JP2003278749A - Bearing unit - Google Patents

Bearing unit

Info

Publication number
JP2003278749A
JP2003278749A JP2002086333A JP2002086333A JP2003278749A JP 2003278749 A JP2003278749 A JP 2003278749A JP 2002086333 A JP2002086333 A JP 2002086333A JP 2002086333 A JP2002086333 A JP 2002086333A JP 2003278749 A JP2003278749 A JP 2003278749A
Authority
JP
Japan
Prior art keywords
bearing
outer ring
axis direction
ring raceway
bearing unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002086333A
Other languages
Japanese (ja)
Inventor
Koichi Kawakami
耕一 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2002086333A priority Critical patent/JP2003278749A/en
Publication of JP2003278749A publication Critical patent/JP2003278749A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/04Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly
    • F16C19/06Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly with a single row or balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/54Systems consisting of a plurality of bearings with rolling friction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2370/00Apparatus relating to physics, e.g. instruments
    • F16C2370/12Hard disk drives or the like

Landscapes

  • Support Of The Bearing (AREA)
  • Rolling Contact Bearings (AREA)
  • Motor Or Generator Frames (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a bearing unit wherein optimization of rigidity and reduction of torque are simultaneously satisfied, while increasing speed and improving precision of control of an object to be borne. <P>SOLUTION: The bearing unit 1 is furnished with a sleeve 8 capable of assembling a shaft 2 and a plurality of bearings 4, 6 and integrally molding a steppe part 8a to hold the bearings with a specified interval, and each of the bearings is provided with an inner ring 10 on which an inner ring inside diameter surface S1 and an inner ring raceway surface R1 forms a round shape and an outer ring raceway surface R2 forms an oval shape. A radial clearance in the major axial direction X is set larger than a radial clearance in the minor axial direction Y on the outer ring raceway surface R2. Radial rigidity in the minor axial direction of the outer ring raceway surface is set larger than radial rigidity in the major axial direction in a state of giving a specified pre-load by assembling the bearings on the sleeve. A mark M free to visually confirm the major axial direction and the minor axial direction of the oval outer ring raceway surface is attached on each of the bearings. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、例えばハードディ
スクドライブ(HDD)等の情報機器用スピンドルモー
タや、ビデオテープレコーダ(VTR)等の音響・映像
機器用スピンドルモータ等で使用される軸受ユニットに
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a bearing unit used in a spindle motor for information equipment such as a hard disk drive (HDD) and a spindle motor for audio / visual equipment such as a video tape recorder (VTR).

【0002】[0002]

【従来の技術】従来、この種の軸受ユニットでは、間座
として機能する段部が一体成形された金属製スリーブに
軸受と軸が組み付けられた状態において、ラジアル方向
の剛性(以下、ラジアル剛性という)が周方向で全て同
一レベルとなるように、所定の予圧が与えられている。
2. Description of the Related Art Conventionally, in this type of bearing unit, when a bearing and a shaft are assembled to a metal sleeve integrally formed with a step portion functioning as a spacer, the rigidity in the radial direction (hereinafter, referred to as radial rigidity). ) Is given a predetermined preload so that all are at the same level in the circumferential direction.

【0003】[0003]

【発明が解決しようとする課題】近年、軸受ユニットが
適用される軸受適用対象物(例えば、磁気ディスク装置
に用いるスイングアームや、他の回転駆動系など)の制
御の高速化と高精度化が要求されるようになり、その要
求に応えるために、軸受ユニットには、例えばトルクス
パイクのような急激なトルク変動の発生防止や低トルク
化が求められている。しかし、従来の軸受ユニットは、
予圧を調節してラジアル剛性を増減するようになってお
り、軸受適用対象物の高速制御性を満足させるためにラ
ジアル剛性を上げると、トルクが増加してしまうといっ
た問題が生じる。この場合、ラジアルすきまを変化させ
てラジアル剛性を上げる方法も考えられるが、この方法
では、アキシアル剛性が低下してしまうといった問題が
発生してしまう。本発明は、このような問題を解決する
ために成されており、その目的は、軸受適用対象物の制
御の高速化と高精度化を図りつつ、剛性の最適化と低ト
ルク化を同時に満足させることが可能な軸受ユニットを
提供することにある。
In recent years, there has been an increase in the speed and accuracy of control of a bearing application object to which a bearing unit is applied (for example, a swing arm used in a magnetic disk device or other rotary drive system). In order to meet the demand, the bearing unit is required to prevent occurrence of abrupt torque fluctuation such as torque spike and to reduce the torque. However, conventional bearing units
The preload is adjusted to increase or decrease the radial rigidity, and if the radial rigidity is increased to satisfy the high-speed controllability of the bearing application object, the problem that the torque increases occurs. In this case, a method of increasing the radial rigidity by changing the radial clearance may be considered, but this method causes a problem that the axial rigidity decreases. The present invention has been made to solve such a problem, and an object thereof is to simultaneously achieve optimization of rigidity and reduction of torque while achieving high-speed control and high-precision control of a bearing application object. It is to provide a bearing unit capable of performing the above.

【0004】[0004]

【課題を解決するための手段】このような目的を達成す
るために、本発明の軸受ユニットは、軸と複数の軸受を
組み付け可能であって、且つ、軸受相互を所定間隔に保
持するための段部が周方向に沿って突出して一体成形さ
れたスリーブを備えており、軸受には、夫々、内輪内径
面及び内輪軌道面が真円形状を成す内輪と、外輪外径面
が真円形状を成し且つ外輪軌道面が楕円形状を成す外輪
とが設けられている。この場合、楕円形状を成す外輪軌
道面において、その長径方向に沿ったラジアルすきま
は、長径方向に直交する短径方向に沿ったラジアルすき
まよりも大きく設定されている。また、スリーブに軸と
複数の軸受を組み付けて所定の予圧を与えた状態におい
て、外輪軌道面の短径方向に沿った軸受ユニットのラジ
アル剛性は、短径方向に直交する長径方向に沿ったラジ
アル剛性よりも大きく設定されている。更に、夫々の軸
受には、楕円形状の外輪軌道面の長径方向及び短径方向
を目視確認することが可能なマークが少なくとも1つ以
上付されている。そして、夫々の軸受をスリーブに組み
付ける場合、各軸受に付されたマークを目視確認するこ
とによって、各軸受の外輪軌道面の長径方向及び短径方
向を互いに合わせた状態で軸受相互をスリーブに組み付
け可能である。また、軸受適用対象物に軸受ユニットを
適用する場合、軸受に付されたマークを目視確認するこ
とによって、各軸受の外輪軌道面の長径方向を軸受適用
対象物の長手方向に合わせた状態で軸受ユニットを軸受
適用対象物に対して位置決め可能である。
In order to achieve such an object, the bearing unit of the present invention is capable of assembling a shaft and a plurality of bearings, and holds the bearings at predetermined intervals. The stepped portion is provided with a sleeve that projects along the circumferential direction and is integrally molded.The bearing has an inner ring whose inner ring inner diameter surface and inner ring raceway surface are circular and an outer ring outer diameter surface is circular. And an outer ring whose outer ring raceway surface has an elliptical shape. In this case, on the raceway surface of the outer ring having an elliptical shape, the radial clearance along the major axis direction is set larger than the radial clearance along the minor axis direction orthogonal to the major axis direction. The radial rigidity of the bearing unit along the minor axis direction of the outer ring raceway surface when the shaft and multiple bearings are attached to the sleeve and a predetermined preload is applied is the radial rigidity along the major axis direction orthogonal to the minor axis direction. It is set larger than the rigidity. Furthermore, each bearing is provided with at least one or more marks by which the major axis direction and minor axis direction of the elliptical outer ring raceway surface can be visually confirmed. When assembling each bearing into the sleeve, visually check the marks on each bearing to make sure that the outer ring raceway surface of each bearing is aligned with the major axis direction and the minor axis direction of the bearings It is possible. Also, when applying a bearing unit to a bearing application target, by visually checking the mark on the bearing, the bearing with the major axis direction of the outer ring raceway of each bearing aligned with the longitudinal direction of the bearing application target. The unit can be positioned with respect to the bearing application object.

【0005】[0005]

【発明の実施の形態】以下、本発明の一実施の形態に係
る軸受ユニットについて、添付図面を参照して説明す
る。なお、本発明の技術は、スラスト軸受やラジアル軸
受を含めた転がり軸受に適用することが可能である。以
下の説明では、その一例として、玉軸受が軸方向に複数
個(図面では2個)組み込まれた軸受ユニットを例にと
って説明するが、何等これに限定解釈されるものではな
い。図1(a)〜(c)に示すように、本実施の形態の
軸受ユニット1は、軸2と複数の軸受4,6を組み付け
可能であって、且つ、軸受相互を所定間隔に保持するた
めの段部8aが周方向に沿って突出して一体成形された
スリーブ8を備えており、軸受4,6には、夫々、内輪
内径面S1及び内輪軌道面R1が真円形状を成す内輪1
0と、外輪外径面S2が真円形状を成し且つ外輪軌道面
R2が楕円形状を成す外輪12とが設けられている。な
お、本実施の形態では、内輪内径面S1に軸2を装着
し、外輪外径面S2にスリーブ8を装着する。軸受4,
6は、夫々、所定の金属材料(例えばステンレス鋼など
の高炭素クロム鋼)で形成されており、内外輪の軌道面
R1,R2間に組み込まれた複数個の転動体14と、こ
れら複数個の転動体14を転動自在に保持する保持器1
6と、密封板(接触形又は非接触形のシール或いはシー
ルド)18とを備えている(図1(a)右方の側面図で
はこの密封板18は省略されている。)。なお、軸2及
びスリーブ8も軸受4,6と同種の金属材料で形成され
ているのが好ましい。また、軸受4,6の外輪軌道面R
2は、その長径方向Xに沿ったラジアルすきまが、長径
方向Xに直交する短径方向Yに沿ったラジアルすきまよ
りも大きく設定されている。以後、本明細書中では、楕
円の短軸方向を外輪軌道面R2の短径方向Yとし、楕円
の長軸方向を外輪軌道面R2の長径方向Xとする。この
ような軸受4,6を軸2と共にスリーブ8に組み付けて
所定の予圧を与えた状態において、楕円形状の外輪軌道
面R2の短径方向Yに沿った軸受ユニット1のラジアル
剛性は、短径方向Yに直交する長径方向Xに沿ったラジ
アル剛性よりも大きく設定されている。具体的には、楕
円形状の外輪軌道面R2の長径方向Xに一致したラジア
ル剛性が最も小さく、短径方向Yに一致したラジアル剛
性が最も大きく設定されており、長径方向Xから短径方
向Yに向うに従って、ラジアル剛性が連続的に大きくな
るように設定されている。
BEST MODE FOR CARRYING OUT THE INVENTION A bearing unit according to an embodiment of the present invention will be described below with reference to the accompanying drawings. The technique of the present invention can be applied to rolling bearings including thrust bearings and radial bearings. In the following description, as one example, a bearing unit in which a plurality of ball bearings (two in the drawing) are incorporated in the axial direction will be described as an example, but the present invention is not limited to this. As shown in FIGS. 1A to 1C, in the bearing unit 1 of the present embodiment, the shaft 2 and a plurality of bearings 4 and 6 can be assembled, and the bearings are held at predetermined intervals. The stepped portion 8a for projecting is provided with a sleeve 8 integrally formed by projecting along the circumferential direction, and the bearings 4 and 6 have an inner ring inner surface 1 and an inner ring raceway surface R1 having a perfect circular shape, respectively.
0, and the outer ring 12 whose outer ring outer diameter surface S2 has a perfect circular shape and whose outer ring raceway surface R2 has an elliptical shape. In this embodiment, the shaft 2 is attached to the inner ring inner diameter surface S1 and the sleeve 8 is attached to the outer ring outer diameter surface S2. Bearing 4,
6 are each made of a predetermined metal material (for example, high carbon chrome steel such as stainless steel), and have a plurality of rolling elements 14 installed between the raceways R1 and R2 of the inner and outer rings, and a plurality of these rolling elements. Cage 1 that holds the rolling element 14 of the same
6 and a sealing plate (contact type or non-contact type seal or shield) 18 (the sealing plate 18 is omitted in the right side view of FIG. 1A). The shaft 2 and the sleeve 8 are also preferably made of the same metal material as the bearings 4 and 6. In addition, the outer ring raceway surface R of the bearings 4 and 6
In No. 2, the radial clearance along the major axis direction X is set to be larger than the radial clearance along the minor axis direction Y orthogonal to the major axis direction X. Hereinafter, in this specification, the minor axis direction of the ellipse is defined as the minor axis direction Y of the outer ring raceway surface R2, and the major axis direction of the ellipse is defined as the major axis direction X of the outer ring raceway surface R2. When the bearings 4 and 6 are assembled together with the shaft 2 into the sleeve 8 and given a predetermined preload, the radial rigidity of the bearing unit 1 along the minor axis direction Y of the elliptical outer ring raceway surface R2 is short. The radial rigidity is set to be larger than the radial rigidity along the major axis direction X orthogonal to the direction Y. Specifically, the radial rigidity corresponding to the major axis direction X of the elliptical outer ring raceway surface R2 is set to the smallest and the radial rigidity corresponding to the minor axis direction Y is set to the maximum, and the radial rigidity from the major axis direction X to the minor axis direction Y is set. The radial rigidity is set to continuously increase as the position goes to.

【0006】図3には、ラジアル剛性の大きさを視覚的
に表示した例が示されており、軸受ユニット1から放射
状に延びた矢印の長さ変化に応じてラジアル剛性の大き
さが連続的に増減変化していることが分かる。この場
合、楕円形状の外輪軌道面R2の内径寸法は、各方向X
Yのラジアルすきまの異方性、即ちラジアル剛性の異方
性が最適値となるように設定される。即ち、外輪軌道面
R2の内径寸法は、画一的に設定されるのでは無く、軸
受ユニット1の使用目的や使用環境、或いは、軸受ユニ
ット1を適用する軸受適用対象物20の種類や大きさ等
に応じて最適な内径寸法が設定される。具体的に説明す
ると、ラジアルすきまは、内輪10又は外輪12のいず
れか一方を固定し、他方をラジアル方向(半径方向)に
動かして、そのときの移動量で算出され、軸受ユニット
1(具体的には、軸受4,6)の種類や仕様、その使用
目的や使用環境などに応じて最適な値に決定される。本
実施の形態では、外輪軌道面R2を楕円形状としている
ため、それに対応して長径方向X及び短径方向Yのラジ
アルすきまが増減変化する。そこで、楕円形状の外輪軌
道面R2の内径寸法は、個々の軸受(本実施の形態で
は、軸受4,6)に対して最適なラジアルすきまが確保
されるような値に設定される。別の言い方をすれば、楕
円形状の外輪軌道面R2の内径寸法は、その軸受にとっ
て最適なラジアルすきまを逸脱しない範囲に設定され
る。
FIG. 3 shows an example in which the magnitude of the radial rigidity is visually displayed. The magnitude of the radial rigidity continuously changes according to the change in the length of the arrow radially extending from the bearing unit 1. You can see that it is increasing and decreasing. In this case, the inner diameter dimension of the elliptical outer ring raceway surface R2 is X in each direction.
The anisotropy of the radial clearance of Y, that is, the anisotropy of radial rigidity is set to an optimum value. That is, the inner diameter dimension of the outer ring raceway surface R2 is not uniformly set, but the purpose and environment of use of the bearing unit 1, or the type and size of the bearing application target 20 to which the bearing unit 1 is applied. The optimum inner diameter is set according to the above. Specifically, the radial clearance is calculated by fixing the one of the inner ring 10 and the outer ring 12 and moving the other in the radial direction (radial direction), and by calculating the movement amount at that time. The optimum value is determined according to the type and specifications of the bearings 4, 6), the purpose of use and the environment of use. In the present embodiment, since the outer ring raceway surface R2 has an elliptical shape, the radial clearances in the major axis direction X and the minor axis direction Y increase / decrease correspondingly. Therefore, the inner diameter of the elliptical outer ring raceway surface R2 is set to a value that ensures an optimum radial clearance for each bearing (bearings 4, 6 in the present embodiment). In other words, the inner diameter dimension of the elliptical outer ring raceway surface R2 is set within a range that does not deviate from the optimum radial clearance for the bearing.

【0007】また、各軸受4,6には、楕円形状の外輪
軌道面R2の長径方向X及び短径方向Yを目視確認する
ことが可能なマークMが少なくとも1つ以上付されてい
る。本実施の形態では、その一例として、各軸受4,6
の外輪12側面(外部に露出した部分)であって、且
つ、外輪軌道面R2の短径方向Yに一致した位置にマー
クMが付されている。なお、マークMの形状、色、大き
さ等は、軸受ユニット1の仕様や寸法などに応じて任意
に設定することが可能であり、また、マークMを付する
部分も外輪12側面に限定されることは無く、外部から
目視確認できればいずれの部分であっても良い。例え
ば、外輪軌道面R2の長径方向Xに一致した位置にマー
クMを付しても良いし、或いは、長径方向X及び短径方
向Yの双方にマークMを付しても良い。夫々の軸受4,
6をスリーブ8に組み付ける場合、各軸受4,6に付さ
れたマークMを目視確認することによって、各軸受4,
6の外輪軌道面R2の長径方向X及び短径方向Yを互い
に合わせた状態で(即ち、楕円形状の外輪軌道面R2の
位相を軸受相互で一致させた状態で)、各軸受4,6を
スリーブ8に組み付けることができる。即ちスリーブ8
に軸受すきまばめで装着後、楕円形状をくずさないよう
に接着等で固定する。図2(a),(b)に示すよう
に、軸受適用対象物20に軸受ユニット1を適用する場
合、各軸受4,6に付されたマークMを目視確認するこ
とによって、各軸受4,6の外輪軌道面R2の長径方向
Xを軸受適用対象物20の長手方向に合わせた状態で、
軸受ユニット1を軸受適用対象物20に対して位置決め
することができる。軸受適用対象物20としては、例え
ば磁気ディスク装置に用いるスイングアームや、他の回
転駆動系などが想定されるが、図面には、その一例とし
て、スイングアーム20に軸受ユニット1を適用した例
が示されている。この場合、スイングアーム20の長手
方向に沿って外輪軌道面R2の長径方向Xを合わせれば
良い。この結果、スイングアーム20は、ボイスコイル
22によって軸2を中心に回動可能となる。
Further, each bearing 4, 6 is provided with at least one mark M for visually confirming the major axis direction X and the minor axis direction Y of the elliptical outer ring raceway surface R2. In the present embodiment, as an example, each bearing 4, 6
A mark M is attached to the outer ring 12 side surface (the portion exposed to the outside) of the outer ring 12 and to the position corresponding to the minor axis direction Y of the outer ring raceway surface R2. Note that the shape, color, size, etc. of the mark M can be arbitrarily set according to the specifications and dimensions of the bearing unit 1, and the portion marked with the mark M is also limited to the side surface of the outer ring 12. It does not matter, and any portion may be used as long as it can be visually confirmed from the outside. For example, the mark M may be provided at a position corresponding to the major axis direction X of the outer ring raceway surface R2, or the mark M may be provided in both the major axis direction X and the minor axis direction Y. Each bearing 4,
When assembling 6 into the sleeve 8, each bearing 4, 6 can be visually confirmed by checking the mark M attached to each bearing 4, 6.
In a state where the major axis direction X and the minor axis direction Y of the outer ring raceway surface R2 of 6 are aligned with each other (that is, the phases of the elliptical outer ring raceway surfaces R2 are matched with each other), the bearings 4 and 6 are It can be assembled to the sleeve 8. That is, sleeve 8
After mounting the bearing to the bearing with clearance fit, fix it with adhesive etc. so that the elliptical shape is not broken. As shown in FIGS. 2 (a) and 2 (b), when the bearing unit 1 is applied to the bearing application target 20, each bearing 4, 4 is visually confirmed by checking the mark M attached to each bearing 4, 6. In a state in which the major axis direction X of the outer ring raceway surface R2 of 6 is aligned with the longitudinal direction of the bearing application object 20,
The bearing unit 1 can be positioned with respect to the bearing application object 20. As the bearing application object 20, for example, a swing arm used in a magnetic disk device, another rotary drive system, or the like is assumed. In the drawings, an example in which the bearing unit 1 is applied to the swing arm 20 is shown as an example. It is shown. In this case, the major axis direction X of the outer ring raceway surface R2 may be aligned along the longitudinal direction of the swing arm 20. As a result, the swing arm 20 can be rotated about the shaft 2 by the voice coil 22.

【0008】以上、本実施の形態によれば、内輪内径面
S1及び内輪軌道面R1が真円形状を成す内輪10と、
外輪外径面S2が真円形状を成し且つ外輪軌道面R2が
楕円形状を成す外輪12とを構成したことによって、軸
受適用対象物20の制御の高速化と高精度化を図りつ
つ、剛性の最適化と低トルク化を同時に満足させること
が可能な軸受ユニット1を実現することができる。例え
ば図3(a),(b)に示すように、スイングアーム2
0を軸2を中心に角度αだけ揺動させた場合でも、スイ
ングアーム20に対する長径方向X及び短径方向Yのラ
ジアル剛性の分布には変化が無いため、軸受ユニット1
のラジアル剛性を常に一定状態に維持することができ
る。更に、本実施の形態によれば、楕円形状の外輪軌道
面R2の内径寸法は、その軸受にとって最適なラジアル
すきまを逸脱しない範囲で設定されるため、従来のよう
にアキシアル剛性が低下してしまうといった問題が発生
することは無い。このため、軸受ユニット1のアキシア
ル剛性を常に一定状態に維持することができる。なお、
上述した実施の形態では、内輪10の内輪内径面S1及
び内輪軌道面R1を真円形状とし、外輪12の外輪外径
面S2を真円形状に且つ外輪軌道面R2を楕円形状とし
た例を示したが、これとは逆に、内輪10の内輪内径面
S1を真円形状に且つ内輪軌道面R1を楕円形状とし、
外輪12の外輪外径面S2及び外輪軌道面R2を真円形
状としても良い。
As described above, according to the present embodiment, the inner ring 10 in which the inner ring inner diameter surface S1 and the inner ring raceway surface R1 form a perfect circle,
By configuring the outer ring 12 in which the outer ring outer diameter surface S2 has a perfect circular shape and the outer ring raceway surface R2 has an elliptical shape, the rigidity is increased while achieving high speed control and high accuracy control of the bearing application object 20. It is possible to realize the bearing unit 1 capable of satisfying both optimization and low torque at the same time. For example, as shown in FIGS. 3A and 3B, the swing arm 2
Even when 0 is swung about the axis 2 by an angle α, there is no change in the radial rigidity distribution with respect to the swing arm 20 in the major axis direction X and the minor axis direction Y, so the bearing unit 1
It is possible to always maintain the radial rigidity of the constant. Further, according to the present embodiment, the inner diameter dimension of the elliptical outer ring raceway surface R2 is set within a range that does not deviate from the optimum radial clearance for the bearing, so that the axial rigidity decreases as in the conventional case. There is no such problem. Therefore, the axial rigidity of the bearing unit 1 can always be maintained in a constant state. In addition,
In the above-described embodiment, the inner ring inner diameter surface S1 and the inner ring raceway surface R1 of the inner ring 10 have a perfect circular shape, the outer race outer diameter surface S2 of the outer ring 12 has a perfect circular shape, and the outer ring raceway surface R2 has an elliptical shape. As shown, on the contrary, the inner ring inner diameter surface S1 of the inner ring 10 has a perfect circular shape and the inner ring raceway surface R1 has an elliptical shape,
The outer ring outer diameter surface S2 and the outer ring raceway surface R2 of the outer ring 12 may have a perfect circular shape.

【0009】[0009]

【発明の効果】本発明によれば、軸受適用対象物の制御
の高速化と高精度化を図りつつ、剛性の最適化と低トル
ク化を同時に満足させることが可能な軸受ユニットを実
現することができる。
According to the present invention, it is possible to realize a bearing unit capable of simultaneously satisfying the optimization of rigidity and the reduction of torque while achieving high speed control and high accuracy control of a bearing application object. You can

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)は、本発明の一実施の形態に係る軸受ユ
ニットの構成を示す図、(b)は、軸受の内部構成を示
す断面図、(c)は、同図(b)のC−C線に沿う断面
図。
FIG. 1A is a diagram showing a configuration of a bearing unit according to an embodiment of the present invention, FIG. 1B is a sectional view showing an internal configuration of a bearing, and FIG. 1C is a diagram showing FIG. 1B. Sectional drawing which follows CC line of FIG.

【図2】軸受ユニットがスイングアームに適用された状
態を示す図であり、(a)は、その平面図、(b)は、
その縦断面図。
2A and 2B are diagrams showing a state in which a bearing unit is applied to a swing arm, FIG. 2A is a plan view thereof, and FIG.
The longitudinal sectional view.

【図3】(a),(b)は、軸受ユニットの動作時にお
けるラジアル剛性の分布状態を示す図。
3A and 3B are diagrams showing a distribution state of radial rigidity when the bearing unit is in operation.

【符号の説明】[Explanation of symbols]

1:軸受ユニット 2:軸 4,6:軸受 8:スリーブ 8a:段部 10:内輪 12:外輪 S1:内輪内径面 R1:内輪軌道面 S2:外輪外径面 R2:外輪軌道面 M:軸受に付されたマーク X:外輪軌道面の長径方向 Y:外輪軌道面の短径方向 1: Bearing unit 2: axis 4, 6: Bearing 8: Sleeve 8a: step 10: Inner ring 12: Outer ring S1: Inner ring inner diameter surface R1: Inner ring raceway surface S2: Outer surface of outer ring R2: Outer ring raceway surface M: Mark on the bearing X: Outer ring raceway major axis direction Y: minor axis direction of outer ring raceway surface

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 軸と複数の軸受を組み付け可能であっ
て、且つ、軸受相互を所定間隔に保持するための段部が
周方向に沿って突出して一体成形されたスリーブを備え
ており、 軸受には、夫々、内輪内径面及び内輪軌道面が真円形状
を成す内輪と、外輪外径面が真円形状を成し且つ外輪軌
道面が楕円形状を成す外輪とが設けられていることを特
徴とする軸受ユニット。
1. A shaft and a plurality of bearings can be assembled together, and a step portion for holding the bearings at a predetermined interval is provided with a sleeve integrally formed by projecting along the circumferential direction. Respectively, an inner ring having an inner ring inner diameter surface and an inner ring raceway surface having a perfect circle shape, and an outer ring having an outer ring outer diameter surface having a perfect circle shape and an outer ring raceway surface having an elliptical shape. Characteristic bearing unit.
【請求項2】 楕円形状を成す外輪軌道面において、そ
の長径方向に沿ったラジアルすきまは、長径方向に直交
する短径方向に沿ったラジアルすきまよりも大きく設定
されていることを特徴とする請求項1に記載の軸受ユニ
ット。
2. An outer ring raceway having an elliptical shape, wherein the radial clearance along the major axis direction is set to be larger than the radial clearance along the minor axis direction orthogonal to the major axis direction. The bearing unit according to Item 1.
【請求項3】 スリーブに軸と複数の軸受を組み付けて
所定の予圧を与えた状態において、外輪軌道面の短径方
向に沿った軸受ユニットのラジアル剛性は、短径方向に
直交する長径方向に沿ったラジアル剛性よりも大きく設
定されていることを特徴とする請求項1又は2のいずれ
かに記載の軸受ユニット。
3. The radial rigidity of the bearing unit along the minor axis direction of the outer ring raceway surface in the major axis direction orthogonal to the minor axis direction when the shaft and the plurality of bearings are assembled to the sleeve and a predetermined preload is applied. The bearing unit according to claim 1 or 2, wherein the radial rigidity is set to be greater than the radial rigidity.
【請求項4】 夫々の軸受には、楕円形状の外輪軌道面
の長径方向及び短径方向を目視確認することが可能なマ
ークが少なくとも1つ以上付されていることを特徴とす
る請求項1乃至3のいずれかに記載の軸受ユニット。
4. Each bearing is provided with at least one mark capable of visually confirming the major axis direction and the minor axis direction of the elliptical outer ring raceway surface. 4. The bearing unit according to any one of 3 to 3.
【請求項5】 夫々の軸受をスリーブに組み付ける場
合、各軸受に付されたマークを目視確認することによっ
て、各軸受の外輪軌道面の長径方向及び短径方向を互い
に合わせた状態で軸受相互をスリーブに組み付け可能で
あることを特徴とする請求項4に記載の軸受ユニット。
5. When assembling each bearing into a sleeve, the marks on each bearing are visually checked so that the bearings are aligned with each other such that the major axis direction and the minor axis direction of the outer ring raceway surface of each bearing are aligned with each other. The bearing unit according to claim 4, wherein the bearing unit is attachable to the sleeve.
【請求項6】 軸受適用対象物に軸受ユニットを適用す
る場合、軸受に付されたマークを目視確認することによ
って、各軸受の外輪軌道面の長径方向を軸受適用対象物
の長手方向に合わせた状態で軸受ユニットを軸受適用対
象物に対して位置決め可能であることを特徴とする請求
項4又は5のいずれかに記載の軸受ユニット。
6. When the bearing unit is applied to a bearing application target, the major axis direction of the outer ring raceway of each bearing is aligned with the longitudinal direction of the bearing application target by visually confirming the mark attached to the bearing. The bearing unit according to claim 4, wherein the bearing unit can be positioned with respect to the bearing application object in this state.
JP2002086333A 2002-03-26 2002-03-26 Bearing unit Pending JP2003278749A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002086333A JP2003278749A (en) 2002-03-26 2002-03-26 Bearing unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002086333A JP2003278749A (en) 2002-03-26 2002-03-26 Bearing unit

Publications (1)

Publication Number Publication Date
JP2003278749A true JP2003278749A (en) 2003-10-02

Family

ID=29232966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002086333A Pending JP2003278749A (en) 2002-03-26 2002-03-26 Bearing unit

Country Status (1)

Country Link
JP (1) JP2003278749A (en)

Similar Documents

Publication Publication Date Title
US6630758B2 (en) Motor with a stationary shaft with formed knurled grooves on shaft and/or housing
US6599022B2 (en) Bearing apparatus
TWI491816B (en) Pivot bearing device and magnetic recording device using the same
JP3419053B2 (en) Double-row rolling bearing device with preload
JP2003278749A (en) Bearing unit
JP2009185859A (en) Roller bearing unit and its manufacturing method
US7056030B2 (en) Pivot bearing for a swing arm of a hard disk drive device
JP2003314562A (en) Bearing and bearing unit fitted with bearing
JP2003269472A (en) Bearing unit
JP5018538B2 (en) Bearing unit for swing arm of magnetic disk device, and method for manufacturing swing arm bearing unit of magnetic disk device
JP2005188756A (en) Rolling bearing unit for swing arms
JP2000346673A (en) Rolling bearing
JP3672333B2 (en) Double row ball bearing
JP2003269473A (en) Bearing unit
JP2002266854A (en) Motor
JP2002130292A (en) Ball bearing
JP2000257641A (en) Seal device for rolling bearing
JP2006214504A (en) Rolling bearing device
JP4433922B2 (en) Bearing device
JP2564193Y2 (en) Ball bearings for spindle motors of information equipment
JP2006002874A (en) Rolling bearing device
JP2006002875A (en) Rolling bearing for swing arm and rolling bearing device
JP2007247669A (en) Bearing unit with rotary sensor
JP2002310165A (en) Bearing device
JP2002039192A (en) Bearing device for swing arm