 (en
Inventor
Tadashi Uchida
忠 打田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2002085142A priority Critical patent/JP4135133B2/en
Publication of JP2003279858A publication Critical patent/JP2003279858A/en
Publication of JP2003279858A5 publication Critical patent/JP2003279858A5/ja
Application granted granted Critical
Publication of JP4135133B2 publication Critical patent/JP4135133B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Microscoopes, Condenser (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical axis correction device for correcting the deviation of the optical axes of a microscope body and a confocal microscope head in the case of connecting the confocal microscope head to the microscope main body. <P>SOLUTION: The optical axis correction device 50 comprises a first correction member 51 having a fitting shaft part 52 attached coaxially with the optical axis J1 of the microscope body to the lens barrel 9 of the microscope body, a large diameter part 53 connected to the upper part, a first through-hole 55 passing through the large diameter part 53 and the fitting shaft part 52, and a guide surface 56 annularly formed at the upper part, and a second correction member 71 having a second shaft part 72, a sliding surface 73 provided projectingly to the outer side in a radial direction on the upper end peripheral edge part and capable of being abutted to the guide surface 56 and slid on the guide surface 56 in the state of inserting the second shaft part 72 to the first through-hole 55, and a second through-hole 75 vertically passing through the second shaft part 72 and fitting the engaging cylinder part 35 of the confocal microscope head 20. The normal line of the sliding surface 73 and the normal line of the guide surface 56 passing through the abutting positions of the sliding surface 73 and the guide surface 56 and a fitting center axis S2 passing through the fitting center of the second through-hole 75 intersect at a point O. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、光軸補正装置に関
し、さらに詳細には、光学機器ユニットを顕微鏡に接続
させる場合に使用され、顕微鏡の光軸と光学機器ユニッ
トの光軸を同軸上に補正する光軸補正装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical axis correcting device, and more particularly, it is used for connecting an optical equipment unit to a microscope, and the optical axis of the microscope and the optical axis of the optical equipment unit are coaxial with each other. The present invention relates to an optical axis correction device for correction.

【0002】[0002]

【従来の技術】顕微鏡には、光源から出射された励起光
を導いて顕微鏡本体に出射するとともに、顕微鏡本体に
載置されてこの励起光が照射された被検物から発光する
蛍光を入射させ、この蛍光の蛍光量を測定する蛍光測定
器に出射する光学機器ヘッドが接続されて使用される場
合がある。光学機器ヘッドは光源から出射された励起光
を光学機器ヘッド内で一旦像面に集光させるように構成
され、顕微鏡本体は光学機器ヘッドの像面と共役となる
被検物上に励起光を集光させるように構成されている。
被検物から発光する蛍光は顕微鏡本体内において励起光
が進んできた方向と逆方向に進んで光学機器ヘッドの像
面に集光される。光学機器ヘッドの像面に集光された蛍
光は励起光が進んできた照明光路を逆方向に進み、照明
光路から分岐した観察光路を進んで蛍光測定器に送られ
る。
2. Description of the Related Art In a microscope, the excitation light emitted from a light source is guided and emitted to the microscope main body, and at the same time, fluorescent light emitted from an object placed on the microscope main body and irradiated with this excitation light is made incident. In some cases, an optical device head for emitting light to a fluorescence measuring device for measuring the fluorescence amount of this fluorescence is connected and used. The optical instrument head is configured to focus the excitation light emitted from the light source on the image plane inside the optical instrument head, and the microscope main body emits the excitation light onto the test object that is conjugate with the image plane of the optical instrument head. It is configured to collect light.
The fluorescence emitted from the test object travels in the microscope body in the direction opposite to the direction in which the excitation light has traveled, and is collected on the image plane of the optical instrument head. The fluorescence condensed on the image plane of the optical instrument head travels in the opposite direction along the illumination light path along which the excitation light has traveled, travels along the observation light path branched from the illumination light path, and is sent to the fluorescence measuring instrument.

【0003】ここで、光学機器ヘッドの照明光路の光軸
と顕微鏡本体の光軸がずれている場合には、顕微鏡本体
に設けられて励起光を被検物上に集光させる対物レンズ
から出射する励起光の瞳がずれ、励起光は被検物を偏っ
た状態で照射する。このような被検物への偏った励起光
の照射が行なわれると、被検物から発光した蛍光が光学
機器ヘッドの像面に集光される蛍光像の明るさにムラが
生じる(以下、この現象をシェーディングと記す)。ま
た、被検物から発光する蛍光の光量は微弱である。この
ため、光量が微弱であるとともにシェーディングが生じ
ている蛍光像を蛍光量測定器に送っても、蛍光量測定器
は正確な蛍光量を得るのが難しい。また、蛍光顕微鏡の
ステージ上に予め均一濃度を有した蛍光色素標本を載
せ、この蛍光色素標本に光学機器ヘッド及び顕微鏡本体
を介して励起光を照射し、蛍光色素標本から発生する蛍
光から得られる画像を処理して、シェーディングを補正
する方法が提案されているが、この方法では標本を変え
る度にシェーディング補正用の画像を取得しなければな
らず、手間がかかる。
Here, when the optical axis of the illumination optical path of the optical equipment head and the optical axis of the microscope main body are deviated from each other, the excitation light is emitted from an objective lens which is provided in the microscope main body and focuses the excitation light on the object to be inspected. The pupil of the excitation light is shifted, and the excitation light irradiates the test object in a biased state. When such biased excitation light is applied to the test object, the fluorescence emitted from the test object becomes uneven in the brightness of the fluorescent image focused on the image plane of the optical device head (hereinafter, This phenomenon is referred to as shading). Further, the amount of fluorescence emitted from the test object is weak. Therefore, it is difficult for the fluorescence amount measuring instrument to obtain an accurate fluorescence amount even if a fluorescence image having a weak light amount and shading is sent to the fluorescence amount measuring instrument. Further, a fluorescent dye sample having a uniform concentration is placed on the stage of the fluorescence microscope in advance, and the fluorescent dye sample is irradiated with excitation light through the optical instrument head and the microscope body, and is obtained from the fluorescence generated from the fluorescent dye sample. Although a method of processing an image to correct shading has been proposed, this method requires an image for shading correction each time the sample is changed, which is troublesome.

【0004】[0004]

【発明が解決しようとする課題】そこで、光学機器ヘッ
ドを顕微鏡本体に装着した状態で顕微鏡本体の光軸と光
学機器ヘッドの照明経路の光軸のずれが無くなるよう
に、それぞれを製造すればよいが、顕微鏡本体の光軸調
整は顕微鏡の製造時においてプリズムやミラー等を調整
して行なわれるので、完全な顕微鏡本体の光軸調整を行
なうには限界がある。また、顕微鏡本体と光学機器ヘッ
ドは別個の物であり、それぞれが別個独自に調整される
ので、これらを組み合わせた場合、両者の光軸のずれが
更に大きくなる虞もある。更に、顕微鏡本体に光学機器
ヘッドを装着した状態で光学機器ヘッドの照明経路の光
軸と顕微鏡本体の光軸のずれを無くすための光軸調整機
構は用いられていない。その結果、顕微鏡本体と光学機
器ヘッドの光軸にずれが生じてもこれを補正することが
できないという問題が生じた。
Therefore, each of them may be manufactured so that the optical axis of the microscope main body and the optical axis of the illumination path of the optical device head do not deviate with the optical equipment head mounted on the microscope main body. However, since the optical axis adjustment of the microscope main body is performed by adjusting prisms, mirrors, etc. during the manufacture of the microscope, there is a limit to complete optical axis adjustment of the microscope main body. Further, since the microscope main body and the optical device head are separate items and are adjusted independently of each other, when they are combined, there is a possibility that the deviation of the optical axes of the two will be further increased. Further, no optical axis adjusting mechanism is used to eliminate the deviation between the optical axis of the illumination path of the optical device head and the optical axis of the microscope main body with the optical device head attached to the microscope main body. As a result, even if there is a deviation between the optical axis of the microscope body and the optical axis of the optical device head, there is a problem in that it cannot be corrected.

【0005】本発明はこのような問題に鑑みてなされた
ものであり、顕微鏡本体に光学機器ヘッドを接続させる
場合、両者の光軸のずれを補正することができる光軸補
正装置を提供することを目的とする。
The present invention has been made in view of such a problem, and provides an optical axis correcting device capable of correcting the deviation of the optical axes of the two when the optical apparatus head is connected to the microscope main body. With the goal.

