JP6120141B2 - Pavement structure construction method - Google Patents

Pavement structure construction method Download PDF

Info

Publication number
JP6120141B2
JP6120141B2 JP2013030991A JP2013030991A JP6120141B2 JP 6120141 B2 JP6120141 B2 JP 6120141B2 JP 2013030991 A JP2013030991 A JP 2013030991A JP 2013030991 A JP2013030991 A JP 2013030991A JP 6120141 B2 JP6120141 B2 JP 6120141B2
Authority
JP
Japan
Prior art keywords
mixture
water
layer
pavement structure
coarse aggregate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013030991A
Other languages
Japanese (ja)
Other versions
JP2014159709A (en
Inventor
大樹 遠藤
大樹 遠藤
佐々木 徹
徹 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Osaka Cement Co Ltd
Original Assignee
Sumitomo Osaka Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Osaka Cement Co Ltd filed Critical Sumitomo Osaka Cement Co Ltd
Priority to JP2013030991A priority Critical patent/JP6120141B2/en
Publication of JP2014159709A publication Critical patent/JP2014159709A/en
Application granted granted Critical
Publication of JP6120141B2 publication Critical patent/JP6120141B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Road Paving Structures (AREA)

Description

本発明は、路盤上に舗装構造体を施工する施工方法に関する。   The present invention relates to a construction method for constructing a pavement structure on a roadbed.

道路等の排水性を高めるための舗装構造体として、従来から、連続した空隙が形成されたコンクリート(以下、ポーラスコンクリートともいう。)や開粒度アルファルトなどの舗装構造体を路盤上に施工することが行なわれている。   Conventionally, pavement structures such as concrete with continuous voids (hereinafter also referred to as porous concrete) and open grained alfalt are constructed on the roadbed as pavement structures for improving drainage performance on roads, etc. Has been done.

例えば、特許文献1及び2には、上層部に透水性が高い透水層と、下層部に透水性の低い遮水層とを備えたアルファルト舗装構造体が記載されている。
かかるアスファルト舗装構造体では、雨水等を透水性が高い透水層から下層側へ透過させることで路面に水が溜まることを防止できる。また、下層側の遮水層によって、透水層を透過した水は、遮水層の表面を通り側溝などに排出される。
また、特許文献1及び2には、遮水層表面において側方へ排水しやすくするため、遮水層表面に側方に向かって下降する傾斜面を形成することが記載されている。
For example, Patent Literatures 1 and 2 describe an alfart pavement structure including a water permeable layer having high water permeability in an upper layer portion and a water shielding layer having low water permeability in a lower layer portion.
In such an asphalt pavement structure, it is possible to prevent water from accumulating on the road surface by allowing rainwater or the like to permeate from the water-permeable layer having high water permeability to the lower layer side. Moreover, the water which permeate | transmitted the water-permeable layer by the lower-layer water-impervious layer passes through the surface of the water-impervious layer and is discharged into a side groove or the like.
Patent Documents 1 and 2 describe that an inclined surface that descends toward the side is formed on the surface of the water shielding layer in order to facilitate drainage to the side on the surface of the water shielding layer.

しかしながら、特許文献1及び2に記載されているような透水層及び遮水層を備えた舗装構造体を施工する場合、まず、下層である遮水層を施工してから、上層の透水層を施工するという少なくとも二回の施工作業を行なう必要があり、さらに、前記遮水層の表面に傾斜面を形成する作業が必要であり、舗装構造体の施工に手間がかかる、という問題がある。   However, when constructing a pavement structure having a water-permeable layer and a water-impervious layer as described in Patent Documents 1 and 2, first, after constructing a water-impervious layer as a lower layer, an upper water-permeable layer is formed. There is a problem that it is necessary to perform construction work of at least two times of construction, and further, it is necessary to form an inclined surface on the surface of the water-impervious layer.

特開平11−343606号公報JP-A-11-343606 特開2005−146539号公報JP 2005-146539 A

そこで、本発明は、上記のような従来の問題を鑑みて、排水性が高い舗装構造体を容易に施工することができる舗装構造体の施工方法を提供することを課題とする。   Then, this invention makes it a subject to provide the construction method of the pavement structure which can construct a pavement structure with high drainage easily in view of the above conventional problems.

本発明に係る舗装構造体の施工方法は、
セメントと水と粗骨材とを混合して混合物を得る混合工程と、
粗骨材とセメントミルクとが上下に層をなすように、前記混合物を容器内で分離させる分離工程と、
前記分離させた混合物の上下のいずれか一方側から前記容器内の前記混合物を順次排出して、路盤上を所定の方向に向かって連続的に前記混合物を施工する施工工程とを備える。
The construction method of the pavement structure according to the present invention,
A mixing step of mixing cement, water and coarse aggregate to obtain a mixture;
A separation step of separating the mixture in a container so that the coarse aggregate and the cement milk are vertically layered;
Wherein from either side of the upper and lower separated was mixture the mixture is sequentially discharged in the container, and a construction step of applying a continuously said mixture toward the upper roadbed in a predetermined direction.

本発明によれば、セメントと水と粗骨材とを混合して混合物を得る混合工程と、前記混合物を、粗骨材とセメントミルクとが上下に層をなすように分離させる分離工程とを備えていることで、セメントと水とが混合されたセメントミルクと、粗骨材とに混合物を分離させることができる。セメントミルクと粗骨材とは粘性が相違し、通常は、セメントミルクは粗骨材に比べ粘性が小さいため、セメントミルクが混合物の下方に溜まり、粗骨材は上部に浮き、上下に層をなすように分離する。
さらに、該分離させた混合物の上下のいずれか一方側から路盤上に連続的に混合物を施工する施工工程を備えることにより、セメントミルクが固化した遮水性が比較的高い層と、粗骨材が固化した透水性の比較的高い層とを形成し、且つ、遮水性の高い層の表面を傾斜面に形成することができる。すなわち、路盤上に施工された混合物は、粘性が小さいセメントミルクは下方に沈んだ状態で固化し、粘性の大きい粗骨材はセメントミルクの上方に存在した状態で固化する。つまり、遮水性の高い層が下方に配置され、透水性の高い層が上方に配置された舗装構造体を施工できる。また、分離した混合物を上下のいずれか一方側から路盤上に連続的に施工していくことで、粗骨材とセメントミルクの割合が連続的に変化するように路盤上に混合物を施工することができる。すなわち、セメントミルクの量が連続的に変化する舗装構造体が得られ、セメントミルクが固化して形成される遮水性の高い層の厚みも施工方向に従って連続的に変化し、表面を傾斜面とすることができる。
According to the present invention, the mixing step of mixing cement, water and coarse aggregate to obtain a mixture, and the separation step of separating the mixture so that the coarse aggregate and cement milk form a layer in the vertical direction. By providing, the mixture can be separated into cement milk in which cement and water are mixed, and coarse aggregate. Cement milk and coarse aggregate have different viscosities, and since cement milk is usually less viscous than coarse aggregate, cement milk accumulates below the mixture, coarse aggregate floats above, and layers up and down. Separate as you would.
Furthermore, by providing a construction step of continuously constructing the mixture on the roadbed from either one of the upper and lower sides of the separated mixture, the cement milk solidified layer having a relatively high water barrier, and the coarse aggregate A solidified layer having a relatively high water permeability can be formed, and the surface of the layer having a high water barrier property can be formed on the inclined surface. That is, the mixture applied on the roadbed solidifies in a state where the cement milk having a low viscosity sinks downward, and the coarse aggregate having a high viscosity solidifies in a state in which the cement milk exists above the cement milk. That is, it is possible to construct a pavement structure in which a layer with high water shielding is disposed below and a layer with high water permeability is disposed above. In addition, by applying the separated mixture continuously on either the upper or lower side of the roadbed, the mixture should be applied on the roadbed so that the ratio of coarse aggregate and cement milk changes continuously. Can do. That is, a pavement structure in which the amount of cement milk continuously changes is obtained, and the thickness of the high water-blocking layer formed by solidifying the cement milk also changes continuously according to the construction direction, and the surface is inclined. can do.

本発明において、前記混合物のダレ率が2.5%以上6.0%以下であってもよい。   In the present invention, the sagging rate of the mixture may be 2.5% or more and 6.0% or less.

前記混合物のダレ率が2.5%以上6.0%以下である場合には、混合物を前記分離した状態にしやすいため好ましい。   It is preferable that the sagging rate of the mixture is 2.5% or more and 6.0% or less because the mixture is easily brought into the separated state.

尚、本発明でいう「ダレ率」とは、粗骨材とセメントミルクとの分離性の指標となる数値であり、後述する測定方法で測定される値(質量%)をいう。   The “sag rate” in the present invention is a numerical value that serves as an index of separability between coarse aggregate and cement milk, and refers to a value (mass%) measured by a measurement method described later.

本発明において、前記混合物の単位容積あたりの粗骨材の容積比率が50%以上65%以下であってもよい。   In the present invention, the volume ratio of the coarse aggregate per unit volume of the mixture may be 50% or more and 65% or less.

前記混合物の単位容積あたりの粗骨材の容積比率が50%以上65%以下である場合には、混合物を前記分離した状態によりしやすいため好ましい。   When the volume ratio of the coarse aggregate per unit volume of the mixture is 50% or more and 65% or less, it is preferable because the mixture is easily separated.

本発明によれば、排水性が高い舗装構造体を容易に施工することができる。   According to the present invention, it is possible to easily construct a pavement structure with high drainage.

一実施形態の施工方法の概略を示す一部断面図。The partial sectional view showing the outline of the construction method of one embodiment. 施工された舗装構造体を示す概略断面図。The schematic sectional drawing which shows the constructed pavement structure.

以下、本発明に係る舗装構造体の施工方法の一実施形態について説明する。
本実施形態の舗装構造体の施工方法は、
セメントと水と粗骨材とを混合して混合物を得る混合工程と、
粗骨材とセメントミルクとが上下に層をなすように、前記混合物を分離させる分離工程と、
前記分離させた混合物の上下のいずれか一方側から路盤上に連続的に混合物を施工する施工工程とを備えている。
Hereinafter, an embodiment of a construction method for a pavement structure according to the present invention will be described.
The construction method of the pavement structure of this embodiment is
A mixing step of mixing cement, water and coarse aggregate to obtain a mixture;
A separation step of separating the mixture so that coarse aggregate and cement milk are layered up and down;
A construction step of continuously constructing the mixture on the roadbed from either one of the upper and lower sides of the separated mixture.

(混合工程)
前記混合工程においては、セメントと、水と、粗骨材とを混合して混合物を得る。
混合物としては、硬化体となった時、該硬化体内に連続した空隙を形成するように、粗骨材が、セメントと水とが混合されたセメントミルクによって結合された、いわゆるポーラスコンクリートとなるセメント組成物が挙げられる。
混合物は、セメントと、水と、粗骨材とを含み、必要に応じて細骨材、スラグ等の混和材、減水剤、凝結促進剤、凝結遅延剤、発泡剤、起泡剤等の混和剤を含んでいてもよい。
(Mixing process)
In the mixing step, cement, water, and coarse aggregate are mixed to obtain a mixture.
As a mixture, when it becomes a hardened body, a cement that becomes a so-called porous concrete in which coarse aggregates are bonded by cement milk in which cement and water are mixed so as to form continuous voids in the hardened body. A composition.
The mixture contains cement, water, and coarse aggregate, and if necessary, admixture of fine aggregate, slag, etc., water reducing agent, setting accelerator, setting retarder, foaming agent, foaming agent, etc. An agent may be included.

混合物の好ましい配合は、例えば、空隙率15%以上30%以下、前記混合物の単位容積あたりの粗骨材の容積比率が50%以上65%以下であって、水セメント比が15%以上40%以下となるような配合等が挙げられる。
また、細骨材を配合する場合には、例えば、モルタルに対する細骨材の容積比率が5%以上15%以下の量であることが好ましい。
Preferred blending of the mixture is, for example, a porosity of 15% to 30%, a volume ratio of the coarse aggregate per unit volume of the mixture being 50% to 65%, and a water cement ratio of 15% to 40%. Examples of the formulation are as follows.
Moreover, when mix | blending a fine aggregate, it is preferable that the volume ratio of the fine aggregate with respect to mortar is the quantity of 5% or more and 15% or less, for example.

特に、粗骨材が前記範囲である場合、すなわち、粗骨材以外の成分が空隙部を含めて35質量%以上50質量%以下の範囲である場合には、混合物を後述する好ましいダレ率とすることが容易にでき分離工程において好ましい分離状態にすることができる。
尚、前記空隙率とは、(社)日本道路協会 舗装調査・試験法便覧 B073T「ポーラスコンクリートの空隙率試験方法」に従う方法で測定される空隙率をいう。
In particular, when the coarse aggregate is in the above range, that is, when the components other than the coarse aggregate are in the range of 35% by mass or more and 50% by mass or less including the voids, This can be easily performed, and a preferable separation state can be obtained in the separation step.
In addition, the said porosity means the porosity measured by the method according to Japan Road Association pavement investigation and test method manual B073T "the porosity test method of porous concrete".

前記混合物を得る方法としては、特に限定されるものではないが、例えば、二軸強制ミキサー等の公知の混合装置を用いて90秒程度混合することなどが挙げられる。   The method for obtaining the mixture is not particularly limited, and examples thereof include mixing for about 90 seconds using a known mixing device such as a biaxial forced mixer.

前記混合物は、ダレ率が2.5%以上6.0%以下、好ましくは3.0以上5.0以下となるように調整されていることが好ましい。
ダレ率を前記範囲とすることで、混合物を後述する分離工程において分離した状態にしやすくなるという利点がある。
ここで、ダレ率とは、以下の方法で測定される値(質量%)をいう。
The mixture is preferably adjusted so that the sagging rate is 2.5% to 6.0%, preferably 3.0 to 5.0.
By setting the sag rate within the above range, there is an advantage that the mixture is easily separated in the separation step described later.
Here, the sagging rate refers to a value (mass%) measured by the following method.

《ダレ率》
混合終了から3分間静置させた混合物2.0kgを幅25cm×縦37cm×高さ4cmのステンレス製の容器に入れて、金ゴテ(幅6.5cm長さ21cm)で均一の厚みになるように均した後、金ゴテの面の長さ方向が容器の幅方向と平行になるように混合物の上方に配置し、混合物の上面を軽く叩きながら縦方向に平行移動させて10回繰り返す。
さらに、金ゴテの面の長さ方向が容器の縦方向と平行になるように混合物の上方に配置し、混合物の上面を軽く叩きながら幅に平行移動させて5回を、縦方向の二列分繰り返す。
その後、容器を逆さまにして容器内の混合物を自然落下させて、容器の底部に付着した混合物の質量を算出する。
底部に残留した混合物の質量は、混合物を入れる前の容器の質量と、混合物が付着した容器の質量との差から算出する。
容器の底部に付着した混合物の質量%をダレ率とする。
《Dare rate》
Place 2.0 kg of the mixture that was allowed to stand for 3 minutes from the end of mixing into a stainless steel container 25 cm wide x 37 cm long x 4 cm high so that it has a uniform thickness with a gold trowel (width 6.5 cm length 21 cm) After equalizing, the length of the surface of the gold trowel is arranged above the mixture so that it is parallel to the width direction of the container, and the upper surface of the mixture is moved in parallel in the vertical direction while tapping lightly and repeated 10 times.
Furthermore, it is arranged above the mixture so that the length direction of the surface of the gold trowel is parallel to the longitudinal direction of the container. Repeat for minutes.
Thereafter, the container is turned upside down to allow the mixture in the container to fall naturally, and the mass of the mixture adhering to the bottom of the container is calculated.
The mass of the mixture remaining at the bottom is calculated from the difference between the mass of the container before the mixture is added and the mass of the container to which the mixture is adhered.
The mass% of the mixture adhering to the bottom of the container is defined as the sag rate.

前記混合物のダレ率は、例えば、混合物が大量で、前記測定方法で一度に測定できない場合には、混合物の複数個所から採取したサンプルを測定して、各ダレ率が前記範囲であることが好ましい。この場合、各混合物サンプルのダレ率において、最も高いダレ率と最も低いダレ率の差が所定程度の範囲であることが好ましい。
例えば、混合物を高さ50cmの容器に入れて製造した場合において、ダレ率が高くなる最下部の混合物サンプル(2kg)と、ダレ率が低くなる最上部の混合物サンプル(2kg)をそれぞれ前記方法で測定したダレ率の差は0.1%以上3.5%以下であることが好ましい。
かかるダレ率の差である場合には、より混合物を後述する分離工程において分離した状態にしやすくなるという利点がある。
The sagging rate of the mixture is, for example, when the mixture is large and cannot be measured at once by the measurement method, it is preferable to measure samples taken from a plurality of locations of the mixture and each sagging rate is in the above range. . In this case, in the sag rate of each mixture sample, it is preferable that the difference between the highest sag rate and the lowest sag rate is within a predetermined range.
For example, when the mixture is manufactured in a container having a height of 50 cm, the lowermost mixture sample (2 kg) with a high sag rate and the uppermost mixture sample (2 kg) with a low sag rate are each obtained by the above method. The difference in the measured sag rate is preferably 0.1% or more and 3.5% or less.
In the case of such a difference in the sagging rate, there is an advantage that the mixture is more easily separated in the separation step described later.

(分離工程)
次に、前記混合物を、粗骨材とセメントミルクとが上下に層をなすように分離させる分離工程を実施する。
均一に混合された混合物を容器等に入れて静置し、粗骨材とセメントと水との混合物であるセメントミルクとが上下に層をなすように分離させる。
(Separation process)
Next, a separation step is performed in which the mixture is separated so that the coarse aggregate and the cement milk are layered up and down.
The uniformly mixed mixture is put in a container or the like and allowed to stand to separate the coarse aggregate, cement milk, which is a mixture of cement and water, so as to form a layer vertically.

前記混合物を静置する時間は、混合物の配合や、温度等の静置環境の条件にもよるが、例えば、10秒間〜10分間程度、温度5℃〜35℃程度の条件で静置することが好ましい。
より具体的には、例えば、ダレ率が2.5%以上6.0%以下の混合物を、1分間〜3分間程度、温度15℃〜25℃程度の条件で静置することで、混合物を本実施形態でいう粗骨材とセメントミルクとが上下に層をなすように分離させることができる。
また、本実施形態において、粗骨材とセメントミルクとが上下に層をなすように分離するとは、目視にてコンクリート高さに対して下層4分の1程度の空隙部がセメントミルクで満たされていることが確認できる程度に分離している状態をいう。
The time for which the mixture is allowed to stand is dependent on the mixture conditions and the conditions of the standing environment such as temperature, but for example, it is allowed to stand for 10 seconds to 10 minutes at a temperature of about 5 ° C to 35 ° C. Is preferred.
More specifically, for example, by allowing a mixture having a droop rate of 2.5% to 6.0% to stand for 1 minute to 3 minutes and a temperature of about 15 ° C to 25 ° C, The coarse aggregate and cement milk as used in the present embodiment can be separated so as to form a layer vertically.
In the present embodiment, the coarse aggregate and the cement milk are separated so as to form a layer in the vertical direction. The gap of about a quarter of the lower layer with respect to the concrete height is visually filled with the cement milk. It is in a state of being separated to such an extent that it can be confirmed.

また、本実施形態においてセメントミルクとは、セメントと水とからなるいわゆるセメントミルクの他、セメント及び水の他に細骨材を含むモルタルも含む。   In the present embodiment, the cement milk includes mortar containing fine aggregates in addition to cement and water, in addition to so-called cement milk made of cement and water.

前記混合物を静置するために保管する容器は、例えば、前記混合工程において混合を行った混合槽内で静置してもよく、あるいは、別の容器等に移して静置してもよい。前記容器としては、例えば、アジテート車の攪拌ドラム等を用いても良い。この場合には、施工場所に移動しながら混合物を静置することができるため好ましい。   The container stored for allowing the mixture to stand still may be left, for example, in a mixing tank in which mixing is performed in the mixing step, or may be transferred to another container or the like and left still. As the container, for example, a stirring drum of an agitator wheel or the like may be used. In this case, it is preferable because the mixture can be left still while moving to the construction site.

(施工工程)
次に、前記分離させた混合物の上下のいずれか一方側から路盤上に連続的に混合物を施工する施工工程を実施する。
(Construction process)
Next, a construction process for continuously constructing the mixture on the roadbed from either one of the upper and lower sides of the separated mixture is performed.

以下、例えば、前記混合物を、アジテート車を用いて施工現場である路盤上に施工する場合について説明する。
図1に示すように、前記混合物をアジテート車10で施工現場まで移送し、アジテート車10の攪拌ドラム11内の混合物Mを上から下に向かって順次排出して、路盤1上を所定の方向(施工方向)に向かって連続的に前記混合物を施工する。
混合物Mは路盤上に施工されると、粘性の低いセメントミルクは下方に落下して固化し、比較的密度の高い遮水層2を形成し、上方には粗骨材を多く含む混合物Mが固化して比較的密度が低い透水層3を形成する。従って、一度の施工で透水層3と遮水層2とを備えた舗装構造体4を路盤1上に施工することができる。
前記透水層3は、連続した空隙を有するいわゆるポーラスコンクリートであることが水の透過性が良好であるため好ましい。
Hereinafter, for example, the case where the mixture is applied on a roadbed as a construction site using an agitate vehicle will be described.
As shown in FIG. 1, the mixture is transferred to a construction site by an agitating vehicle 10, and the mixture M in the stirring drum 11 of the agitating vehicle 10 is discharged sequentially from the top to the bottom, and the roadbed 1 is moved in a predetermined direction. The mixture is continuously applied toward (construction direction).
When the mixture M is constructed on the roadbed, the low-viscosity cement milk falls downward and solidifies to form a relatively high density water-impervious layer 2, and above which the mixture M containing a large amount of coarse aggregate is formed. The water permeable layer 3 having a relatively low density is formed by solidification. Therefore, the pavement structure 4 provided with the water-permeable layer 3 and the water-impervious layer 2 can be constructed on the roadbed 1 by a single construction.
The water permeable layer 3 is preferably so-called porous concrete having continuous voids because water permeability is good.

また、前記混合物Mをアジテート車10から排出する際に、混合物Mの上から下に向かって順次混合物Mを排出するため、最初に排出される混合物Mは、粗骨材を多く含み、かかる粗骨材を多く含む混合物Mが施工されることで形成された部分(先排出部F)における舗装構造体4は、図1及び図2に示すように透水層3の厚みが厚くなり、遮水層2の厚みが薄くなる。さらに、攪拌ドラム11内の混合物Mを下層に向かって順次排出していくと、セメントミルクが多い混合物Mが排出される。かかる、セメントミルクが多い混合物Mが施工されることで形成された部分(後排出部A)における舗装構造体4は、図1及び図2に示すように透水層3の厚みが薄くなり、遮水層2の厚みが厚くなる。従って、図2に示すように、遮水層2の高さに勾配が形成された、すなわち傾斜面が形成された舗装構造体4が得られる。
よって、例えば、道路として舗装構造体4を施工する場合には、施工方向として、道路の一方の側方から他方の側方に向かって、混合物Mをアジテート車から排出させて施工することによって、道路の一側方に向かって遮水層2の表面が下がるように傾斜する面となり、透水層3を透過してきた水が遮水層2表面から他方の側方に向かって排出されやすくなる。
あるいは、前記施工方向として、道路の中央部から側方に向かって施工することで、道路の中央部から側方に向かって遮水層2表面が下がるような傾斜面が形成された舗装構造体4が得られる。
Further, when the mixture M is discharged from the agitating vehicle 10, the mixture M is discharged sequentially from the top to the bottom of the mixture M. Therefore, the mixture M discharged first contains a large amount of coarse aggregate, and the coarse M As shown in FIGS. 1 and 2, the pavement structure 4 in the portion formed by applying the mixture M containing a large amount of aggregate (first discharge portion F) has a thick permeable layer 3 as shown in FIGS. The thickness of the layer 2 is reduced. Further, when the mixture M in the stirring drum 11 is sequentially discharged toward the lower layer, the mixture M having a large amount of cement milk is discharged. As shown in FIGS. 1 and 2, the pavement structure 4 in the portion (rear discharge portion A) formed by applying the mixture M containing a large amount of cement milk has a thin permeable layer 3 as shown in FIGS. The thickness of the water layer 2 is increased. Therefore, as shown in FIG. 2, a pavement structure 4 in which a gradient is formed in the height of the water shielding layer 2, that is, an inclined surface is formed.
Therefore, for example, when constructing the pavement structure 4 as a road, by constructing the mixture M by discharging it from the agitated vehicle from one side of the road to the other side as the construction direction, It becomes a surface inclined so that the surface of the water-impervious layer 2 is lowered toward one side of the road, and water that has permeated through the water-permeable layer 3 is easily discharged from the surface of the water-impervious layer 2 toward the other side.
Alternatively, as the construction direction, a pavement structure in which an inclined surface is formed such that the surface of the water shielding layer 2 is lowered from the central part of the road toward the side by performing construction from the central part of the road. 4 is obtained.

本実施形態の舗装構造体の施工方法によれば、一度の施工で、透水層と遮水層とを含む舗装構造体を簡易に施工することができる。また、透水層用と遮水層用の混合物を別に準備する必要がなく、簡易且つ低コストで舗装構造体を施工することができる。   According to the construction method for a pavement structure of the present embodiment, a pavement structure including a water permeable layer and a water shielding layer can be easily constructed by a single construction. Moreover, it is not necessary to separately prepare a mixture for the water-permeable layer and the water-impervious layer, and the pavement structure can be constructed easily and at low cost.

本実施形態では、分離した混合物の上方側から順次混合物を排出しながら施工したが、分離した混合物の下方側から順次混合物を排出しながら混合物を路盤上に施工してもよい。
この場合には、最初に排出される混合物は、セメントミルクが多い混合物であるため先排出部における舗装構造体は遮水層の厚みが厚くなり、透水層の厚みが薄くなる。さらに、混合物を下から順次排出していくと、だんだん粗骨材の割合の多い混合物が排出され、後排出部における舗装構造体は透水層の厚みが厚くなり、遮水層の厚みが薄くなる。
よって、前記施工工程において、前記分離させた混合物を下方側から路盤上に連続的に混合物を施工することでも、遮水層の表面を傾斜面として形成することができる。
In this embodiment, construction was performed while discharging the mixture sequentially from the upper side of the separated mixture, but the mixture may be applied on the roadbed while discharging the mixture sequentially from the lower side of the separated mixture.
In this case, since the mixture discharged | emitted initially is a mixture with much cement milk, the thickness of a water-permeable layer becomes thick and the thickness of a water-permeable layer becomes thin in the pavement structure in a tip discharge | emission part. Furthermore, when the mixture is discharged sequentially from the bottom, the mixture with a larger proportion of coarse aggregate is gradually discharged, and the pavement structure in the rear discharge part becomes thicker in the water-permeable layer and thinner in the water-impervious layer. .
Therefore, in the construction step, the surface of the water shielding layer can be formed as an inclined surface by continuously constructing the separated mixture on the roadbed from the lower side.

前記各実施形態にかかる舗装構造体の施工方法は以上のとおりであるが、今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は前記説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   Although the construction method of the pavement structure concerning each said embodiment is as above, it should be thought that embodiment disclosed this time is an illustration and restrictive at no points. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

以下に実施例を示して、本発明にかかる舗装構造体の施工方法についてさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。   Although an Example is shown below and the construction method of the pavement structure concerning this invention is demonstrated further more concretely, this invention is not limited to a following example.

下記材料を用いて表1の配合で試験用の混合物のサンプルNo1から16を作製した。
セメント(C):普通ポルトランドセメント(表乾密度3.15g/cm3住友大阪セメント社製)
細骨材(S1):揖斐川産川砂(表乾密度2.60g/cm3
粗骨材(G1):西島産砕石(表乾密度2.62g/cm3、単位容積質量1.55kg/l)
混和剤(P):高性能減水剤(表乾密度2.55g/cm3、粉末、商品名:マイティ100、花王社製)
尚、各サンプルの、水セメント比(W/B質量%)、空隙率(体積%)、細骨材モルタル容積比(Vs/Vm体積%)、粗骨材モルタル容積比(Vm/Vg体積%)、モルタル総量(粗骨材以外の成分の総量、kg/m3)も合わせて表1に示す。
Samples No. 1 to No. 16 of test mixtures were prepared using the following materials with the formulations shown in Table 1.
Cement (C): Ordinary Portland cement (surface dry density 3.15 g / cm 3 manufactured by Sumitomo Osaka Cement Co., Ltd.)
Fine aggregate (S1): River sand from Yodogawa (surface dry density 2.60 g / cm 3 )
Coarse aggregate (G1): Crushed stone from Nishijima (surface dry density 2.62 g / cm 3 , unit volume mass 1.55 kg / l)
Admixture (P): High-performance water reducing agent (surface dry density 2.55 g / cm 3 , powder, trade name: Mighty 100, manufactured by Kao Corporation)
For each sample, water cement ratio (W / B mass%), porosity (volume%), fine aggregate mortar volume ratio (Vs / Vm volume%), coarse aggregate mortar volume ratio (Vm / Vg volume%) ), The total amount of mortar (total amount of components other than coarse aggregate, kg / m 3 ) is also shown in Table 1.

各サンプルの作製方法は、表1に記載の配合の材料に、表1に示す水セメント比になるように水をさらに加えて、ミキサー(装置名:二軸強制ミキサーND55型、太平洋機工社製)で混合して混合物とした。さらに、ミキサーから40kgを、1輪車に取り出した。
1輪車にて20℃、3分間静置して、サンプルを分離状態にさせた。
Each sample was prepared by adding water to the materials having the composition shown in Table 1 so that the water-cement ratio shown in Table 1 was obtained. A mixer (device name: biaxial forced mixer ND55, manufactured by Taiheiyo Kiko Co., Ltd.) ) To obtain a mixture. Furthermore, 40 kg was taken out from the mixer into a unicycle.
The sample was allowed to stand in a unicycle at 20 ° C. for 3 minutes to separate the sample.

(ダレ率の測定)
前記各サンプルのダレ率を測定した。
まず、サンプルの表面から2kg取り出し(上層サンプル)、残りのサンプルが2kgになるまで捨て、残った底部のサンプル(下層サンプル)2kgを前記上層サンプルと別に取り出した。
上述の測定方法に従いダレ率を測定した結果を表1に示す。
尚、表中のダレ上下差は、下層ダレ率から上層ダレ率を引いた差である。
(Dare rate measurement)
The sagging rate of each sample was measured.
First, 2 kg was taken out from the surface of the sample (upper layer sample), discarded until the remaining sample was 2 kg, and 2 kg of the remaining bottom sample (lower layer sample) was taken out separately from the upper layer sample.
Table 1 shows the result of measuring the sagging rate according to the measurement method described above.
Note that the sag difference in the table is a difference obtained by subtracting the upper layer sag rate from the lower layer sag rate.

(分離状態の確認)
分離状態にさせた各サンプルを目視にて観察して、分離状態を確認した。
高さ30cm、直径30cmの透明な円筒形容器に収容したサンプルを側面から目視し、下から1/4の高さのサンプルの空隙部にセメントミルクが充填されている状態であれば、分離状態を良好とし、1/10以下の状態であれば過小とし、2/5以上の状態であれば過大と判断した。
(Confirmation of separation status)
Each sample brought into the separated state was visually observed to confirm the separated state.
If the sample contained in a transparent cylindrical container with a height of 30 cm and a diameter of 30 cm is visually observed from the side, and the cement milk is filled in the void of the sample with a height of 1/4 from the bottom, the separated state When the state was 1/10 or less, it was judged to be too small, and when it was 2/5 or more, it was judged to be oversized.

(二層形成状態の確認)
各サンプルを用いて、二層形成状態の確認試験を行なった。
ミキサーからサンプル40kgを取り出し、1輪車内で3分間静置した。その後、分離状態を目視にて確認した。
さらに、サンプルの上層および下層から12kgずつ取り出し、直径10cm×20cmの円筒形の型枠に入れて供試体を3本ずつ作製した。24時間養生後、型枠から取り出した供試体の遮水層の厚みを測定した。尚、遮水層の厚みは定規で4箇所の測定を行い、平均値を算出した。
上層と下層の遮水層の厚みが1cm以上19cm以下、かつ上層と下層の遮水層の厚みの差が1cm以上であった場合に評価を良好とし、上層と下層の遮水層の厚みが1cm以下または19cm以上、または上層と下層の遮水層の厚みの差が1cm以下であった場合に傾斜が不鮮明であるとした。
結果を表1に示す。
(Confirmation of bilayer formation)
Using each sample, a confirmation test of the two-layer formation state was performed.
A 40 kg sample was removed from the mixer and allowed to stand for 3 minutes in a unicycle. Thereafter, the separated state was visually confirmed.
Further, 12 kg each was taken out from the upper layer and the lower layer of the sample, and placed in a cylindrical form with a diameter of 10 cm × 20 cm to prepare three specimens. After curing for 24 hours, the thickness of the water shielding layer of the specimen taken out from the mold was measured. The thickness of the water shielding layer was measured at four locations with a ruler, and the average value was calculated.
The evaluation is good when the thickness of the upper and lower water shielding layers is 1 cm or more and 19 cm or less, and the difference between the thicknesses of the upper and lower water shielding layers is 1 cm or more, and the thickness of the upper and lower water shielding layers is When the difference in thickness between the upper layer and the lower water shielding layer is 1 cm or less, the inclination is unclear.
The results are shown in Table 1.

Figure 0006120141
Figure 0006120141

各サンプルNo.1〜16の上層及び下層のいずれにおいても、透水層及び遮蔽層の二層は形成されていたが、その形成状態には差がみられた。
表1に示すように、分離状態が良好であったサンプルでは、遮水層の厚みの差が十分であり、且つ、透水層と遮水層とが明確に形成されていた。特に、ダレ率が上層、下層ともに2.5〜5.6であったサンプルでは、サンプルの分離状態も良好で、従って、二層の形成状態も良好であった。
In each of the upper layer and the lower layer of each sample No. 1 to 16, two layers of the water permeable layer and the shielding layer were formed, but a difference was observed in the formation state.
As shown in Table 1, in the sample in which the separation state was good, the difference in thickness of the water shielding layer was sufficient, and the water permeable layer and the water shielding layer were clearly formed. In particular, in the sample in which the sagging rate was 2.5 to 5.6 for both the upper layer and the lower layer, the sample was well separated, and thus the two-layer formation state was also good.

1:路盤、2:遮水層、3:透水層、4:舗装構造体、10:アジテート車、11:攪拌ドラム、M:混合物。 1: roadbed, 2: water-impervious layer, 3: water-permeable layer, 4: pavement structure, 10: agitated wheel, 11: stirring drum, M: mixture.

Claims (3)

セメントと水と粗骨材とを混合して混合物を得る混合工程と、
粗骨材とセメントミルクとが上下に層をなすように、前記混合物を容器内で分離させる分離工程と、
前記分離させた混合物の上下のいずれか一方側から前記容器内の前記混合物を順次排出して、路盤上を所定の方向に向かって連続的に前記混合物を施工する施工工程とを備えた舗装構造体の施工方法。
A mixing step of mixing cement, water and coarse aggregate to obtain a mixture;
A separation step of separating the mixture in a container so that the coarse aggregate and the cement milk are vertically layered;
A pavement structure comprising: a construction step of sequentially discharging the mixture in the container from either one of the upper and lower sides of the separated mixture and continuously constructing the mixture in a predetermined direction on a roadbed Body construction method.
前記混合物のダレ率が2.5%以上6.0%以下である請求項1に記載の舗装構造体の施工方法。   The construction method of the pavement structure according to claim 1, wherein a sagging rate of the mixture is 2.5% or more and 6.0% or less. 前記混合物の単位容積あたりの粗骨材の容積比率が50%以上65%以下である請求項1または2に記載の舗装構造体の施工方法。
The construction method of the pavement structure according to claim 1 or 2, wherein a volume ratio of the coarse aggregate per unit volume of the mixture is 50% or more and 65% or less.
JP2013030991A 2013-02-20 2013-02-20 Pavement structure construction method Active JP6120141B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013030991A JP6120141B2 (en) 2013-02-20 2013-02-20 Pavement structure construction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013030991A JP6120141B2 (en) 2013-02-20 2013-02-20 Pavement structure construction method

Publications (2)

Publication Number Publication Date
JP2014159709A JP2014159709A (en) 2014-09-04
JP6120141B2 true JP6120141B2 (en) 2017-04-26

Family

ID=51611562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013030991A Active JP6120141B2 (en) 2013-02-20 2013-02-20 Pavement structure construction method

Country Status (1)

Country Link
JP (1) JP6120141B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016183075A (en) * 2015-03-26 2016-10-20 住友大阪セメント株式会社 Method for production of porous concrete
JP6997628B2 (en) * 2018-01-09 2022-01-17 太平洋セメント株式会社 Construction method of water-retaining pavement

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2750919B2 (en) * 1989-11-02 1998-05-18 株式会社竹中工務店 Method of forming dense concrete surface
JPH08209606A (en) * 1995-02-02 1996-08-13 Geostr Corp Precast concrete pavement slab and manufacture thereof
JP4548686B2 (en) * 1999-10-19 2010-09-22 株式会社インバックス Concrete, concrete structure, concrete structure construction method, sabo dam and sabo dam construction method
JP2001295212A (en) * 2000-04-10 2001-10-26 Taiheiyo Cement Corp Concrete pavement
JP5904764B2 (en) * 2011-11-08 2016-04-20 鹿島道路株式会社 Road paving method using porous concrete

Also Published As

Publication number Publication date
JP2014159709A (en) 2014-09-04

Similar Documents

Publication Publication Date Title
Nguyen et al. A modified method for the design of pervious concrete mix
Zaetang et al. Properties of pervious concrete containing recycled concrete block aggregate and recycled concrete aggregate
Sriravindrarajah et al. Mix design for pervious recycled aggregate concrete
JP5904764B2 (en) Road paving method using porous concrete
Costa et al. Best practices for pervious concrete mix design and laboratory tests
Assaad et al. Mechanisms of strength loss in underwater concrete
Dolch Air-entraining admixtures
JP6120141B2 (en) Pavement structure construction method
Atoyebi et al. Evaluation of laterized earth moist concrete in construction works
Mrakovčić et al. Effect of aggregate grading on pervious concrete properties
JP6347514B2 (en) Method for manufacturing cast-in-place porous concrete
Kumar Characteristic study on pervious concrete
Eme et al. Effect of coarse aggregate gradation on workability and flexural strength of cement concrete
Nur Hidayah et al. Effect of coarse aggregate sizes on properties of Porous Concrete Paving Blocks
JP5052010B2 (en) Hollow filler
Nur Hidayah et al. Porous concrete paving blocks using coarse aggregate
Ritchie Stability of fresh concrete mixes
CN107063930A (en) A kind of pump concrete education resistance is with sticking poly- property detection means and test method
Arcolezi Influence of aggregate sizes and packing combination on the properties of pervious concrete
Ekwulo et al. Flexural strength and water absorption of concrete made from uniform size and graded coarse aggregates
Jasim et al. Performance Of Self Compacting Concrete Placed Underwater
Priya et al. Experimental Investigation on Pervious Concrete Using Special Admixtures
Hela Durability of self-compacting concrete (SCC)
JP2018193716A (en) Strength estimation method for foot protection part
Le Roux Influence of admixtures on the plastic shrinkage cracking of concrete

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150820

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160729

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170316

R150 Certificate of patent or registration of utility model

Ref document number: 6120141

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150