JP2003279682A - High temperature heat flux removing device using solid- liquid mixed phase free liquid face-liquid - Google Patents

High temperature heat flux removing device using solid- liquid mixed phase free liquid face-liquid

Info

Publication number
JP2003279682A
JP2003279682A JP2002087585A JP2002087585A JP2003279682A JP 2003279682 A JP2003279682 A JP 2003279682A JP 2002087585 A JP2002087585 A JP 2002087585A JP 2002087585 A JP2002087585 A JP 2002087585A JP 2003279682 A JP2003279682 A JP 2003279682A
Authority
JP
Japan
Prior art keywords
liquid
heat flux
solid
salt
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002087585A
Other languages
Japanese (ja)
Other versions
JP3643086B2 (en
Inventor
Ryoichi Kurihara
良一 栗原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Atomic Energy Agency
Original Assignee
Japan Atomic Energy Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Energy Research Institute filed Critical Japan Atomic Energy Research Institute
Priority to JP2002087585A priority Critical patent/JP3643086B2/en
Publication of JP2003279682A publication Critical patent/JP2003279682A/en
Application granted granted Critical
Publication of JP3643086B2 publication Critical patent/JP3643086B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Abstract

<P>PROBLEM TO BE SOLVED: To solve such a problem that only a liquid surface exposed to heat flux is heated and the amount of evaporation is increased, though case when a heat flux removing device using the free surface of a liquid metal or a molten salt, flowing on a solid wall, is proposed as a device for removing high temperature heat flux under an environment exposed to high temperature heat flux such as a diverter of a nuclear fusion reactor. <P>SOLUTION: In this high temperature heat flux removing device using the solid-liquid mixed phase free surface fluid, a metal or a salt having a specific gravity lower than that of the liquid is selected, or a gas such as heavy hydrogen or helium is injected into particles of metal or salt in advance to generate buoyancy, whereby high heat flux is absorbed by heat of fusion of suspended particles, and effectively carried out to the external of the nuclear fusion reactor and by mixing the suspended particles of the metal or salt into the liquid metal or molten salt flowing on the inclined solid wall. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、高熱流束に曝され
る環境下において、高熱流束を効率的に除去する装置に
関するものである。特に、本発明は、核融合炉の真空容
器内に設けられたプラズマチャンバー下部の固体壁上面
に流される熱流束除去用の液体金属又は溶融塩に金属又
は塩から成る浮遊粒子を混入させ、その融解熱を利用し
たことを特徴とする高熱流束除去装置に関するものであ
る。 【0002】 【従来の技術】代表的な高熱流束除去装置であるトカマ
ク型核融合炉のダイバータとしては、銅合金等でできた
ダイバータ板上にタングステンなどのアーマー材を接合
してプラズマからの熱流束を除去する固体壁ダイパ一夕
が一般的である。 【0003】 【発明が解決しようとする課題】核融合動力炉において
は、経済性を高めるために炉の形状をコンパクトにして
核融合出力を高くすることが要求されるため、プラズマ
からの熱流束が高くなり、固体壁ダイバータでは、熱応
力のような厳しい機械力学的状態の観点から、20MW
/m2を超える高熱流束を除去するのは極めて困難にな
るという問題がある。 【0004】このような問題の1つの解決策として、固
体壁上をリチウムやガリウムなどの液体金属や溶融塩F
LiBe(フリーベ:LiFとBeF2の二成分混合
塩)などの液体を、そのまま流して熱除去するという液
体ダイバータが提案されている。 【0005】しかし、これらの提案では、液体金属や溶
融塩FLiBeは熱流束に曝される液膜表面のみが高温
になって飽和蒸気量が増え、プラズマ中への不純物混入
の観点から除熱限界は固体壁ダイバータと比べて同程度
かそれ以下にしかならないという問題がある。 【0006】 【課題を解決するための手段】上記課題を解決するため
の本発明に係る固液混相自由液面流体を用いた高熱流束
除去装置は、傾斜した固体壁上を流れる液体金属または
溶融塩に金属または塩から成る浮遊粒子を混入させるこ
とで、高熱流束を浮遊粒子の融解熱で吸収し、これを効
果的に核融合炉外に搬出して除去し得るよう、液体より
も比重の小さい金属または塩を選択するか、金属または
塩で製造した粒子中に重水素またはヘリウムなどの気体
を予め注入しておいて浮力を発生させるように工夫した
ことを特徴とする。 【0007】 【発明の実施の形態】一般に液体中に固体の粒子を混入
させた固液混相流は、固体の融解熱を利用すれば、融解
熱は比熱よりも熱容量が大きいので、非常に大きな熱容
量を確保できることが知られている。 【0008】固体粒子は、浮力を発生させることにより
自由液面上を浮遊し、高熱流束に曝されて融解する。粒
子の融点を、プラズマ中への不純物混入の観点から問題
とならない液体の飽和蒸気温度以下になるような金属ま
たは塩を選択すれば、全ての浮遊粒子が融解するまで液
体の表面温度は一定に保たれ、プラズマの生成を継続す
ることができる。 【0009】例えば、液体金属としてガリウム(融点3
0℃)を使用すれば、浮遊粒子を構成する金属として
は、リチウム(融点181℃)、すず(融点232℃)
等が使用される。又、溶融塩としてFLiBe溶融塩
