JP2003279562A - Method and apparatus for measuring surface water in sands - Google Patents

Method and apparatus for measuring surface water in sands

Info

Publication number
JP2003279562A
JP2003279562A JP2002083606A JP2002083606A JP2003279562A JP 2003279562 A JP2003279562 A JP 2003279562A JP 2002083606 A JP2002083606 A JP 2002083606A JP 2002083606 A JP2002083606 A JP 2002083606A JP 2003279562 A JP2003279562 A JP 2003279562A
Authority
JP
Japan
Prior art keywords
water
sand
saturated
rate
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002083606A
Other languages
Japanese (ja)
Other versions
JP3591779B2 (en
Inventor
Mitsuru Kawamura
満 川村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2002083606A priority Critical patent/JP3591779B2/en
Publication of JP2003279562A publication Critical patent/JP2003279562A/en
Application granted granted Critical
Publication of JP3591779B2 publication Critical patent/JP3591779B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and an apparatus for measuring percentage of surface moisture in sands, which can accurately and rapidly measure a rate of the surface moisture in the sand relating to its specific gravity and fineness modulus. <P>SOLUTION: Reference sands having different weight, fineness modulus and the like are sampled respectively and carried out a surface drying, and spaces in an apparent volume of the surface dried sands are replaced by water in such a condition that the fineness modulus is kept constant. The weight of the water is measured as a saturation volume of water, thereby obtaining rates of saturation water as data of each reference sample and storing/ managing the data. Then, in order to obtain a correction volume of water for sands to be used, an execution sample is taken in which the rate of surface water is made even, spaces in an apparent volume of the surface water sands are replaced by water, and the weight of the water is measured as a saturation volume of water absorption, thereby obtaining a saturation rate of water absorption of the execution sample. Next, the saturation rate of water absorption of the execution sample is subtracted from the rate of saturation water of the reference sample having the weight, fineness modulus and the like equal to the execution sample, and thereby calculating the rate of the surface water in the sands to be used. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、生コンクリート
等の生産において、使用砂に混入する水の量(補正水
量)に適正を得る必要から、予め砂に含まれている表面
水量を知るための砂の表面水測定方法及び測定装置に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is intended to know the amount of surface water contained in sand in advance in order to obtain an appropriate amount of water mixed in sand (corrected water amount) in the production of ready-mixed concrete or the like. The present invention relates to a method and apparatus for measuring surface water of sand.

【0002】[0002]

【従来の技術】生コンクリートは、セメント、水、砂、
砂利等を適当な割合で練り混ぜた状態で使用されるが、
工事態様や材料特性等に合わせて、適正な水の配合割合
とする「単位水量」が決まっており、単位水量を得るた
めに給水配合される量を「補正水量」と称しており、こ
の補正水量は、予め砂に含まれている表面水量を単位水
量から差し引いた値であるため、補正水量に正確性を期
すためには、この表面水量を事前に適正に知っておく必
要がある。なお、表面水量は、サンプル砂の重量に表面
水率を掛けることに算出される。
2. Description of the Related Art Ready-mixed concrete consists of cement, water, sand,
It is used in a state where gravel, etc. is kneaded at an appropriate ratio,
According to the construction mode and material characteristics, etc., the "unit water amount" that is the appropriate water mixing ratio has been determined, and the amount of water supplied to obtain the unit water amount is called the "corrected water amount". Since the amount of water is a value obtained by subtracting the amount of surface water contained in sand from the unit amount of water in advance, it is necessary to properly know the amount of surface water in advance in order to ensure accuracy in the corrected amount of water. The amount of surface water is calculated by multiplying the weight of the sample sand by the surface water rate.

【0003】しかし、湿った砂の表面水率を測定するの
は難しいと言われる。よく確かめると条件により測定数
値が安定しないことが理由のようである。天然物で自然
の砂では、いくらマニュアルどうり行っても数値のバラ
ツキがでるのは当たり前のことである。測定には個人差
もあるが、これは品質面及び比重の変動と粒度分布が不
安定なため、粗粒率が変わり、表面積が変わるためと考
えられる。条件が変わる度に表面水率が変わるようでは
あてにならない、こらが従事する者の声である。世の中
には一つとして同じものは無いと言っても過言ではな
い。従来、そのために標準、基準、見本、雛型等と言っ
たものと比較しながら、表面水率を評価的に設定し、そ
の誤差を時間と手間のかかるスランプ試験に頼っている
のが現状である。
However, it is said that it is difficult to measure the surface water content of wet sand. It seems that the reason is that the measured values are not stable depending on the conditions if checked carefully. It is natural for natural products to use natural sand, and no matter how many manual steps are taken, the values will vary. Although there are individual differences in the measurement, it is considered that this is because the coarse grain ratio changes and the surface area changes because of fluctuations in quality and specific gravity and unstable particle size distribution. It is the voice of the person who engages in this because it cannot be relied on that the surface water rate changes each time the conditions change. It is no exaggeration to say that there is no one thing in the world. Conventionally, for this reason, the surface water rate is set evaluatively by comparing with standards, standards, samples, templates, etc., and the error currently depends on a slump test that takes time and labor. is there.

【0004】測定誤差の要因は多くあるが、重要な要因
として、砂の品質をみると、同じ重量であっても、次の
ようなことが挙げられる。 a)軽い重いでは比重が変わる、従って産地、水系が代
われば表面水量が変わる。 b) 粒度分布が違えば表面積が変わる、従って粗粒率
が変われば表面水量が変わる。 以上絶えず安定である保証がない限り、最低限の不可欠
確認事項であって、いずれかを簡略化すると測定値に誤
差を生ずる原因になる。新聞等の報道では、砂の表面水
率測定方法が確立されていないと、度々記載されている
が、その重要性もうかがえる。例えば、測定誤差は、±
約2%とされるが、そうすると、仮に単位水量を185
kgとして、スランプ1cm調整するには、単位水量の1.
2%、よって水量は2.22kg、単位砂量からみると表
面水率は0.277%となる。また、スランプの許容範
囲を±2cmとすれば、表面水率からみると0.55%、
スランプを基準に考えると許容測定誤差は、0.5%以
下となり、現在の測定方法を見直す必要に迫られている
ことを示唆していると思われる。
There are many causes of measurement error, but the important factors are as follows when looking at the quality of sand even if the weight is the same. a) The specific gravity changes when the weight is light and heavy, so the surface water volume changes when the production area and water system change. b) If the particle size distribution is different, the surface area is changed, and accordingly, if the coarse particle ratio is changed, the surface water amount is changed. As long as there is no guarantee that it is constantly stable, it is a minimum essential check item, and simplification of either will cause an error in the measured value. News reports such as newspapers often mention that the method for measuring the surface water ratio of sand has not been established, but it can also be seen as important. For example, the measurement error is ±
It is set to about 2%, but if so, the unit water volume would be 185
To adjust the slump 1 cm in kg, 1.
2%, therefore the amount of water is 2.22 kg, and the surface water ratio is 0.277% when viewed from the unit sand amount. Moreover, if the allowable range of slump is ± 2 cm, it is 0.55% from the surface water ratio,
Considering slump as the standard, the allowable measurement error is 0.5% or less, which suggests that it is necessary to review the current measurement method.

【0005】[0005]

【発明が解決しようとする課題】この発明は、上記のよ
うな実情に鑑みて、砂の比重と粗粒率とが関係する表面
水率を正確且つ迅速に測定できる砂の表面水測定方法及
び測定装置を提供することを目的とする。
SUMMARY OF THE INVENTION In view of the above situation, the present invention provides a method for measuring the surface water of sand, which can accurately and quickly measure the surface water rate related to the specific gravity of sand and the coarse particle ratio. An object is to provide a measuring device.

【0006】[0006]

【課題を解決するための手段】上記の目的を達成するた
めに、この発明は、重量、粗粒率等が異なる毎に基準的
にサンプル採取した砂を表面乾燥し、粗粒率を一定にし
てこの表乾状態の砂の見掛け容積中の空隙を水に置換
し、その水の重量を飽和水量として測定することによ
り、基準サンプル毎に飽和水率をデータとして得て保存
管理しておき、使用砂について補正水量を知るために、
表面水率が均等化された実行サンプルを採取し、この表
面水砂の見掛け容積中の空隙を水に置換し、その水の重
量を飽和吸水量として測定することにより、実行サンプ
ルの飽和吸水率を得、次に、実行サンプルに重量、粗粒
率等が同等な前記基準サンプルの飽和水率から、実行サ
ンプルの飽和吸水率を差し引いて、使用砂の表面水率を
算定することを特徴とする砂の表面水測定方法を提供す
るものである。
In order to achieve the above object, the present invention is to dry the surface of sand sampled in a standard manner every time the weight, the coarse particle ratio, etc. are different, to make the coarse particle ratio constant. By replacing the voids in the apparent volume of the sand in the surface of the lever with water, and measuring the weight of the water as the amount of saturated water, the saturated water rate was obtained as data for each reference sample and stored and managed, To know the corrected water volume for the sand used,
Saturated water absorption of the run sample was obtained by collecting the run sample with equalized surface water ratio, replacing the voids in the apparent volume of this surface water sand with water, and measuring the weight of the water as the saturated water absorption. Then, the saturated water absorption rate of the execution sample is subtracted from the saturated water rate of the reference sample in which the execution sample has the same weight, coarse grain ratio, etc., and the surface water rate of the used sand is calculated. A method for measuring surface water of sand is provided.

【0007】上記の構成によれば、基準サンプルの飽和
水率から実行サンプルの飽和吸水率を差し引くと、その
値が使用砂の表面水率であるから、使用砂の重量にこの
表面水率を掛けることにより、表面水量が得られ、これ
を基にして砂に加える補正水量を求めることができる。
According to the above structure, when the saturated water absorption rate of the execution sample is subtracted from the saturated water rate of the reference sample, the value is the surface water rate of the used sand. Therefore, this surface water rate is added to the weight of the used sand. By multiplying, the amount of surface water is obtained, and the corrected amount of water added to the sand can be obtained based on this.

【0008】また、この発明は、サンプル砂を入れる給
排水可能な開口部を持つ容器と、この給排水可能な開口
部を持つ容器と共にサンプル砂を浸水させる水槽と、バ
イブレータ付き水槽受けと、上下可能な給水タンクと、
上記給排水可能な開口部を持つ容器を載せる電子秤とか
らなり、水槽の底部に上記給排水可能な開口部を持つ容
器を受ける吸水性クッションを配設し、水槽への給水及
び排水を給水タンクの上下動によりなすようにしたこと
を特徴とする砂の表面水測定装置を提供するものであ
る。
Further, according to the present invention, a container having an opening capable of supplying / draining sample sand, a water tank for soaking the sample sand together with the container having an opening capable of supplying / draining water, and a water tank receiver with a vibrator can be moved up and down. A water tank,
It consists of an electronic scale on which a container having the above-mentioned water supply / drainage opening is placed, and a water-absorbing cushion for receiving the above-mentioned container having the above-mentioned water supply / drainage opening is provided at the bottom of the water tank, and water supply and drainage to / from the water tank of the water tank are performed. It is intended to provide a surface water measuring device for sand, which is characterized by being moved up and down.

【0009】上記の構成によれば、バイブレータの振動
により、給排水可能な開口部を持つ容器の浸水中は水の
浸透が促進及び均等化され、浸水の水抜き後は、水の飽
和状態になるのが促進される。また、給排水可能な開口
部を持つ容器に付着する計量に余分な水分が吸水性クッ
ションに吸収されるので、正確な風袋重量により計量誤
差が少なくなる。さらに、水槽への給水及び排水は、給
水タンクの上下によるため、構造が簡単にして給水及び
排水時間が短縮される。
According to the above construction, the vibration of the vibrator promotes and equalizes the permeation of water during the submersion of the container having the opening through which water can be supplied and drained, and the water is saturated after the submersion of water. Is promoted. In addition, since excess water is absorbed by the water-absorbent cushion for weighing attached to a container having an opening through which water can be supplied and drained, accurate tare weight reduces weighing errors. Further, since water supply and drainage to and from the water tank depend on the upper and lower sides of the water supply tank, the structure is simplified and the water supply and drainage time is shortened.

【0010】[0010]

【発明の実施の形態】この発明においては、給排水可能
な開口部を持つ容器に、砂を入れて水槽に浸してから容
器に引き上げ、水滴が落ちなくなった時、つまり表面張
力のみによる付着力が水の重力に抗している状態を「飽
和状態」と定義する。但し、砂の密度が不安定なこと、
そのため水きりが悪いのと、合わせて脱泡のためバイブ
レーターを作動させることにより飽和状態が促進され
る。また、飽和水量とは、飽和状態に至るまでの吸水量
を意味するものとし、これが砂の見掛け容積中の空隙を
水に置換したその水の量である。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, when sand is put in a container having an opening through which water can be supplied and drained, and then the container is pulled up into the container and water drops do not fall, that is, the adhesive force due to only surface tension is applied. The state of resisting the gravity of water is defined as "saturated state". However, the density of sand is unstable,
Therefore, the drainage is poor, and the saturated state is promoted by operating the vibrator for defoaming. The saturated water amount means the amount of water absorbed until reaching a saturated state, which is the amount of water obtained by replacing the voids in the apparent volume of sand with water.

【0011】この飽和水量の測定を前提とするため、こ
の発明によれば、砂のサンプルの表面水率が、僅か40
秒程度で測定され、品質管理にも利用できるので、画期
的な測定方法であると言える。砂の表面水と言う語源か
ら考えると、一粒の砂の表面湿潤状態を指すものと考え
られる。しかし、現実は、砂の空隙にある水分量であ
る。見掛け容積の密度によって空隙が変化するものであ
ることも周知の通りである。そういう観点から飽和状態
を考え、比重、粗粒率を基本に砂の飽和水状態を利用し
て、飽和水砂量を測定し、算定により表面水率測定方法
へと展開したものである。
Since it is assumed that the saturated water content is measured, according to the present invention, the surface water ratio of the sand sample is only 40%.
Since it is measured in seconds and can be used for quality control, it can be said to be an epoch-making measurement method. Considering the origin of the term surface water of sand, it is considered to indicate the surface wet state of one grain of sand. However, the reality is the amount of water in the voids of the sand. It is well known that the voids change depending on the apparent volume density. From this point of view, the saturated state is considered, and the saturated water state of sand is used based on specific gravity and coarse particle ratio to measure the amount of saturated water sand, and the calculation is expanded to a surface water rate measuring method.

【0012】飽和水率は粗粒率が一定であれば、ほぼ一
定であることが実験によって確認できた。これについ
て、人工的に砂の表面水率を0〜10%に設定してサン
プル処理した飽和水率を表で示す。
It has been confirmed by experiments that the saturated water ratio is almost constant if the coarse particle ratio is constant. About this, the surface water ratio of sand is artificially set to 0 to 10%, and the saturated water ratio sample-treated is shown in the table.

【0013】[0013]

【表1】 [Table 1]

【0014】この発明は、比重、粗粒率から段階的に分
けられる基準サンプルについて、表乾状態で吸収される
飽和水率を求め(表2−1,表3−1)、それをデータ
として保存管理しておき(飽和水率の平均値は各々
22.03,21.49)、実際の使用砂について補正
水量を求めるときには、その実行サンプルの砂がそのま
まの表面水砂において飽和状態に至るまで吸水される飽
和吸水量及び飽和吸水率を求め(表2−2の,,表
3−2の,)、飽和水率−として、使用砂の表
面水率(10)が求められる。その誤差(12)は、チャップマ
ン法の表面水率の誤差である。なお、表2は富山県の神
通川水系の砂を、表3は同県庄川水系の砂を使用した。
According to the present invention, the saturated water rate absorbed in the surface dry state is determined for a reference sample which is divided stepwise from the specific gravity and the coarse particle rate (Table 2-1 and Table 3-1), and it is used as data. It is stored and managed (the average value of the saturated water ratio is 22.03, 21.49 respectively), and when the corrected water amount is calculated for the actual sand used, the sand of the execution sample reaches the saturated state in the surface water sand as it is. The saturated water absorption amount and the saturated water absorption that are absorbed up to the above are calculated (Table 2-2, Table 3-2), and the surface water ratio (10) of the used sand is calculated as the saturated water ratio. The error (12) is the error of the surface water rate in the Chapman method. In addition, Table 2 uses sand of the Jinzu River system of Toyama Prefecture, and Table 3 uses sand of the Shogawa River system of the same prefecture.

【0015】[0015]

【表2−1】 [Table 2-1]

【0016】[0016]

【表2−2】 [Table 2-2]

【0017】[0017]

【表3−1】 [Table 3-1]

【0018】[0018]

【表3−2】 [Table 3-2]

【0019】飽和水率は、比重、粗粒率のどちらかが変
動すれば変わるが、変動の割合によって、互いに打ち消
し合い、生コンの通常の粗粒率巾内では、測定誤差±
0.5%以下を楽々と合格している。
The saturated water ratio changes if either the specific gravity or the coarse grain ratio fluctuates. However, the saturated water ratios cancel each other out depending on the fluctuation ratio, and within the normal coarse grain ratio range of the ready-mixed concrete, the measurement error ±
Passing 0.5% or less easily.

【0020】[0020]

【実施例】次に、この発明の実施例を図面に基づいて説
明する。
Embodiments of the present invention will now be described with reference to the drawings.

【0021】図面は、この発明の測定装置を示す斜視図
であって、測定装置は、水槽1と、バイブレータ4付き
水槽受け3と、「給排水可能な開口部を持つ容器」の代
表例として、一部が網6であり上端に鍔8を有する鍔付
き網容器5と、水槽1への給水タンク7と、鍔付き網容
器5で砂の重量を測定する電子秤9と、その計測結果お
よび計算結果を出力するCPUプリンター11とからな
っている。なお、この測定装置は、基準サンプル、実行
サンプルのいずれの測定についても用いられる。
FIG. 1 is a perspective view showing a measuring device of the present invention, which is a representative example of a water tank 1, a water tank receiver 3 with a vibrator 4, and a "container having an opening capable of supplying and draining water". A net container 5 with a collar, a part of which is a net 6, and a flange 8 at the upper end, a water supply tank 7 for the water tank 1, an electronic scale 9 for measuring the weight of sand in the net container 5 with a collar, the measurement result and It is composed of a CPU printer 11 which outputs a calculation result. This measuring device is used for both measurement of the reference sample and the execution sample.

【0022】給水タンク7について、13は上下駆動シ
リンダー、14がゴムのフレキシブルチューブであっ
て、給水タンク7をそれで上げることにより水槽1に給
水し、下げることにより水抜きがなされる。また、水槽
受け3の底部には、周囲に排水溝16を設け、排水溝1
6の内側に沿って吸水性クッション15が配設される。
この吸水性クッション15で水槽1を受けることによ
り、バイブレータ4の振動を効率的に水槽1に及ばせ得
ることはもちろん、排水時に鍔付き網容器5に付着する
水の吸収・排水が促進される。また、水槽受け3にはバ
イブレータ4の作動時間を設定するタイマー17が具備
される。まず、飽和水率測定の手順を説明する。
Regarding the water supply tank 7, 13 is a vertical drive cylinder, and 14 is a flexible tube made of rubber, which raises the water supply tank 7 to supply water to the water tank 1, and lowers it to drain water. In addition, a drain groove 16 is provided around the bottom of the water tank receiver 3,
A water absorbing cushion 15 is arranged along the inner side of 6.
By receiving the water tank 1 with the water absorbing cushion 15, not only the vibration of the vibrator 4 can be efficiently applied to the water tank 1, but also the absorption and drainage of water attached to the mesh container 5 with a collar at the time of drainage are promoted. . Further, the water tank receiver 3 is provided with a timer 17 for setting the operating time of the vibrator 4. First, the procedure for measuring the saturated water ratio will be described.

【0023】(飽和水砂量の測定) JIS A1102(基準サンプル)又はA111
1−3(実行サンプル)に基づき、ふるい分けした砂を
利用し、分級された砂を測定された粗粒率に合わせてサ
ンプル量(例えば400g)に計量する。その値を実行
サンプルではMs、基準サンプルではMとする。 基準サンプルの場合、粗粒率の偏りを防止するた
め、任意の表面水率にして、表面水率を平均化するた
め、サンプルをよくブレンドする。 サンプルを鍔付き網容器5に入れる。 鍔付き網容器5を水槽1に入れ、砂を水浸しにしな
がら、バイブレータ4を作動させる。これにより、密度
が安定し、水切りが良くなり、エアー抜きもなされる。 給水タンク7を下げることにより、水槽1内の水を
抜く。また、鍔付き網容器5に付着した水が吸水性クッ
ション15に吸収される。 鍔付き網容器5を引き上げ、電子秤9の上に載せて
飽和水砂重量を計量する。この値を基準サンプルではM
1、実行サンプルではMs1とする。
(Measurement of the amount of saturated water and sand) JIS A1102 (reference sample) or A111
Based on 1-3 (execution sample), the classified sand is weighed to a sample amount (for example, 400 g) according to the measured coarse particle ratio, using the sieved sand. The value is set to Ms for the execution sample and M for the reference sample. In the case of the reference sample, in order to prevent the deviation of the coarse particle ratio, the surface water ratio is arbitrarily set, and the sample is well blended in order to average the surface water ratio. The sample is placed in the mesh container 5 with a collar. Put the net container 5 with a collar in the water tank 1 and operate the vibrator 4 while immersing the sand in the water. As a result, the density becomes stable, drainage is improved, and air is removed. The water in the water tank 1 is drained by lowering the water supply tank 7. Further, the water adhering to the flanged net container 5 is absorbed by the water absorbing cushion 15. The net container 5 with a collar is pulled up, placed on the electronic scale 9, and the weight of saturated water and sand is measured. This value is M in the reference sample
1, Ms1 in the execution sample.

【0024】サンプルの砂重量M及びMsと、飽和水砂
重量M1及びMs1とをこのようにして得ると、飽和水
率の計算は次のようになる。
Obtaining the sample sand weights M and Ms and the saturated water sand weights M1 and Ms1 in this way, the calculation of the saturated water ratio is as follows.

【0025】(基準サンプルの飽和水率) A) 飽和水量=M1−M B) 飽和水率=A÷M×100(資料の飽和水率測
定、5点以上) C) 基準飽和水率=Bの(下限値+上限値)÷2 つまり、基準サンプルの飽和水率(B)=(M1−M)
÷M×100 (実行サンプルの飽和吸水率)また、同様にして、実行
サンプルにつき、 F)飽和吸水量=Ms1−Ms G)飽和吸水率=(Ms1−Ms)÷Ms×100
(Saturated water rate of reference sample) A) Saturated water amount = M1−M B) Saturated water rate = A ÷ M × 100 (Saturated water rate measurement of data, 5 points or more) C) Reference saturated water rate = B (Lower limit value + upper limit value) / 2 That is, the saturated water rate (B) of the reference sample = (M1-M)
÷ M × 100 (saturated water absorption rate of execution sample) Similarly, for each execution sample, F) Saturated water absorption amount = Ms1−Ms G) Saturated water absorption rate = (Ms1−Ms) ÷ Ms × 100

【0026】以上から、基準サンプルの飽和水率(デー
タとして保管されている)と実行サンプルの飽和吸水率
(使用砂についてその都度計算)とが得られたので、使
用砂について、補正水量を得るために、その前提となる
表面水率が次の通り計算される。 H)実行サンプルの概算表面水率=基準サンプルの飽和
水率C−実行サンプルの飽和吸水率G また、これは、概算表面水率(H)=C−(Ms1−M
s)÷Ms×100として表される。(Ms1−Ms)
÷Ms×100の部分が実際に生コンを製造する場合
に、測定及び計算事項である。
From the above, the saturated water rate of the reference sample (stored as data) and the saturated water absorption rate of the execution sample (calculated for the sand used each time) were obtained, and thus the corrected water amount was obtained for the sand used. Therefore, the presumed surface water rate is calculated as follows. H) Approximate surface water rate of the run sample = Saturated water rate of the reference sample C-Saturated water absorption rate of the run sample G Also, this is the estimated surface water rate (H) = C- (Ms1-M
s) ÷ Ms × 100. (Ms1-Ms)
÷ Ms × 100 part is a measurement and calculation item when actually manufacturing ready-mixed concrete.

【0027】そこで、使用砂について、 表面水量=使用砂の重量×表面水率(H) 補正水量=使用砂の単位水量−表面水量 となり、現場においては、この補正水量が砂に混入され
る。
Therefore, regarding the used sand, the surface water amount = the weight of the used sand × the surface water ratio (H), the corrected water amount = the unit water amount of the used sand-the surface water amount, and this corrected water amount is mixed into the sand at the site.

【0028】次に、補足点及び注意点について述べる。 a)Hを一定間隔で5点以上測定 b)基準表面水率=a5点の和÷5 c)実砂量=Ms−(Ms×b/100) d)飽和水量=Ms1−c e)飽和水率=d÷c×100 f)測定点飽和水率差=e−CNext, supplementary points and caution points will be described. a) Measure H at 5 points or more at regular intervals b) Standard surface water ratio = sum of 5 points / 5 c) Actual sand amount = Ms− (Ms × b / 100) d) Saturated water amount = Ms1-c e) Saturated water rate = d ÷ c × 100 f) Measurement point saturated water rate difference = e-C

【0029】飽和水率(e)=(Ms1−Ms(Ms×
b/100))÷(Ms−(Ms×b))
Saturated water ratio (e) = (Ms1−Ms (Ms ×
b / 100)) ÷ (Ms− (Ms × b))

【0030】I)誤差補正値=f×(H÷e) 増
(−) 減(+) J)表面水率=H±I *誤差補正値とは粗粒率の変動による飽和水率の差を表
面水率の割合に修正する。粗粒率の値が大きくなると粒
度は、粗く(表面積小さく)飽和水率は減り、小さくな
ると粒度は、細かく(表面積大きく)飽和水率は増える
ため、その分表面水率に逆補正する。
I) Error correction value = f × (H ÷ e) Increase (−) Decrease (+) J) Surface water rate = H ± I * Error correction value is the difference in saturated water rate due to fluctuations in the coarse grain ratio. To the ratio of surface water ratio. When the value of the coarse particle ratio becomes large, the particle size becomes coarse (small surface area) and the saturated water ratio decreases. When the value becomes small, the particle size becomes fine (large surface area) and the saturated water ratio increases. Therefore, the surface water ratio is corrected accordingly.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の砂の表面水測定装置を示す斜視図で
ある。
FIG. 1 is a perspective view showing a sand surface water measuring device of the present invention.

【符号の説明】[Explanation of symbols]

1 水槽 3 水槽受け 5 鍔付き網容器 7 給水タンク 9 電子秤 15 吸水性クッション 1 aquarium 3 water tank receiver 5 Net container with a collar 7 water tank 9 Electronic scale 15 Water-absorbent cushion

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成14年6月24日(2002.6.2
4)
[Submission date] June 24, 2002 (2002.6.2)
4)

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】全文[Correction target item name] Full text

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【書類名】 明細書[Document name] Statement

【発明の名称】 砂の表面水測定方法及び測定装置Title: Method and apparatus for measuring surface water of sand

【特許請求の範囲】[Claims]

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、生コンクリート
等の生産において、使用砂に混入する水の量(補正水
量)に適正を得る必要から、予め砂に含まれている表面
水量を知るための砂の表面水測定方法及び測定装置に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is intended to know the amount of surface water contained in sand in advance in order to obtain an appropriate amount of water mixed in sand (corrected water amount) in the production of ready-mixed concrete or the like. The present invention relates to a method and apparatus for measuring surface water of sand.

【0002】[0002]

【従来の技術】生コンクリートは、セメント、水、砂、
砂利等を適当な割合で練り混ぜた状態で使用されるが、
工事態様や材料特性等に合わせて、適正な水の配合割合
とする「単位水量」が決まっており、単位水量を得るた
めに給水配合される量を「補正水量」と称しており、こ
の補正水量は、予め砂に含まれている表面水量を単位水
量から差し引いた値であるため、補正水量に正確性を期
すためには、この表面水量を事前に適正に知っておく必
要がある。なお、表面水量は、サンプル砂の重量に表面
水率を掛けることに算出される。
2. Description of the Related Art Ready-mixed concrete consists of cement, water, sand,
It is used in a state where gravel, etc. is kneaded at an appropriate ratio,
According to the construction mode and material characteristics, etc., the "unit water amount" that is the appropriate water mixing ratio has been determined, and the amount of water supplied to obtain the unit water amount is called the "corrected water amount". Since the amount of water is a value obtained by subtracting the amount of surface water contained in sand from the unit amount of water in advance, it is necessary to properly know the amount of surface water in advance in order to ensure accuracy in the corrected amount of water. The amount of surface water is calculated by multiplying the weight of the sample sand by the surface water rate.

【0003】しかし、湿った砂の表面水率を測定するの
は難しいと言われる。よく確かめると条件により測定数
値が安定しないことが理由のようである。天然物で自然
の砂では、いくらマニュアルどうり行っても数値のバラ
ツキがでるのは当たり前のことである。測定には個人差
もあるが、これは品質面及び比重の変動と粒度分布が不
安定なため、粗粒率が変わり、表面積が変わるためと考
えられる。条件が変わる度に表面水率が変わるようでは
あてにならない、こらが従事する者の声である。世の中
には一つとして同じものは無いと言っても過言ではな
い。従来、そのために標準、基準、見本、雛型等と言っ
たものと比較しながら、表面水率を評価的に設定し、そ
の誤差を時間と手間のかかるスランプ試験に頼っている
のが現状である。なお粗粒率とは、各篩に留まる試料の
質量百分率の和を求め、その値を100で割った値であ
る(粗粒率が0.2変動すると、配(調)合を変更する
などの処置に活用されている)。
However, it is said that it is difficult to measure the surface water content of wet sand. It seems that the reason is that the measured values are not stable depending on the conditions if checked carefully. It is natural for natural products to use natural sand, and no matter how many manual steps are taken, the values will vary. Although there are individual differences in the measurement, it is considered that this is because the coarse grain ratio changes and the surface area changes because of fluctuations in quality and specific gravity and unstable particle size distribution. It is the voice of the person who engages in this because it cannot be relied on that the surface water rate changes each time the conditions change. It is no exaggeration to say that there is no one thing in the world. Conventionally, for this reason, the surface water rate is set evaluatively by comparing with standards, standards, samples, templates, etc., and the error currently depends on a slump test that takes time and labor. is there. Note that the coarse particle ratio is the value of the sample retained on each sieve.
The sum of mass percentages is calculated and the value is divided by 100.
(If the coarse grain ratio changes by 0.2, the composition will be changed.
It is used for such treatment).

【0004】測定誤差の要因は多くあるが、重要な要因
として、砂の品質をみると、同じ重量であっても、次の
ようなことが挙げられる。 a)軽い重いでは比重が変わる、従って産地、水系が代
われば表面水量が変わる。 b) 粒度分布が違えば表面積が変わる、従って粗粒率
が変われば表面水量が変わる。 以上絶えず安定である保証がない限り、最低限の不可欠
確認事項であって、いずれかを簡略化すると測定値に誤
差を生ずる原因になる。新聞等の報道では、砂の表面水
率測定方法が確立されていないと、度々記載されている
が、その重要性もうかがえる。例えば、測定誤差は、±
約2%とされるが、そうすると、仮に単位水量を185
kgとして、スランプ1cm調整するには、単位水量の1.
2%、よって水量は2.22kg、単位砂量からみると表
面水率は0.277%となる。また、スランプの許容範
囲を±2cmとすれば、表面水率からみると0.55%、
スランプを基準に考えると許容測定誤差は、0.5%以
下となり、現在の測定方法を見直す必要に迫られている
ことを示唆していると思われる。
There are many causes of measurement error, but the important factors are as follows when looking at the quality of sand even if the weight is the same. a) The specific gravity changes when the weight is light and heavy, so the surface water volume changes when the production area and water system change. b) If the particle size distribution is different, the surface area is changed, and accordingly, if the coarse particle ratio is changed, the surface water amount is changed. As long as there is no guarantee that it is constantly stable, it is a minimum essential check item, and simplification of either will cause an error in the measured value. News reports such as newspapers often mention that the method for measuring the surface water ratio of sand has not been established, but it can also be seen as important. For example, the measurement error is ±
It is set to about 2%, but if so, the unit water volume would be 185
To adjust the slump 1 cm in kg, 1.
2%, therefore the amount of water is 2.22 kg, and the surface water ratio is 0.277% when viewed from the unit sand amount. Moreover, if the allowable range of slump is ± 2 cm, it is 0.55% from the surface water ratio,
Considering slump as the standard, the allowable measurement error is 0.5% or less, which suggests that it is necessary to review the current measurement method.

【0005】[0005]

【発明が解決しようとする課題】この発明は、上記のよ
うな実情に鑑みて、砂の比重と粗粒率とが関係する表面
水率を正確且つ迅速に測定できる砂の表面水測定方法及
び測定装置を提供することを目的とする。
SUMMARY OF THE INVENTION In view of the above situation, the present invention provides a method for measuring the surface water of sand, which can accurately and quickly measure the surface water rate related to the specific gravity of sand and the coarse particle ratio. An object is to provide a measuring device.

【0006】[0006]

【課題を解決するための手段】上記の目的を達成するた
めに、この発明は、重量、粗粒率等が異なる毎に基準的
にサンプル採取した砂を表面乾燥し、粗粒率を一定にし
てこの表乾状態の砂の見掛け容積中の空隙を水に置換
し、その水の重量を飽和水量として測定することによ
り、基準サンプル毎に飽和水率をデータとして得て保存
管理しておき、使用砂について補正水量を知るために、
表面水率が均等化された実行サンプルを採取し、この表
面水砂の見掛け容積中の空隙を水に置換し、その水の重
量を飽和吸水量として測定することにより、実行サンプ
ルの飽和吸水率を得、次に、実行サンプルに重量、粗粒
率等が同等な前記基準サンプルの飽和水率から、実行サ
ンプルの飽和吸水率を差し引いて、使用砂の表面水率を
算定することを特徴とする砂の表面水測定方法を提供す
るものである。
In order to achieve the above object, the present invention is to dry the surface of sand sampled in a standard manner every time the weight, the coarse particle ratio, etc. are different, to make the coarse particle ratio constant. By replacing the voids in the apparent volume of the sand in the surface of the lever with water, and measuring the weight of the water as the amount of saturated water, the saturated water rate was obtained as data for each reference sample and stored and managed, To know the corrected water volume for the sand used,
Saturated water absorption of the run sample was obtained by collecting the run sample with equalized surface water ratio, replacing the voids in the apparent volume of this surface water sand with water, and measuring the weight of the water as the saturated water absorption. Then, the saturated water absorption rate of the execution sample is subtracted from the saturated water rate of the reference sample in which the execution sample has the same weight, coarse grain ratio, etc., and the surface water rate of the used sand is calculated. A method for measuring surface water of sand is provided.

【0007】上記の構成によれば、基準サンプルの飽和
水率から実行サンプルの飽和吸水率を差し引くと、その
値が使用砂の表面水率であるから、使用砂の重量にこの
表面水率を掛けることにより、表面水量が得られ、これ
を基にして砂に加える補正水量を求めることができる。
According to the above structure, when the saturated water absorption rate of the execution sample is subtracted from the saturated water rate of the reference sample, the value is the surface water rate of the used sand. Therefore, this surface water rate is added to the weight of the used sand. By multiplying, the amount of surface water is obtained, and the corrected amount of water added to the sand can be obtained based on this.

【0008】また、この発明は、サンプル砂を入れる給
排水可能な開口部を持つ容器と、この給排水可能な開口
部を持つ容器と共にサンプル砂を浸水させる水槽と、バ
イブレータ付き水槽受けと、上下可能な給水タンクと、
上記給排水可能な開口部を持つ容器を載せる電子秤とか
らなり、水槽の底部に上記給排水可能な開口部を持つ容
器を受ける吸水性クッションを配設し、水槽への給水及
び排水を給水タンクの上下動によりなすようにしたこと
を特徴とする砂の表面水測定装置を提供するものであ
る。
Further, according to the present invention, a container having an opening capable of supplying / draining sample sand, a water tank for soaking the sample sand together with the container having an opening capable of supplying / draining water, and a water tank receiver with a vibrator can be moved up and down. A water tank,
It consists of an electronic scale on which a container having the above-mentioned water supply / drainage opening is placed, and a water-absorbing cushion for receiving the above-mentioned container having the above-mentioned water supply / drainage opening is provided at the bottom of the water tank, and water supply and drainage to / from the water tank of the water tank are performed. It is intended to provide a surface water measuring device for sand, which is characterized by being moved up and down.

【0009】上記の構成によれば、バイブレータの振動
により、給排水可能な開口部を持つ容器の浸水中は水の
浸透が促進及び均等化され、浸水の水抜き後は、水の飽
和状態になるのが促進される。また、給排水可能な開口
部を持つ容器に付着する計量に余分な水分が吸水性クッ
ションに吸収されるので、正確な風袋重量により計量誤
差が少なくなる。さらに、水槽への給水及び排水は、給
水タンクの上下によるため、構造が簡単にして給水及び
排水時間が短縮される。
According to the above construction, the vibration of the vibrator promotes and equalizes the permeation of water during the submersion of the container having the opening through which water can be supplied and drained, and the water is saturated after the submersion of water. Is promoted. In addition, since excess water is absorbed by the water-absorbent cushion for weighing attached to a container having an opening through which water can be supplied and drained, accurate tare weight reduces weighing errors. Further, since water supply and drainage to and from the water tank depend on the upper and lower sides of the water supply tank, the structure is simplified and the water supply and drainage time is shortened.

【0010】[0010]

【発明の実施の形態】この発明においては、給排水可能
な開口部を持つ容器に、砂を入れて水槽に浸してから容
器に引き上げ、水滴が落ちなくなった時、つまり表面張
力のみによる付着力が水の重力に抗している状態を「飽
和状態」と定義する。但し、砂の密度が不安定なこと、
そのため水きりが悪いのと、合わせて脱泡のためバイブ
レーターを作動させることにより飽和状態が促進され
る。また、飽和水量とは、飽和状態に至るまでの吸水量
を意味するものとし、これが砂の見掛け容積中の空隙を
水に置換したその水の量である。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, when sand is put in a container having an opening through which water can be supplied and drained, and then the container is pulled up into the container and water drops do not fall, that is, the adhesive force due to only surface tension is applied. The state of resisting the gravity of water is defined as "saturated state". However, the density of sand is unstable,
Therefore, the drainage is poor, and the saturated state is promoted by operating the vibrator for defoaming. The saturated water amount means the amount of water absorbed until reaching a saturated state, which is the amount of water obtained by replacing the voids in the apparent volume of sand with water.

【0011】この飽和水量の測定を前提とするため、こ
の発明によれば、砂のサンプルの表面水率が、僅か40
秒程度で測定され、品質管理にも利用できるので、画期
的な測定方法であると言える。砂の表面水と言う語源か
ら考えると、一粒の砂の表面湿潤状態を指すものと考え
られる。しかし、現実は、砂の空隙にある水分量であ
る。見掛け容積の密度によって空隙が変化するものであ
ることも周知の通りである。そういう観点から飽和状態
を考え、比重、粗粒率を基本に砂の飽和水状態を利用し
て、飽和水砂量を測定し、算定により表面水率測定方法
へと展開したものである。
Since it is assumed that the saturated water content is measured, according to the present invention, the surface water ratio of the sand sample is only 40%.
Since it is measured in seconds and can be used for quality control, it can be said to be an epoch-making measurement method. Considering the origin of the term surface water of sand, it is considered to indicate the surface wet state of one grain of sand. However, the reality is the amount of water in the voids of the sand. It is well known that the voids change depending on the apparent volume density. From this point of view, the saturated state is considered, and the saturated water state of sand is used based on specific gravity and coarse particle ratio to measure the amount of saturated water sand, and the calculation is expanded to a surface water rate measuring method.

【0012】飽和水率は粗粒率が一定であれば、ほぼ一
定であることが実験によって確認できた。これについ
て、人工的に砂の表面水率を0〜10%に設定してサン
プル処理した飽和水率を表で示す。
It has been confirmed by experiments that the saturated water ratio is almost constant if the coarse particle ratio is constant. About this, the surface water ratio of sand is artificially set to 0 to 10%, and the saturated water ratio sample-treated is shown in the table.

【0013】[0013]

【表1】 [Table 1]

【0014】この発明は、比重、粗粒率から段階的に分
けられる基準サンプルについて、表乾状態で吸収される
飽和水率を求め(表2−1,表3−1)、それをデータ
として保存管理しておき(飽和水率の平均値は各々
22.03,21.49)、実際の使用砂について補正
水量を求めるときには、その実行サンプルの砂がそのま
まの表面水砂において飽和状態に至るまで吸水される飽
和吸水量及び飽和吸水率を求め(表2−2の,,表
3−2の,)、飽和水率−として、使用砂の表
面水率(10)が求められる。その誤差(12)は、チャップマ
ン法の表面水率の誤差である。なお、表2は富山県の神
通川水系の砂を、表3は同県庄川水系の砂を使用した。
According to the present invention, the saturated water rate absorbed in the surface dry state is determined for a reference sample which is divided stepwise from the specific gravity and the coarse particle rate (Table 2-1 and Table 3-1), and it is used as data. It is stored and managed (the average value of the saturated water ratio is 22.03, 21.49 respectively), and when the corrected water amount is calculated for the actual sand used, the sand of the execution sample reaches the saturated state in the surface water sand as it is. The saturated water absorption amount and the saturated water absorption that are absorbed up to the above are calculated (Table 2-2, Table 3-2), and the surface water ratio (10) of the used sand is calculated as the saturated water ratio. The error (12) is the error of the surface water rate in the Chapman method. In addition, Table 2 uses sand of the Jinzu River system of Toyama Prefecture, and Table 3 uses sand of the Shogawa River system of the same prefecture.

【0015】[0015]

【表2−1】 [Table 2-1]

【0016】[0016]

【表2−2】 [Table 2-2]

【0017】[0017]

【表3−1】 [Table 3-1]

【0018】[0018]

【表3−2】 [Table 3-2]

【0019】飽和水率は、比重、粗粒率のどちらかが変
動すれば変わるが、変動の割合によって、互いに打ち消
し合い、生コンの通常の粗粒率巾内では、測定誤差±
0.5%以下を楽々と合格している。
The saturated water ratio changes if either the specific gravity or the coarse grain ratio fluctuates. However, the saturated water ratios cancel each other out depending on the fluctuation ratio, and within the normal coarse grain ratio range of the ready-mixed concrete, the measurement error ±
Passing 0.5% or less easily.

【0020】[0020]

【実施例】次に、この発明の実施例を図面に基づいて説
明する。
Embodiments of the present invention will now be described with reference to the drawings.

【0021】図面は、この発明の測定装置を示す斜視図
であって、測定装置は、水槽1と、バイブレータ4付き
水槽受け3と、「給排水可能な開口部を持つ容器」の代
表例として、一部が網6であり上端に鍔8を有する鍔付
き網容器5と、水槽1への給水タンク7と、鍔付き網容
器5で砂の重量を測定する電子秤9と、その計測結果お
よび計算結果を出力するCPUプリンター11とからな
っている。なお、この測定装置は、基準サンプル、実行
サンプルのいずれの測定についても用いられる。
FIG. 1 is a perspective view showing a measuring device of the present invention, which is a representative example of a water tank 1, a water tank receiver 3 with a vibrator 4, and a "container having an opening capable of supplying and draining water". A net container 5 with a collar, a part of which is a net 6, and a flange 8 at the upper end, a water supply tank 7 for the water tank 1, an electronic scale 9 for measuring the weight of sand in the net container 5 with a collar, the measurement result and It is composed of a CPU printer 11 which outputs a calculation result. This measuring device is used for both measurement of the reference sample and the execution sample.

【0022】給水タンク7について、13は上下駆動シ
リンダー、14がゴムのフレキシブルチューブであっ
て、給水タンク7をそれで上げることにより水槽1に給
水し、下げることにより水抜きがなされる。また、水槽
受け3の底部には、周囲に排水溝16を設け、排水溝1
6の内側に沿って吸水性クッション15が配設される。
この吸水性クッション15で水槽1を受けることによ
り、バイブレータ4の振動を効率的に水槽1に及ばせ得
ることはもちろん、排水時に鍔付き網容器5に付着する
水の吸収・排水が促進される。また、水槽受け3にはバ
イブレータ4の作動時間を設定するタイマー17が具備
される。まず、飽和水率測定の手順を説明する。
Regarding the water supply tank 7, 13 is a vertical drive cylinder, and 14 is a flexible tube made of rubber, which raises the water supply tank 7 to supply water to the water tank 1, and lowers it to drain water. In addition, a drain groove 16 is provided around the bottom of the water tank receiver 3,
A water absorbing cushion 15 is arranged along the inner side of 6.
By receiving the water tank 1 with the water absorbing cushion 15, not only the vibration of the vibrator 4 can be efficiently applied to the water tank 1, but also the absorption and drainage of water attached to the mesh container 5 with a collar at the time of drainage are promoted. . Further, the water tank receiver 3 is provided with a timer 17 for setting the operating time of the vibrator 4. First, the procedure for measuring the saturated water ratio will be described.

【0023】(飽和水砂量の測定) JIS A1102(基準サンプル)又はA111
1−3(実行サンプル)に基づき、ふるい分けした砂を
利用し、分級された砂を測定された粗粒率に合わせてサ
ンプル量(例えば400g)に計量する。その値を実行
サンプルではMs、基準サンプルではMとする。 基準サンプルの場合、粗粒率の偏りを防止するた
め、任意の表面水率にして、表面水率を平均化するた
め、サンプルをよくブレンドする。 サンプルを鍔付き網容器5に入れる。 鍔付き網容器5を水槽1に入れ、砂を水浸しにしな
がら、バイブレータ4を作動させる。これにより、密度
が安定し、水切りが良くなり、エアー抜きもなされる。 給水タンク7を下げることにより、水槽1内の水を
抜く。また、鍔付き網容器5に付着した水が吸水性クッ
ション15に吸収される。 鍔付き網容器5を引き上げ、電子秤9の上に載せて
飽和水砂重量を計量する。この値を基準サンプルではM
1、実行サンプルではMs1とする。
(Measurement of the amount of saturated water and sand) JIS A1102 (reference sample) or A111
Based on 1-3 (execution sample), the classified sand is weighed to a sample amount (for example, 400 g) according to the measured coarse particle ratio, using the sieved sand. The value is set to Ms for the execution sample and M for the reference sample. In the case of the reference sample, in order to prevent the deviation of the coarse particle ratio, the surface water ratio is arbitrarily set, and the sample is well blended in order to average the surface water ratio. The sample is placed in the mesh container 5 with a collar. Put the net container 5 with a collar in the water tank 1 and operate the vibrator 4 while immersing the sand in the water. As a result, the density becomes stable, drainage is improved, and air is removed. The water in the water tank 1 is drained by lowering the water supply tank 7. Further, the water adhering to the flanged net container 5 is absorbed by the water absorbing cushion 15. The net container 5 with a collar is pulled up, placed on the electronic scale 9, and the weight of saturated water and sand is measured. This value is M in the reference sample
1, Ms1 in the execution sample.

【0024】サンプルの砂重量M及びMsと、飽和水砂
重量M1及びMs1とをこのようにして得ると、飽和水
率の計算は次のようになる。
Obtaining the sample sand weights M and Ms and the saturated water sand weights M1 and Ms1 in this way, the calculation of the saturated water ratio is as follows.

【0025】(基準サンプルの飽和水率) A) 飽和水量=M1−M B) 飽和水率=A÷M×100(資料の飽和水率測
定、5点以上) C) 基準飽和水率=Bの(下限値+上限値)÷2 つまり、基準サンプルの飽和水率(B)=(M1−M)
÷M×100 (実行サンプルの飽和吸水率) また、同様にして、実行サンプルにつき、 F)飽和吸水量=Ms1−Ms G)飽和吸水率=(Ms1−Ms)÷Ms×100
(Saturated water rate of reference sample) A) Saturated water amount = M1−M B) Saturated water rate = A ÷ M × 100 (Saturated water rate measurement of data, 5 points or more) C) Reference saturated water rate = B (Lower limit value + upper limit value) / 2 That is, the saturated water rate (B) of the reference sample = (M1-M)
÷ M × 100 (Saturated water absorption rate of execution sample) Similarly, for each execution sample, F) Saturated water absorption amount = Ms1−Ms G) Saturated water absorption rate = (Ms1−Ms) ÷ Ms × 100

【0026】以上から、基準サンプルの飽和水率(デー
タとして保管されている)と実行サンプルの飽和吸水率
(使用砂についてその都度計算)とが得られたので、使
用砂について、補正水量を得るために、その前提となる
表面水率が次の通り計算される。 H)実行サンプルの概算表面水率=(基準サンプルの飽
和水率C−実行サンプルの飽和吸水率G)÷(1+C/
100) また、これは、表面水率(H)={C−(Ms1−M
s)÷Ms×100}÷(1+C/100)として表さ
れる。(Ms1−Ms)÷Ms×100の部分が実際に
生コンを製造する場合に、測定及び計算事項である。
From the above, the saturated water ratio (data
Stored as data) and saturated water absorption of the run sample
(Calculation of sand used each time) was obtained.
This is a prerequisite for obtaining the corrected amount of water for sand.
Surface water rate is calculated as follows. H) Estimated surface water ratio of the run sample =(Satiated reference sample
Water ratio C-Saturated water absorption ratio G of execution sample) / (1 + C /
100) Also, this isSurface water ratio (H) = {C- (Ms1-M
s) ÷ Ms × 100} ÷ (1 + C / 100)Represented as
Be done. (Ms1-Ms) ÷ Ms × 100 is actually
It is a matter of measurement and calculation when manufacturing ready-mixed concrete.

【0027】そこで、使用砂について、 表面水量=使用砂の重量×表面水率(H) 補正水量=使用砂の単位水量−表面水量 となり、現場においては、この補正水量が砂に混入され
る。
Therefore, regarding the used sand, the surface water amount = the weight of the used sand × the surface water ratio (H), the corrected water amount = the unit water amount of the used sand-the surface water amount, and this corrected water amount is mixed into the sand at the site.

【0028】次に、測定点表面水率トレンドによる管理
巾設定及び注意点について述べる。 a)Hを一定間隔で5点以上測定 b)基準表面水率=a5点の和÷5この基準表面水率より測定サンプルの各飽和水率差を算
出する。 c)砂量=Ms−(Ms×b/100) d)飽和水量=Ms1−c e)飽和水率=d÷c×100 f)測定点飽和水率差=e−C基準飽和水率を基準線に、各測定点飽和水率差値をトレ
ンドグラフ化して、測定誤差許容範囲上下限管理巾を設
定する。外れた場合は表乾飽和水率をチェクする(基準
飽和水率変更)。
Next,Management by measurement point surface water rate trend
Width settingAnd points to note. a) Measure H at 5 points or more at regular intervals b) Standard surface water ratio = sum of 5 points / 5From this standard surface water ratio, calculate the difference in each saturated water ratio of the measurement sample.
Put out. c)Amount of sand= Ms- (Msxb / 100) d) Saturated water amount = Ms1-c e) Saturated water rate = d ÷ c × 100 f) Measurement point saturated water rate difference = e-CUsing the standard saturated water rate as a reference line, trace the saturated water rate difference value at each measurement point.
The measurement error tolerance range is set to the upper and lower limits.
Set. If it falls off, check the surface dry water saturation rate (standard)
Change saturated water rate).

【0029】飽和水率(e)=(Ms1−Ms(Ms×
b/100))÷(Ms−(Ms×b))
Saturated water ratio (e) = (Ms1−Ms (Ms ×
b / 100)) ÷ (Ms− (Ms × b))

【0030】基準(平均)表面水率による測定点表面水
率を算出する。 表面水率={e−(Ms1−Ms)×100/Ms}÷
(1+e/100粗粒率の値が大きくなると、粒度は粗く(表面積小さ
く)、飽和水率が減り、小さくなると、粒度は細かく
(表面積大きく)、飽和水率は増える。従って、砂の見
掛け容積の表面積が変われば、表面水率が変動する。更
に、スランプを不安定にすることは、紛れもない事実で
ある。以上のことから、粗粒率、比重の安定に注意する
ことが重要である。
Surface water measured at a standard (average) surface water ratio
Calculate the rate. Surface water rate = {e− (Ms1−Ms) × 100 / Ms} ÷
When the value of (1 + e / 100 ) coarse grain ratio becomes large, the grain size becomes coarse (small surface area).
If the saturated water ratio decreases and becomes smaller, the particle size becomes finer.
(Large surface area), saturated water rate increases. So look at the sand
If the surface area of the applied volume changes, the surface water rate also changes. Change
And destabilizing the slump is an unmistakable fact
is there. From the above, pay attention to the stability of coarse grain ratio and specific gravity.
This is very important.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の砂の表面水測定装置を示す斜視図で
ある。
FIG. 1 is a perspective view showing a sand surface water measuring device of the present invention.

【符号の説明】 1 水槽 3 水槽受け 5 鍔付き網容器 7 給水タンク 9 電子秤 15 吸水性クッション ─────────────────────────────────────────────────────
[Explanation of symbols] 1 water tank 3 water tank receiver 5 mesh container with collar 7 water tank 9 electronic scale 15 water absorbent cushion ───────────────────────── ────────────────────────────

【手続補正書】[Procedure amendment]

【提出日】平成14年7月1日(2002.7.1)[Submission date] July 1, 2002 (2002.7.1)

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0026[Correction target item name] 0026

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0026】以上から、基準サンプルの飽和水率(デー
タとして保管されている)と実行サンプルの飽和吸水率
(使用砂についてその都度計算)とが得られたので、使
用砂について、補正水量を得るために、その前提となる
表面水率が次の通り計算される。 H)実行サンプルの表面水率=(基準サンプルの飽和水
率C−実行サンプルの飽和吸水率G)÷(1+C/10
0) また、これは、表面水率(H)={C−(Ms1−M
s)÷Ms×100}÷(1+C/100)として表さ
れる。(Ms1−Ms)÷Ms×100の部分が実際に
生コンを製造する場合に、測定及び計算事項である。
From the above, the saturated water rate of the reference sample (stored as data) and the saturated water absorption rate of the execution sample (calculated for the sand used each time) were obtained, and thus the corrected water amount was obtained for the sand used. Therefore, the presumed surface water rate is calculated as follows. H) Surface water rate of execution sample = (saturated water rate C of reference sample−saturated water absorption rate G of execution sample) ÷ (1 + C / 10
0) Also, this is the surface water ratio (H) = {C- (Ms1-M
s) ÷ Ms × 100} ÷ (1 + C / 100). The portion of (Ms1−Ms) ÷ Ms × 100 is a measurement and calculation item when actual ready-mixed concrete is manufactured.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0028[Correction target item name] 0028

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0028】次に、測定点表面水率トレンドによる管理
巾設定及び注意点について述べる。 a)Hを一定間隔で5点以上測定 b)基準表面水率=a5点の和÷5 この基準表面水率より測定サンプルの各飽和水率差を算
出する。 c)砂量=Ms−(Ms×b/100) d)飽和水量=Ms1−c e)飽和水率=d÷c×100 f)測定点飽和水率差=e−C 基準飽和水率を基準線に、各測定点飽和水率差値をトレ
ンドグラフ化して、測定誤差許容範囲上下限管理巾を設
定する。外れた場合は表乾飽和水率をチェックする(基
準飽和水率変更)。
Next, the setting of the control width based on the trend of the surface water ratio at the measuring point and the precautions will be described. a) H is measured at 5 or more points at regular intervals b) Reference surface water ratio = a Sum of 5 points / 5 The respective saturated water ratio difference of the measurement sample is calculated from this reference surface water ratio. c) Sand amount = Ms− (Ms × b / 100) d) Saturated water amount = Ms1-c e) Saturated water rate = d ÷ c × 100 f) Measuring point saturated water rate difference = e−C Reference saturated water rate On the reference line, make a trend graph of saturated water rate difference values at each measurement point, and set the upper and lower control limits of the measurement error allowable range. If it falls off, check the surface dry saturated water ratio (change the standard saturated water ratio).

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0029[Name of item to be corrected] 0029

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0029】飽和水率(e)={Ms1−(Ms−(M
s×b/100))}÷(Ms−(Ms×b)) ─────────────────────────────────────────────────────
Saturated water rate (e) = {Ms1- (Ms- (M
s × b / 100))} ÷ (Ms- (Ms × b)) ───────────────────────────────── ─────────────────────

【手続補正書】[Procedure amendment]

【提出日】平成14年7月15日(2002.7.1
5)
[Submission date] July 15, 2002 (2002.7.1)
5)

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】発明の詳細な説明[Name of item to be amended] Detailed explanation of the invention

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、生コンクリート
等の生産において、使用砂に混入する水の量(補正水
量)に適正を得る必要から、予め砂に含まれている表面
水量を知るための砂の表面水測定方法及び測定装置に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is intended to know the amount of surface water contained in sand in advance in order to obtain an appropriate amount of water mixed in sand (corrected water amount) in the production of ready-mixed concrete or the like. The present invention relates to a method and apparatus for measuring surface water of sand.

【0002】[0002]

【従来の技術】生コンクリートは、セメント、水、砂、
砂利等を適当な割合で練り混ぜた状態で使用されるが、
工事態様や材料特性等に合わせて、適正な水の配合割合
とする「単位水量」が決まっており、単位水量を得るた
めに給水配合される量を「補正水量」と称しており、こ
の補正水量は、予め砂に含まれている表面水量を単位水
量から差し引いた値であるため、補正水量に正確性を期
すためには、この表面水量を事前に適正に知っておく必
要がある。なお、表面水量は、サンプル砂の重量に表面
水率を掛けることに算出される。
2. Description of the Related Art Ready-mixed concrete consists of cement, water, sand,
It is used in a state where gravel, etc. is kneaded at an appropriate ratio,
According to the construction mode and material characteristics, etc., the "unit water amount" that is the appropriate water mixing ratio has been determined, and the amount of water supplied to obtain the unit water amount is called the "corrected water amount". Since the amount of water is a value obtained by subtracting the amount of surface water contained in sand from the unit amount of water in advance, it is necessary to properly know the amount of surface water in advance in order to ensure accuracy in the corrected amount of water. The amount of surface water is calculated by multiplying the weight of the sample sand by the surface water rate.

【0003】しかし、湿った砂の表面水率を測定するの
は難しいと言われる。よく確かめると条件により測定数
値が安定しないことが理由のようである。天然物で自然
の砂では、いくらマニュアルどうり行っても数値のバラ
ツキがでるのは当たり前のことである。測定には個人差
もあるが、これは品質面及び比重の変動と粒度分布が不
安定なため、粗粒率が変わり、表面積が変わるためと考
えられる。条件が変わる度に表面水率が変わるようでは
あてにならない、こらが従事する者の声である。世の中
には一つとして同じものは無いと言っても過言ではな
い。従来、そのために標準、基準、見本、雛型等と言っ
たものと比較しながら、表面水率を評価的に設定し、そ
の誤差を時間と手間のかかるスランプ試験に頼っている
のが現状である。なお粗粒率とは、各篩に留まる試料の
質量百分率の和を求め、その値を100で割った値であ
る(粗粒率が0.2変動すると、配(調)合を変更する
などの処置に活用されている)。
However, it is said that it is difficult to measure the surface water content of wet sand. It seems that the reason is that the measured values are not stable depending on the conditions if checked carefully. It is natural for natural products to use natural sand, and no matter how many manual steps are taken, the values will vary. Although there are individual differences in the measurement, it is considered that this is because the coarse grain ratio changes and the surface area changes because of fluctuations in quality and specific gravity and unstable particle size distribution. It is the voice of the person who engages in this because it cannot be relied on that the surface water rate changes each time the conditions change. It is no exaggeration to say that there is no one thing in the world. Conventionally, for this reason, the surface water rate is set evaluatively by comparing with standards, standards, samples, templates, etc., and the error currently depends on a slump test that takes time and labor. is there. The coarse grain ratio is a value obtained by calculating the sum of the mass percentages of the samples remaining on each sieve and dividing the sum by 100 (if the coarse grain ratio changes by 0.2, the composition is changed). Is used for the treatment of).

【0004】測定誤差の要因は多くあるが、重要な要因
として、砂の品質をみると、同じ重量であっても、次の
ようなことが挙げられる。 a)軽い重いでは比重が変わる、従って産地、水系が代
われば表面水量が変わる。 b) 粒度分布が違えば表面積が変わる、従って粗粒率
が変われば表面水量が変わる。 以上絶えず安定である保証がない限り、最低限の不可欠
確認事項であって、いずれかを簡略化すると測定値に誤
差を生ずる原因になる。新聞等の報道では、砂の表面水
率測定方法が確立されていないと、度々記載されている
が、その重要性もうかがえる。例えば、測定誤差は、±
約2%とされるが、そうすると、仮に単位水量を185
kgとして、スランプ1cm調整するには、単位水量の1.
2%、よって水量は2.22kg、単位砂量からみると表
面水率は0.277%となる。また、スランプの許容範
囲を±2cmとすれば、表面水率からみると0.55%、
スランプを基準に考えると許容測定誤差は、0.5%以
下となり、現在の測定方法を見直す必要に迫られている
ことを示唆していると思われる。
There are many causes of measurement error, but the important factors are as follows when looking at the quality of sand even if the weight is the same. a) The specific gravity changes when the weight is light and heavy, so the surface water volume changes when the production area and water system change. b) If the particle size distribution is different, the surface area is changed, and accordingly, if the coarse particle ratio is changed, the surface water amount is changed. As long as there is no guarantee that it is constantly stable, it is a minimum essential check item, and simplification of either will cause an error in the measured value. News reports such as newspapers often mention that the method for measuring the surface water ratio of sand has not been established, but it can also be seen as important. For example, the measurement error is ±
It is set to about 2%, but if so, the unit water volume would be 185
To adjust the slump 1 cm in kg, 1.
2%, therefore the amount of water is 2.22 kg, and the surface water ratio is 0.277% when viewed from the unit sand amount. Moreover, if the allowable range of slump is ± 2 cm, it is 0.55% from the surface water ratio,
Considering slump as the standard, the allowable measurement error is 0.5% or less, which suggests that it is necessary to review the current measurement method.

【0005】[0005]

【発明が解決しようとする課題】この発明は、上記のよ
うな実情に鑑みて、砂の比重と粗粒率とが関係する表面
水率を正確且つ迅速に測定できる砂の表面水測定方法及
び測定装置を提供することを目的とする。
SUMMARY OF THE INVENTION In view of the above situation, the present invention provides a method for measuring the surface water of sand, which can accurately and quickly measure the surface water rate related to the specific gravity of sand and the coarse particle ratio. An object is to provide a measuring device.

【0006】[0006]

【課題を解決するための手段】上記の目的を達成するた
めに、この発明は、重量、粗粒率等が異なる毎に基準的
にサンプル採取した砂を表面乾燥し、粗粒率を一定にし
てこの表乾状態の砂の見掛け容積中の空隙を水に置換
し、その水の重量を飽和水量として測定することによ
り、基準サンプル毎に飽和水率をデータとして得て保存
管理しておき、使用砂について補正水量を知るために、
表面水率が均等化された実行サンプルを採取し、この表
面水砂の見掛け容積中の空隙を水に置換し、その水の重
量を飽和吸水量として測定することにより、実行サンプ
ルの飽和吸水率を得、次に、実行サンプルに重量、粗粒
率等が同等な前記基準サンプルの飽和水率から、実行サ
ンプルの飽和吸水率を差し引いて、使用砂の表面水率を
算定することを特徴とする砂の表面水測定方法を提供す
るものである。
In order to achieve the above object, the present invention is to dry the surface of sand sampled in a standard manner every time the weight, the coarse particle ratio, etc. are different, to make the coarse particle ratio constant. By replacing the voids in the apparent volume of the sand in the surface of the lever with water, and measuring the weight of the water as the amount of saturated water, the saturated water rate was obtained as data for each reference sample and stored and managed, To know the corrected water volume for the sand used,
Saturated water absorption of the run sample was obtained by collecting the run sample with equalized surface water ratio, replacing the voids in the apparent volume of this surface water sand with water, and measuring the weight of the water as the saturated water absorption. Then, the saturated water absorption rate of the execution sample is subtracted from the saturated water rate of the reference sample in which the execution sample has the same weight, coarse grain ratio, etc., and the surface water rate of the used sand is calculated. A method for measuring surface water of sand is provided.

【0007】上記の構成によれば、基準サンプルの飽和
水率から実行サンプルの飽和吸水率を差し引くと、その
値が使用砂の表面水率であるから、使用砂の重量にこの
表面水率を掛けることにより、表面水量が得られ、これ
を基にして砂に加える補正水量を求めることができる。
According to the above structure, when the saturated water absorption rate of the execution sample is subtracted from the saturated water rate of the reference sample, the value is the surface water rate of the used sand. Therefore, this surface water rate is added to the weight of the used sand. By multiplying, the amount of surface water is obtained, and the corrected amount of water added to the sand can be obtained based on this.

【0008】また、この発明は、サンプル砂を入れる給
排水可能な開口部を持つ容器と、この給排水可能な開口
部を持つ容器と共にサンプル砂を浸水させる水槽と、バ
イブレータ付き水槽受けと、上下可能な給水タンクと、
上記給排水可能な開口部を持つ容器を載せる電子秤とか
らなり、水槽の底部に上記給排水可能な開口部を持つ容
器を受ける吸水性クッションを配設し、水槽への給水及
び排水を給水タンクの上下動によりなすようにしたこと
を特徴とする砂の表面水測定装置を提供するものであ
る。
Further, according to the present invention, a container having an opening capable of supplying / draining sample sand, a water tank for soaking the sample sand together with the container having an opening capable of supplying / draining water, and a water tank receiver with a vibrator can be moved up and down. A water tank,
It consists of an electronic scale on which a container having the above-mentioned water supply / drainage opening is placed, and a water-absorbing cushion for receiving the above-mentioned container having the above-mentioned water supply / drainage opening is provided at the bottom of the water tank, and water supply and drainage to / from the water tank of the water tank are performed. It is intended to provide a surface water measuring device for sand, which is characterized by being moved up and down.

【0009】上記の構成によれば、バイブレータの振動
により、給排水可能な開口部を持つ容器の浸水中は水の
浸透が促進及び均等化され、浸水の水抜き後は、水の飽
和状態になるのが促進される。また、給排水可能な開口
部を持つ容器に付着する計量に余分な水分が吸水性クッ
ションに吸収されるので、正確な風袋重量により計量誤
差が少なくなる。さらに、水槽への給水及び排水は、給
水タンクの上下によるため、構造が簡単にして給水及び
排水時間が短縮される。
According to the above construction, the vibration of the vibrator promotes and equalizes the permeation of water during the submersion of the container having the opening through which water can be supplied and drained, and the water is saturated after the submersion of water. Is promoted. In addition, since excess water is absorbed by the water-absorbent cushion for weighing attached to a container having an opening through which water can be supplied and drained, accurate tare weight reduces weighing errors. Further, since water supply and drainage to and from the water tank depend on the upper and lower sides of the water supply tank, the structure is simplified and the water supply and drainage time is shortened.

【0010】[0010]

【発明の実施の形態】この発明においては、給排水可能
な開口部を持つ容器に、砂を入れて水槽に浸してから容
器に引き上げ、水滴が落ちなくなった時、つまり表面張
力のみによる付着力が水の重力に抗している状態を「飽
和状態」と定義する。但し、砂の密度が不安定なこと、
そのため水きりが悪いのと、合わせて脱泡のためバイブ
レーターを作動させることにより飽和状態が促進され
る。また、飽和水量とは、飽和状態に至るまでの吸水量
を意味するものとし、これが砂の見掛け容積中の空隙を
水に置換したその水の量である。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, when sand is put in a container having an opening through which water can be supplied and drained, and then the container is pulled up into the container and water drops do not fall, that is, the adhesive force due to only surface tension is applied. The state of resisting the gravity of water is defined as "saturated state". However, the density of sand is unstable,
Therefore, the drainage is poor, and the saturated state is promoted by operating the vibrator for defoaming. The saturated water amount means the amount of water absorbed until reaching a saturated state, which is the amount of water obtained by replacing the voids in the apparent volume of sand with water.

【0011】この飽和水量の測定を前提とするため、こ
の発明によれば、砂のサンプルの表面水率が、僅か40
秒程度で測定され、品質管理にも利用できるので、画期
的な測定方法であると言える。砂の表面水と言う語源か
ら考えると、一粒の砂の表面湿潤状態を指すものと考え
られる。しかし、現実は、砂の空隙にある水分量であ
る。見掛け容積の密度によって空隙が変化するものであ
ることも周知の通りである。そういう観点から飽和状態
を考え、比重、粗粒率を基本に砂の飽和水状態を利用し
て、飽和水砂量を測定し、算定により表面水率測定方法
へと展開したものである。
Since it is assumed that the saturated water content is measured, according to the present invention, the surface water ratio of the sand sample is only 40%.
Since it is measured in seconds and can be used for quality control, it can be said to be an epoch-making measurement method. Considering the origin of the term surface water of sand, it is considered to indicate the surface wet state of one grain of sand. However, the reality is the amount of water in the voids of the sand. It is well known that the voids change depending on the apparent volume density. From this point of view, the saturated state is considered, and the saturated water state of sand is used based on specific gravity and coarse particle ratio to measure the amount of saturated water sand, and the calculation is expanded to a surface water rate measuring method.

【0012】飽和水率は粗粒率が一定であれば、ほぼ一
定であることが実験によって確認できた。これについ
て、人工的に砂の表面水率を0〜10%に設定してサン
プル処理した飽和水率を表で示す。
It has been confirmed by experiments that the saturated water ratio is almost constant if the coarse particle ratio is constant. About this, the surface water ratio of sand is artificially set to 0 to 10%, and the saturated water ratio sample-treated is shown in the table.

【0013】[0013]

【表1】 [Table 1]

【0014】この発明は、比重、粗粒率から段階的に分
けられる基準サンプルについて、表乾状態で吸収される
飽和水率を求め(表2−1,表3−1)、それをデータ
として保存管理しておき(飽和水率の平均値は各々
22.03,21.49)、実際の使用砂について補正
水量を求めるときには、その実行サンプルの砂がそのま
まの表面水砂において飽和状態に至るまで吸水される飽
和吸水量及び飽和吸水率を求め(表2−2の,,表
3−2の,)、飽和水率−として、使用砂の表
面水率(10)が求められる。その誤差(12)は、チャップマ
ン法の表面水率の誤差である。なお、表2は富山県の神
通川水系の砂を、表3は同県庄川水系の砂を使用した。
According to the present invention, the saturated water rate absorbed in the surface dry state is determined for a reference sample which is divided stepwise from the specific gravity and the coarse particle rate (Table 2-1 and Table 3-1), and it is used as data. It is stored and managed (the average value of the saturated water ratio is 22.03, 21.49 respectively), and when the corrected water amount is calculated for the actual sand used, the sand of the execution sample reaches the saturated state in the surface water sand as it is. The saturated water absorption amount and the saturated water absorption that are absorbed up to the above are calculated (Table 2-2, Table 3-2), and the surface water ratio (10) of the used sand is calculated as the saturated water ratio. The error (12) is the error of the surface water rate in the Chapman method. In addition, Table 2 uses sand of the Jinzu River system of Toyama Prefecture, and Table 3 uses sand of the Shogawa River system of the same prefecture.

【0015】[0015]

【表2−1】 [Table 2-1]

【0016】[0016]

【表2−2】 [Table 2-2]

【0017】[0017]

【表3−1】 [Table 3-1]

【0018】[0018]

【表3−2】 [Table 3-2]

【0019】飽和水率は、比重、粗粒率のどちらかが変
動すれば変わるが、変動の割合によって、互いに打ち消
し合い、生コンの通常の粗粒率巾内では、測定誤差±
0.5%以下を楽々と合格している。
The saturated water ratio changes if either the specific gravity or the coarse grain ratio fluctuates. However, the saturated water ratios cancel each other out depending on the fluctuation ratio, and within the normal coarse grain ratio range of the ready-mixed concrete, the measurement error ±
Passing 0.5% or less easily.

【0020】[0020]

【実施例】次に、この発明の実施例を図面に基づいて説
明する。
Embodiments of the present invention will now be described with reference to the drawings.

【0021】図面は、この発明の測定装置を示す斜視図
であって、測定装置は、水槽1と、バイブレータ4付き
水槽受け3と、「給排水可能な開口部を持つ容器」の代
表例として、一部が網6であり上端に鍔8を有する鍔付
き網容器5と、水槽1への給水タンク7と、鍔付き網容
器5で砂の重量を測定する電子秤9と、その計測結果お
よび計算結果を出力するCPUプリンター11とからな
っている。なお、この測定装置は、基準サンプル、実行
サンプルのいずれの測定についても用いられる。
FIG. 1 is a perspective view showing a measuring device of the present invention, which is a representative example of a water tank 1, a water tank receiver 3 with a vibrator 4, and a "container having an opening capable of supplying and draining water". A net container 5 with a collar, a part of which is a net 6, and a flange 8 at the upper end, a water supply tank 7 for the water tank 1, an electronic scale 9 for measuring the weight of sand in the net container 5 with a collar, the measurement result and It is composed of a CPU printer 11 which outputs a calculation result. This measuring device is used for both measurement of the reference sample and the execution sample.

【0022】給水タンク7について、13は上下駆動シ
リンダー、14がゴムのフレキシブルチューブであっ
て、給水タンク7をそれで上げることにより水槽1に給
水し、下げることにより水抜きがなされる。また、水槽
受け3の底部には、周囲に排水溝16を設け、排水溝1
6の内側に沿って吸水性クッション15が配設される。
この吸水性クッション15で水槽1を受けることによ
り、バイブレータ4の振動を効率的に水槽1に及ばせ得
ることはもちろん、排水時に鍔付き網容器5に付着する
水の吸収・排水が促進される。また、水槽受け3にはバ
イブレータ4の作動時間を設定するタイマー17が具備
される。まず、飽和水率測定の手順を説明する。
Regarding the water supply tank 7, 13 is a vertical drive cylinder, and 14 is a flexible tube made of rubber, which raises the water supply tank 7 to supply water to the water tank 1, and lowers it to drain water. In addition, a drain groove 16 is provided around the bottom of the water tank receiver 3,
A water absorbing cushion 15 is arranged along the inner side of 6.
By receiving the water tank 1 with the water absorbing cushion 15, not only the vibration of the vibrator 4 can be efficiently applied to the water tank 1, but also the absorption and drainage of water attached to the mesh container 5 with a collar at the time of drainage are promoted. . Further, the water tank receiver 3 is provided with a timer 17 for setting the operating time of the vibrator 4. First, the procedure for measuring the saturated water ratio will be described.

【0023】(飽和水砂量の測定) JIS A1102(基準サンプル)又はA111
1−3(実行サンプル)に基づき、ふるい分けした砂を
利用し、分級された砂を測定された粗粒率に合わせてサ
ンプル量(例えば400g)に計量する。その値を実行
サンプルではMs、基準サンプルではMとする。 基準サンプルの場合、粗粒率の偏りを防止するた
め、任意の表面水率にして、表面水率を平均化するた
め、サンプルをよくブレンドする。 サンプルを鍔付き網容器5に入れる。 鍔付き網容器5を水槽1に入れ、砂を水浸しにしな
がら、バイブレータ4を作動させる。これにより、密度
が安定し、水切りが良くなり、エアー抜きもなされる。 給水タンク7を下げることにより、水槽1内の水を
抜く。また、鍔付き網容器5に付着した水が吸水性クッ
ション15に吸収される。 鍔付き網容器5を引き上げ、電子秤9の上に載せて
飽和水砂重量を計量する。この値を基準サンプルではM
1、実行サンプルではMs1とする。
(Measurement of the amount of saturated water and sand) JIS A1102 (reference sample) or A111
Based on 1-3 (execution sample), the classified sand is weighed to a sample amount (for example, 400 g) according to the measured coarse particle ratio, using the sieved sand. The value is set to Ms for the execution sample and M for the reference sample. In the case of the reference sample, in order to prevent the deviation of the coarse particle ratio, the surface water ratio is arbitrarily set, and the sample is well blended in order to average the surface water ratio. The sample is placed in the mesh container 5 with a collar. Put the net container 5 with a collar in the water tank 1 and operate the vibrator 4 while immersing the sand in the water. As a result, the density becomes stable, drainage is improved, and air is removed. The water in the water tank 1 is drained by lowering the water supply tank 7. Further, the water adhering to the flanged net container 5 is absorbed by the water absorbing cushion 15. The net container 5 with a collar is pulled up, placed on the electronic scale 9, and the weight of saturated water and sand is measured. This value is M in the reference sample
1, Ms1 in the execution sample.

【0024】サンプルの砂重量M及びMsと、飽和水砂
重量M1及びMs1とをこのようにして得ると、飽和水
率の計算は次のようになる。
Obtaining the sample sand weights M and Ms and the saturated water sand weights M1 and Ms1 in this way, the calculation of the saturated water ratio is as follows.

【0025】(基準サンプルの飽和水率) A) 飽和水量=M1−M B) 飽和水率=A÷M×100(資料の飽和水率測
定、5点以上) C) 基準飽和水率=Bの(下限値+上限値)÷2 つまり、基準サンプルの飽和水率(B)=(M1−M)
÷M×100 (実行サンプルの飽和吸水率)また、同様にして、実行
サンプルにつき、 F)飽和吸水量=Ms1−Ms G)飽和吸水率=(Ms1−Ms)÷Ms×100
(Saturated water rate of reference sample) A) Saturated water amount = M1−M B) Saturated water rate = A ÷ M × 100 (Saturated water rate measurement of data, 5 points or more) C) Reference saturated water rate = B (Lower limit value + upper limit value) / 2 That is, the saturated water rate (B) of the reference sample = (M1-M)
÷ M × 100 (saturated water absorption rate of execution sample) Similarly, for each execution sample, F) Saturated water absorption amount = Ms1−Ms G) Saturated water absorption rate = (Ms1−Ms) ÷ Ms × 100

【0026】以上から、基準サンプルの飽和水率(デー
タとして保管されている)と実行サンプルの飽和吸水率
(使用砂についてその都度計算)とが得られたので、使
用砂について、補正水量を得るために、その前提となる
表面水率が次の通り計算される。 H)実行サンプルの表面水率=(基準サンプルの飽和水
率C−実行サンプルの飽和吸水率G)÷(1+C/10
0) また、これは、表面水率(H)={C−(Ms1−M
s)÷Ms×100}÷(1+C/100)として表さ
れる。(Ms1−Ms)÷Ms×100の部分が実際に
生コンを製造する場合に、測定及び計算事項である。
From the above, the saturated water rate of the reference sample (stored as data) and the saturated water absorption rate of the execution sample (calculated for the sand used each time) were obtained, and thus the corrected water amount was obtained for the sand used. Therefore, the presumed surface water rate is calculated as follows. H) Surface water rate of execution sample = (saturated water rate C of reference sample−saturated water absorption rate G of execution sample) ÷ (1 + C / 10
0) Also, this is the surface water ratio (H) = {C- (Ms1-M
s) ÷ Ms × 100} ÷ (1 + C / 100). The portion of (Ms1−Ms) ÷ Ms × 100 is a measurement and calculation item when actual ready-mixed concrete is manufactured.

【0027】そこで、使用砂について、 表面水量=使用砂の重量×表面水率(H) 補正水量=使用砂の単位水量−表面水量 となり、現場においては、この補正水量が砂に混入され
る。
Therefore, regarding the used sand, the surface water amount = the weight of the used sand × the surface water ratio (H), the corrected water amount = the unit water amount of the used sand-the surface water amount, and this corrected water amount is mixed into the sand at the site.

【0028】次に、測定点表面水率トレンドによる管理
巾設定及び注意点について述べる。 a)Hを一定間隔で5点以上測定 b)基準表面水率=a5点の和÷5 この基準表面水率より測定サンプルの各飽和水率差を算
出する。 c)砂量=Ms−(Ms×b/100) d)飽和水量=Ms1−c e)飽和水率=d÷c×100 f)測定点飽和水率差=e−C 基準飽和水率を基準線に、各測定点飽和水率差値をトレ
ンドグラフ化して、測定誤差許容範囲上下限管理巾を設
定する。外れた場合は表乾飽和水率をチェックする(基
準飽和水率変更)。
Next, the setting of the control width based on the trend of the surface water ratio at the measuring point and the precautions will be described. a) H is measured at 5 or more points at regular intervals b) Reference surface water ratio = a Sum of 5 points / 5 The respective saturated water ratio difference of the measurement sample is calculated from this reference surface water ratio. c) Sand amount = Ms− (Ms × b / 100) d) Saturated water amount = Ms1-c e) Saturated water rate = d ÷ c × 100 f) Measuring point saturated water rate difference = e−C Reference saturated water rate On the reference line, make a trend graph of saturated water rate difference values at each measurement point, and set the upper and lower control limits of the measurement error allowable range. If it falls off, check the surface dry saturated water ratio (change the standard saturated water ratio).

0029基準(平均)表面水率による測定点表面水
率を算出する。 表面水率={e−(Ms1−Ms)×100/Ms}÷
(1+e/100) 粗粒率の値が大きくなると、粒度は粗く(表面積小さ
く)、飽和水率が減り、小さくなると、粒度は細かく
(表面積大きく)、飽和水率は増える。従って、砂の見
掛け容積の表面積が変われば、表面水率が変動する。更
に、スランプを不安定にすることは、紛れもない事実で
ある。以上のことから、粗粒率、比重の安定に注意する
ことが重要である。
The reference (average) measurement point surface water due to the surface water ratio
Calculate the rate. Surface water rate = {e− (Ms1−Ms) × 100 / Ms} ÷
The larger the value of (1 + e / 100) coarse grain ratio, the coarser the grain size (smaller surface area).
If the saturated water ratio decreases and becomes smaller, the particle size becomes finer.
(Large surface area), saturated water rate increases. So look at the sand
If the surface area of the applied volume changes, the surface water rate also changes. Change
And destabilizing the slump is an unmistakable fact
is there. From the above, pay attention to the stability of coarse grain ratio and specific gravity.
This is very important.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の砂の表面水測定装置を示す斜視図で
ある。
FIG. 1 is a perspective view showing a sand surface water measuring device of the present invention.

【符号の説明】 1 水槽 3 水槽受け 5 鍔付き網容器 7 給水タンク 9 電子秤 15 吸水性クッション[Explanation of symbols] 1 aquarium 3 water tank receiver 5 Net container with a collar 7 water tank 9 Electronic scale 15 Water-absorbent cushion

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 重量、粗粒率等が異なる毎に基準的にサ
ンプル採取した砂を表面乾燥し、粗粒率を一定にしてこ
の表乾状態の砂の見掛け容積中の空隙を水に置換し、そ
の水の重量を飽和水量として測定することにより、基準
サンプル毎に飽和水率をデータとして得て保存管理して
おき、使用砂について補正水量を知るために、表面水率
が均等化された実行サンプルを採取し、この表面水砂の
見掛け容積中の空隙を水に置換し、その水の重量を飽和
吸水量として測定することにより、実行サンプルの飽和
吸水率を得、次に、実行サンプルに重量、粗粒率等が同
等な前記基準サンプルの飽和水率から、実行サンプルの
飽和吸水率を差し引いて、使用砂の表面水率を算定する
ことを特徴とする砂の表面水測定方法。
1. Sand is sampled on a standard basis every time the weight, the coarse grain ratio, etc. are different, and the coarse grain ratio is kept constant to replace the voids in the apparent volume of the surface-dried sand with water. Then, by measuring the weight of the water as the saturated water amount, the saturated water ratio is obtained as data for each reference sample and stored and managed.The surface water ratio is equalized in order to know the corrected water amount for the sand used. Saturated water absorption of the run sample was obtained by replacing the voids in the apparent volume of the surface water sand with water and measuring the weight of the water as the saturated water absorption. A method for measuring the surface water of sand, wherein the surface water rate of the sand used is calculated by subtracting the saturated water absorption rate of the execution sample from the saturated water rate of the reference sample having the same weight, coarse particle rate, etc. to the sample. .
【請求項2】 サンプル砂を入れる給排水可能な開口部
を持つ容器と、この給排水可能な開口部を持つ容器と共
にサンプル砂を浸水させる水槽と、バイブレータ付き水
槽受けと、上下可能な給水タンクと、上記給排水可能な
開口部を持つ容器を載せる電子秤とからなり、水槽の底
部に上記給排水可能な開口部を持つ容器を受ける吸水性
クッションを配設し、水槽への給水及び排水を給水タン
クの上下動によりなすようにしたことを特徴とする砂の
表面水測定装置。
2. A container having a water supply / drainage opening for containing the sample sand, a water tank for soaking the sample sand with the container having the water supply / drainage opening, a water tank receiver with a vibrator, and a water supply tank capable of moving up and down. It consists of an electronic scale on which a container having the above-mentioned water supply / drainage opening is placed, and a water-absorbing cushion for receiving the above-mentioned container having the above-mentioned water supply / drainage opening is provided at the bottom of the water tank, and water supply and drainage to / from the water tank of the water tank are performed. An apparatus for measuring surface water of sand, which is characterized by being moved up and down.
JP2002083606A 2002-03-25 2002-03-25 Sand surface water measuring method and measuring device Expired - Lifetime JP3591779B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002083606A JP3591779B2 (en) 2002-03-25 2002-03-25 Sand surface water measuring method and measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002083606A JP3591779B2 (en) 2002-03-25 2002-03-25 Sand surface water measuring method and measuring device

Publications (2)

Publication Number Publication Date
JP2003279562A true JP2003279562A (en) 2003-10-02
JP3591779B2 JP3591779B2 (en) 2004-11-24

Family

ID=29231308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002083606A Expired - Lifetime JP3591779B2 (en) 2002-03-25 2002-03-25 Sand surface water measuring method and measuring device

Country Status (1)

Country Link
JP (1) JP3591779B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105588778A (en) * 2016-03-16 2016-05-18 哈尔滨工程大学 Concrete water absorption experimental device
JP2017067477A (en) * 2015-09-28 2017-04-06 太平洋セメント株式会社 Method for estimating compressive strength and/or static elastic modulus of concrete
CN111257151A (en) * 2020-03-06 2020-06-09 厦门捷航工程检测技术有限公司 Machine-made sand quality detection equipment

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017067477A (en) * 2015-09-28 2017-04-06 太平洋セメント株式会社 Method for estimating compressive strength and/or static elastic modulus of concrete
CN105588778A (en) * 2016-03-16 2016-05-18 哈尔滨工程大学 Concrete water absorption experimental device
CN105588778B (en) * 2016-03-16 2018-01-19 哈尔滨工程大学 Concrete water absorption rate experimental provision
CN111257151A (en) * 2020-03-06 2020-06-09 厦门捷航工程检测技术有限公司 Machine-made sand quality detection equipment

Also Published As

Publication number Publication date
JP3591779B2 (en) 2004-11-24

Similar Documents

Publication Publication Date Title
CN104931385A (en) Method for measuring density and water absorption of regenerated coarse aggregate
US20020162383A1 (en) Systems and methods for determining the porosity and/or effective air void content of compacted material
CN104374358B (en) A kind of slurry paves the measuring method of thickness
JP2003279562A (en) Method and apparatus for measuring surface water in sands
Okonkwo et al. A study of the effect of aggregate proportioning on concrete properties
Jamison et al. Durable asbestos tension tables
JP6542837B2 (en) Method of measuring air content of fresh concrete and fresh concrete manufacturing facility
CN111965071A (en) Method for determining aggregate proportion of sand grain type asphalt concrete
JP4555244B2 (en) Unit water measurement method for fresh concrete
JP6120141B2 (en) Pavement structure construction method
EP1207384A3 (en) Method and device for determining the moisture content and workability of a granular material
Lecomte The measurement of real and virtual packing density of soft grains
Wig et al. Strength and other properties of concretes as affected by materials and methods of preparation
JP2009113408A (en) Specification value computing method for fine aggregate
JP3595969B2 (en) Simple blending method for fluidized soil
US1989003A (en) Method of testing materials
JP4771030B2 (en) Concrete material measurement method
JP2002234025A (en) Measuring method for concrete material
JP2000061926A (en) Manufacture of concrete
JP4582388B2 (en) Concrete consistency management method
JP4793611B2 (en) Method and program for measuring concrete material and recording medium
Malphurs et al. Task force report on ASTM D 2419: sand equivalent value of soils and fine aggregate, prepared for ASTM subcommittee D 04.51
JP4144747B2 (en) Aggregate and water metering device and cement-based fluidized material spraying system using the same
JP4009819B2 (en) Concrete material measurement method
JP2001208666A (en) Method and device for measuring water content of fresh concrete

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040323

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040713

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040818

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040820

R150 Certificate of patent or registration of utility model

Ref document number: 3591779

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070903

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100903

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term