【0006】[0006]

【課題を解決するための手段】前記問題点を解決するた
めに本発明に係わる光軸補正装置は、光学機器ユニット
(例えば、実施形態における共焦点顕微鏡ヘッド20)
と顕微鏡(例えば、実施形態における顕微鏡本体3)と
を接続させ、光学機器ユニットの光軸と顕微鏡の光軸と
が一軸となるように補正する光軸補正装置であって、顕
微鏡の接続部に嵌合され、顕微鏡の光軸と同軸上に取り
付けられる第1嵌合軸部(例えば、実施形態における嵌
合軸部52)と、第1嵌合軸部を上下に貫通して顕微鏡
への入射若しくは出射光を通す第1貫通孔と、第1貫通
孔の上部に環状に形成されて斜め上方へ延びる案内面部
(例えば、実施形態における案内面56)とを有してな
る第1補正部材と、第1貫通孔の上部から挿入される第
2軸部と、第2軸部の上端部の周縁部に径方向外側へ突
出して形成され、第2軸部が第1貫通孔に挿入された状
態で案内面部に対向した状態で当接して案内面部上を摺
動可能であり、第2軸部を左右に揺動自在に支持する摺
動面部(例えば、実施形態における摺動面73)と、第
2軸部の上端部に形成され、光学機器ユニットを嵌合保
持するユニット保持部(例えば、実施形態における第2
貫通孔75)と、第2軸部及びユニット保持部を上下に
貫通して入射若しくは出射光を通す第2貫通孔とを有し
てなる第2補正部材とを備え、摺動面部が案内面部に当
接した状態において、ユニット保持部の嵌合中心を通る
嵌合中心軸線を含む面で第1補正部材及び第2補正部材
を断面視したときに、摺動面部と案内面部とが当接する
当接位置を通る摺動面部の法線及び案内面部の法線と、
嵌合中心軸線とが一点(例えば、実施形態における点
O)で交わるように構成される。
In order to solve the above problems, an optical axis correcting apparatus according to the present invention is an optical equipment unit (for example, the confocal microscope head 20 in the embodiment).
And a microscope (for example, the microscope main body 3 in the embodiment) are connected to each other, and an optical axis correction device for correcting the optical axis of the optical device unit and the optical axis of the microscope to be a single axis is provided. A first fitting shaft portion (for example, the fitting shaft portion 52 in the embodiment) that is fitted and attached coaxially with the optical axis of the microscope, and vertically penetrates the first fitting shaft portion to enter the microscope. Alternatively, a first correction member having a first through hole that allows the emitted light to pass therethrough and a guide surface portion (for example, the guide surface 56 in the embodiment) formed in an annular shape in the upper portion of the first through hole and extending obliquely upward. A second shaft portion that is inserted from an upper portion of the first through hole and a peripheral portion of an upper end portion of the second shaft portion that projects radially outward, and the second shaft portion is inserted into the first through hole. In this state, it can be slid on the guide surface by contacting the guide surface while facing the guide surface. A sliding surface portion (for example, the sliding surface 73 in the embodiment) that swingably supports the shaft portion to the left and right, and a unit holding portion that is formed at the upper end portion of the second shaft portion and that fits and holds the optical device unit ( For example, the second in the embodiment
A second correction member having a through hole 75) and a second through hole that vertically penetrates the second shaft portion and the unit holding portion and allows incident or emitted light to pass therethrough, and the sliding surface portion has a guide surface portion. When the first correction member and the second correction member are cross-sectionally viewed on a plane including the fitting center axis line that passes through the fitting center of the unit holding portion, the sliding surface portion and the guide surface portion are in contact with each other. The normal of the sliding surface and the normal of the guide surface that pass through the contact position,
The fitting center axis is configured to intersect at one point (for example, point O in the embodiment).

【0007】上記構成の光軸補正装置によれば、摺動面
部を案内面部に当接させた状態において、ユニット保持
部の嵌合中心を通る嵌合中心軸線を含む面で第1補正部
材及び第2補正部材を断面視したときに、摺動面部と案
内面部とが当接する当接位置を通る摺動面部の法線及び
案内面部の法線と、嵌合中心軸線とが一点で交わるよう
に構成することで、第2補正部材を第1補正部材に対し
て一点を揺動中心として左右に揺動させることができ
る。このため、第1嵌合軸部を接続部に嵌合させ、光学
機器ユニットをユニット保持部に装着させたときに、第
1嵌合軸部の中心を通る中心軸線が一点で交わるように
第1嵌合軸部を構成し、且つ光学機器ユニットの光軸が
一点で交わるようにユニット保持部を構成すれば、ユニ
ット保持部に装着された光学機器ユニットを左右に揺動
させることで、光学機器ユニットの光軸と顕微鏡の光軸
とを一軸にすることができる。
According to the optical axis correcting device having the above-mentioned structure, in the state in which the sliding surface portion is brought into contact with the guide surface portion, the first correcting member and the first correcting member are formed on the surface including the fitting center axis line passing through the fitting center of the unit holding portion. When the second correction member is cross-sectionally viewed, the normal line of the sliding surface portion and the normal line of the guiding surface portion passing through the contact position where the sliding surface portion and the guide surface portion contact each other and the fitting center axis line intersect at one point. With this configuration, the second correction member can be swung left and right with respect to the first correction member with one point as the swing center. Therefore, when the first fitting shaft portion is fitted to the connection portion and the optical device unit is mounted to the unit holding portion, the central axis line passing through the center of the first fitting shaft portion intersects at one point. If the unit holding part is configured so that the optical axis of the optical device unit intersects at one point, the optical device unit mounted on the unit holding part is swung to the left and right, thereby The optical axis of the instrument unit and the optical axis of the microscope can be uniaxial.

【0008】また、上記構成の光軸補正装置において、
摺動面部を所定の曲率半径を有した面で形成し、案内面
部を曲率半径と略同じ大きさの曲率半径を有した面若し
くは当接位置における摺動面部の法線の方向と直角方向
に延びる面で形成してもよい。
Further, in the optical axis correcting device having the above structure,
The sliding surface is formed by a surface having a predetermined radius of curvature, and the guide surface is formed by a surface having a radius of curvature approximately the same as the radius of curvature or in a direction perpendicular to the normal to the sliding surface at the contact position. It may be formed by an extended surface.

【0009】上記構成の光軸補正装置によれば、摺動面
部が所定の曲率半径を有した面で形成され、案内面部が
曲率半径と略同じ大きさの曲率半径を有した面若しくは
当接位置における摺動面部の法線の方向と直角方向に延
びる面で形成される場合には、摺動面部が案内面上を摺
動すると、ユニット保持部の嵌合中心を通る嵌合中心軸
線は揺動角度の大きさに拘わらず常に一点を揺動中心と
して左右に揺動させることができる。
According to the optical axis correcting device having the above structure, the sliding surface portion is formed of a surface having a predetermined radius of curvature, and the guide surface portion is a surface having a radius of curvature substantially the same as the radius of curvature or abutting. If the sliding surface slides on the guide surface when it is formed by a surface extending in the direction perpendicular to the normal to the sliding surface at the position, the fitting center axis passing through the fitting center of the unit holder will Regardless of the size of the rocking angle, the rocking can be always performed to the left and right with one point as the rocking center.

【0010】また、上記構成の光軸補正装置において、
案内面部よりも下方へ延びる第1嵌合軸部(例えば、実
施形態における大径部53)の側壁に、平面視における
第1貫通孔の直径方向に対向配置されて第1貫通孔の径
方向に移動自在な一対の第1支点手段(例えば、実施形
態における止めねじ64a、64b)と、平面視におけ
る一対の第1支点手段と直角方向に配置されて第1貫通
孔の径方向に移動自在な一対の第2支点手段(例えば、
実施形態における止めねじ65a、65b)とを設けて
もよい。
Further, in the optical axis correction device having the above structure,
The first fitting shaft portion (e.g., the large diameter portion 53 in the embodiment) extending downward from the guide surface portion is disposed on the side wall so as to face the first through hole in the diametrical direction in a plan view, and the first through hole in the radial direction. And a pair of first fulcrum means (for example, setscrews 64a and 64b in the embodiment) which are freely movable, and are arranged in a direction perpendicular to the pair of first fulcrum means in a plan view and are movable in the radial direction of the first through hole. A pair of second fulcrum means (for example,
Set screws 65a and 65b) in the embodiment may be provided.