[LiF(16)−BeF2(34)](融点459
℃)を使用すれば、浮遊粒子を構成する塩としては、L
iFとBeF2の成分モル比を変えたFLiBe塩[L
iF(25)−BeF2(75)](融点515℃)等
が使用される。なお、上記FLiBeの分子式表示中
( )内の数値は二成分のモル比を示している。 【0010】また、液体の温度は表面温度以上に上昇す
ることはないので、液体金属または溶融塩を支持する固
体壁として、粒子の融点付近では強度上問題とならない
一般的な材料(例えば鉄鋼)を選択できる。 【0011】 【実施例】(実施例1)本発明を図示の実施例に基づい
て詳細に説明する。先ず図1を参照するが、この図は本
発明の固液混相自由液面流体を用いた高熱流束除去装置
の全体構成を、核融合炉を例にして図式的に示したもの
である。即ち、トカマク型核融合装置の真空容器内プラ
ズマチャンバー下部に自由液面流体を流した構造の立面
片断面図である。 【0012】図1において、真空容器1内のプラズマチ
ャンバー2下部のインボード側とアウトボード側に液体
注入口3をトーラス方向に連続的に一周させて設ける。
注入口から流入した固液混相自由液面流体4はプラズマ
6からの熱流束、トリチウム等を吸収し、不純物ととも
に排出口5から強制的に排出させる。本発明において
は、この注入口から流入した液体金属または溶融塩に金
属または塩から成る浮遊粒子を混入させた高熱流束除去
装置を用いる。 【0013】(実施例2)図2に高熱流束11と固液混
相自由液面12の流体13を用いた高熱流束除去装置と
の作動時の関係が拡大して概念的に示されている。即
ち、自由液面流体として固液混相自由液面流体を用いた
高熱流束除去装置と固体壁の関係を示した概念的断面図
である。 【0014】図2を参照して固液混相自由液面流体を用
いた高熱流束除去装置の原理及び作用を説明すると、図
1のプラズマチャンバー下部に相当する傾斜した固体壁
14に沿って流した液体金属または溶融塩13は、金属
または塩で製造した浮遊粒子15とともに重力により上
方から流入してくる。浮遊粒子15は液体よりも比重の
小さい固体材料で製造するか、比重の大きい材料でも粒
子中に気体を注入して製造できる。浮遊粒子15は高熱
流束11に曝されて徐々に溶融してゆき、気体が放出し
た一部の粒子16は、液体金属または溶融塩13中に沈
みながら排出口へと導かれる。 【0015】(実施例3)図3は、プラズマチャンバー
下部に相当する傾斜した固体壁上で固液混相自由液面流
体を流した概念適用図である。即ち、本発明の核融合炉
ダイバータヘの適用例としてFLiBe溶融塩[LiF
(66)−BeF2(34)]24とFliBe塩[L
iF(25)−BeF2(75)]で製造した浮遊粒子
25から成る固液混相自由液面流体をプラズマチャンバ
ー下部に相当する傾斜した鉄鋼製固体壁22上に設置し
た概念図を示している。 【0016】FliBeはLiFとBeF2の二成分混
合塩であるため、それぞれの成分モル比が変わることで
融点が異なるのを利用している。LiF(66)−Bc
2(34)の融点は459℃で、LiF(25)−B
eF2(75)の融点は515℃である。 【0017】液体注入口23から流入したLiF(6
6)−BeF2(34)溶融塩24は、重水素またはヘ
リウムを内包したLiF(25)−BeF2(75)塩
で製造した浮遊粒子25を伴いながら高熱流束27を浮
遊粒子25の融解熱で吸収し、一部溶融して気体を放出
後に沈降したLiF(25)−BcF2(75)塩の粒
子21とともに排出口26から流出していく。 【0018】 【発明の効果】本発明により、高熱流束を受ける固液混
相自由液面流体において浮遊粒子の量を加減することで
固体粒子の融解熱を利用した多量の熱除去が可能にな
り、液体表面の温度を固体粒子の融点付近に維持でき
る。FLiBeのような二成分混合塩の成分モル比を変
えることにより溶融塩と同一成分の塩で浮遊粒子が製造
でき、核融合ブラズマヘの影響を少なくできる。 【0019】また、LiF(66)−BcF2(34)
溶融塩の温度がLiF(25)−BeF2(75)塩の
融点515℃を超えなければ、飽和蒸気圧は1.6×1
-5kPa程度であり、プラズマヘの不純物混入を抑え
ることができる。固液混相自由液面流体を支える固体壁
と接する部分の液体の温度が500℃程度以下であれば
固体壁として鉄鋼などの一般金属の使用が可能になる。
Description: BACKGROUND OF THE INVENTION [0001] 1. Field of the Invention [0002] The present invention relates to an apparatus for efficiently removing high heat flux in an environment exposed to high heat flux. In particular, the present invention mixes suspended particles made of a metal or salt into a liquid metal or a molten salt for removing heat flux, which is flown on the upper surface of a solid wall at a lower portion of a plasma chamber provided in a vacuum vessel of a fusion reactor, The present invention relates to a high-heat-flux removing apparatus characterized by utilizing heat of fusion. 2. Description of the Related Art As a divertor of a tokamak-type fusion reactor, which is a typical high heat flux removing apparatus, an armor material such as tungsten is joined to a divertor plate made of a copper alloy or the like to generate a plasma. A solid wall dieper that removes the heat flux is common. [0003] In a fusion power reactor, it is required to increase the fusion output by making the shape of the reactor compact in order to enhance the economy, and therefore, the heat flux from the plasma is required. And the solid wall diverter requires 20 MW in view of severe mechanical conditions such as thermal stress.
There is a problem that it is extremely difficult to remove a high heat flux exceeding / m 2 . One solution to such a problem is to form a liquid metal such as lithium or gallium or a molten salt F on a solid wall.
A liquid diverter has been proposed in which a liquid such as LiBe (Flibe: a binary mixed salt of LiF and BeF 2 ) is flowed as it is to remove heat. However, in these proposals, only the surface of the liquid metal or the molten salt FLiBe which is exposed to the heat flux becomes high temperature and the amount of saturated vapor increases, and the heat removal limit is increased from the viewpoint of impurity contamination in the plasma. Has the problem that it is only as low as or less than the solid wall diverter. SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, a high heat flux removing apparatus using a solid-liquid mixed-phase free surface fluid according to the present invention comprises a liquid metal flowing on an inclined solid wall or By mixing suspended particles consisting of metal or salt into the molten salt, the high heat flux is absorbed by the heat of fusion of the suspended particles, so that it can be effectively carried out of the fusion reactor and removed therefrom. It is characterized by selecting a metal or salt having a small specific gravity or injecting a gas such as deuterium or helium into particles made of the metal or salt in advance to generate buoyancy. DETAILED DESCRIPTION OF THE INVENTION In general, a solid-liquid multiphase flow in which solid particles are mixed in a liquid is very large if the heat of fusion of the solid is utilized because the heat of fusion is larger than the specific heat. It is known that heat capacity can be secured. [0008] The solid particles float on the free liquid surface by generating buoyancy, and are exposed to a high heat flux and melted. If a metal or salt is selected so that the melting point of the particles is lower than the saturated vapor temperature of the liquid, which is not a problem from the viewpoint of impurity contamination in the plasma, the surface temperature of the liquid remains constant until all suspended particles are melted. The plasma generation can be continued. For example, gallium (having a melting point of 3) is used as a liquid metal.
0 ° C.), lithium (melting point 181 ° C.) and tin (melting point 232 ° C.) are used as the metal constituting the suspended particles.
Etc. are used. Further, as a molten salt, FLiBe molten salt [LiF (16) -BeF 2 (34)] (melting point 459)
° C), the salt constituting the suspended particles is L
FLiBe salt [L with different component molar ratios of iF and BeF 2
iF (25) -BeF 2 (75)] (melting point: 515 ° C.). The numerical value in parentheses in the molecular formula of FLiBe indicates the molar ratio of the two components. In addition, since the temperature of the liquid does not rise above the surface temperature, a general material (for example, iron or steel) which does not pose a problem near the melting point of the particles as a solid wall supporting the liquid metal or molten salt. Can be selected. (Embodiment 1) The present invention will be described in detail based on an embodiment shown in the drawings. First, referring to FIG. 1, this figure schematically shows the entire configuration of a high heat flux removing apparatus using a solid-liquid mixed-phase free surface fluid according to the present invention, taking a fusion reactor as an example. That is, it is an elevational cross-sectional view of a structure in which a free liquid is flowed under a plasma chamber in a vacuum vessel of a tokamak fusion device. In FIG. 1, a liquid injection port 3 is provided on the inboard side and the outboard side of the lower part of a plasma chamber 2 in a vacuum vessel 1 so as to make a continuous circuit in a torus direction.
The solid-liquid mixed-phase free liquid 4 flowing from the inlet absorbs the heat flux, tritium and the like from the plasma 6 and is forcibly discharged from the discharge port 5 together with impurities. In the present invention, a high heat flux removing device is used in which suspended particles made of metal or salt are mixed into liquid metal or molten salt flowing from the inlet. (Embodiment 2) FIG. 2 conceptually shows, in an enlarged scale, the relationship between a high heat flux 11 and a high heat flux removing device using a fluid 13 at a solid-liquid mixed phase free liquid surface 12 during operation. I have. That is, it is a conceptual cross-sectional view showing the relationship between a high heat flux removing device using a solid-liquid mixed-phase free surface fluid as the free surface fluid and the solid wall. Referring to FIG. 2, the principle and operation of the high heat flux removing apparatus using the solid-liquid mixed-phase free liquid will be described. The flow along the inclined solid wall 14 corresponding to the lower part of the plasma chamber of FIG. The liquid metal or molten salt 13 flows in from above along with suspended particles 15 made of metal or salt by gravity. The suspended particles 15 can be produced from a solid material having a lower specific gravity than a liquid, or a material having a higher specific gravity can be produced by injecting a gas into the particles. The suspended particles 15 are exposed to the high heat flux 11 and gradually melt, and some of the particles 16 released by the gas are guided to the discharge port while sinking in the liquid metal or the molten salt 13. (Embodiment 3) FIG. 3 is a conceptual application diagram in which a solid-liquid mixed-phase free liquid is allowed to flow on an inclined solid wall corresponding to the lower part of a plasma chamber. That is, as an application example of the fusion reactor divertor of the present invention, FLiBe molten salt [LiF
(66) -BeF 2 (34)] 24 and FliBe salt [L
iF (25) -BeF 2 (75)] shows a conceptual diagram in which a solid-liquid mixed-phase free liquid surface fluid composed of suspended particles 25 is installed on an inclined steel solid wall 22 corresponding to the lower part of a plasma chamber. . Since FliBe is a binary mixed salt of LiF and BeF 2 , it utilizes the fact that the melting point is different due to a change in the molar ratio of each component. LiF (66) -Bc
The melting point of F 2 (34) is 459 ° C. and LiF (25) -B
The melting point of eF 2 (75) is 515 ° C. The LiF (6) flowing from the liquid inlet 23
6) -BeF 2 (34) molten salt 24 is capable of dispersing high heat flux 27 with floating particles 25 while accompanying floating particles 25 made of LiF (25) -BeF 2 (75) salt containing deuterium or helium. After being absorbed by heat and partially melted to release the gas, the gas flows out from the outlet 26 together with the precipitated particles 21 of the LiF (25) -BcF 2 (75) salt. According to the present invention, a large amount of heat can be removed by utilizing the heat of fusion of solid particles by controlling the amount of suspended particles in a solid-liquid mixed-phase free surface fluid receiving a high heat flux. In addition, the temperature of the liquid surface can be maintained near the melting point of the solid particles. By changing the component molar ratio of a binary mixed salt such as FLiBe, suspended particles can be produced with a salt having the same component as the molten salt, and the influence on fusion plasma can be reduced. Further, LiF (66) -BcF 2 (34)
If the temperature of the molten salt does not exceed the melting point 515 ° C. of the LiF (25) -BeF 2 (75) salt, the saturated vapor pressure is 1.6 × 1
The pressure is about 0 -5 kPa, so that contamination of plasma with impurities can be suppressed. If the temperature of the liquid at the portion in contact with the solid wall supporting the solid-liquid mixed-phase free liquid surface fluid is about 500 ° C. or less, a general metal such as steel can be used as the solid wall.

【図面の簡単な説明】 【図1】トカマク型核融合装置の真空容器内プラズマチ
ャンバー下部に自由液面流体を用いた高熱流束除去装置
を取り付けた構造の立面片断面図である。 【図2】前記の自由液面流体として固液混相自由液面流
体を用いた高熱流束除去装置装置と固体壁の概念的断面
図である。 【図3】プラズマチャンバー下部に相当する傾斜した固
体壁上で固液混相自由液面流体を流した概念適用図であ
る。 【符号の説明】 1:真空容器、2:プラズマチャンバー、3:液体注入
口、4:固液混相自由液面流体、5:排出口、6:プラ
ズマ、7:トカマク型核融合装置のトーラス中心線、1
1:熱流束、12:自由液面、13:液体金属または溶
融塩、14:固体壁、15:浮遊粒子、16:沈降粒
子、21:沈降粒子、22:傾斜した固体壁、23:液
体注入口、24:FLiBe溶融塩[LiF(66)−
BeF2(34)]、25:FliBe塩[LiF(2
5)−BeF2(75)]、26:排出口、27:高熱
流束
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a sectional elevational view of a structure in which a high heat flux removing device using a free surface fluid is attached to a lower portion of a plasma chamber in a vacuum vessel of a tokamak fusion device. FIG. 2 is a conceptual cross-sectional view of a high heat flux removing device using a solid-liquid mixed-phase free liquid as the free liquid, and a solid wall. FIG. 3 is a conceptual application diagram in which a solid-liquid mixed-phase free surface fluid flows on an inclined solid wall corresponding to a lower portion of a plasma chamber. [Description of Signs] 1: Vacuum container, 2: Plasma chamber, 3: Liquid inlet, 4: Solid-liquid mixed-phase free liquid, 5: Outlet, 6: Plasma, 7: Torus center of tokamak fusion device Line, 1
1: heat flux, 12: free liquid level, 13: liquid metal or molten salt, 14: solid wall, 15: suspended particles, 16: settling particles, 21: settling particles, 22: inclined solid wall, 23: liquid injection Inlet, 24: FLiBe molten salt [LiF (66)-
BeF 2 (34)], 25: FliBe salt [LiF (2
5) -BeF 2 (75)] , 26: outlet, 27: high heat flux

Claims (1)

【特許請求の範囲】 【請求項1】 傾斜した固体壁上を流れる液体金属また
は溶融塩から成る自由液面流体と金属または塩から成る
浮遊粒子とから構成される固液混相自由液面流体を用い
た高熱流束除去装置。
Claims: 1. A solid-liquid mixed-phase free surface fluid composed of a liquid metal or molten salt flowing on an inclined solid wall and a suspended particle composed of a metal or salt. High heat flux removal equipment used.
JP2002087585A 2002-03-27 2002-03-27 High heat flux removal device using solid-liquid mixed phase free liquid surface fluid Expired - Fee Related JP3643086B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002087585A JP3643086B2 (en) 2002-03-27 2002-03-27 High heat flux removal device using solid-liquid mixed phase free liquid surface fluid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002087585A JP3643086B2 (en) 2002-03-27 2002-03-27 High heat flux removal device using solid-liquid mixed phase free liquid surface fluid

Publications (2)

Publication Number Publication Date
JP2003279682A true JP2003279682A (en) 2003-10-02
JP3643086B2 JP3643086B2 (en) 2005-04-27

Family

ID=29233725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002087585A Expired - Fee Related JP3643086B2 (en) 2002-03-27 2002-03-27 High heat flux removal device using solid-liquid mixed phase free liquid surface fluid

Country Status (1)

Country Link
JP (1) JP3643086B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008014627A (en) * 2006-06-30 2008-01-24 United Technol Corp <Utc> Solar energy tower system, and method of using high-temperature molten salt in solar energy tower system
JP2009175051A (en) * 2008-01-25 2009-08-06 National Institutes Of Natural Sciences System and method for receiving heat of high heat-flux beam, and energy recovery
CN104078084A (en) * 2014-07-18 2014-10-01 中国科学院大学 Continuous molten metal film generating device and method under high-intensity magnetic field

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008014627A (en) * 2006-06-30 2008-01-24 United Technol Corp <Utc> Solar energy tower system, and method of using high-temperature molten salt in solar energy tower system
JP2009175051A (en) * 2008-01-25 2009-08-06 National Institutes Of Natural Sciences System and method for receiving heat of high heat-flux beam, and energy recovery
JP4737204B2 (en) * 2008-01-25 2011-07-27 大学共同利用機関法人自然科学研究機構 Heat flux beam heat receiving / energy recovery system and heat flux beam heat receiving / energy recovery method
CN104078084A (en) * 2014-07-18 2014-10-01 中国科学院大学 Continuous molten metal film generating device and method under high-intensity magnetic field

Also Published As

Publication number Publication date
JP3643086B2 (en) 2005-04-27

Similar Documents

Publication Publication Date Title
SU1331435A3 (en) Method and installation for production of rare high-melting metal
KR102086453B1 (en) Dual Fluid Reactor
JPH05228363A (en) Device and method for producing ceramic or cermet powdery substance
US20140293542A1 (en) Thermal mgmt. device for high-heat flux electronics
Christenson et al. A distillation column for hydrogen isotope removal from liquid lithium
JP2003279682A (en) High temperature heat flux removing device using solid- liquid mixed phase free liquid face-liquid
JPS59502074A (en) Method for purifying heat exchanger for engine exhaust gas
JP6664021B2 (en) Core melt cooling system
US2910417A (en) Uranium bismuthide dispersion in molten metal
JP2009257918A (en) Cooling device for molten corium
FR2702301A1 (en) Arrangement for the protection of a nuclear reactor in the event of a core meltdown.
JPH0323836B2 (en)
CN105431003B (en) Continuous phase transistion is heat sink thermal control units
JP2001108793A (en) Purifying method and purifying device for lead-bismuth eutectic alloy
JP2003279681A (en) High temperature heat flux removing device using free surface fluid with secondary flow
RU2123157C1 (en) Heat accumulator
JP4880236B2 (en) Manufacturing method of high purity silicon
JP2011106701A (en) Bed material regeneration device for fluid bed and method therefor
JP2006177434A (en) Hydrogen storing/supplying device
JPS6040799B2 (en) Direct heat exchange type latent heat storage device
WO2020085046A1 (en) Method and apparatus for separating and removing tritiated water from tritium-containing water
JP2741829B2 (en) Metal beryllium pebble
WO2009081091A1 (en) Carbothermic aluminium production process
RU2109554C1 (en) Radiogenic helium separator
JPH0596266A (en) Method for melting filter dust

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050126

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100204

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100204

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110204

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120204

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130204

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees