JP2003279547A - Non-destructive inspection method for mechanical type reinforcing bar coupler and ultrasonic probe for inspection - Google Patents

Non-destructive inspection method for mechanical type reinforcing bar coupler and ultrasonic probe for inspection

Info

Publication number
JP2003279547A
JP2003279547A JP2002080418A JP2002080418A JP2003279547A JP 2003279547 A JP2003279547 A JP 2003279547A JP 2002080418 A JP2002080418 A JP 2002080418A JP 2002080418 A JP2002080418 A JP 2002080418A JP 2003279547 A JP2003279547 A JP 2003279547A
Authority
JP
Japan
Prior art keywords
reinforcing bar
echo
edge
sleeve
probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002080418A
Other languages
Japanese (ja)
Other versions
JP3858172B2 (en
Inventor
Kazumasa Morihama
和正 森濱
Yasushi Ikegaya
靖 池ヶ谷
Shigemi Kobayakawa
恵実 小早川
Shoji Sekino
昌治 関野
Tsuguhiko Yoshino
次彦 吉野
Hajime Hatano
甫 羽田野
Hitoshi Hamazaki
仁 濱崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JAPAN PRESSURE WELDING SOC
JAPAN PRESSURE WELDING SOCIETY
Original Assignee
JAPAN PRESSURE WELDING SOC
JAPAN PRESSURE WELDING SOCIETY
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JAPAN PRESSURE WELDING SOC, JAPAN PRESSURE WELDING SOCIETY filed Critical JAPAN PRESSURE WELDING SOC
Priority to JP2002080418A priority Critical patent/JP3858172B2/en
Publication of JP2003279547A publication Critical patent/JP2003279547A/en
Application granted granted Critical
Publication of JP3858172B2 publication Critical patent/JP3858172B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To easily measure fitting length L of a reinforcing bar fitted with a sleeve and then evaluate performance of a coupler jointed with a mechanical type reinforcing bar coupler. <P>SOLUTION: The mechanical type reinforcing bar coupler is formed by joining end edges 1a, 2a of two reinforcing bars 1, 2 to connect with a sleeve 3. A probe 5 of an ultrasonic wave is contacted to the surface of the reinforcing bar 2 at a distance L<SB>0</SB>from the end edge 3b of the sleeve 3. The ultrasonic wave (surface SH wave) is transmitted from the probe 5 towards the end edge 2a, and then echo reflected with the end edge 2a of the reinforcing bar 2 is received and displayed on a flaw detector 4. A distance L1 from the probe 5 to the end edge 2a of the reinforcing bar 2 is calculated and length L from the end edge 3b to the end edge 2a of the reinforcing bar 2 is measured by analyzing the time-of-arrival of the echo. The analyzing of the time-of-arrival of the echo determines with either 'the time-of-arrival of a pulse firstly reaching' or 'the time-of-arrival of pulse with maximum amplitude among pulses reaching' as the time-of-arrival. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】2つの鉄筋を、端部にスリー
ブを被せて接合してなる機械式鉄筋継手において、継手
が適正か否か、即ちスリーブに被覆された部分、鉄筋の
長さを測定することを目的とする機械式鉄筋継手の非破
壊検査方法及びこの検査方向に最適の超音波探触子に関
する。
BACKGROUND OF THE INVENTION In a mechanical rebar joint in which two rebars are joined by covering the ends with a sleeve, whether or not the joint is appropriate, that is, the length of the rebar covered by the sleeve is measured. The present invention relates to a nondestructive inspection method for a mechanical rebar joint and an ultrasonic probe optimum for this inspection direction.

【0002】[0002]

【従来の技術】鉄筋を長さ方向に接合する継手方式とし
て、圧接・溶接・機械式継手等が採用されている。その
継手の信頼性を確保する上では非破壊検査は欠くことが
できず、圧接継手や溶接継手では非破壊検査によって高
い信頼性が確保されている。
2. Description of the Related Art Pressure welding, welding, mechanical joints and the like are used as joint methods for joining reinforcing bars in the longitudinal direction. Non-destructive inspection is indispensable for ensuring the reliability of the joint, and high reliability is ensured by non-destructive inspection for pressure welded joints and welded joints.

【0003】機械式継手に関しては、現場での適用が容
易な非破壊検査方法が確立されず、重大な疑念が生じた
場合のみ放射線透過試験よって継手の信頼性を確認する
ことが行われる場合があった。
With respect to mechanical joints, non-destructive inspection methods that are easy to apply in the field have not been established, and the reliability of the joints may be confirmed by a radiation transmission test only when serious doubts arise. there were.

【0004】[0004]

【発明が解決しようとする課題】一般に、鉄筋はD19
(鉄筋外径19mm)〜D51(鉄筋外径51mm)まであ
るため、鉄筋径が小さい場合は前記放射線透過試験の適
用が可能であるが、D51のように鉄筋径が大きくなる
と十分な像質のX線フィルムを得ることができず、信頼
性のある検査ができない問題点があった。また、放射線
透過試験では、装置が大きくなり、現場で簡易な検査が
できない問題点があった。
Generally, the reinforcing bar is D19.
(Reinforcing bar outer diameter 19 mm) to D51 (reinforcing bar outer diameter 51 mm), the radiation transmission test can be applied when the reinforcing bar diameter is small, but when the reinforcing bar diameter is large like D51, sufficient image quality is obtained. There is a problem that an X-ray film cannot be obtained and reliable inspection cannot be performed. Further, in the radiation transmission test, there is a problem that the device becomes large and a simple inspection cannot be performed on site.

【0005】[0005]

【課題を解決するための手段】然るにこの発明では、超
音波法(表面SH波探傷法)によって、鉄筋の端縁から反
射されるエコーの到達時間を計測することによって、現
場適用が可能な非破壊検査方法を実現した。
However, according to the present invention, the arrival time of the echo reflected from the edge of the reinforcing bar is measured by the ultrasonic method (surface SH wave flaw detection method), which is not applicable to the field. Destructive inspection method was realized.

【0006】即ち、この発明は、2つの鉄筋の端部にス
リーブを被せて接合してなる機械式鉄筋継手において、
以下の手順で行うことを特徴とする機械式鉄筋継手の非
破壊検査方法である。 (1) 前記スリーブの端縁近傍の鉄筋の表面に超音波探触
子を当てて、前記鉄筋の端縁に向けて、表面SH波から
なる超音波を発信し、(2) スリーブの端縁近傍の鉄筋の
表面で、発信した超音波の内、前記鉄筋の端縁で反射し
たエコーを受信して、(3) 前記エコーの到達時間を分析
することにより前記スリーブ端縁から鉄筋端縁までの長
さを計測する。
That is, the present invention relates to a mechanical rebar joint in which ends of two rebars are covered with sleeves and joined.
This is a nondestructive inspection method for mechanical rebar joints, characterized by performing the following steps. (1) An ultrasonic probe is applied to the surface of the reinforcing bar near the edge of the sleeve to emit ultrasonic waves consisting of surface SH waves toward the edge of the reinforcing bar, and (2) the edge of the sleeve. On the surface of the rebar in the vicinity, among the transmitted ultrasonic waves, receive the echo reflected at the edge of the rebar, (3) from the sleeve edge to the rebar edge by analyzing the arrival time of the echo Measure the length of.

【0007】また、前記において、エコーの到達時間の
分析は、最初に到達したパルス又は最大振幅のパルスを
測定値とする機械式鉄筋継手の非破壊検査方法である。
また、エコーの到達時間の分析は、最初に到達したパル
ス及び最大振幅のパルス比較検討し、最適の値を測定値
とする機械式鉄筋継手の非破壊検査方法である。
Further, in the above description, the analysis of the arrival time of the echo is a nondestructive inspection method for the mechanical rebar joint in which the first arrived pulse or the pulse having the maximum amplitude is used as a measurement value.
Further, the analysis of the arrival time of the echo is a nondestructive inspection method of the mechanical rebar joint in which the pulse that reaches first and the pulse of the maximum amplitude are compared and examined, and the optimum value is used as the measured value.

【0008】また、他の発明は、エコーの到達時間を計
測して、処理し、処理結果を画面表示する探傷器に連結
される超音波探触子であって、前記超音波探触子の超音
波発信方向向けて、所定長さの測定突起を形成したこと
を特徴とする検査用の超音波探触子である。
Another aspect of the present invention is an ultrasonic probe connected to a flaw detector that measures the arrival time of an echo, processes the echo, and displays the processed result on a screen. An ultrasonic probe for inspection, characterized in that a measurement protrusion having a predetermined length is formed in the ultrasonic wave transmitting direction.

【0009】この発明を使用して、エコーを測定すると
図22のようなエコーが表れる。この場合、通常は、図
22(a)に示すように、最初に到達したエコーが最大
となる、予め設定した範囲内で、最大の信号を検出し
て、その信号の到達時間を採用すれば、発信した超音波
が鉄筋中を進む速度が分かっているので、鉄筋の端縁ま
での距離が分かる。
When an echo is measured using the present invention, an echo as shown in FIG. 22 appears. In this case, normally, as shown in FIG. 22A, if the maximum signal is detected within a preset range in which the first echo reaches the maximum, the arrival time of the signal is adopted. , The speed at which the transmitted ultrasonic waves travel in the reinforcing bar is known, so the distance to the edge of the reinforcing bar can be known.

【0010】しかしながら、何らかの原因で、最初に到
達するエコーが小さく、続いて到達するエコーが最初の
エコーより大きい場合が生じる。この場合、最初のエコ
ーの到達時間から長さを測定する方法と最大のエコーの
到達時間から長さを測定する方法の2つがある。
However, for some reason, the echo that arrives first is small, and the echo that arrives subsequently is larger than the first echo. In this case, there are two methods: a method of measuring the length from the arrival time of the first echo and a method of measuring the length from the arrival time of the maximum echo.

【0011】得られた超音波信号は、探触子(圧電素
子)によって、電気信号に返還される。最大エコーを採
用する場合には、その時系列の電気信号(交流)を整流
した後、ある一定の時間範囲で最大信号を求める。
The obtained ultrasonic signal is returned to an electric signal by the probe (piezoelectric element). In the case of adopting the maximum echo, after rectifying the time-series electric signal (alternating current), the maximum signal is obtained within a certain time range.

【0012】即ち、最大値を求めるアルゴリズムは、監
視範囲に設定した最初の時間から、エコー高さの最大値
をデータとその時間とを記録し、次の位置で得られたエ
コー高さと比較して、大きい方のデータを最大値データ
として記録し直す。この処理を監視範囲の終了の時間ま
で続け、その結果最大値データとして残ったエコー高さ
のデータが到達した時間を求める到達時間のデータとし
て採用することができる。従って、この処理は、比較的
容易である。
That is, the algorithm for obtaining the maximum value records the maximum value of the echo height from the first time set in the monitoring range, the data and the time, and compares it with the echo height obtained at the next position. And re-record the larger data as maximum value data. This processing can be continued until the end time of the monitoring range, and as a result, the arrival time of the remaining echo height data as the maximum value data can be adopted as the arrival time data. Therefore, this process is relatively easy.

【0013】他方、最初に到達したエコーを求める場合
には、信号の増幅度を上げるとノイズレベルが上昇し信
号との区別が付かず、ノイズを信号と誤って認識する可
能性がある。そのため、どの程度まで増幅度(ゲイン)
を上げるか定めることや、信号の時間情報を求める処理
が問題となる。例えば、最初のデータを求めるために
は、各データ点でのエコー高さの変化を「+」から
「−」に変化する点を求め、ピークであることを確認す
る必要があり。この場合、数学的には微分法を使用し、
処理ソフト上では差分を行って求める。従って、アルゴ
リズムが複雑になる。
On the other hand, in the case of obtaining the echo that arrives first, if the amplification degree of the signal is increased, the noise level rises and the signal cannot be distinguished, and noise may be erroneously recognized as the signal. Therefore, how much amplification (gain)
There is a problem in the process of determining whether to raise or to raise the time information of the signal. For example, in order to obtain the first data, it is necessary to find the point where the change in echo height at each data point changes from "+" to "-" and confirm that it is a peak. In this case, mathematically, the differential method is used,
The difference is calculated on the processing software. Therefore, the algorithm becomes complicated.

【0014】[0014]

【発明の実施の形態】(1) 機械式鉄筋継手は、2つの鉄
筋1、2の端部にスリーブ3を被せて接合して、2つの
鉄筋1、2を端縁1a、2aをつきあわせて接合する。 (2) スリーブ3の鉄筋2側の端縁3bの近傍(端縁3b
から距離L)で、鉄筋2の表面に超音波探触子5を当
てる(図2)。超音波探触子5に探傷器4に連結されて
いる。 (3) 鉄筋2の端縁2aに向けて、超音波(表面SH波)
を発信する。 (4) 探触子5で、発信した超音波の内、鉄筋2の端縁2
aで反射したエコーを受信して、探傷器4に表示する
(図3)。 (5) エコーの到達時間を分析することにより、探触子5
から鉄筋2の端縁2aまでの距離Lを算出し、スリー
ブ端縁3bから鉄筋端縁2aまでの長さLを計測する。
エコーの到達時間の分析は、「最初に到達したパルスの
到達時間」又は「到達したパルスのうち最大振幅のパル
スの到達時間」のいずれかをもって、到達時間とする。
到達時間と鉄筋中を進む超音波の速度とから距離L
算出できる。 (6) 計測した長さLにより、所定のかん合長さLを保持
した有効な継手か否かを判断できる。 (7) 尚、この測定方法を使用すれば、スリーブ内に、樹
脂やモルタル等の材料を充填した継手であっても、かん
合長さの測定に何ら支承がない。また、機械式継手のみ
ならず、圧着継手の場合でも可能である。
BEST MODE FOR CARRYING OUT THE INVENTION (1) In a mechanical rebar joint, a sleeve 3 is put on the ends of two rebars 1 and 2 to join them, and the two rebars 1 and 2 are abutted with their edges 1a and 2a. To join. (2) Near the edge 3b of the sleeve 3 on the reinforcing bar 2 side (edge 3b
The ultrasonic probe 5 is applied to the surface of the reinforcing bar 2 at a distance L 0 from (FIG. 2). The ultrasonic probe 5 is connected to the flaw detector 4. (3) Ultrasonic waves (surface SH wave) toward the edge 2a of the reinforcing bar 2.
To send. (4) Of the ultrasonic waves transmitted by the probe 5, the edge 2 of the reinforcing bar 2
The echo reflected by a is received and displayed on the flaw detector 4 (FIG. 3). (5) The probe 5 is analyzed by analyzing the arrival time of the echo.
It calculates a distance L 1 to the edge 2a of the reinforcing bar 2 from, for measuring the length L to the rebar edge 2a from the sleeve end edge 3b.
The arrival time of the echo is analyzed as either the "arrival time of the pulse that first arrived" or the "arrival time of the pulse having the maximum amplitude among the arrived pulses".
The distance L 1 can be calculated from the arrival time and the velocity of the ultrasonic wave traveling in the reinforcing bar. (6) Based on the measured length L, it is possible to judge whether or not the joint is an effective one that maintains a predetermined mating length L. (7) If this measuring method is used, there is no support for measuring the mating length even for a joint in which the sleeve is filled with a material such as resin or mortar. Further, not only mechanical joints but also crimp joints are possible.

【0015】また、探触子を接触させる部分の鉄筋表面
に被膜がある場合、一般には、厚い塗装膜や合成樹脂膜
がある場合には、除去する必要があるが、通常のめっき
であれば、そのまま測定可能である。
Further, when there is a film on the surface of the reinforcing bar in the portion to be contacted with the probe, generally, when there is a thick coating film or synthetic resin film, it is necessary to remove it. , Can be measured as it is.

【0016】[0016]

【実験例】(1) 試験体 表1に示すように、予めかん合長さが分かっている各試
験体について測定を行う。リブ付きの異形鉄筋1、2を
つきあわせて、その端部にスリーブ3を被せて、各試験
体を構成する(図1(a)〜(d))。
[Experimental example] (1) Specimen As shown in Table 1, measurement is performed on each specimen whose mating length is known in advance. The deformed rebars 1 and 2 with ribs are brought into contact with each other, and the sleeve 3 is put on the ends thereof to construct each test body (FIGS. 1A to 1D).

【0017】[0017]

【表1】 [Table 1]

【0018】(2) 実験装置 図3に示すように、探傷器4にケーブル10で接続した
探触子5を使用する。
(2) Experimental apparatus As shown in FIG. 3, a probe 5 connected to a flaw detector 4 with a cable 10 is used.

【0019】(3) 実験方法 デジタル超音波探傷器3と表面SH波の探触子5を用い、
探触子5から鉄筋1(鉄筋2)の端縁(端面)1a(2
a)までの距離を測定することによって、かん合長さを
測定する。表1のように、T社・K社のネジ鉄筋を用
い、かん合長さが正常なものからかん合長さが1/4まで
両側鉄筋の両方の縦リブから測定を行う(図1)。リブ
付きの異形鉄筋1、2をつきあわせて、その端部にスリ
ーブ3を被せてあり、スリーブ3の端縁3a、3bから
距離L(L=50mm)の位置に探触子5を当て
て、測定を行う(図3、図19)。
(3) Experimental method Using a digital ultrasonic flaw detector 3 and a surface SH wave probe 5,
From the probe 5 to the end edge (end face) 1a (2) of the reinforcing bar 1 (reinforcing bar 2)
The mating length is measured by measuring the distance to a). As shown in Table 1, using screw rebars from Company T and Company K, measurements are made from both vertical ribs on both sides of the rebar from normal mating length to 1/4 mating length (Fig. 1). . The deformed rebars 1 and 2 with ribs are butted, and the sleeve 3 is covered on the ends thereof, and the probe 5 is placed at a position at a distance L 0 (L 0 = 50 mm) from the end edges 3 a and 3 b of the sleeve 3. Then, the measurement is performed (FIGS. 3 and 19).

【0020】(4) 実験結果 図4〜図18に示すように、機械式継手のかん合長さの
測定を行い、表面SH波探傷法でかん合長さを十分な精度
で測定できることが明らかになった。
(4) Experimental Results As shown in FIGS. 4 to 18, it is clear that the mating length of the mechanical joint can be measured and the mating length can be measured with sufficient accuracy by the surface SH wave flaw detection method. Became.

【0021】[0021]

【実施例】次に、この発明の方法を実施する装置につい
て説明する。前記実験に使用した探傷器4と探触子5と
をケーブル10で連結して、装置とすることもできるが
(図3)、現場で使用するためには、小型で操作容易に
構成する必要がある。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, an apparatus for carrying out the method of the present invention will be described. The flaw detector 4 and the probe 5 used in the experiment can be connected by a cable 10 to form an apparatus (FIG. 3), but in order to use them on site, it is necessary to make them compact and easy to operate. There is.

【0022】即ち、前記探傷器の機能、即ち、上記測定
方法をプログラムとして組み込んだ小型の装置本体7と
表面SH波の探触子5とをケーブル10で連結して、測定
装置6を構成する(図20)。装置本体7は、ON−O
FFスイッチ8と、測定結果を、長さに処理して、長さ
を表示する画面9を有する。
That is, the function of the flaw detector, that is, the measuring device 6 is constructed by connecting the small device body 7 incorporating the above-mentioned measuring method as a program and the surface SH wave probe 5 with the cable 10. (FIG. 20). The device body 7 is ON-O
It has an FF switch 8 and a screen 9 for processing the measurement result into a length and displaying the length L 1 .

【0023】尚、装置本体7は、長さLの値を入力可
能とし、あるいは、Lの値を固定する(探触子を定め
た長さLの位置に載置して測定する)ことにより、画
面9に長さL(即ち、L−L)を表示するようにプ
ログラムを構成することもできる。図中12は、測定時
の各種条件を設定するスイッチである(図20、図21
(b))。
The apparatus main body 7 can input the value of the length L 0 or fixes the value of the L 0 (the probe is placed on the position of the defined length L 0 for measurement). By doing so, the program can be configured to display the length L (that is, L 1 -L 0 ) on the screen 9. In the figure, 12 is a switch for setting various conditions at the time of measurement (FIG. 20, FIG. 21).
(B)).

【0024】また、他の実施例では、探触子5の超音波
の受信発信位置からスリーブ3の端縁3bまでの距離L
を予め一定にするため、探触子5の超音波発信方向の
端面に、測定突起11を突設して、探触子5を構成する
こともできる(図21(a)(b))。即ち、この場合
の装置本体7では、測定突起11の端縁11aをスリー
ブの端縁3bに当てた状態で、固定される長さLを採
用することにより、画面9に数値として求める長さLを
表示させることができる。更に、作業者は、探触子の下
面(超音波送受信面)を鉄筋1の表面(通常は、縦リブ
上)に当てると共に、測定突起11端縁11aをスリー
ブの端縁3bに当てるだけで、スリーブ3のかん合長さ
Lを測定できる。
In another embodiment, the distance L from the ultrasonic wave reception / transmission position of the probe 5 to the edge 3b of the sleeve 3 is L.
In order to keep 0 constant in advance, the probe 5 can be configured by projecting the measurement projection 11 on the end face of the probe 5 in the ultrasonic wave transmitting direction (FIGS. 21A and 21B). . That is, in the device main body 7 in this case, the length L 0 fixed on the screen 9 by adopting the fixed length L 0 in a state where the end edge 11 a of the measurement protrusion 11 is in contact with the end edge 3 b of the sleeve. L can be displayed. Further, the operator only has to apply the lower surface (ultrasonic wave transmitting / receiving surface) of the probe to the surface of the reinforcing bar 1 (usually on the vertical ribs) and the measurement projection 11 end edge 11a to the sleeve end edge 3b. The engagement length L of the sleeve 3 can be measured.

【0025】[0025]

【発明の効果】スリーブの端縁近傍の鉄筋の表面に超音
波探触子を当てて、鉄筋の端縁に向けて、表面SH波か
らなる超音波を発信し、エコーを受信することにより、
鉄筋の端縁までの距離を測定できるので、容易にスリー
ブが嵌合した鉄筋のかん合長さを測定し、機械式継手に
よって、接合した継手の性能を評価できる効果がある。
また、探触子と探傷器とから構成される装置で計測でき
るので、持ち運び容易な測定システムを構成できる。
EFFECT OF THE INVENTION By applying an ultrasonic probe to the surface of the reinforcing bar near the edge of the sleeve and transmitting ultrasonic waves consisting of surface SH waves toward the edge of the reinforcing bar and receiving echo,
Since the distance to the edge of the reinforcing bar can be measured, there is an effect that the fitting length of the reinforcing bar fitted with the sleeve can be easily measured and the performance of the bonded joint can be evaluated by the mechanical joint.
Moreover, since measurement can be performed with a device including a probe and a flaw detector, a measurement system that is easy to carry can be configured.

【0026】また、測定突起を設けた探触子を使用した
場合には、作業者の熟練度の有無による測定誤差を無く
し、極めて簡易にかん合長さを測定できる効果がある。
Further, when the probe provided with the measurement protrusion is used, there is an effect that the measurement error due to the presence or absence of the skill of the operator is eliminated, and the engagement length can be measured very easily.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)〜(d)は、実験例の4つの試験体の正
面図である。
1A to 1D are front views of four test bodies of an experimental example.

【図2】発明の実施例の概念図である。FIG. 2 is a conceptual diagram of an embodiment of the invention.

【図3】この発明の実験例の装置の構成を表す概念図で
ある。
FIG. 3 is a conceptual diagram showing a configuration of an apparatus of an experimental example of the present invention.

【図4】T社D25有機かん合長さを表したグラフであ
る。
FIG. 4 is a graph showing the organic mating length of D25 manufactured by T company.

【図5】T社D25有機かん合長さの誤差を表したグラフ
である。
FIG. 5 is a graph showing the error in the organic coupling length of D25 manufactured by T company.

【図6】T社D25有機測定時のエコー高さを表したグラ
フである。
FIG. 6 is a graph showing an echo height at the time of organic measurement of D25 manufactured by T company.

【図7】T社D25無機かん合長さを表したグラフであ
る。
FIG. 7 is a graph showing the D25 inorganic mating length of Company T.

【図8】T社D25無機かん合長さの誤差を表したグラフ
である。
FIG. 8 is a graph showing the error in the D25 inorganic mating length of Company T.

【図9】T社D25無機測定時のエコー高さを表したグラ
フである。
FIG. 9 is a graph showing the echo height at the time of measuring D25 inorganic matter of Company T.

【図10】T社D51無機かん合長さを表したグラフであ
る。
FIG. 10 is a graph showing the D51 inorganic mating length of Company T.

【図11】T社D51無機かん合長さの誤差を表したグラ
フである。
FIG. 11 is a graph showing an error in the inorganic mating length of D51 manufactured by T company.

【図12】T社D51無機測定時のエコー高さを表したグ
ラフである。
FIG. 12 is a graph showing the echo height at the time of D51 inorganic measurement of Company T.

【図13】K社D25かん合長さを表したグラフである。FIG. 13 is a graph showing D25 mating length of K company.

【図14】K社D25かん合長さの誤差を表したグラフで
ある。
FIG. 14 is a graph showing an error in a mating length of D25 manufactured by K company.

【図15】K社D25測定時のエコー高さを表したグラフ
である。
FIG. 15 is a graph showing the echo height when measuring D25 of K company.

【図16】K社D51かん合長さを表したグラフである。FIG. 16 is a graph showing a mating length of D51 manufactured by K company.

【図17】K社D51かん合長さの誤差を表したグラフで
ある。
FIG. 17 is a graph showing an error in a mating length of D51 manufactured by K company.

【図18】K社D51測定時のエコー高さを表したグラフ
である。
FIG. 18 is a graph showing the echo height when measuring D51 of K company.

【図19】(a)〜(c)は、実験例に使用する試験体
と測定位置を表す概念図である。
19 (a) to (c) are conceptual diagrams showing a test body used in an experimental example and a measurement position.

【図20】この発明の実施に使用する測定装置の構成図
である。
FIG. 20 is a configuration diagram of a measuring device used for implementing the present invention.

【図21】この発明の探触子で、(a)は探触子を測定
対象のスリーブに当接している状態の図で、(b)は探
触子を使用した測定装置を表す図である。
FIG. 21 is a diagram of the probe of the present invention, in which (a) is a state in which the probe is in contact with a sleeve to be measured, and (b) is a diagram showing a measuring device using the probe. is there.

【図22】(a)(b)は、この発明のエコーを表示し
た画面である。
22 (a) and (b) are screens displaying the echo of the present invention.

【符号の説明】[Explanation of symbols]

1 鉄筋 1a 鉄筋の端縁 2 鉄筋 2a 鉄筋の端縁 3 スリーブ 3a、3b スリーブの端縁 4 探傷器 5 探触子 6 測定装置 7 装置本体 9 画面 11 測定突起 11a 測定突起の端縁 1 rebar 1a Edge of rebar 2 rebar 2a Edge of rebar 3 sleeves 3a, 3b Edge of sleeve 4 flaw detector 5 probe 6 Measuring device 7 Device body 9 screens 11 Measurement protrusion 11a Edge of measurement protrusion

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小早川 恵実 東京都江東区越中島3−4−17 清水建設 株式会社内 (72)発明者 関野 昌治 東京都品川区八潮3−2−23 日本ガス圧 接株式会社内 (72)発明者 吉野 次彦 東京都新宿区揚場町1−24 飯田橋升本ビ ル5階 株式会社ムサシ設計内 (72)発明者 羽田野 甫 千葉県野田市山崎2641 東京理科大学内 (72)発明者 濱崎 仁 茨城県つくば市立原1 独立行政法人建築 研究所内 Fターム(参考) 2G047 AA05 AB01 AB07 BA03 BC18 CA01 CB03 DA01 EA08 EA10 GA01 GA03 GG24 GG28 GG30 GH03 GH04    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Emi Kobayakawa             Shimizu Construction 3-4-17 Etchujima, Koto-ku, Tokyo             Within the corporation (72) Inventor Shoji Sekino             3-2-23 Yashio, Shinagawa-ku, Tokyo Japan Gas Pressure             Inside the joint stock company (72) Inventor Tsujihiko Yoshino             1-24 Iidabashi Masumoto Bi, 1-24 Yangbacho, Shinjuku-ku, Tokyo             Le 5th floor Musashi Co., Ltd. (72) Inventor, Hadano             2641 Yamazaki, Noda City, Chiba Prefecture Tokyo University of Science (72) Inventor Hitoshi Hamasaki             1 Tatehara, Tsukuba-shi, Ibaraki Architecture             In the laboratory F term (reference) 2G047 AA05 AB01 AB07 BA03 BC18                       CA01 CB03 DA01 EA08 EA10                       GA01 GA03 GG24 GG28 GG30                       GH03 GH04

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 2つの鉄筋の端部にスリーブを被せて接
合してなる機械式鉄筋継手において、以下の手順で行う
ことを特徴とする機械式鉄筋継手の非破壊検査方法。 (1) 前記スリーブの端縁近傍の鉄筋の表面に超音波探触
子を当てて、前記鉄筋の端縁に向けて、表面SH波から
なる超音波を発信し、(2) スリーブの端縁近傍の鉄筋の
表面で、発信した超音波の内、前記鉄筋の端縁で反射し
たエコーを受信して、(3) 前記エコーの到達時間を分析
することにより前記スリーブ端縁から鉄筋端縁までの長
さを計測する。
1. A non-destructive inspection method for a mechanical rebar joint, which comprises performing the following steps in a mechanical rebar joint formed by covering a sleeve on the ends of two rebars and joining them. (1) An ultrasonic probe is applied to the surface of the reinforcing bar near the edge of the sleeve to emit ultrasonic waves consisting of surface SH waves toward the edge of the reinforcing bar, and (2) the edge of the sleeve. On the surface of the rebar in the vicinity, among the transmitted ultrasonic waves, receive the echo reflected at the edge of the rebar, (3) from the sleeve edge to the rebar edge by analyzing the arrival time of the echo Measure the length of.
【請求項2】 エコーの到達時間の分析は、最初に到達
したパルス又は最大振幅のパルスを測定値とする請求項
1記載の機械式鉄筋継手の非破壊検査方法。
2. The nondestructive inspection method for a mechanical rebar joint according to claim 1, wherein the arrival time of the echo is analyzed by using a pulse that reaches first or a pulse having the maximum amplitude as a measurement value.
【請求項3】 エコーの到達時間の分析は、最初に到達
したパルス及び最大振幅のパルス比較検討し、最適の値
を測定値とする請求項1記載の機械式鉄筋継手の非破壊
検査方法。
3. The nondestructive inspection method for a mechanical rebar joint according to claim 1, wherein the analysis of the arrival time of the echo is carried out by comparing and comparing the first arrived pulse and the pulse of the maximum amplitude, and the optimum value is used as the measured value.
【請求項4】 エコーの到達時間を計測して、処理し、
処理結果を画面表示する探傷器に連結される超音波探触
子であって、前記超音波探触子の超音波発信方向向け
て、所定長さの測定突起を形成したことを特徴とする検
査用の超音波探触子。
4. Echo arrival time is measured and processed,
An ultrasonic probe connected to a flaw detector for displaying a processing result on a screen, characterized in that a measurement protrusion having a predetermined length is formed in the ultrasonic wave transmitting direction of the ultrasonic probe. Ultrasonic probe for.
JP2002080418A 2002-03-22 2002-03-22 Nondestructive inspection method for mechanical reinforcing steel joints and ultrasonic probe for inspection Expired - Fee Related JP3858172B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002080418A JP3858172B2 (en) 2002-03-22 2002-03-22 Nondestructive inspection method for mechanical reinforcing steel joints and ultrasonic probe for inspection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002080418A JP3858172B2 (en) 2002-03-22 2002-03-22 Nondestructive inspection method for mechanical reinforcing steel joints and ultrasonic probe for inspection

Publications (2)

Publication Number Publication Date
JP2003279547A true JP2003279547A (en) 2003-10-02
JP3858172B2 JP3858172B2 (en) 2006-12-13

Family

ID=29229461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002080418A Expired - Fee Related JP3858172B2 (en) 2002-03-22 2002-03-22 Nondestructive inspection method for mechanical reinforcing steel joints and ultrasonic probe for inspection

Country Status (1)

Country Link
JP (1) JP3858172B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010008215A (en) * 2008-06-26 2010-01-14 Jfe Steel Corp Ultrasonic measuring instrument and ultrasonic measuring method
CN112611553A (en) * 2020-11-30 2021-04-06 山东省建筑科学研究院有限公司 In-situ detection device and method for steel bar sleeve connecting piece

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105259310A (en) * 2015-10-22 2016-01-20 中航卓越锻造(无锡)有限公司 Flaw detection device for annular forging
CN109470769B (en) * 2018-09-30 2021-07-02 中国建筑科学研究院有限公司 Method and system for detecting grouting fullness of sleeve by ultrasonic reflection method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010008215A (en) * 2008-06-26 2010-01-14 Jfe Steel Corp Ultrasonic measuring instrument and ultrasonic measuring method
CN112611553A (en) * 2020-11-30 2021-04-06 山东省建筑科学研究院有限公司 In-situ detection device and method for steel bar sleeve connecting piece
CN112611553B (en) * 2020-11-30 2022-08-26 山东省建筑科学研究院有限公司 In-situ detection device and method for steel bar sleeve connecting piece

Also Published As

Publication number Publication date
JP3858172B2 (en) 2006-12-13

Similar Documents

Publication Publication Date Title
US7789286B2 (en) Method and apparatus for assessing the quality of spot welds
NL2003213C2 (en) ULTRASONIC INSPECTION METHOD AND DEVICE FOR PLASTICS WALLS.
JP6182236B1 (en) Lamination peel test method and peel inspection apparatus
JP4116483B2 (en) Tubular ultrasonic inspection method and apparatus
JP2007046913A (en) Welded structure flaw detection testing method, and steel welded structure flaw detector
JP2007285813A (en) Ultrasonic flaw inspection device and ultrasonic flaw inspection method
JP2008039429A (en) Device and method for nondestructive inspection on reinforced concrete structure by electromagnetic wave
US20150300992A1 (en) Method for measuring height of lack of penetration and ultrasonic flaw detector
JP2003279547A (en) Non-destructive inspection method for mechanical type reinforcing bar coupler and ultrasonic probe for inspection
US7472598B2 (en) Ultrasonic inspection apparatus and method for evaluating ultrasonic signals
JP2008164396A (en) Flaw detection method and flaw detector used therefor
JP4364031B2 (en) Ultrasonic flaw detection image processing apparatus and processing method thereof
JPH10221309A (en) Determining method of welded part, measuring method of unwelded part, and inspecting device of the welded part
WO2017119359A1 (en) Ultrasonic inspection method
JP2000002692A (en) Method for searching defect in concrete structure or behind the structure
JP2002214205A (en) Ultrasonic flaw detector
JP2003090829A (en) Non-destructive inspection method of composite material
JP2005147770A (en) Ultrasonic flaw detector
JP7349390B2 (en) Ultrasonic inspection device for welded parts
JP4475477B1 (en) Inspection method using guide waves
JP2009276134A (en) Ultrasonic flaw detecting method and ultrasonic flaw detector
JPH08219749A (en) Method and equipment for measuring gap at bottom of socket
RU2481571C1 (en) Combined method for ultrasonic inspection of quality of weld joints
WO2000040960A9 (en) Combined ultrasonic techniques for evaluations (cute)
JPH0254505B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20041213

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20060502

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060516

A521 Written amendment

Effective date: 20060718

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20060822

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060905

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090929

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100929

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100929

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110929

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120929

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120929

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20130929

LAPS Cancellation because of no payment of annual fees