【0011】上記構成の光軸補正装置によれば、一対の
第1支点手段若しくは一対の第2支点手段を第1貫通孔
に挿入されている第2嵌合軸部の側壁の側面に当接させ
た状態にすれば、水平面内に直交する2軸を例えばX方
向及びY方向と設定した場合、第2補正部材を一点を揺
動中心としてX方向及びY方向に揺動させることができ
る。
According to the optical axis correcting device having the above structure, the pair of first fulcrum means or the pair of second fulcrum means is brought into contact with the side surface of the side wall of the second fitting shaft portion inserted into the first through hole. In this state, when the two axes that are orthogonal to each other in the horizontal plane are set as the X direction and the Y direction, the second correction member can be swung in the X direction and the Y direction with one point as the swing center.

【0012】[0012]

【発明の実施の形態】以下、本発明の好ましい実施の形
態を図1から図7を使用して説明する。本実施の形態は
被検物に光が照射されたときにこれから発光する蛍光を
観察する蛍光顕微鏡の態様を示す。尚、本明細書におい
ては、説明の便宜上、図1中に示す座標軸をX軸、Y軸
及びZ軸として定義して説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Preferred embodiments of the present invention will be described below with reference to FIGS. This embodiment shows a mode of a fluorescence microscope for observing fluorescence emitted from a test object when the test object is irradiated with light. In this specification, for convenience of description, the coordinate axes shown in FIG. 1 are defined as the X axis, the Y axis, and the Z axis for description.

【0013】最初に、本発明に係わる光軸補正装置を説
明するまえに、光軸補正装置を介して接続される蛍光顕
微鏡及び共焦点顕微鏡ヘッドについて説明する。蛍光顕
微鏡1は、図1に示すように、側面視においてコ字状に
形成された顕微鏡本体3と、顕微鏡本体3の上部に取り
付けられた鏡筒9と、鏡筒9の下方に配設された第1対
物レンズ13と、第1対物レンズ13の下方に配設され
て被検物(図示せず)を載置するステージ17とを有し
て構成されている。鏡筒9は角筒状であって上下に開口
部(図示せず)を有して内部が中空状に形成されてい
る。鏡筒9は、顕微鏡本体3の先端上部に形成された上
下に延びる貫通孔(図示せず)の上部に形成された図示
しない開口部(以下、接続部と記す)に嵌合した状態で
取り付けられ、内部に第2対物レンズ10が配設されて
いる。
First, before describing the optical axis correcting apparatus according to the present invention, a fluorescence microscope and a confocal microscope head connected via the optical axis correcting apparatus will be described. As shown in FIG. 1, the fluorescence microscope 1 is provided with a microscope body 3 formed in a U-shape in a side view, a lens barrel 9 attached to the upper portion of the microscope body 3, and a lens barrel 9 below the lens barrel 9. The first objective lens 13 and the stage 17 disposed below the first objective lens 13 and on which an object (not shown) is placed are configured. The lens barrel 9 is in the shape of a rectangular tube, has an opening (not shown) at the top and bottom, and is hollow inside. The lens barrel 9 is attached in a state of being fitted to an opening (not shown) (not shown) formed in the upper part of a vertically extending through hole (not shown) formed in the upper end of the microscope body 3 The second objective lens 10 is disposed inside.

【0014】顕微鏡本体3の先端上部に形成された貫通
孔の下部には円板状のレボルバ5が回動可能に取り付け
られ、レボルバ5の下面には種類の異なる第1対物レン
ズ13や第1対物レンズ13から出射される後述する励
起光の瞳のずれ量を読みとるずれ量検出工具(図示せ
ず)が着脱可能に取り付けられる。レボルバ5はこれを
回動させて第2対物レンズ10の下方の測定位置に第1
対物レンズ13やずれ量検出工具のいずれかを移動させ
ると、顕微鏡本体3の光軸J1上に第1対物レンズ13
やずれ量検出工具の光軸が同軸上に位置するように構成
されている。
A disc-shaped revolver 5 is rotatably attached to a lower portion of a through hole formed in an upper end of the microscope main body 3, and a lower surface of the revolver 5 includes a first objective lens 13 and a first objective lens 13 of different types. A shift amount detection tool (not shown) for reading a shift amount of the pupil of excitation light, which will be described later, emitted from the objective lens 13 is detachably attached. The revolver 5 is rotated to move the first revolver 5 to the measurement position below the second objective lens 10.
When either the objective lens 13 or the deviation amount detection tool is moved, the first objective lens 13 is placed on the optical axis J1 of the microscope body 3.
The optical axis of the misregistration amount detection tool is arranged coaxially.

【0015】ずれ量検出工具はレボルバ5に着脱可能に
取り付けられる筒状の工具本体部(図示せず)と、工具
本体部内に配設されて指標ライン15が付された指標板
(図示せず)を有して構成されている。指標板は励起光
及び被検物より発生する蛍光が透過可能な材料で形成さ
れ、指標ライン15は直交する2本の直交ライン15a
と、これら直交ライン15a上に所定の間隙を有した複
数の目盛り15bと、2本の直交ラインの交点を中心と
した円状ライン15cとを有して構成されている。
The deviation amount detecting tool is a cylindrical tool body (not shown) detachably attached to the revolver 5, and an index plate (not shown) provided in the tool body and provided with an index line 15. ) Is included. The index plate is made of a material that allows excitation light and fluorescence emitted from the test object to pass therethrough, and the index line 15 is two orthogonal lines 15a that are orthogonal to each other.
And a plurality of graduations 15b having a predetermined gap on these orthogonal lines 15a and a circular line 15c centering on the intersection of the two orthogonal lines.

【0016】蛍光顕微鏡1内に配設された第1対物レン
ズ13及び第2対物レンズ10を通る顕微鏡光路は、鏡
筒9の上部に取り付けられた共焦点顕微鏡ヘッド20の
結像面21に結像された像をステージ17上に載置され
た被検物上に像を結ぶように構成され、顕微鏡光路の光
軸J1は略垂直方向に延びている。
The microscope optical path passing through the first objective lens 13 and the second objective lens 10 arranged in the fluorescence microscope 1 is connected to the image plane 21 of the confocal microscope head 20 mounted on the upper part of the lens barrel 9. The formed image is formed so as to form an image on a test object placed on the stage 17, and the optical axis J1 of the microscope optical path extends in a substantially vertical direction.

【0017】次に、共焦点顕微鏡ヘッド20について説
明する。共焦点顕微鏡ヘッド20は図示しない光源から
出射された励起光を導いて顕微鏡本体3に出射するとと
もに、この励起光が照射された被検物から発光する蛍光
を入射させ、この蛍光の蛍光量を測定する蛍光測定器
(図示せず)に出射する機能を有している。このような
機能を有した共焦点顕微鏡ヘッド20は、光学系23と
これを包含する筐体31とを有して構成されている。光
学系23は、図示しない光源(例えば、レーザ光源)か
らの光を結像面21に集光させるための照射経路と、被
検物からの戻り光である蛍光を観察するための観察経路
とを有して構成されている。
Next, the confocal microscope head 20 will be described. The confocal microscope head 20 guides the excitation light emitted from a light source (not shown) and emits the excitation light to the microscope main body 3, and makes the fluorescence emitted from the test object irradiated with this excitation light incident, and the fluorescence amount of this fluorescence is changed. It has a function of emitting to a fluorescence measuring device (not shown) for measurement. The confocal microscope head 20 having such a function is configured to include an optical system 23 and a housing 31 including the optical system 23. The optical system 23 has an irradiation path for condensing light from a light source (not shown) (for example, a laser light source) on the imaging surface 21, and an observation path for observing fluorescence that is return light from the test object. Is configured.

【0018】照射経路は、光源から出射された励起光の
上流側から順にコリメータレンズ24、ダイクロイック
ミラー25、XYガルバノミラー26及び集光レンズ2
7とを有して構成されている。コリメータレンズ24は
光源からの励起光を平行光線にする機能を有し、ダイク
ロイックミラー25は波長が特定波長周辺やこの波長よ
りも短波長の光を反射させ、それ以外の波長の光を透過
させる機能を有する。XYガルバノミラー26は、複数
の反射ミラーを備え、この反射ミラーの傾動角度を変え
てダイクロイックミラー25で反射された励起光を前後
左右方向にスキャンするように構成されている。集光レ
ンズ27は光を集光させる機能を有している。その結
果、コリメータレンズ24に入射された励起光は照射光
路を通って結像面21上に結像される。
The irradiation path includes a collimator lens 24, a dichroic mirror 25, an XY galvanometer mirror 26 and a condenser lens 2 in this order from the upstream side of the excitation light emitted from the light source.
And 7 are included. The collimator lens 24 has a function of converting excitation light from a light source into parallel rays, and the dichroic mirror 25 reflects light having a wavelength around a specific wavelength or a wavelength shorter than this wavelength, and transmits light having other wavelengths. Have a function. The XY galvanometer mirror 26 includes a plurality of reflection mirrors, and is configured to scan the excitation light reflected by the dichroic mirror 25 in the front-rear and left-right directions by changing the tilt angle of the reflection mirrors. The condenser lens 27 has a function of condensing light. As a result, the excitation light incident on the collimator lens 24 is imaged on the imaging surface 21 through the irradiation optical path.

【0019】一方、観察経路は、照射経路の一部(集光
レンズ27、ガルバノミラー26及びダイクロイックミ
ラー25)と集光レンズ28及びピンホール29等とを
有して構成されている。観察経路は結像面21に集光さ
れた蛍光像をピンホール29に結像させるように構成さ
れている。その結果、蛍光がピンホール29を通過する
際に結像に寄与しない光(フレア)等を除去することが
できる。筐体31は内部が中空な箱状であり、その右側
側面には光源から出射された光を通す光ファイバーケー
ブル32が接続され、左側側面には蛍光を通す光ファイ
バーケーブル33が接続されている。この光ファイバー
ケーブル33の先端部に蛍光量を測定する図示しない蛍
光測定器が接続されている。筐体31の下部には下方へ
突出する筒状の係合筒部35が取り付けられている。図
2(b)に示す係合筒部35の上部には左右方向へ突出
する段部37が環状に形成され、この段部37よりも下
方へ延びる係合筒部35の周面には凹部38が環状に形
成されている。なお、ダイクロイックミラー25で反射
されてガルバノミラー26側へ向かう励起光の光軸を、
以下、共焦点顕微鏡ヘッド20の光軸J2と記す。
On the other hand, the observation path includes a part of the irradiation path (the condenser lens 27, the galvano mirror 26 and the dichroic mirror 25), the condenser lens 28, the pinhole 29 and the like. The observation path is configured to form a fluorescent image focused on the image forming surface 21 on the pinhole 29. As a result, it is possible to remove light (flare) that does not contribute to image formation when the fluorescence passes through the pinhole 29. The housing 31 is in the shape of a hollow box, the right side surface of which is connected to an optical fiber cable 32 for passing light emitted from a light source, and the left side surface thereof is connected to an optical fiber cable 33 for passing fluorescence. A fluorescence measuring device (not shown) for measuring the amount of fluorescence is connected to the tip of the optical fiber cable 33. A tubular engagement tubular portion 35 protruding downward is attached to a lower portion of the housing 31. A step portion 37 protruding in the left-right direction is formed in an annular shape on the upper portion of the engagement cylinder portion 35 shown in FIG. 38 is formed in an annular shape. The optical axis of the excitation light reflected by the dichroic mirror 25 and traveling toward the galvano mirror 26 is
Hereinafter, this is referred to as the optical axis J2 of the confocal microscope head 20.

【0020】次に、前述した蛍光顕微鏡1に共焦点顕微
鏡ヘッド20を接続させる光軸補正装置について説明す
る。光軸補正装置50は、図2(b)に示すように、第
1補正部材51と第1補正部材51の上部に図1に示す
X軸及びY軸方向に揺動可能な第2補正部材71と有し
て構成されている。第1補正部材51は円筒状であり、
鏡筒9の上部に配設された開口部9aに着脱自在に嵌合
する嵌合軸部52を有している。嵌合軸部52の上部に
は嵌合軸部52よりも大径の大径部53が上方へ延びた
状態で設けられ、大径部53と嵌合軸部52との間には
水平方向へ突出する段部54が環状に形成されている。
嵌合軸部52はこれが鏡筒9の開口部9aに嵌合して段
部54の下面が鏡筒9の上面に当接した状態において嵌
合軸部52の嵌合中心軸線S1が図1に示す顕微鏡本体
3の光軸J1と同軸上になるように構成されている。第
1補正部材51には上下に貫通する第1貫通孔55が形
成され、この第1貫通孔55の上部にはこれに繋がって
所定の曲率半径を有した案内面56が環状に形成されて
いる。この案内面56の詳細については後述する。
Next, an optical axis correction device for connecting the confocal microscope head 20 to the above-mentioned fluorescence microscope 1 will be described. As shown in FIG. 2B, the optical axis correction device 50 includes a first correction member 51 and an upper portion of the first correction member 51 that is swingable in the X-axis and Y-axis directions shown in FIG. And 71. The first correction member 51 has a cylindrical shape,
It has a fitting shaft portion 52 that is detachably fitted into an opening 9 a provided in the upper portion of the lens barrel 9. A large diameter portion 53 having a diameter larger than that of the fitting shaft portion 52 is provided above the fitting shaft portion 52 in a state of extending upward, and a horizontal direction is provided between the large diameter portion 53 and the fitting shaft portion 52. A step portion 54 projecting inward is formed in an annular shape.
When the fitting shaft 52 is fitted into the opening 9a of the lens barrel 9 and the lower surface of the step portion 54 abuts the upper surface of the lens barrel 9, the fitting center axis S1 of the fitting shaft 52 is shown in FIG. The optical axis J1 of the microscope body 3 shown in FIG. A first through hole 55 that penetrates vertically is formed in the first correction member 51, and a guide surface 56 having a predetermined radius of curvature is formed in an annular shape on the upper portion of the first through hole 55 so as to connect to the first through hole 55. There is. Details of the guide surface 56 will be described later.

【0021】大径部53の上部には、図2(b)のA−
A矢視に相当する部分の断面図を示す図2(a)を更に
追加して説明すると、X軸方向で第1貫通孔55の直径
よりも径方向外側位置に対向配置された一対の第1ねじ
孔59が形成されるとともに、Y軸方向で第1貫通孔5
5の直径よりも径方向外側位置に対向配置された一対の
第2ねじ孔61が形成されている。一対の第1ねじ孔5
9を通る中心軸線と一対の第2ねじ孔61を通る中心軸
線とは平面視において直交し、これらの中心軸線の交点
は嵌合軸部52の嵌合中心軸線S1上に位置している。
一対の第1ねじ孔59には止めねじ64a、64bがそ
れぞれ螺合し、一対の第2ねじ孔61には止めねじ65
a、65bがそれぞれ螺合している。これらの止めねじ
は先端部が半球状に形成されている。これら図2(a)
に示す第1ねじ孔59及び第2ねじ孔61間の大径部5
3の上部には嵌合中心軸線S1側へ延びる貫通孔63が
形成されている。
On the upper part of the large diameter portion 53, A- in FIG.
2A showing the cross-sectional view of the portion corresponding to the arrow A is further added and described, a pair of first and second opposing faces arranged at a position radially outer than the diameter of the first through hole 55 in the X-axis direction. One screw hole 59 is formed, and the first through hole 5 is formed in the Y-axis direction.
A pair of second screw holes 61 are formed at positions radially outward of the diameter of No. 5 so as to face each other. A pair of first screw holes 5
The central axis line passing through 9 and the central axis line passing through the pair of second screw holes 61 are orthogonal to each other in a plan view, and the intersection point of these central axis lines is located on the fitting central axis line S1 of the fitting shaft portion 52.
Set screws 64a and 64b are respectively screwed into the pair of first screw holes 59, and the set screw 65 is inserted into the pair of second screw holes 61.
a and 65b are screwed together. The ends of these setscrews are formed in a hemispherical shape. These FIG. 2 (a)
Large diameter portion 5 between the first screw hole 59 and the second screw hole 61 shown in FIG.
A through hole 63 extending to the fitting center axis S1 side is formed in the upper part of 3.

【0022】一方、第2補正部材71は、大径部53を
貫通する第1貫通孔55の上部から挿入されて第1貫通
孔55よりも小径な第2軸部72と、第2軸部72の上
端周縁部に径方向外側へ突出して形成され、第2軸部7
2が第1貫通孔55に挿入された状態で案内面56に対
向した状態で当接して案内面56上を摺動可能であり、
第2軸部72をX−Y方向に揺動自在に支持する摺動面
73と、第2軸部72を上下に貫通して共焦点顕微鏡ヘ
ッド20の係合筒部35を相対回動可能に嵌合させる第
2貫通孔75とを有して構成されている。第2補正部材
71の上面80は平面状に形成され、この上面80は第
2貫通孔75の嵌合中心を通る嵌合中心軸線S2と直交
するように形成されている。
On the other hand, the second correction member 71 is inserted from the upper part of the first through hole 55 penetrating the large diameter portion 53, and has a second shaft portion 72 having a diameter smaller than that of the first through hole 55, and a second shaft portion. The second shaft portion 7 is formed on the peripheral edge portion of the upper end of the second member 72 so as to project radially outward.
2 is inserted into the first through hole 55, abuts in a state of facing the guide surface 56 and can slide on the guide surface 56,
The sliding surface 73 that supports the second shaft portion 72 so as to be swingable in the XY directions and the engagement cylinder portion 35 of the confocal microscope head 20 can be relatively rotated by vertically penetrating the second shaft portion 72. And a second through hole 75 that is fitted to the. The upper surface 80 of the second correction member 71 is formed in a planar shape, and the upper surface 80 is formed so as to be orthogonal to the fitting center axis line S2 passing through the fitting center of the second through hole 75.

【0023】ここで、摺動面73とこれが当接して摺動
する案内面56について図3を使用して説明する。な
お、図3は、図2(b)に示す嵌合中心軸線S2を含む
面で第1補正部材51及び第2補正部材71を断面視し
たときの摺動面73及び案内面56の断面図を示してい
る。摺動面73は、図3に示すように、嵌合中心軸線上
S1であって第2補正部材71の上面よりも上方へ所定
距離を有し位置(以下、「点O」と記す。)から曲率半
径Rを有した球面の一部として形成されている。ここ
で、点Oの位置は、図2(b)に示す共焦点顕微鏡ヘッ
ド20が第2補正部材71に装着されたならば、図2
(b)に示す結像面21上に励起光や蛍光が結像される
結像点の位置と同一位置にくるとともに、嵌合軸部52
の嵌合中心を通る嵌合中心軸線S1上に位置するように
設定されている。このようにして形成された摺動面73
が摺接する案内面56も摺動面73と同様に点Oから曲
率半径Rと略同じ曲率半径を有した球面の一部として形
成されている。その結果、第2補正部材71は点Oを揺
動中心として、X方向(図3の左右方向)及びY方向
(図3紙面と垂直方向)に揺動可能である。
Here, the sliding surface 73 and the guide surface 56 with which it abuts and slides will be described with reference to FIG. Note that FIG. 3 is a cross-sectional view of the sliding surface 73 and the guide surface 56 when the first correction member 51 and the second correction member 71 are cross-sectionally viewed on the surface including the fitting center axis line S2 shown in FIG. 2B. Is shown. As shown in FIG. 3, the sliding surface 73 is located on the fitting center axis S1 and at a position above the upper surface of the second correction member 71 by a predetermined distance (hereinafter, referred to as “point O”). Is formed as a part of a spherical surface having a radius of curvature R. Here, if the confocal microscope head 20 shown in FIG. 2B is attached to the second correction member 71, the position of the point O is as shown in FIG.
The fitting shaft portion 52 is located at the same position as the image forming point where the excitation light and the fluorescence are formed on the image forming surface 21 shown in (b).
It is set so as to be located on the fitting center axis line S1 passing through the fitting center. Sliding surface 73 formed in this way
Similarly to the sliding surface 73, the guide surface 56 that is in sliding contact with is also formed as a part of a spherical surface having a radius of curvature substantially the same as the radius of curvature R from the point O. As a result, the second correction member 71 can swing about the point O as the swing center in the X direction (left and right direction in FIG. 3) and the Y direction (vertical direction to the plane of FIG. 3).

【0024】さて、このように形成された摺動面73よ
りも下方へ延びる第2軸部72の周面には、図2(a)
及び(b)に示すように、平面視において直角方向に配
置され、断面視において三角状で外側が拡開した切り欠
き部77がX方向及びY方向に延びた状態で形成されて
いる。これらの切り欠き部77、77…は大径部53の
第1ねじ孔59及び第2ねじ孔61に螺合する止めねじ
64a、64b、65a、65bと対向配置される。図
2(a)に示す切り欠き部77、77間の第2軸部72
には嵌合中心軸線S2側へ延びるねじ孔78が形成され
ている。このねじ孔78は、図2(b)に示す第2補正
部材71の第2貫通孔75に共焦点顕微鏡ヘッド20の
係合筒部35が嵌合保持された状態で、係合筒部35に
形成された凹部38の上下位置と略同じ上下位置になる
位置に形成されている。このため、ねじ孔78に図2
(a)に示す止めねじ79を螺合させてその先端部を凹
部38に当接させた状態にすれば、共焦点顕微鏡ヘッド
20を第2補正部材71に固定することができる。
Now, the peripheral surface of the second shaft portion 72 extending downward from the sliding surface 73 thus formed is shown in FIG.
As shown in (b) and (b), a notch 77 that is arranged in a right-angle direction in a plan view, has a triangular shape in a cross-sectional view, and has an expanded outer side is formed to extend in the X direction and the Y direction. These notches 77, 77 ... Are arranged opposite to the set screws 64a, 64b, 65a, 65b which are screwed into the first screw hole 59 and the second screw hole 61 of the large diameter portion 53. The second shaft portion 72 between the cutout portions 77, 77 shown in FIG.
Is formed with a screw hole 78 extending toward the fitting central axis S2. This screw hole 78 is in a state in which the engagement cylinder portion 35 of the confocal microscope head 20 is fitted and held in the second through hole 75 of the second correction member 71 shown in FIG. 2B, and the engagement cylinder portion 35. It is formed at a position that is substantially the same as the vertical position of the concave portion 38 formed in. Therefore, the screw hole 78 is shown in FIG.
The confocal microscope head 20 can be fixed to the second correction member 71 by screwing the set screw 79 shown in (a) so that the tip end portion thereof is brought into contact with the recess 38.

【0025】ここで、光軸補正装置50を通過する励起
光が照射される図示しない指標板に附された図1に示す
指標ライン15について説明する。指標ライン15の円
状ライン15cは、図1に示すように、その径の大きさ
が第2対物レンズ10を通過する励起光の瞳の大きさと
略同じ径を有している。このため、励起光の瞳と円状ラ
イン15cが一致すれば、共焦点顕微鏡ヘッド20の光
軸と顕微鏡本体3の光軸とが一軸上にあると判断でき
る。直交ライン15aに付された目盛り15bは、直交
ライン15a、15aの交点(中心)から所定距離を有
した位置より外側に等間隔で配置されている。
Here, the index line 15 shown in FIG. 1 attached to the index plate (not shown) to which the excitation light passing through the optical axis correcting device 50 is irradiated will be described. As shown in FIG. 1, the circular line 15c of the index line 15 has a diameter substantially the same as the pupil size of the excitation light passing through the second objective lens 10. Therefore, if the pupil of the excitation light coincides with the circular line 15c, it can be determined that the optical axis of the confocal microscope head 20 and the optical axis of the microscope main body 3 are uniaxial. The graduations 15b attached to the orthogonal lines 15a are arranged at equal intervals outside the position having a predetermined distance from the intersection (center) of the orthogonal lines 15a, 15a.

【0026】次に、前述した光軸補正装置50を使用し
て図1に示す顕微鏡本体3の光軸J1と共焦点顕微鏡ヘ
ッド20の光軸J2のずれを補正する場合の光軸補正装
置50の作動について説明する。なお、光軸補正装置5
0は、図2に示すように、予め組み立てられて、第1補
正部材51の第1貫通孔55内に第2補正部材71の第
2軸部72が挿入されて摺動面73が案内面56に当接
した状態にあると想定する。先ず、図2(b)に示すよ
うに、鏡筒9の開口部9aに第1補正部材51の嵌合軸
部52を嵌合させる。続いて、図2(a)に示す一対の
第1ねじ孔59及び一対の第2ねじ孔61にそれぞれ螺
合している止めねじ64a、64b、65a、65bを
回転させて第1貫通孔55側へ移動させ、これらの止め
ねじ64a、64b、65a、65bの先端を対応する
第2補正部材71の切り欠き部77に当接させる。その
結果、第2補正部材71の第1補正部材51に対するX
−Y方向の揺動が規制される。
Next, the optical axis correcting apparatus 50 for correcting the deviation between the optical axis J1 of the microscope main body 3 and the optical axis J2 of the confocal microscope head 20 shown in FIG. 1 using the optical axis correcting apparatus 50 described above. The operation of will be described. The optical axis correction device 5
2, 0 is pre-assembled, the second shaft portion 72 of the second correction member 71 is inserted into the first through hole 55 of the first correction member 51, and the sliding surface 73 is the guide surface. Assume that it is in contact with 56. First, as shown in FIG. 2B, the fitting shaft portion 52 of the first correction member 51 is fitted into the opening 9 a of the lens barrel 9. Subsequently, the set screws 64a, 64b, 65a, 65b screwed into the pair of first screw holes 59 and the pair of second screw holes 61 shown in FIG. And the tips of these setscrews 64a, 64b, 65a, 65b are brought into contact with the corresponding notches 77 of the second correction member 71. As a result, X of the second correction member 71 with respect to the first correction member 51
The swing in the −Y direction is restricted.

【0027】続いて、第2補正部材71の第2貫通孔7
5に共焦点顕微鏡ヘッド20の係合筒部35をその段部
37の下面が第2補正部材71の上面80に当接するま
で嵌合させる。なお、係合筒部35が第2貫通孔75に
嵌合すると、係合筒部35は第2貫通孔75に対して相
対回動可能に嵌合する。そこで、図2(a)に示す止め
ねじ79を嵌合中心軸線S2側に移動させて、係合筒部
35を第2補正部材71に固定する。止めねじ79の移
動は貫通孔63に挿入された図示しないドライバ等の回
動によって行なわれる。
Then, the second through hole 7 of the second correction member 71.
5, the engaging cylinder portion 35 of the confocal microscope head 20 is fitted until the lower surface of the step portion 37 contacts the upper surface 80 of the second correction member 71. It should be noted that when the engagement tubular portion 35 is fitted in the second through hole 75, the engagement tubular portion 35 is fitted in the second through hole 75 so as to be rotatable relative to each other. Therefore, the set screw 79 shown in FIG. 2A is moved to the fitting central axis S2 side to fix the engagement tubular portion 35 to the second correction member 71. The movement of the set screw 79 is performed by rotating a driver or the like (not shown) inserted in the through hole 63.

【0028】続いて、図1に示すように、レボルバ5に
ずれ量検出工具(図示せず)を取り付け、このずれ量検
出工具の光軸が顕微鏡本体3の光軸J1と同軸上になる
測定位置にレボルバ5を回転させる。そして、図示しな
い光源から励起光を出射させてこの励起光を共焦点顕微
鏡ヘッド20及びずれ量検出工具を介してスライド17
上に導く。続いて、ずれ量検出工具の下方のステージ1
7上に反射鏡等(図示せず)を設置してずれ量検出工具
を通った励起光を観察する。このように観察した場合の
一例を図1に示しており、この場合、励起光の瞳は円状
ライン15cに対してX軸方向左側にずれ、ずれ量は直
交ライン15aに付された目盛り15bの1個分に相当
すると読みとる。
Subsequently, as shown in FIG. 1, a displacement amount detection tool (not shown) is attached to the revolver 5, and the optical axis of the displacement amount detection tool is coaxial with the optical axis J1 of the microscope body 3. Rotate the revolver 5 to the position. Then, excitation light is emitted from a light source (not shown), and the excitation light is slid through the confocal microscope head 20 and the deviation amount detection tool.
Lead to the top. Then, the stage 1 below the deviation amount detection tool
A reflecting mirror or the like (not shown) is installed on 7 and the excitation light passing through the deviation amount detection tool is observed. An example of such an observation is shown in FIG. 1. In this case, the pupil of the excitation light is shifted to the left side in the X-axis direction with respect to the circular line 15c, and the shift amount is the scale 15b attached to the orthogonal line 15a. It is read that it is equivalent to one.

【0029】続いて、ずれ量検出工具により読みとられ
たずれ方向(X方向)に応じて、図5(a)に示すよう
に、Y方向に配設された一対の第2ねじ孔61に螺合す
る止めねじ65a、65bはこれらに相対向する切り欠
き部77に当接させたままの状態にし、X方向に配設さ
れた一対の第1ねじ孔59に螺合する止めねじ64a、
64bのうち左側の止めねじ64aが嵌合中心軸線S2
側へ移動するようにドライバ85で回転させるととも
に、右側の止めねじ64bが嵌合中心軸線S2から離反
する方向に移動するようにドライバ85で回転させる。
その結果、第2補正部材71は、図5(a)に示す止め
ねじ65a、65bと切り欠き部77、77との当接位
置を支点として、図5(b)に示すように、点Oを揺動
中心としてX軸方向右側へ揺動し、これに伴って第2補
正部材71に保持された共焦点顕微鏡ヘッド20も点O
を揺動中心としてX軸方向右側へ揺動する。
Then, depending on the deviation direction (X direction) read by the deviation amount detecting tool, as shown in FIG. 5A, a pair of second screw holes 61 arranged in the Y direction are formed. The set screws 65a, 65b to be screwed are kept in contact with the notches 77 facing each other, and the set screws 64a to be screwed to the pair of first screw holes 59 arranged in the X direction,
The left set screw 64a of 64b is the fitting center axis S2.
The screw is rotated by the driver 85 so as to move to the side, and is also rotated by the driver 85 so that the right set screw 64b moves in a direction away from the fitting central axis S2.
As a result, the second correction member 71 uses the contact position between the set screws 65a and 65b and the cutouts 77 and 77 shown in FIG. 5A as a fulcrum, as shown in FIG. With the confocal microscope head 20 held by the second correction member 71 as the center of the swing.
It swings to the right in the X-axis direction around the swing center.

【0030】このため、図4に示すように、共焦点顕微
鏡ヘッド20の光軸J2は点Oを揺動中心としてX軸方
向右側へ揺動し、顕微鏡本体3の光軸J1側に接近移動
する。ここで、図1に示す励起光の瞳は円状ライン15
cよりも左側に目盛り1個分だけずれた位置から右側へ
移動し、励起光の瞳が円状ライン15cと重なる位置に
きたことを観察したときに、図5(a)に示すドライバ
85の回動を停止させて止めねじ64aのX軸方向右側
への移動を停止させるとともに、止めねじ64bの嵌合
中心軸線S2から離反する側への移動を停止させれば、
図4に示す共焦点顕微鏡ヘッド20の光軸J2と顕微鏡
本体3の光軸J1とを一軸にすることができる。その結
果、共焦点顕微鏡ヘッド20の光軸調整が終了する。ま
た、図6に示すように、図1に示す共焦点顕微鏡ヘッド
20の光軸J2が顕微鏡本体3の光軸J1に対して傾い
ているときには、二点鎖線で示す共焦点顕微鏡ヘッド2
0からの励起光は第2対物レンズ10に対して斜めに入
射し、この励起光の一部は第2対物レンズ10に入射さ
れず、斜線で示した部分を通る光を失って被検物89を
偏った状態で照射することになるが、顕微鏡本体3の光
軸J1に対する共焦点顕微鏡ヘッド20の光軸J2のず
れを無くすことで、励起光により被検物89を偏り無く
照射することができる。
Therefore, as shown in FIG. 4, the optical axis J2 of the confocal microscope head 20 swings to the right in the X-axis direction around the point O as the swing center, and moves closer to the optical axis J1 side of the microscope body 3. To do. Here, the pupil of the excitation light shown in FIG.
When the driver moves to the right from a position shifted by one scale to the left of c and reaches the position where the pupil of the excitation light overlaps with the circular line 15c, the driver 85 shown in FIG. If the rotation is stopped to stop the movement of the set screw 64a to the right in the X-axis direction and the movement of the set screw 64b to the side away from the fitting center axis S2,
The optical axis J2 of the confocal microscope head 20 and the optical axis J1 of the microscope body 3 shown in FIG. 4 can be uniaxial. As a result, the optical axis adjustment of the confocal microscope head 20 is completed. Further, as shown in FIG. 6, when the optical axis J2 of the confocal microscope head 20 shown in FIG. 1 is tilted with respect to the optical axis J1 of the microscope body 3, the confocal microscope head 2 shown by a two-dot chain line is shown.
The excitation light from 0 is obliquely incident on the second objective lens 10, a part of this excitation light is not incident on the second objective lens 10, and the light passing through the shaded portion is lost to be inspected. 89 is irradiated in an unbalanced state, but by eliminating the deviation of the optical axis J2 of the confocal microscope head 20 with respect to the optical axis J1 of the microscope main body 3, it is possible to irradiate the object 89 to be inspected evenly by the excitation light. You can

【0031】さらに、共焦点顕微鏡ヘッド20の光軸調
整は、止めねじ64a、64bを移動させながら行なう
ので、共焦点顕微鏡ヘッド20の微小な光軸調整が可能
になるとともに、調整された共焦点顕微鏡ヘッド20の
位置がずれる事態を未然に防止することができる。
Further, since the optical axis of the confocal microscope head 20 is adjusted by moving the setscrews 64a and 64b, a fine optical axis adjustment of the confocal microscope head 20 is possible and the adjusted confocal point is obtained. It is possible to prevent the position of the microscope head 20 from being displaced.

【0032】なお、前述した実施の形態において、摺動
面73と案内面56とがともに球面状の面である場合を
示したが、案内面56を図7に示すような面にしてもよ
い。即ち、案内面56は、図7に示すように、第1貫通
孔55の嵌合中心軸線S1を含む面で第1補正部材51
及び第2補正部材71を断面視したときに、摺動面73
が案内面56に当接した状態で摺動面73が案内面56
に当接する当接位置P1における摺動面73の法線Hの
方向と直角方向に延びる面で形成されてもよい。このよ
うに案内面56を形成することで、案内面56が球面状
に形成されている場合と同様の効果を得ることができ
る。
Although the sliding surface 73 and the guide surface 56 are both spherical surfaces in the above-described embodiment, the guide surface 56 may be a surface as shown in FIG. . That is, as shown in FIG. 7, the guide surface 56 is a surface including the fitting central axis line S1 of the first through hole 55, and the first correction member 51.
When the second correction member 71 is viewed in section, the sliding surface 73
The sliding surface 73 is in contact with the guide surface 56,
It may be formed by a surface extending in a direction perpendicular to the direction of the normal line H of the sliding surface 73 at the abutting position P1 that abuts against. By forming the guide surface 56 in this way, the same effect as when the guide surface 56 is formed in a spherical shape can be obtained.

【0033】また、前述した実施の形態において、図1
に示す蛍光顕微鏡1の代わりに通常の光学顕微鏡を使用
してもよい。更に、前述した実施の形態では、顕微鏡本
体3に取り付けられた鏡筒9に光軸補正装置50を介し
て共焦点顕微鏡ヘッド20を接続させたが、顕微鏡本体
3に光軸補正装置50を取り付け、光軸補正装置50を
介して共焦点顕微鏡ヘッド20を接続させてもよい。ま
た、光軸補正装置50は蛍光顕微鏡1に着脱可能な構成
としたが、光軸補正装置50を蛍光顕微鏡1の一体物と
して設けてもよい。また、光軸補正される光学機器ユニ
ットとして、デジタルカメラやCCDカメラ等でもよ
い。
Further, in the above-described embodiment, FIG.
An ordinary optical microscope may be used instead of the fluorescence microscope 1 shown in FIG. Further, in the above-described embodiment, the confocal microscope head 20 is connected to the lens barrel 9 attached to the microscope body 3 via the optical axis correction device 50, but the optical axis correction device 50 is attached to the microscope body 3. The confocal microscope head 20 may be connected via the optical axis correction device 50. Although the optical axis correction device 50 is configured to be attachable to and detachable from the fluorescence microscope 1, the optical axis correction device 50 may be provided as an integral part of the fluorescence microscope 1. Further, a digital camera, a CCD camera, or the like may be used as the optical device unit whose optical axis is corrected.

【0034】[0034]

【発明の効果】本発明に係わる光軸補正装置によれば、
摺動面部を案内面部に当接させた状態において、ユニッ
ト保持部の嵌合中心を通る嵌合中心軸線を含む面で第1
補正部材及び第2補正部材を断面視したときに、摺動面
部と案内面部とが当接する当接位置を通る摺動面部の法
線及び案内面部の法線と、嵌合中心軸線とが一点で交わ
るように構成することで、第2補正部材を第1補正部材
に対して一点を揺動中心として左右に揺動させることが
できる。このため、第1嵌合軸部を接続部に嵌合させ、
光学機器ユニットをユニット保持部に装着させたとき
に、第1嵌合軸部の中心を通る中心軸線が一点で交わる
ように第1嵌合軸部を構成し、且つ光学機器ユニットの
光軸が一点で交わるようにユニット保持部を構成すれ
ば、ユニット保持部に装着された光学機器ユニットを左
右に揺動させることで、光学機器ユニットの光軸と顕微
鏡の光軸とを一軸にすることができる。
According to the optical axis correcting apparatus of the present invention,
When the sliding surface portion is in contact with the guide surface portion, the first surface is a surface including the fitting center axis line that passes through the fitting center of the unit holding portion.
When the correction member and the second correction member are viewed in cross section, the normal line of the sliding surface portion and the normal line of the guiding surface portion that pass through the contact position where the sliding surface portion and the guide surface portion contact each other, and the fitting center axis line are one point. The second correction member can be swung to the left and right with respect to the first correction member with one point as the swing center. Therefore, by fitting the first fitting shaft portion to the connection portion,
When the optical device unit is attached to the unit holding portion, the first fitting shaft portion is configured so that the central axis lines passing through the center of the first fitting shaft portion intersect at one point, and the optical axis of the optical device unit is If the unit holding section is configured to intersect at one point, the optical axis of the optical apparatus unit and the optical axis of the microscope can be made to be one axis by swinging the optical apparatus unit attached to the unit holding section to the left and right. it can.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施の形態における光軸補正装置を
搭載した蛍光顕微鏡の側面図を示す。
FIG. 1 is a side view of a fluorescence microscope equipped with an optical axis correction device according to an embodiment of the present invention.

【図2】本発明の一実施の形態における光軸補正装置を
示し、同図(a)は光軸補正装置の同図(b)のA−A
矢視に相当する部分の断面図であり、同図(b)は光軸
補正装置の縦断面図である。
FIG. 2 shows an optical axis correction device according to an embodiment of the present invention, in which FIG. 2A is a sectional view taken along line AA of FIG. 2B of the optical axis correction device.
It is a sectional view of a portion corresponding to an arrow, and FIG. 11B is a vertical sectional view of the optical axis correction device.

【図3】本発明の一実施の形態における光軸補正装置の
要部断面図を示す。
FIG. 3 shows a cross-sectional view of a main part of an optical axis correction device according to an embodiment of the present invention.

【図4】本発明の一実施の形態における光軸補正装置に
より共焦点顕微鏡ヘッドの光軸の傾きが補正される作動
を説明するの斜視図である。
FIG. 4 is a perspective view for explaining an operation of correcting the tilt of the optical axis of the confocal microscope head by the optical axis correction device according to the embodiment of the present invention.

【図5】本発明の一実施の形態における光軸補正装置を
示し、同図(a)は光軸補正装置の同図(b)のB−B
矢視に相当する部分の断面図であり、同図(b)は光軸
補正装置の縦断面図である。
FIG. 5 shows an optical axis correction device according to an embodiment of the present invention, in which FIG. 5A is a sectional view taken along line BB of FIG.
It is a sectional view of a portion corresponding to an arrow, and FIG. 11B is a vertical sectional view of the optical axis correction device.

【図6】本発明の一実施の形態における光軸補正装置に
より補正される励起光の光路図を示す。
FIG. 6 shows an optical path diagram of excitation light corrected by an optical axis correction device according to an embodiment of the present invention.

【図7】本発明の一実施の形態における光軸補正装置の
要部断面図を示す。
FIG. 7 shows a cross-sectional view of a main part of an optical axis correction device according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

3 顕微鏡本体(顕微鏡) 20 共焦点顕微鏡ヘッド(光学機器ユニット) 50 光軸補正装置 51 第1補正部材 52 嵌合軸部(第1嵌合軸部) 53 大径部(第1嵌合軸部) 55 第1貫通孔 56 案内面(案内面部) 64a、64b 止めねじ(第1支点手段) 65a、65b 止めねじ(第2支点手段) 71 第2補正部材 72 第2軸部 73 摺動面(摺動面部) 75 第2貫通孔(ユニット保持部) J1 顕微鏡本体の光軸(顕微鏡の光軸) J2 共焦点顕微鏡ヘッドの光軸(光学機器ユニットの
光軸) S2 嵌合中心軸線
3 Microscope Main Body (Microscope) 20 Confocal Microscope Head (Optical Device Unit) 50 Optical Axis Correction Device 51 First Correction Member 52 Fitting Shaft Part (First Fitting Shaft Part) 53 Large Diameter Part (First Fitting Shaft Part) ) 55 first through hole 56 guide surface (guide surface portion) 64a, 64b set screw (first fulcrum means) 65a, 65b set screw (second fulcrum means) 71 second correction member 72 second shaft portion 73 sliding surface ( Sliding surface part) 75 Second through hole (unit holding part) J1 Optical axis of microscope body (optical axis of microscope) J2 Optical axis of confocal microscope head (optical axis of optical device unit) S2 Fitting center axis

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 光学機器ユニットと顕微鏡とを接続さ
せ、前記光学機器ユニットの光軸と前記顕微鏡の光軸と
が一軸となるように補正する光軸補正装置であって、 前記顕微鏡の接続部に嵌合され、前記顕微鏡の光軸と同
軸上に取り付けられる第1嵌合軸部と、前記第1嵌合軸
部を上下に貫通して前記顕微鏡への入射若しくは出射光
を通す第1貫通孔と、前記第1貫通孔の上部に環状に形
成されて斜め上方へ延びる案内面部とを有してなる第1
補正部材と、 前記第1貫通孔の上部から挿入される第2軸部と、前記
第2軸部の上端部の周縁部に径方向外側へ突出して形成
され、前記第2軸部が前記第1貫通孔に挿入された状態
で前記案内面部に対向した状態で当接して前記案内面部
上を摺動可能であり、前記第2軸部を左右に揺動自在に
支持する摺動面部と、前記第2軸部の上端部に形成さ
れ、前記光学機器ユニットを嵌合保持するユニット保持
部と、前記第2軸部及び前記ユニット保持部を上下に貫
通して前記入射若しくは出射光を通す第2貫通孔とを有
してなる第2補正部材とを備え、 前記摺動面部が前記案内面部に当接した状態において、
前記ユニット保持部の嵌合中心を通る嵌合中心軸線を含
む面で前記第1補正部材及び前記第2補正部材を断面視
したときに、前記摺動面部と前記案内面部とが当接する
当接位置を通る前記摺動面部の法線及び前記案内面部の
法線と、前記嵌合中心軸線とが一点で交わるように構成
されていることを特徴とする光軸補正装置。
1. An optical axis correction device for connecting an optical device unit and a microscope, and correcting the optical axis of the optical device unit so that the optical axis of the microscope is a single axis. A first fitting shaft part that is fitted to the microscope and is mounted coaxially with the optical axis of the microscope, and a first penetrating hole that vertically penetrates the first fitting shaft part and allows incident or outgoing light to the microscope. A first hole having a hole and a guide surface formed in an upper portion of the first through hole and extending obliquely upward.
A correction member, a second shaft portion that is inserted from an upper portion of the first through hole, and a peripheral edge portion of an upper end portion of the second shaft portion that is formed to project radially outward, and the second shaft portion is the first shaft portion. (1) A sliding surface portion that is slidable on the guide surface portion while being in contact with the guide surface portion in a state of being inserted into the through hole, and supporting the second shaft portion so that the second shaft portion can swing left and right. A unit holder formed on the upper end of the second shaft portion for fitting and holding the optical device unit; and a unit for vertically passing through the second shaft portion and the unit holder to pass the incident or emitted light. A second correction member having two through holes, wherein the sliding surface portion is in contact with the guide surface portion,
Abutting contact between the sliding surface portion and the guide surface portion when the first correction member and the second correction member are cross-sectionally viewed on a surface including a fitting center axis line that passes through the fitting center of the unit holding portion. An optical axis correction device, characterized in that a normal line of the sliding surface portion and a normal line of the guide surface portion passing through a position intersect with the fitting center axis line at one point.
【請求項2】 前記摺動面部は所定の曲率半径を有した
面で形成され、前記案内面部は前記曲率半径と略同じ大
きさの曲率半径を有した面若しくは前記当接位置におけ
る前記摺動面部の前記法線の方向と直角方向に延びる面
で形成されていることを特徴とする請求項1に記載の光
軸補正装置。
2. The sliding surface portion is formed by a surface having a predetermined radius of curvature, and the guide surface portion is a surface having a radius of curvature substantially the same as the radius of curvature or the sliding at the contact position. The optical axis correction device according to claim 1, wherein the optical axis correction device is formed by a surface extending in a direction perpendicular to the direction of the normal line of the surface portion.
【請求項3】 前記案内面部よりも下方へ延びる前記第
1嵌合軸部の側壁には、平面視における前記第1貫通孔
の直径方向に対向配置されて前記第1貫通孔の径方向に
移動自在な一対の第1支点手段と、平面視における前記
一対の第1支点手段と直角方向に配置されて前記第1貫
通孔の径方向に移動自在な一対の第2支点手段とが設け
られ、 前記一対の第1支点手段若しくは前記一対の第2支点手
段を前記第1貫通孔に挿入されている前記第2嵌合軸部
の前記側壁の側面に当接させた状態にすれば、前記第2
補正部材は前記第2嵌合軸部の側面と前記一対の第1支
点手段若しくは前記一対の第2支点手段との当接位置を
揺動中心として左右に揺動可能に構成されていることを
特徴とする請求項1又は2に記載の光軸補正装置。
3. The side wall of the first fitting shaft portion extending below the guide surface portion is arranged to face the diameter direction of the first through hole in a plan view in the radial direction of the first through hole. A pair of movable first fulcrum means and a pair of second fulcrum means arranged in a direction perpendicular to the pair of first fulcrum means in a plan view and movable in the radial direction of the first through hole are provided. If the pair of first fulcrum means or the pair of second fulcrum means is brought into contact with the side surface of the side wall of the second fitting shaft portion inserted into the first through hole, Second
The correction member is configured to be swingable left and right around a contact position between the side surface of the second fitting shaft portion and the pair of first fulcrum means or the pair of second fulcrum means. The optical axis correction device according to claim 1 or 2, which is characterized.
JP2002085142A 2002-03-26 2002-03-26 Optical axis correction apparatus and optical instrument system Expired - Fee Related JP4135133B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002085142A JP4135133B2 (en) 2002-03-26 2002-03-26 Optical axis correction apparatus and optical instrument system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002085142A JP4135133B2 (en) 2002-03-26 2002-03-26 Optical axis correction apparatus and optical instrument system

Publications (3)

Publication Number Publication Date
JP2003279858A true JP2003279858A (en) 2003-10-02
JP2003279858A5 JP2003279858A5 (en) 2005-08-18
JP4135133B2 JP4135133B2 (en) 2008-08-20

Family

ID=29232203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002085142A Expired - Fee Related JP4135133B2 (en) 2002-03-26 2002-03-26 Optical axis correction apparatus and optical instrument system

Country Status (1)

Country Link
JP (1) JP4135133B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109765669A (en) * 2017-11-10 2019-05-17 株式会社三丰 Slope angle adjustment mechanism
EP3951467A4 (en) * 2019-03-28 2022-11-30 Hamamatsu Photonics K.K. Scanning microscope unit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109765669A (en) * 2017-11-10 2019-05-17 株式会社三丰 Slope angle adjustment mechanism
JP2019086733A (en) * 2017-11-10 2019-06-06 株式会社ミツトヨ Tilt adjustment mechanism
EP3951467A4 (en) * 2019-03-28 2022-11-30 Hamamatsu Photonics K.K. Scanning microscope unit

Also Published As

Publication number Publication date
JP4135133B2 (en) 2008-08-20

Similar Documents

Publication Publication Date Title
KR100923059B1 (en) Eccentric amount measuring method
US7982950B2 (en) Measuring system for structures on a substrate for semiconductor manufacture
JP2008145160A (en) Optical displacement sensor and its adjusting method
JPH01245104A (en) Microscope having device for measuring microscopic construction
JP4751156B2 (en) Autocollimator and angle measuring device using the same
US6844965B1 (en) Apparatus for optical scanning of multiple specimens
JP2002039724A (en) Internal hole surface inspecting device
TWI396837B (en) Method for determination of eccentricity
JPH061241B2 (en) Particle analyzer
US6738189B1 (en) Microscope for measuring an object from a plurality of angular positions
JP2003279858A (en) Optical axis correction device
JP2003222800A (en) Optical axis correcting apparatus
JP4895351B2 (en) Microscope and observation method
EP2333501B1 (en) Apparatus and method for automatic optical realignment
JP2011133326A (en) Interferometer
WO2021187192A1 (en) Inner surface shape measurement apparatus, and alignment method for inner surface shape measurement apparatus
JP2004279075A (en) Lens eccentricity measuring method and measuring device
JPS62502421A (en) Equipment for orienting, inspecting and/or measuring two-dimensional objects
JPH11243048A (en) Position detecting device and method using oblique optical-axis optical system
JP6980304B2 (en) Non-contact inner surface shape measuring device
JP3333759B2 (en) Measuring method and setting method of distance between mask and wafer
JPH11211611A (en) Eccentricity measuring apparatus
JPH10242037A (en) Position detecting equipment and method which use oblique optical axis optical system
JP2005083981A (en) Aspheric surface eccentricity measuring apparatus and method
JP2009097858A (en) Eccentricity measuring machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080509

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080522

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140613

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140613

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140613

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees