JP2003279168A - Refrigerating system, device for instantaneously freezing humidity - Google Patents

Refrigerating system, device for instantaneously freezing humidity

Info

Publication number
JP2003279168A
JP2003279168A JP2002119905A JP2002119905A JP2003279168A JP 2003279168 A JP2003279168 A JP 2003279168A JP 2002119905 A JP2002119905 A JP 2002119905A JP 2002119905 A JP2002119905 A JP 2002119905A JP 2003279168 A JP2003279168 A JP 2003279168A
Authority
JP
Japan
Prior art keywords
pressure refrigerant
temperature
refrigerant liquid
air
humidity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002119905A
Other languages
Japanese (ja)
Inventor
Takao Hara
隆雄 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CENTRAL ENGINEERING KK
Original Assignee
CENTRAL ENGINEERING KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CENTRAL ENGINEERING KK filed Critical CENTRAL ENGINEERING KK
Priority to JP2002119905A priority Critical patent/JP2003279168A/en
Publication of JP2003279168A publication Critical patent/JP2003279168A/en
Pending legal-status Critical Current

Links

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a refrigerating system, a device for instantaneously freezing humidity reducing equipment cost of an air cooling system and saving energy by reducing size and weight of an evaporator heat exchanging device to contribute protection of each environment. <P>SOLUTION: High temperature high pressure refrigerant gas discharged from a compressor 1 is sent to a condenser 3. When middle temperature high pressure refrigerant liquefied gas cooled by a fan 15 passes through spiral fine tube 9, the same is transformed to normal temperature middle pressure refrigerant liquid. After that, the normal temperature middle pressure refrigerant liquid pass through series of two spiral fine tubes 12 to be transformed to super low temperature low pressure refrigerant liquid and to be very quickly sent to a probe 11. Consequently, temperature and humidity can be instantaneously dropped when air 16 compressed by an air compressor is sent to the probe 11. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、空気冷却システム
に用いられる湿度瞬時氷結装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a humidity instantaneous icing device used in an air cooling system.

【0002】[0002]

【従来の技術】現在、一般に使用されている空気冷却シ
ステムは、図2に示される様に、冷房サイクル中に封入
された冷媒フロンを圧縮機1で高温高圧の冷媒ガスにし
て、大きい放熱盤3(コンデンサー)で空気冷却させ凝
縮液化(一部ガス状態のまま)させて、液タンク5・導
管6を経てドライヤー7・導管8を経て膨張弁9で減圧
膨張させ低圧の冷媒液ガスとし、この冷媒液ガスを蒸発
器13に送り熱交換させる(庫内を冷却する)事によ
り、蒸発気化し低圧冷媒ガスとなり圧縮機1に戻す用に
した物である。
2. Description of the Related Art As shown in FIG. 2, an air cooling system which is generally used at present has a large heat sink by using a compressor 1 to convert a refrigerant CFC enclosed in a cooling cycle into a high temperature and high pressure refrigerant gas. 3 (condenser) performs air cooling to condense and liquefy (partially in a gas state), decompress and expand with the expansion valve 9 through the liquid tank 5, the conduit 6, the dryer 7 and the conduit 8, to obtain a low-pressure refrigerant liquid gas, This refrigerant liquid gas is sent to the evaporator 13 for heat exchange (cooling the inside of the refrigerator) to be evaporated and vaporized into a low pressure refrigerant gas which is returned to the compressor 1.

【0003】この様な従来の空気冷却システムにおいて
は、蒸発器13内で空気冷却を瞬時に出来ない為に大型
構造とならざるを得ない事から、装置のコンパクト化を
図る為に蒸発器13を小型化に色々と検討が成されてい
るが、現状の空気冷却システムでは、熱交換面積を大幅
に減らす事は技術的に困難であり依然として大型の蒸発
器13が用いられている。
In such a conventional air cooling system, air cannot be instantaneously cooled in the evaporator 13, so that the structure is inevitably large, so that the evaporator 13 is designed to be compact. Although various studies have been made to reduce the size of the air conditioner, it is technically difficult to significantly reduce the heat exchange area in the current air cooling system, and the large evaporator 13 is still used.

【0004】[0004]

【発明が解決しようとする課題】本発明は、従来の空気
冷却システムが抱える問題点の解消を図る為、蒸発器熱
交換装置を小型・軽量化を図って空気冷却システムにお
ける装置、コスト低減化並びに省エネルギー化を推進さ
せ、地球環境の保全に一翼を担わせる事が出来る冷凍冷
却システム・湿度瞬時氷結装置を提供する事にある。
SUMMARY OF THE INVENTION In order to solve the problems of the conventional air cooling system, the present invention reduces the size and weight of the evaporator heat exchange device to reduce the device and cost in the air cooling system. In addition, it is to provide a refrigeration / cooling system and a humidity instantaneous icing device that can promote energy conservation and play a part in protecting the global environment.

【0005】本発明は、先に特開平10−259958
号明細書に置いて、キャピラリコイルの減圧膨張装置を
高度の運動エネルギーに変換させる機能を有する熱変換
装置を使用する事により、従来の蒸発器13と比較する
と20分の1の面積になり、スペースも最小限ですみ電
気使用量も2分の1ですむ。
The present invention was previously disclosed in Japanese Patent Laid-Open No. 10-259958.
According to the specification, by using the heat conversion device having the function of converting the decompression / expansion device of the capillary coil into a high degree of kinetic energy, the area becomes 20 times smaller than that of the conventional evaporator 13. Space is minimal and electricity consumption is only half.

【0006】[0006]

【課題を解決するための手段】本発明は、上記の目的を
達成する為、以下に述べる構成とした物である。即ち本
発明における請求項1の発明は、冷凍冷却システムに関
する物で、圧縮機1から吐出した高温高圧冷媒ガスを凝
縮器3に送りファン15で冷却した中温高圧冷媒液ガス
が螺旋状細菅9内を通過すると常温中圧冷媒液に変化し
後に、二連の螺旋状細菅12を通過すると超低温低圧冷
媒液に変化し、非常に速くプローブ11に送り込まれ、
エアーコンプレッサーで加圧した空気16をプローブ1
1内に送り込まれた時に、瞬時に温度・湿度を低温にさ
せる事が出来る冷凍冷却システム・瞬時湿度氷結装置を
使用している事を特徴とする。
The present invention has the following constitution in order to achieve the above object. That is, the invention of claim 1 in the present invention relates to a refrigerating and cooling system, wherein the high-temperature high-pressure refrigerant gas discharged from the compressor 1 is sent to the condenser 3 and cooled by the fan 15, and the medium-temperature high-pressure refrigerant liquid gas is a spiral tube 9. When it passes through the inside, it changes into a room temperature and medium pressure refrigerant liquid, and after passing through the double spiral thin tubes 12, it changes into an ultra low temperature low pressure refrigerant liquid and is sent to the probe 11 very quickly.
Air 16 compressed by an air compressor is used as probe 1.
It is characterized by using a freezing / cooling system / instantaneous humidity icing device that can instantly lower the temperature and humidity when it is sent into 1.

【0007】また、本発明における請求項2の発明は、
運動エネルギーを使用し凝縮器3から出た中温高圧冷媒
液ガスを螺旋状細菅9にて加速・スピン回転・引圧機能
を持つミニ装置を経て完全液化し、減圧膨張弁より性能
の良い二連の螺旋状細菅12を使い低温低圧冷媒液を作
り冷媒量を多く押し出し瞬時に空気・湿度を低温にす
る、冷凍冷却システム・湿度瞬時氷結装置を特徴とす
る。
The invention of claim 2 in the present invention is
The medium-temperature high-pressure refrigerant liquid gas discharged from the condenser 3 using kinetic energy is completely liquefied by the spiral thin tube 9 through a mini device having an acceleration / spin rotation / attraction function, and has a better performance than the decompression expansion valve. It is characterized by a freezing and cooling system and a humidity instantaneous icing device that creates a low-temperature low-pressure refrigerant liquid by using a series of spiral thin tubes 12 and pushes out a large amount of refrigerant to instantly lower the temperature of air and humidity.

【0008】この様な本発明によれば、冷凍冷却システ
ムにおける凝縮行程での熱変換機能と蒸発行程での加速
・引圧機能を兼ね備えている物と、使用されている現行
の空気冷却システムのそれとは全く異なっている点に特
徴があり、基本的には高温高圧冷媒ガスに対して高速・
スピン回転・引圧作用を成す過程において熱放熱が他の
エネルギーで出来る事に着目し、それを冷凍冷却システ
ムの凝縮行程・蒸発行程に応用する事によって、凝縮・
液化・減圧の為に必要な熱源の大部分を循環冷媒自体に
求める用にした点に本発明の特徴とする。
According to the present invention as described above, the refrigeration / cooling system having both the heat conversion function in the condensation process and the acceleration / pressure drawing function in the evaporation process and the existing air cooling system used It is characterized by the fact that it is completely different from that.
Focusing on the fact that heat radiation can be done by other energy in the process of spin rotation / pressure attraction, and applying it to the condensation / evaporation process of the refrigeration / cooling system,
The feature of the present invention is that most of the heat source required for liquefaction / decompression is used for the circulating refrigerant itself.

【0009】即ち、本発明に係る新規な冷凍冷却システ
ムでは、液化させる為の運動エネルギー方式を使用し、
減圧膨張弁の替わりに高速・スピン回転・引圧作用を用
いる事により液変換が出来、最大級に冷凍能力を持つ冷
媒液にする方式を採用した点を特徴としている。この事
は、研究及び実験を重ねた結果に基づいて充分に確認さ
れた所であり、また、発明の実施形態の説明によっても
明らかにされる。
That is, the novel refrigeration / cooling system according to the present invention uses a kinetic energy system for liquefying,
The feature of this system is that it uses a high-speed, spin-rotation, and suction action instead of the decompression expansion valve to perform liquid conversion, and a refrigerant liquid with maximum refrigerating capacity is adopted. This has been fully confirmed based on the results of repeated research and experiments, and will be clarified by the description of the embodiments of the invention.

【0010】[0010]

【発明の実施の形態】以下、本発明の実施形態の好まし
い例について添付図面を参照しながら説明する。図1に
は、本発明の実施形態に係る冷凍冷却システムの冷凍回
路が示される。冷凍冷却システムは、圧縮機1と凝縮器
3と完全液化装置・螺旋状細菅9と減圧膨張弁の替わり
に二連の螺旋状細菅12とプローブ11とを要素機器と
して備え、それら機器を冷媒配管によって循環的に接続
する事によって冷凍冷却システムの装置が構成される。
Preferred embodiments of the present invention will be described below with reference to the accompanying drawings. FIG. 1 shows a refrigerating circuit of a refrigerating and cooling system according to an embodiment of the present invention. The refrigerating / cooling system includes a compressor 1, a condenser 3, a complete liquefying device, a spiral thin tube 9, and a double spiral spiral tube 12 and a probe 11 in place of the decompression expansion valve as element devices. The device of the refrigerating and cooling system is configured by circulating the refrigerant pipes.

【0011】圧縮機1、及び凝縮器3は、現行の空気冷
却システムに使用される物と構造、機能が基本的に変わ
らないので、ここでは詳細な説明を省略し、本発明の特
徴とされる構成要素である完全液化装置・螺旋状細管9
と運動エネルギーを使用する二連の螺旋状細菅12の態
様について以下説明する。
Since the compressor 1 and the condenser 3 are basically the same in structure and function as those used in the current air cooling system, detailed description thereof will be omitted here, and it is a feature of the present invention. Complete liquefaction device, spiral thin tube 9 which is a component
The mode of the double spiral capillary tube 12 using the kinetic energy and the kinetic energy will be described below.

【0012】上記、完全液化装置・螺旋状細菅9は例と
して数メートルの熱伝導性能に優れている細管、例とし
て外径5ミリの銅管を螺旋状に巻き形成されていて、本
実施形態の例では、螺旋状細菅9の内部を流れる冷媒液
ガスを高速・スピン回転・僅かな減圧を行わせる事が出
来、冷媒ガスを液化させる事が可能なミニ装置を特徴と
される。
The complete liquefaction device / spiral thin tube 9 is formed by spirally winding a thin tube of several meters having excellent heat conduction performance, for example, a copper tube having an outer diameter of 5 mm. The example of the form is characterized by a mini device capable of liquefying the refrigerant liquid gas, which is capable of performing high speed, spin rotation, and slight pressure reduction of the refrigerant liquid gas flowing inside the spiral capillary tube 9.

【0013】上記、二連の螺旋状細菅12、例として数
メートルの熱伝導性能に優れている細菅例として外径3
ミリの銅管を螺旋状に巻き形成されていて、本実施形態
の例では、螺旋状細菅の内部を流れる冷媒液を高速・ス
ピン回転・引圧作用を用いる事により、冷媒液が瞬時に
超低温・低圧冷媒液に変化する事を特徴とされる。
The above-mentioned double spiral thin tube 12, for example, a thin tube having an excellent heat transfer performance of several meters, has an outer diameter of 3 as an example.
A millimeter copper tube is spirally wound, and in the example of the present embodiment, the refrigerant liquid flowing in the spiral thin tube is subjected to high speed, spin rotation, and pressure action so that the refrigerant liquid is instantaneously supplied. It is characterized by changing to ultra low temperature and low pressure refrigerant liquid.

【0014】なお、本発明において重要な構成要素部材
である螺旋状細菅9と二連の螺旋状細菅12は、用いら
れる金属の材質、菅の長さ及び径、螺旋の径、ピッチ及
び巻き方向の各条件について、数々の試験を重ねる事に
より細管を設定すれば良いこの場合、所定サイズの細菅
の1本を螺旋状に加工した物、巻き方向が異なる螺旋状
細菅の2本の直列・並列に接続した物等のいずれにして
も細菅の螺旋状が必要であり、高速・スピン回転・引圧
・熱変換を効率的に成し得る条件の螺旋状細菅を随時選
択すれば良い。
The spiral capillaries 9 and the double spiral capillaries 12, which are important constituent members in the present invention, are made of a metal material used, the length and diameter of the pipe, the diameter of the spiral, the pitch, and the like. For each condition in the winding direction, it is only necessary to set up a thin tube by repeating a number of tests. In this case, one thin tube of a predetermined size is processed into a spiral shape, and two thin spiral tubes with different winding directions are used. A spiral tube is required regardless of whether it is connected in series or in parallel, and a spiral tube with a condition that can efficiently perform high speed, spin rotation, drawing pressure, and heat conversion is selected as needed. Just do it.

【0015】[0015]

【実施例】上記、第一実施例においてフロン冷媒R−2
2を用いた具体的な実施装置に関して、その各部におけ
る冷媒の圧力・温度の状態は図1を参照して、中温・高
圧冷媒ガス(イ)1.1パスカル35度・高圧冷媒液ガ
ス(ロ)1.1パスカル33度・高圧冷媒液ガス(ハ)
1.1パスカル31度・高圧冷媒液ガス(ニ)1.1パ
スカル31度・高圧冷媒液ガス(ホ)1.1パスカル3
0度・中圧冷媒液(ヘ)0.7パスカル18度・低温低
圧冷媒液(ト)0.25パスカル−10度・低温低圧冷
媒ガス(チ)0.25パスカル0度・となる。
[Embodiment] In the above-mentioned first embodiment, the CFC refrigerant R-2
With respect to the specific implementation device using No. 2, the state of the pressure and temperature of the refrigerant in each part will be described with reference to FIG. 1. Medium temperature high pressure refrigerant gas (a) 1.1 Pascal 35 degrees high pressure refrigerant liquid gas (ro ) 1.1 Pascal 33 degrees high pressure refrigerant liquid gas (c)
1.1 Pascal 31 degrees high pressure refrigerant liquid gas (d) 1.1 Pascal 31 degrees high pressure refrigerant liquid gas (e) 1.1 Pascal 3
It becomes 0 degrees, medium pressure refrigerant liquid (f) 0.7 Pascal 18 degrees, low temperature low pressure refrigerant liquid (G) 0.25 Pascal-10 degrees, low temperature low pressure refrigerant gas (H) 0.25 Pascal 0 degrees.

【0016】なお上記、第二実施例においてフロン冷媒
R−22を用いた具体的な実施装置に関して、その各部
における冷媒の圧力・温度の状態は図2を参照して、高
温・高圧冷媒ガス(イ)1.8パスカル85度・高温・
高圧冷媒液ガス(ロ)1.8パスカル50度・高圧冷媒
液ガス(ハ)1.8パスカル47度・高圧冷媒液ガス
(ニ)1.8パスカル47度・高圧冷媒液ガス(ホ)
1.8パスカル45度・低圧冷媒液ガス(ヘ)0.5パ
スカル12度・低圧冷媒液ガス(ト)0.5パスカル2
0度・中温低圧冷媒ガス(チ)0.5パスカル25度・
となる。
Regarding the concrete embodiment of the device using the CFC refrigerant R-22 in the second embodiment, the pressure / temperature state of the refrigerant in each part will be described with reference to FIG. B) 1.8 Pascal 85 degrees high temperature
High-pressure refrigerant liquid gas (B) 1.8 Pascal 50 degrees, high-pressure refrigerant liquid gas (C) 1.8 Pascal 47 degrees, high-pressure refrigerant liquid gas (D) 1.8 Pascal 47 degrees, high-pressure refrigerant liquid gas (E)
1.8 Pascal 45 degrees, low pressure refrigerant liquid gas (f) 0.5 Pascal 12 degrees, low pressure refrigerant liquid gas (g) 0.5 Pascal 2
0 degree, medium temperature low pressure refrigerant gas (h) 0.5 pascal 25 degree
Becomes

【0017】(発明の効果)本発明は、以上説明した様
な形態で実施させ、以下に記載される様な効果を奏す
る。即ち、本発明によれば、蒸発器13で瞬時空気冷却
が出来ない為に大型構造とならざるを得ない原因であっ
た点に着目し、新規な冷凍冷却システム・湿度瞬時氷結
装置の完成に基づき蒸発用熱交換面積の飛躍的な縮小を
図る事を可能とし、空気・湿度を瞬時に過冷却出来る為
に、ネジ切・フライス加工・NC旋盤などのオイル冷却
を取り除き産業廃棄物を無くし、空気・湿度冷却で通常
のオイル冷却より2倍以上の加工が出来産業界に寄与す
る所、正に多大な発明である。
(Effects of the Invention) The present invention is carried out in the form described above, and has the effects described below. That is, according to the present invention, attention is focused on the fact that the evaporator 13 cannot be instantaneously cooled by air so that a large structure is inevitable, and a new refrigerating / cooling system / humidity instantaneous icing device is completed. Based on this, it is possible to dramatically reduce the heat exchange area for evaporation, and to instantaneously supercool air and humidity, remove oil cooling such as thread cutting, milling, and NC lathe, and eliminate industrial waste. This is a great invention because it can process air and humidity more than twice as much as ordinary oil and contribute to the industry.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の形態に係る冷凍冷却システム・
湿度瞬時氷結装置の回路図である。
FIG. 1 is a refrigeration / cooling system according to an embodiment of the present invention.
It is a circuit diagram of a humidity instantaneous freezing device.

【図2】従来の空気冷却システムの構成図である。FIG. 2 is a configuration diagram of a conventional air cooling system.

【符号の説明】[Explanation of symbols]

1=圧縮機 2=導管 3=凝縮
器 4=導管 5=レシーバータンク 6=導管 7=ドライヤー 8=導管 9=螺旋
状細菅 10=導管 11=プローブ 12=二
連の螺旋状細菅 13=蒸発器 14=サクション菅 15=フ
ァン 16=空気
1 = compressor 2 = conduit 3 = condenser 4 = conduit 5 = receiver tank 6 = conduit 7 = dryer 8 = conduit 9 = spiral tubule 10 = conduit 11 = probe 12 = double spiral tubule 13 = Evaporator 14 = Suction tube 15 = Fan 16 = Air

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機1から吐出した高温高圧冷媒ガス
が導管2を経て、通常の凝縮器3に送り空気冷却をした
中温(常温より高い温度)高圧冷媒ガスが導管4を経
て、レシーバータンク5に送り導管6を経てドライヤー
7(水分・カスなど取去る)に送り、導管8を経て中温
高圧冷媒液・ガスは螺旋状細菅9内を通過し導管10に
至る時は常温中圧冷媒液に変化した後に二連の螺旋状細
菅12を経て超低温低圧冷媒液が非常に速くプローブ1
1の内側に螺旋回転している銅管内に低温低圧冷媒液を
通過させプローブ11内にエアーコンプレッサーで加圧
した空気16を送りプローブ11内を通過した時に瞬時
に湿度を低温にし放出させる事が出来る様にし、サクシ
ョン菅14に導き圧縮機1に吸入させる冷凍冷却システ
ム・湿度瞬時氷結装置。
1. A high-temperature high-pressure refrigerant gas discharged from a compressor 1 passes through a conduit 2 and is sent to a normal condenser 3 and air-cooled. A medium-temperature (higher than normal temperature) high-pressure refrigerant gas passes through a conduit 4 and a receiver tank. 5 to the dryer 7 (removes water and debris) via the conduit 6, and the medium-temperature high-pressure refrigerant liquid / gas passes through the spiral thin tube 9 via the conduit 8 and reaches the conduit 10 at room temperature and medium-pressure refrigerant. After changing into liquid, the ultra low temperature low pressure refrigerant liquid passes through the double spiral thin tubes 12 and becomes very fast.
A low-temperature low-pressure refrigerant liquid is passed through a copper tube which is spirally rotated inside 1, and the air 16 pressurized by an air compressor is sent into the probe 11 to instantly reduce the humidity and release it when passing through the probe 11. A freezing / cooling system / humidity instant icing device that guides the suction pipe 14 and sucks it into the compressor 1.
【請求項2】 凝縮器から出た中温高圧冷媒ガスを螺旋
状細菅9にて加速・スピン回転・引圧機能を持つミニ装
置を経て、完全液化し次に、減圧膨張弁の替わりに二連
の螺旋状細菅12を使用し運動エネルギーを使い低音低
圧冷媒液を作り量多く押し出し瞬時に空気・湿度を低温
にする冷凍冷却システム・湿度瞬時氷結装置。
2. The medium-temperature high-pressure refrigerant gas discharged from the condenser is completely liquefied by the spiral thin tube 9 through a mini device having an acceleration / spin rotation / attraction function, and then replaced by a pressure reducing expansion valve. Refrigerating / cooling system / moisture instantaneous icing device that uses a series of spiral thin tubes 12 to make low-pressure low-pressure refrigerant liquid by using kinetic energy and push out a large amount to instantly lower the temperature of air and humidity.
JP2002119905A 2002-03-19 2002-03-19 Refrigerating system, device for instantaneously freezing humidity Pending JP2003279168A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002119905A JP2003279168A (en) 2002-03-19 2002-03-19 Refrigerating system, device for instantaneously freezing humidity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002119905A JP2003279168A (en) 2002-03-19 2002-03-19 Refrigerating system, device for instantaneously freezing humidity

Publications (1)

Publication Number Publication Date
JP2003279168A true JP2003279168A (en) 2003-10-02

Family

ID=29243567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002119905A Pending JP2003279168A (en) 2002-03-19 2002-03-19 Refrigerating system, device for instantaneously freezing humidity

Country Status (1)

Country Link
JP (1) JP2003279168A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1930669A1 (en) * 2005-09-26 2008-06-11 Hara Tech Corporation Thermal converter for condensation and refrigeration system using the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1930669A1 (en) * 2005-09-26 2008-06-11 Hara Tech Corporation Thermal converter for condensation and refrigeration system using the same
US20090241591A1 (en) * 2005-09-26 2009-10-01 Takao Hara Heat converter for condensation and refrigeration system using the same
EP1930669A4 (en) * 2005-09-26 2013-09-18 Hara Tech Corp Thermal converter for condensation and refrigeration system using the same
KR101319198B1 (en) * 2005-09-26 2013-10-16 다까오 하라 Thermal converter for condensation and refrigeration system using the same
US8746007B2 (en) * 2005-09-26 2014-06-10 Takao Hara Heat converter for condensation and refrigeration system using the same

Similar Documents

Publication Publication Date Title
JP4832563B2 (en) Refrigeration system
US7669428B2 (en) Vortex tube refrigeration systems and methods
KR20020029597A (en) Multistage compression refrigerating machine for supplying refrigerant from intercooler to cool rotating machine and lubricating oil
Boiarski et al. Retrospective of mixed-refrigerant technology and modern status of cryocoolers based on one-stage, oil-lubricated compressors
JP2835325B2 (en) Refrigeration system and heat exchanger for condensation
WO2019155644A1 (en) Cooling/heating system
Alexeev et al. Mixed gas JT cryocooler with precooling stage
JP2007051788A (en) Refrigerating device
JP2003279168A (en) Refrigerating system, device for instantaneously freezing humidity
KR20160129259A (en) Air conditioner having refrigerant booster
JP2003279197A (en) Heat exchanger for condensation of freezer-refrigerator system
JP5485602B2 (en) Refrigeration system
JP2008267731A (en) Air-conditioning device
JP2002122365A (en) Refrigerating system
Taira et al. Evaluation of performance of Heat pump system using R32 and HFO mixed refrigerant.
KR200215228Y1 (en) Energy-saving Air Conditioners
WO2022107343A1 (en) Freezing apparatus
CN111819404B (en) Refrigerating and heating system
JP2001165510A (en) Refrigerating cooling system and heat-exchanging device for condensation
JP4814823B2 (en) Refrigeration equipment
KR0159238B1 (en) Two-step expanding apparatus using accumulator of an airconditioner
KR100512418B1 (en) condensation system using refrigerant
JP3062486U (en) Refrigeration system
KR100337129B1 (en) Cryogenic cooler using centrifugal force of rotor
JPH0527561U (en) Refrigeration equipment