JP2003277937A - Electrode member - Google Patents

Electrode member

Info

Publication number
JP2003277937A
JP2003277937A JP2002075739A JP2002075739A JP2003277937A JP 2003277937 A JP2003277937 A JP 2003277937A JP 2002075739 A JP2002075739 A JP 2002075739A JP 2002075739 A JP2002075739 A JP 2002075739A JP 2003277937 A JP2003277937 A JP 2003277937A
Authority
JP
Japan
Prior art keywords
film
area ratio
plate
opening
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002075739A
Other languages
Japanese (ja)
Inventor
Kiyoshi Takahashi
喜代司 高橋
Junichi Imamura
淳一 今村
Yukihiro Hayase
至広 早瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2002075739A priority Critical patent/JP2003277937A/en
Publication of JP2003277937A publication Critical patent/JP2003277937A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrode member capable of preventing any mixture of a film deposited on an electrode surface in a thin film under film deposition as an exfoliation film, or any defective film deposition attributable to minor abnormal discharge generated from the exfoliation film. <P>SOLUTION: A diamond-like carbon protective film of homogeneous film quality is deposited on a magnetic base material 7 having a ferromagnetic thin film fed from a feeding roller 9 by optimizing the area ratio of the electrode member 18 to an aperture 19, and a magnetic medium capable of suppressing the drop-out number and improving the durability is manufactured. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、開口部を有する囲
いに収納された導電性板状部材を有する電極部材に関
し、特にプラズマ重合またはプラズマケミカルベイパー
デポジション等の堆積物質の上記に電荷を注入する気相
堆積法に好適な電極部材に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrode member having a conductive plate member housed in an enclosure having an opening, and more particularly to injecting a charge into a deposition material such as plasma polymerization or plasma chemical vapor deposition. The present invention relates to an electrode member suitable for the vapor deposition method.

【0002】[0002]

【従来の技術】最近の薄膜を用いた製品は、半導体に始
まり、感熱記録ヘッド等の情報記録デバイス、磁気記録
媒体、相変化記録媒体等の情報記録媒体等に裾野を拡
げ、研究開発が盛んに行われている。その中でも層間絶
縁膜や保護膜としての機能性薄膜材料の形成が注目さ
れ、層間絶縁膜あるいは保護膜の性能が製品の信頼性を
決定する重要な基本技術の一つである。一方、工業的に
安定供給するためには長尺化と高速安定化成膜は必須で
ある。この高速安定化成膜には成膜レートの高いプラズ
マ重合法やプラズマケミカルベイパーデポジション(プ
ラズマCVD)法が有利で、各種提案がなされている。
2. Description of the Related Art Recent products using thin films have been extensively researched and developed, beginning with semiconductors and expanding to information recording devices such as thermal recording heads, information recording media such as magnetic recording media and phase change recording media. Has been done in. Among them, attention has been paid to the formation of a functional thin film material as an interlayer insulating film or a protective film, and the performance of the interlayer insulating film or the protective film is one of the important basic techniques for determining the reliability of the product. On the other hand, for industrially stable supply, lengthening and high-speed stable film formation are essential. A plasma polymerization method and a plasma chemical vapor deposition (plasma CVD) method, which have a high film formation rate, are advantageous for this high-speed stabilized film formation, and various proposals have been made.

【0003】[0003]

【発明が解決しようとする課題】しかしながら従来提案
されている方法では、成膜レートを向上させるため成膜
用原料の供給を増加し長尺に亘って成膜すると、プラズ
マ放電電極表面にも成膜され、電極表面に成膜した膜が
剥離(以下、剥離膜と称す)し成膜中の膜中に混入され
るばかりでなく、放電管内部で剥離膜の破片が微少異常
放電を誘発し、成膜欠陥が発生するという課題があっ
た。この課題は、例えば磁気記録媒体または相変化記録
媒体の保護膜に適応した場合はドッロプアウトの増加、
耐久性の低下または記録層の材料が外気と接触すること
により酸化劣化等が生じ、例えば半導体等の層間絶縁膜
として使用した場合は絶縁抵抗の低下による不良や耐久
性の低下が生じ、例えば感熱記録ヘッドでは熱伝導の不
均一性により印字や画像にドロップアウトが発生すると
共に寿命が短くなるという問題点を有していた。
However, in the method proposed hitherto, when the supply of the film-forming raw material is increased to form the film over a long length in order to improve the film-forming rate, the film is also formed on the surface of the plasma discharge electrode. The film formed on the surface of the electrode peels off (hereinafter referred to as the peeling film) and is mixed into the film being formed, and the fragments of the peeling film induce a minute abnormal discharge inside the discharge tube. However, there is a problem that a film formation defect occurs. This problem is, for example, an increase in dropout when applied to a protective film of a magnetic recording medium or a phase change recording medium,
Oxidation deterioration etc. occurs due to deterioration of durability or contact of the material of the recording layer with the outside air, for example, when used as an interlayer insulating film of semiconductor etc., defects or durability decrease due to decrease of insulation resistance. The recording head has a problem that non-uniformity of heat conduction causes dropout in a print or an image and shortens the life.

【0004】本発明は前記従来の問題点を解決するため
のもので、電極表面の成膜が剥離膜としての成膜中の薄
膜への混入や、当該剥離膜により発生する微少異常放電
に起因する成膜欠陥を防止することができる電極部材を
提供することを目的とするものである。
The present invention has been made to solve the above-mentioned conventional problems and is caused by the fact that the film formation on the electrode surface is mixed into a thin film during film formation as a peeling film or a minute abnormal discharge caused by the peeling film. It is an object of the present invention to provide an electrode member capable of preventing the film formation defect.

【0005】[0005]

【課題を解決するための手段】この目的を達成するため
に本発明の電極部材は、板状部材と、開口部を有する囲
いとを含み、前記板状部材の主面が前記開口部と対向す
ると共に、前記板状部材は前記囲いに収納され、前記開
口部の前記板状部材への投影面積に対する前記板状部材
の面積の比が、30%以上97%以下である。
In order to achieve this object, an electrode member of the present invention includes a plate-shaped member and an enclosure having an opening, the main surface of the plate-shaped member facing the opening. In addition, the plate-shaped member is housed in the enclosure, and the ratio of the area of the plate-shaped member to the projected area of the opening on the plate-shaped member is 30% or more and 97% or less.

【0006】また、上記電極部材の開口部に対向する板
状部材の主面を表面とし、前記板状部材の前記表面に対
向する主面を裏面とすると、前記表面から前記裏面まで
連続する空隙部を前記板状部材に備え、前記空隙部が形
成する空隙の壁面、前記板状部材の外周側面、前記表面
及び前記裏面の合計の総表面積が、前記表面の面積の2
倍以上100倍以下である。
When the main surface of the plate-like member facing the opening of the electrode member is the front surface and the main surface of the plate-like member facing the front surface is the back surface, a gap extending from the front surface to the back surface is formed. A portion of the plate-shaped member, the total surface area of the wall surface of the void formed by the void, the outer peripheral side surface of the plate-shaped member, the front surface and the back surface is equal to 2 of the area of the surface.
It is more than twice and less than 100 times.

【0007】また、本発明の薄膜形成方法は、上記何れ
かの板状部材の囲いの中に気体を流入する流入管と、前
記板状部材に電圧を供給する配線とを備え、前記囲いを
減圧し、前記流入管から原料ガスを前記囲い中に流入す
ると共に、前記配線から前記板状部材に電圧を印加し、
前記板状部材から前記原料ガスに放電し前記原料ガスに
電荷を持たせ、前記開口部に関して前記板状部材と反対
側に離隔して備えた基材に、電荷を持った前記原料ガス
を前記囲いの開口部から放出し薄膜を形成する。
Further, the thin film forming method of the present invention comprises an inflow pipe for introducing gas into the enclosure of any one of the plate-like members and a wire for supplying a voltage to the plate-like member, and the enclosure is provided. Decompress, while flowing the raw material gas from the inflow pipe into the enclosure, while applying a voltage from the wiring to the plate-shaped member,
The raw material gas having the electric charge is applied to a base material provided by discharging the raw material gas from the plate-shaped member to provide the raw material gas with an electric charge and separating the raw material gas from the plate-shaped member with respect to the opening. It is discharged from the opening of the enclosure to form a thin film.

【0008】[0008]

【発明の実施の形態】本発明の電極部材は、開口部の板
状部材への投影面積に対する板状部材の面積の比が30
%以上97%以下の構成を備えるため、開口部に対する
電極部材の面積の適正化が図れ、電極部材に電圧を印加
しながら気相堆積法で基材上に成膜する成膜方法に適用
すると、電極部材の外周近傍と開口部において、基材上
に成膜する薄膜が電極部材の外周近傍に堆積する堆積膜
を抑制でき、電極部材上に堆積した堆積膜に起因する微
少異常放電及び/または基材上に成膜する薄膜中に堆積
膜が混入することによる薄膜の膜質低下を解消できると
共に、基材上への成膜効率も向上できる。
BEST MODE FOR CARRYING OUT THE INVENTION In the electrode member of the present invention, the ratio of the area of the plate member to the projected area of the opening on the plate member is 30.
% To 97%, the area of the electrode member with respect to the opening can be optimized, and when applied to a film forming method for forming a film on a substrate by a vapor deposition method while applying a voltage to the electrode member. In the vicinity of the outer periphery of the electrode member and the opening, a thin film formed on the base material can suppress a deposited film deposited near the outer periphery of the electrode member, and a minute abnormal discharge caused by the deposited film deposited on the electrode member and / or Alternatively, the deterioration of the quality of the thin film due to the inclusion of the deposited film in the thin film formed on the base material can be eliminated, and the film formation efficiency on the base material can be improved.

【0009】また、本発明の電極部材は、表面から裏面
まで連続する空隙を有する空隙部を板状部材に備え、空
隙部の側壁と板状部材の相対向する一対の主面と板状部
材の外周側面との総表面積が、開口部に対向する表面の
みの面積の2倍以上100倍以下であるため、電極部材
の表面積の適正化が図れ、電極部材に電圧を印加しなが
ら気相堆積法で基材上に成膜する成膜方法に適用する
と、基材上に薄膜を形成する原料ガスに注入する電荷の
制御を行うことができ、均質な薄膜のより効率的な成膜
を行うことができる。
In the electrode member of the present invention, the plate member is provided with a void having a continuous void from the front surface to the back surface, and the side wall of the void portion and the pair of main surfaces of the plate member facing each other and the plate member. Since the total surface area with the outer peripheral side surface of the electrode is 2 times or more and 100 times or less than the area of only the surface facing the opening, the surface area of the electrode member can be optimized, and vapor phase deposition can be performed while applying voltage to the electrode member. When applied to a film forming method of forming a thin film on a base material by a method, it is possible to control the charge injected into the raw material gas for forming a thin film on the base material, and to perform a more efficient formation of a uniform thin film. be able to.

【0010】また、本発明の薄膜形成方法は、上記電極
部材により原料ガスをに電荷を注入し、板状部材と開口
部を介して対向する基材に薄膜を形成するため、均質な
薄膜を効率よく成膜することができる。これらにより高
い成膜レートを確保したままで、特に剥離膜の混入と微
少異常放電に起因する成膜欠陥の少ない薄膜が得られ
る。
Further, according to the thin film forming method of the present invention, a charge is injected into the raw material gas by the electrode member to form a thin film on the base material facing the plate-like member through the opening. A film can be formed efficiently. As a result, it is possible to obtain a thin film with few film formation defects due to the inclusion of the peeling film and the minute abnormal discharge, while maintaining a high film formation rate.

【0011】[0011]

【実施例】以下、本発明の電極部材をプラズマCVD法
におけるプラズマ励起電極として適用した一実施例につ
いて、図面を参照しながら説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment in which the electrode member of the present invention is applied as a plasma excitation electrode in a plasma CVD method will be described below with reference to the drawings.

【0012】(実施例1)図1は、磁気記録媒体の保護
膜をプラズマCVD法で成膜する装置の要部を示す構成
図であり、図2は、磁気記録媒体の構成を示す断面図で
ある。図2において、1は非磁性基材、2は非磁性基材
1の一方の主面に形成した磁性層、3は磁性層2の上に
形成した保護膜、4は保護膜3の上に形成した滑性層、
5は非磁性基材の他方の主面に形成したバックコート層
であり、磁気記録媒体6はバックコート層5・非磁性基
材1・磁性層2・保護膜3・滑性層4で構成される。以
下、本実施例では磁性層2を備えた非磁性基材1を磁性
基材7、保護膜3を備えた磁性基材7を磁気記録前駆体
8と称す。
(Embodiment 1) FIG. 1 is a configuration diagram showing a main part of an apparatus for forming a protective film of a magnetic recording medium by a plasma CVD method, and FIG. 2 is a sectional view showing the configuration of the magnetic recording medium. Is. In FIG. 2, 1 is a non-magnetic substrate, 2 is a magnetic layer formed on one main surface of the non-magnetic substrate 1, 3 is a protective film formed on the magnetic layer 2, and 4 is a protective film formed on the protective film 3. Formed slipping layer,
Reference numeral 5 is a back coat layer formed on the other main surface of the non-magnetic base material, and the magnetic recording medium 6 is composed of a back coat layer 5, a non-magnetic base material 1, a magnetic layer 2, a protective film 3, and a slipping layer 4. To be done. Hereinafter, in this embodiment, the non-magnetic base material 1 provided with the magnetic layer 2 is referred to as a magnetic base material 7, and the magnetic base material 7 provided with the protective film 3 is referred to as a magnetic recording precursor 8.

【0013】非磁性基材1に適応できる材料としては、
ポリエチレンテレフタレート、ポリエチレンナフタレー
ト、ポリアミド等の高分子材料であり、その厚みは3〜
15μm程度が一般的に用いられる。磁性層2は、磁性
材料粉末を結着樹脂溶液に分散し調粘等のため溶剤で希
釈したいわゆる磁性インクを塗工する塗布型か、例えば
Co−O、Co−Ni−O、Co−Cr−Ni等の強磁
性金属を反応蒸着法または反応スパッタ法等の気相堆積
法で形成した乾式型かの何れも適応できるが、プラズマ
CVD法で成膜する場合は一般的に乾式型が適用され
る。保護膜3は、強磁性金属蒸着磁気記録媒体では強磁
性金属の酸化防止及び蒸着磁性層の機械的な保護を担う
機能を付与するため、ダイヤモンドライクカーボンと称
される炭素膜であり、低分子炭化水素化合物を主原料と
してプラズマCVD法で成膜でき、その厚みは3〜50
nm程度である。滑性層4は、含弗素系潤滑剤が一般的
に適用され、湿式塗布法または真空蒸着法で形成でき、
厚みは1〜20nm程度である。バックコート層5に適
用される材料としては、カーボン等の固体潤滑剤または
二酸化珪素等の微粒子をポリエステル樹脂及び/または
ニトロセルロース等の結着樹脂を例えばメチルエチルケ
トン、トルエン、シクロヘキサノール等を単独または混
合した溶媒に溶解した溶液に分散し湿式塗布で形成し、
その厚みは0.3〜1μm程度である。
As a material applicable to the non-magnetic base material 1,
It is a polymer material such as polyethylene terephthalate, polyethylene naphthalate, and polyamide, and has a thickness of 3 to
Generally, about 15 μm is used. The magnetic layer 2 is a coating type in which a so-called magnetic ink obtained by dispersing magnetic material powder in a binder resin solution and diluted with a solvent for adjusting viscosity is applied, for example, Co-O, Co-Ni-O, Co-Cr. -A dry type in which a ferromagnetic metal such as Ni is formed by a vapor deposition method such as a reactive vapor deposition method or a reactive sputtering method is applicable, but when a film is formed by a plasma CVD method, a dry type is generally applied. To be done. The protective film 3 is a carbon film called diamond-like carbon in order to impart a function of preventing the oxidation of the ferromagnetic metal and mechanically protecting the evaporated magnetic layer in the ferromagnetic metal evaporated magnetic recording medium, and is a low molecular weight film. A hydrocarbon compound as a main raw material can be formed into a film by a plasma CVD method, and its thickness is 3 to 50.
It is about nm. For the slippery layer 4, a fluorine-containing lubricant is generally applied and can be formed by a wet coating method or a vacuum vapor deposition method.
The thickness is about 1 to 20 nm. As a material applied to the back coat layer 5, a solid lubricant such as carbon or fine particles such as silicon dioxide is a polyester resin and / or a binder resin such as nitrocellulose, for example, methyl ethyl ketone, toluene, cyclohexanol, etc., alone or mixed. Dispersed in a solution dissolved in a solvent that was formed by wet coating,
Its thickness is about 0.3 to 1 μm.

【0014】次に、本発明の薄膜形成方法の一実施例と
して、図1の薄膜形成装置について説明する。図1にお
いて、9は磁性基材7を繰り出す繰出ローラ、10は磁
性基材7に保護膜3を成膜し磁気記録前駆体8とする間
搬送するメインローラ、11は磁気記録前駆体8を巻き
取る巻取ローラ、12及び13はパスローラ、14は真
空ポンプ、15は成膜室16の真空度を調整するバルブ
である。パスローラ13は電圧印加手段17でプラズマ
励起電極18との間に所定の直流電圧あるいは交流電圧
またはそれらを重畳した電圧を印加する。但し、パスロ
ーラ13は磁性層2を介して電流の経路であるため、成
膜室16と電気的に絶縁しており、同様にパスローラ1
2も成膜室16と電気的に絶縁している。なお、本実施
例ではパスローラ13に電圧印加手段17を接続した場
合を示したが、電圧印加手段7に接続するパスローラは
12だけでも良く、12及び13の双方に接続しても良
いが、磁性層2に流れる電流には限界があるため、パス
ローラ12及び13の双方から電流を供給する構成とす
ると、高レートの成膜が可能と成し得る。プラズマ励起
電極18は開口部19を有する囲い20に収納され電極
部材である放電管21を構成する。なお、プラズマ励起
電極18としては金属または半導体領域のセラミックス
材料が適応でき、囲い20はプラズマ励起電極18で発
生したプラズマが成膜室16に漏洩し、成膜室16内の
構成部材及び処理途中の磁性基材7や磁気記録前駆体8
が汚染されることを防止するため、開口部19以外はプ
ラズマ励起電極18を囲む必要があり、適用される材質
としては耐熱性を有する絶縁体が供される。また、22
は原料導入管であり、流量制御しながら原料ガス及び補
助ガスが囲い20の内部に供給する。
Next, the thin film forming apparatus of FIG. 1 will be described as an embodiment of the thin film forming method of the present invention. In FIG. 1, 9 is a feeding roller for feeding the magnetic base material 7, 10 is a main roller for transporting the protective film 3 formed on the magnetic base material 7 to form the magnetic recording precursor 8, and 11 is the magnetic recording precursor 8. A winding roller for winding, 12 and 13 are pass rollers, 14 is a vacuum pump, and 15 is a valve for adjusting the degree of vacuum of the film forming chamber 16. The pass roller 13 applies a predetermined DC voltage or AC voltage or a voltage obtained by superimposing them to the plasma excitation electrode 18 by the voltage applying means 17. However, since the pass roller 13 is a current path through the magnetic layer 2, the pass roller 13 is electrically insulated from the film forming chamber 16, and similarly, the pass roller 1 is also provided.
2 is also electrically insulated from the film forming chamber 16. In the present embodiment, the case where the voltage applying means 17 is connected to the pass roller 13 has been shown, but only 12 pass rollers may be connected to the voltage applying means 7, or both 12 and 13 may be connected. Since the current flowing through the layer 2 is limited, if the current is supplied from both the pass rollers 12 and 13, it is possible to form a film at a high rate. The plasma excitation electrode 18 is housed in an enclosure 20 having an opening 19 and constitutes a discharge tube 21 which is an electrode member. A metal or a ceramic material of a semiconductor region can be applied to the plasma excitation electrode 18, and the plasma generated in the plasma excitation electrode 18 leaks to the film forming chamber 16 in the enclosure 20 and the components inside the film forming chamber 16 and the middle of the process. Magnetic base material 7 and magnetic recording precursor 8
It is necessary to surround the plasma excitation electrode 18 except for the openings 19 in order to prevent the contamination of the plasma excitation electrode 18, and an insulating material having heat resistance is provided as a material to be applied. Also, 22
Is a raw material introduction pipe, and the raw material gas and the auxiliary gas are supplied to the inside of the enclosure 20 while controlling the flow rate.

【0015】次に図1の各構成要素の動作を説明する。
真空ポンプ14を排気させた状態でバルブ15を開き成
膜室16を脱気し、規定の真空度(例えば1×10-2
a)に到達させる。磁性層2を外側にして繰出ローラ9
に巻回されている磁性基材7は、繰出ローラ9からパス
ローラ12を介してメインローラ13で一定速度で連続
的に搬送される。後述するプラズマCVDで保護膜3の
成膜時に、プラズマによる温度上昇に起因し非磁性基材
1及び/または磁性層2の熱負けが発生する現象を抑制
するため、メインローラ13の内部に冷媒等を循環させ
一定温度に制御すると共に、電気的には成膜室16と絶
縁している。メインローラ13で搬送された磁性基材7
は、放電管21の開口部19の範囲で保護膜3を成膜す
る。すなわち、原料導入管22から流量制御して流入す
る有機分子蒸気が、プラズマ励起電極18のプラズマ放
電でプラズマ化され、炭素を含むイオン及び/またはラ
ジカル状態で放電管21の開口部19を通り磁性基材7
の磁性層2の上に堆積し、保護膜3を形成し、磁気記録
前駆体8となる。本実施例では、ノナンとアルゴンガス
との混合ガスをそれぞれ流量制御して原料導入管22か
ら供給し、電圧印加手段17から所定の電圧をプラズマ
励起電極18とパスローラ13との間に印加し、プラズ
マCVDのダイヤモンドライクカーボン保護膜3を磁性
層2上に成膜し磁気記録前駆体8を得た。上記の条件で
発生したプラズマ電流は、磁気記録前駆体8とパスロー
ラ13とを通じて流れるため、磁性層2上に成膜した保
護膜3の緻密性が高い。なお、本実施例では電圧印加手
段17はプラズマ励起電極18とパスローラ13との間
のみに印加したが、プラズマ励起電極18とパスローラ
12との間のみ、または、プラズマ励起電極18とパス
ローラ12及び13との間であっても良い。磁気記録前
駆体8は、パスローラ13を介して巻取ローラ11に巻
き取られる。
Next, the operation of each component shown in FIG. 1 will be described.
With the vacuum pump 14 evacuated, the valve 15 is opened and the film forming chamber 16 is degassed, and the specified vacuum degree (for example, 1 × 10 -2 P
reach a). Feeding roller 9 with magnetic layer 2 outside
The magnetic base material 7 wound around is continuously conveyed from the feeding roller 9 through the pass roller 12 by the main roller 13 at a constant speed. In order to suppress the phenomenon of heat loss of the non-magnetic base material 1 and / or the magnetic layer 2 due to the temperature rise due to plasma when the protective film 3 is formed by plasma CVD, which will be described later, a refrigerant is placed inside the main roller 13. Etc. are circulated to control the temperature to a constant temperature and electrically insulated from the film forming chamber 16. Magnetic substrate 7 conveyed by main roller 13
Forms the protective film 3 in the area of the opening 19 of the discharge tube 21. That is, the organic molecule vapor that flows in from the raw material introduction tube 22 at a controlled flow rate is turned into plasma by the plasma discharge of the plasma excitation electrode 18, and passes through the opening 19 of the discharge tube 21 in the state of ions and / or radicals containing carbon and is magnetized. Base material 7
Is deposited on the magnetic layer 2 and the protective film 3 is formed to form the magnetic recording precursor 8. In this embodiment, the mixed gas of nonane and argon gas is controlled in flow rate and supplied from the raw material introduction pipe 22, and a predetermined voltage is applied between the plasma excitation electrode 18 and the pass roller 13 from the voltage application means 17. A plasma CVD diamond-like carbon protective film 3 was formed on the magnetic layer 2 to obtain a magnetic recording precursor 8. Since the plasma current generated under the above conditions flows through the magnetic recording precursor 8 and the pass roller 13, the denseness of the protective film 3 formed on the magnetic layer 2 is high. In this embodiment, the voltage applying means 17 applies the voltage only between the plasma excitation electrode 18 and the pass roller 13, but only between the plasma excitation electrode 18 and the pass roller 12, or between the plasma excitation electrode 18 and the pass rollers 12 and 13. May be between The magnetic recording precursor 8 is wound around the winding roller 11 via the pass roller 13.

【0016】次に、放電管21におけるプラズマ励起電
極18と開口部19との関係について説明する。図3
は、プラズマ励起電極18を磁性基材7側から見た開口
部19との関係を説明する一例である。同図において、
プラズマ励起電極18は囲い20の中に収納され、囲い
20には原料導入管22(プラズマ励起電極18に隠れ
ているため不図示)と開口部19のみの開口がある。ま
た、23はメインローラ10により磁性基材7及び磁気
記録前駆体8を搬送する搬送方向で、24はメインロー
ラ10の回転軸方向である。図に示したように、搬送方
向23の長さを回転軸方向24の長さよりも大きくする
と、成膜時間が多くとれるため好ましい。この開口部1
9のプラズマ励起電極18(実際上は、プラズマ励起電
極18に平行な面)への投影面積(開口部19の投影面
が長方形の場合には搬送方向23の長さと回転軸24方
向の長さの積)に対する、開口部19と対向するプラズ
マ励起電極18の網掛けを施した部分のみの面積の比率
を開口面積比と定義し、開口部19と対向するプラズマ
励起電極18の網掛けを施した部分の面積を見掛け面積
と定義する。ところで、原料蒸気との接触面積を高める
ことでプラズマ発生効率を高める手段として、プラズマ
励起電極18には打ち抜き鋼板、焼結金属、積層型エキ
スパンド金属、発泡金属等の多孔質金属を電極として適
用される。上述で定義した見掛け面積とは、図3のプラ
ズマ励起電極18におけるハッチングを施した空隙加工
を施していない電極表面の面積を指し、空隙加工部25
は含まない。ところで、プラズマ励起電極19からプラ
ズマを発生する効率を問題にすると、前述したようにプ
ラズマ励起電極18の総表面積も考慮する必要がある。
すなわち、総表面積とはプラズマ励起電極18の電極外
周側面、空隙加工部25に適用される材料の多孔質金属
の開口部19に対向する面とその裏面、及び空隙加工部
25の空隙部内周側面の合計のことであり、このプラズ
マ励起電極18の総表面積の見掛け面積に対する倍率を
総面積比と定義すると、総面積比もプラズマCVD膜の
成膜に際して要因となる。そこで、開口面積比と総面積
比とを最適化することにより、成膜欠陥を抑制すること
が技術思想であり、開口面積比は30%以上97%以下
の範囲が良く、その開口面積を備えた条件で総面積比を
2倍以上100倍以下とすると更に好ましい。
Next, the relationship between the plasma excitation electrode 18 and the opening 19 in the discharge tube 21 will be described. Figure 3
4 is an example for explaining the relationship between the plasma excitation electrode 18 and the opening 19 as viewed from the magnetic substrate 7 side. In the figure,
The plasma excitation electrode 18 is housed in an enclosure 20, and the enclosure 20 has a raw material introduction tube 22 (not shown because it is hidden by the plasma excitation electrode 18) and an opening 19 only. Further, 23 is a transport direction in which the magnetic base material 7 and the magnetic recording precursor 8 are transported by the main roller 10, and 24 is a rotation axis direction of the main roller 10. As shown in the figure, it is preferable that the length in the transport direction 23 is longer than the length in the rotation axis direction 24 because the film formation time can be lengthened. This opening 1
9 is a projected area on the plasma excitation electrode 18 (actually, a plane parallel to the plasma excitation electrode 18) (when the projection surface of the opening 19 is rectangular, the length in the transport direction 23 and the length in the rotation axis 24 direction). Of the plasma excitation electrode 18 facing the opening 19 is defined as an opening area ratio, and the plasma excitation electrode 18 facing the opening 19 is shaded. The area of the shaded area is defined as the apparent area. By the way, as a means for increasing the plasma generation efficiency by increasing the contact area with the raw material vapor, a punched steel plate, a sintered metal, a laminated expanded metal, a porous metal such as a foam metal is applied to the plasma excitation electrode 18 as an electrode. It The apparent area defined above refers to the area of the electrode surface of the plasma excitation electrode 18 of FIG.
Is not included. By the way, if the efficiency of generating plasma from the plasma excitation electrode 19 is a problem, it is also necessary to consider the total surface area of the plasma excitation electrode 18 as described above.
That is, the total surface area refers to the electrode outer peripheral surface of the plasma excitation electrode 18, the surface facing the opening 19 of the porous metal of the material applied to the void processing portion 25 and its back surface, and the void inner peripheral side surface of the void processing portion 25. When the ratio of the total surface area of the plasma excitation electrode 18 to the apparent area is defined as the total area ratio, the total area ratio also becomes a factor in forming the plasma CVD film. Therefore, it is a technical idea to suppress the film formation defect by optimizing the opening area ratio and the total area ratio, and the opening area ratio is preferably in the range of 30% or more and 97% or less. It is more preferable to set the total area ratio to 2 times or more and 100 times or less under the above conditions.

【0017】次に、非磁性基材1として500mm幅で
厚み6μmのポリエチレンテレフタレートを用い、非磁
性基材1上にCoを主成分とする強磁性金属薄膜を厚み
150nmを気相堆積法で形成した磁性層2を備えた磁
性基材7に、炭素源のノナンと補助ガスのアルゴンとの
混合比率を2対1とした原料により、約25GPaのビ
ッカース硬度を有するダイヤモンドライクカーボン保護
膜3をプラズマCVD法で成膜した実験及び結果を説明
する。なお、プラズマ励起電極18に電圧印加手段17
からの印加条件は2MHzで2kWで一定にし、プラズ
マ励起電極18の開口面積比と総面積比とをパラメータ
とし、ダイヤモンドライクカーボンの特性を評価した。
また、開口面積比及び総面積比を変化させる手法とし
て、プラズマ励起電極18に適用する材料を、ステンレ
ス打ち抜き鋼板(以下、SUS打ち抜き板と称す)、ス
テンレス多層エキスパンド金属(以下、層数をnとする
と、n層エキスパンドSUSと称す)、ステンレス焼結
金属(以下、SUS焼結金属と称す)を適宜選択して用
いた。なお、総面積比を算出するには空隙加工部25の
空隙の側面積を求める必要があるが、空隙加工部25全
面に渡って同一の空隙を備えているものとしてポロシテ
ィの測定値から算出する、体積と重量とを測定し空隙加
工部25に適用する材料の比重から算出する等がある
が、購入するメーカのカタログ値に基づくのが最も簡便
である。
Next, polyethylene terephthalate having a width of 500 mm and a thickness of 6 μm is used as the non-magnetic substrate 1, and a ferromagnetic metal thin film containing Co as a main component is formed on the non-magnetic substrate 1 to a thickness of 150 nm by a vapor deposition method. On the magnetic base material 7 having the magnetic layer 2 formed as described above, a diamond-like carbon protective film 3 having a Vickers hardness of about 25 GPa is plasma-formed by using a raw material in which the mixing ratio of nonane as a carbon source and argon as an auxiliary gas is 2: 1. Experiments and results of film formation by the CVD method will be described. The voltage applying means 17 is applied to the plasma excitation electrode 18.
The application condition from 2 was kept constant at 2 MHz at 2 MHz, and the characteristics of diamond-like carbon were evaluated using the opening area ratio of the plasma excitation electrode 18 and the total area ratio as parameters.
As a method of changing the opening area ratio and the total area ratio, the material applied to the plasma excitation electrode 18 is a stainless steel punched steel plate (hereinafter referred to as SUS punched plate), a stainless multilayer expanded metal (hereinafter, the number of layers is n). Then, n layer expanded SUS) and stainless sintered metal (hereinafter referred to as SUS sintered metal) were appropriately selected and used. The side area of the void of the void processed portion 25 needs to be calculated in order to calculate the total area ratio, but it is calculated from the measured porosity values assuming that the same void is provided over the entire surface of the void processed portion 25. The volume and weight are measured and calculated from the specific gravity of the material applied to the void processing portion 25, but the simplest method is to use the catalog value of the maker to purchase.

【0018】開口面積比を30%、60%及び97%と
し、総面積比を2倍、50倍及び100倍のプラズマ励
起電極18を用いて保護膜3を成膜し、試料No.10
1〜110を得た。プラズマ励起電極18の材料、開口
面積比及び総面積比の組合せは(表1)に示す。
The protective film 3 was formed by using the plasma excitation electrodes 18 having the opening area ratios of 30%, 60% and 97% and the total area ratios of 2, 50 and 100 times. 10
1-110 were obtained. The combination of the material of the plasma excitation electrode 18, the opening area ratio, and the total area ratio is shown in (Table 1).

【0019】比較例として、開口面積比29%及び98
%で、総面積比1.6倍、50倍及び110倍のプラズ
マ励起電極18を用いて保護膜3を成膜し、試料No.
201〜204を得た。プラズマ励起電極18の材料、
開口面積比及び総面積比の組合せは(表1)に示す。
As comparative examples, opening area ratios of 29% and 98
%, The protective film 3 was formed using the plasma excitation electrodes 18 having a total area ratio of 1.6 times, 50 times, and 110 times.
201-204 were obtained. Material of the plasma excitation electrode 18,
The combination of the opening area ratio and the total area ratio is shown in (Table 1).

【0020】以上の実施例で得た試料No.101〜1
10、及び比較例で得た試料No.201〜204の評
価として、磁気記録媒体6の形態をとった上で実用信頼
性試験を行った。先ず、磁気記録媒体6の形態と取るた
めに、各試料のバックコート層5として、ポリエステル
樹脂とニトロセルロース樹脂とを混合した溶液にフィラ
ーとしてカーボンブラックを混入した分散液をメチルエ
チルケトン、トルエン及びシクロヘキサノンの混合溶媒
で希釈し、乾燥厚みで1μm塗布し、滑性層4として含
弗素カルボン酸系潤滑剤を乾燥厚みで3nm塗布した。
このようにして作成した磁気記録媒体6を幅6.35m
m、長さ70mに裁断し、ディジタルビデオカセットに
装着した後、市販のディジタルビデオカメラを改造した
機器を用いて、ドロップアウトと耐久性とを評価した。
ドロップアウトの測定は3μsec6dBのドロップア
ウトを10分間測定し、1分間の平均値で評価した。画
像信号を再生する際に画質に明らかな劣化が見られるド
ロップアウト数は、平均で1分間に240程度であるた
め、画像信号、音声信号及びデータ信号も勘案して20
0個を合否判断基準とした。本実施例では画像耐久性の
測定は同一カセットで5ヶ所に信号を1分間記録した信
号を繰り返し再生を行い、その出力が6dB低下したパ
ス数で評価した。当該パス数の合否判定基準には、例え
ばデータ信号の再生に際して頻繁にアクセスされる場合
を想定すると少なくとも5000回は必要であるため、
本実施例では5000回を採用した。このようにしてド
ロップアウトと耐久性とを評価した結果を(表1)に示
す。
The sample No. obtained in the above examples. 101-1
10 and the sample No. 10 obtained in the comparative example. For evaluation of Nos. 201 to 204, a practical reliability test was conducted after taking the form of the magnetic recording medium 6. First, in order to take the form of the magnetic recording medium 6, as the back coat layer 5 of each sample, a dispersion liquid in which carbon black is mixed as a filler in a solution in which a polyester resin and a nitrocellulose resin are mixed is prepared from methyl ethyl ketone, toluene and cyclohexanone. It was diluted with a mixed solvent and applied to a dry thickness of 1 μm, and as a slipping layer 4, a fluorinated carboxylic acid-based lubricant was applied to a dry thickness of 3 nm.
The magnetic recording medium 6 created in this way has a width of 6.35 m.
After cutting into m and 70 m in length and mounting in a digital video cassette, dropout and durability were evaluated using a device obtained by modifying a commercially available digital video camera.
The dropout was measured by measuring a dropout of 3 μsec 6 dB for 10 minutes and evaluating the average value for 1 minute. The number of dropouts in which the image quality is clearly deteriorated when reproducing the image signal is about 240 per minute on average, and therefore the number of dropouts is 20 in consideration of the image signal, the audio signal and the data signal.
0 was used as the acceptance criterion. In this example, the image durability was measured by repeatedly reproducing a signal in which signals were recorded at 5 locations for 1 minute in the same cassette, and evaluated by the number of passes in which the output was reduced by 6 dB. The pass / fail judgment criterion for the number of passes is, for example, at least 5000 times, assuming that the data signal is frequently accessed during reproduction,
In this embodiment, 5000 times is adopted. The results of evaluating dropout and durability in this manner are shown in (Table 1).

【0021】[0021]

【表1】 [Table 1]

【0022】ドロップアウト及び耐久性は共にダイヤモ
ンド状炭素膜の膜質を異なった観点での評価であるが、
開口面積比とドロップアウト及び耐久性との観点での比
較、総面積比とドロップアウト及び耐久性との観点での
比較を行う。
Dropout and durability are both evaluated from different viewpoints of the film quality of the diamond-like carbon film.
A comparison is made from the viewpoint of the opening area ratio and the dropout and durability, and a comparison is made from the viewpoint of the total area ratio and the dropout and durability.

【0023】先ず、パラメータの総面積比を同一として
開口面積比とドロップアウトとの関係を考察すると、パ
ラメータの総面積比が高くなるほどドロップアウト数が
低くなる傾向と、開口面積比が高くなるほどドロップア
ウト数が低くなる傾向とが見受けられる。また、総面積
比50倍と総面積比97倍とにおける開口面積比に対す
るドロップアウト数の傾向を見ると、開口面積比60%
以上での変化が少ないことから、開口面積比が60%程
度からドロップアウトの点では安定することが想定され
る。
First, considering the relationship between the opening area ratio and the dropouts with the same total area ratio of the parameters, the dropout number tends to decrease as the total area ratio of the parameter increases, and the dropout increases as the opening area ratio increases. It can be seen that the number of outs tends to be low. Looking at the tendency of the dropout number with respect to the opening area ratio when the total area ratio is 50 times and the total area ratio is 97 times, the opening area ratio is 60%.
Since the change above is small, it is assumed that the opening area ratio is about 60% and stable in terms of dropout.

【0024】なお、開口面積比の値が小さくなるほどプ
ラズマ励起電極18の面積が小さくなることであり、プ
ラズマ励起電極18の面積が減少すると磁性基材7に供
給される原料プラズマの絶対量が減少するため、保護膜
3(ダイヤモンド状炭素膜)の成膜効率が低下し膜質が
劣化するためだと想定される。逆に、開口面積比の値が
大きくなるほどプラズマ励起電極18から供給される原
料プラズマの絶対量が増加することで、緻密な膜質を有
するダイヤモンド状炭素膜が成膜できる傾向にあること
を示している。但し、総面積比50倍におけるドロップ
アウト数と開口面積比との関係で、試料No.201と
試料No.102との関係、及び試料No.109と試
料No.204との関係を見ると、試料No.102・
106・109間のドロップアウト数の低下変動割合に
比べ変化が急激であるが、この原因としては次のことが
想定される。先ず、試料No.201と試料No.10
2との関係は、試料No.201では原料プラズマの供
給量の不足が激しく、ダイヤモンド状炭素膜が均一な膜
として成膜し難いためか、プラズマ化の効率が低いため
成膜中にプラズマ化されていない原料ガスがダイヤモン
ド状炭素膜中に混入することで膜質が脆弱化するためか
の何れかが想定され、従って開口面積比は30%以上が
好ましいことが分かる。また、試料No.109と試料
No.204との関係は、試料No.204では開口部
19とプラズマ励起電極18との間隙が少ないため、原
料ガスが開口部19の境界近傍の囲い20内壁に当たり
プラズマ励起電極18の外周面に回り込み、当該外周面
に原料プラズマが堆積し、堆積膜が剥離して剥離膜とし
てダイヤモンド状炭素膜中に混入及び/または堆積膜が
異常放電を引き起こすため、ダイヤモンド状炭素膜及び
/または磁性層2に損傷を与える傾向にあることが想定
され、従って開口面積比の上限は97%以下が好ましい
ことが分かる。
The smaller the opening area ratio, the smaller the area of the plasma excitation electrode 18. When the area of the plasma excitation electrode 18 decreases, the absolute amount of the raw material plasma supplied to the magnetic substrate 7 decreases. Therefore, it is assumed that the film forming efficiency of the protective film 3 (diamond-like carbon film) is lowered and the film quality is deteriorated. On the contrary, as the value of the opening area ratio increases, the absolute amount of the raw material plasma supplied from the plasma excitation electrode 18 increases, which indicates that a diamond-like carbon film having a dense film quality tends to be formed. There is. However, due to the relationship between the number of dropouts and the opening area ratio at the total area ratio of 50 times, the sample No. 201 and sample No. 102, and sample No. 109 and sample No. Looking at the relationship with Sample No. 204, Sample No. 102
The dropout number between 106 and 109 is sharply changed compared to the rate of change, but it can be assumed that the cause is as follows. First, the sample No. 201 and sample No. 10
The relationship with Sample No. 2 is as follows. In 201, the supply amount of the raw material plasma is severely insufficient, and it is difficult to form the diamond-like carbon film as a uniform film. It is assumed that one of the reasons is that the quality of the film becomes fragile by being mixed in the film, and therefore it is understood that the opening area ratio is preferably 30% or more. In addition, the sample No. 109 and sample No. The relationship with Sample No. 204 is as follows. In 204, since the gap between the opening 19 and the plasma excitation electrode 18 is small, the source gas hits the inner wall of the enclosure 20 near the boundary of the opening 19 and wraps around the outer peripheral surface of the plasma excitation electrode 18, and the source plasma is deposited on the outer peripheral surface. It is assumed that the deposited film peels off and mixes into the diamond-like carbon film as a peeled film and / or causes the abnormal discharge to cause damage to the diamond-like carbon film and / or the magnetic layer 2. Therefore, it is understood that the upper limit of the opening area ratio is preferably 97% or less.

【0025】次に、パラメータの総面積比を同一として
開口面積比と耐久性との関係を考察すると、開口面積比
で60%前後に最適な値を呈する傾向と、パラメータで
ある総面積比にも50倍前後に最適な値を呈する傾向と
が見受けられる。
Next, considering the relationship between the opening area ratio and the durability with the total area ratio of the parameters being the same, there is a tendency that the optimum value of the opening area ratio is around 60% and the total area ratio that is the parameter. Also, there is a tendency that the optimum value is exhibited around 50 times.

【0026】なお、総面積比50倍での開口面積比に対
する耐久性の傾向でも試料No.201と試料No.1
02及び試料No.109と試料No.204は、前述
のドロップアウトと同様に変化割合が急峻であることか
ら上述と同様の原因が想定され、従って開口面積比は3
0%以上97%以下が好ましいことが分かる。なお、試
料No.201と試料No.102との間の変化量と試
料No.109と試料No.204との間の変化量では
後者の方が圧倒的に大きい点から、ダイヤモンド状炭素
膜の膜厚の薄さ及び/または不均一成膜よりも、ダイヤ
モンド状炭素膜中への剥離膜の混入及び/または異常放
電の影響の方が大きいと想定される。
Note that the sample No. 1 has a tendency of durability with respect to the opening area ratio at a total area ratio of 50 times. 201 and sample No. 1
02 and sample No. 109 and sample No. Since the change ratio of 204 is steep like the dropout described above, the same cause as described above is assumed, and therefore the aperture area ratio is 3
It can be seen that 0% or more and 97% or less is preferable. Sample No. 201 and sample No. 102 and the sample No. 109 and sample No. From the point that the latter is overwhelmingly larger in the amount of change from 204, the inclusion of the exfoliation film in the diamond-like carbon film than the thinness and / or non-uniform film formation of the diamond-like carbon film. And / or the influence of abnormal discharge is assumed to be greater.

【0027】次に、開口面積比をパラメータとして、総
面積比に対するドロップアウト数の関係について考察す
る。ドロップアウト数は総面積比が大きくなるほど低下
する傾向が見受けられる。この傾向は、総面積比が大き
くなると原料ガスがプラズマ励起電極18でプラズマ化
される比率が高まるため、成膜時に充分な原料プラズマ
が磁性基材7に供給され、緻密なダイヤモンド状炭素膜
を成膜できるためと想定される。
Next, the relationship between the total area ratio and the number of dropouts will be considered with the opening area ratio as a parameter. The number of dropouts tends to decrease as the total area ratio increases. This tendency is that as the total area ratio increases, the ratio of the raw material gas turned into plasma at the plasma excitation electrode 18 increases, so that sufficient raw material plasma is supplied to the magnetic base material 7 during film formation to form a dense diamond-like carbon film. It is assumed that the film can be formed.

【0028】なお、開口面積比を60%一定とした試料
No.202,104,105,106,107,20
3について考察すると、試料No.202と試料No.
104との間のドロップアウト数変動割合が試料No.
104と試料No.105との間の変動割合よりはるか
に急峻であることは、プラズマ化の効率が低いため原料
プラズマの磁性基材7への供給量が不足するか、及び/
または原料プラズマにプラズマ化されていない原料ガス
が混入しダイヤモンド状炭素膜中の未反応の原料がすが
閉じこめられるためかが想定される。従って総面積比と
しては2倍以上が好ましく、試料No.104と試料N
o.105との変動割合を勘案すると10倍以上が望ま
しいことを示している。
Sample No. 1 having an opening area ratio of 60% was kept constant. 202, 104, 105, 106, 107, 20
Considering Sample No. 3, 202 and sample No.
The change ratio of the dropout number between the sample No. 104 and the sample No.
104 and sample No. It is much steeper than the fluctuation ratio with respect to 105 whether the supply amount of the raw material plasma to the magnetic base material 7 is insufficient due to the low efficiency of plasma formation, and /
Alternatively, it is assumed that the raw material gas that has not been turned into plasma is mixed into the raw material plasma and the unreacted raw material in the diamond-like carbon film is trapped. Therefore, the total area ratio is preferably twice or more, and the sample No. 104 and sample N
o. Considering the fluctuation ratio with 105, 10 times or more is desirable.

【0029】次に、開口面積比をパラメータとして、総
面積比に対する耐久性の関係について考察する。耐久性
の観点では開口面積比60%が何れの総面積比でも何れ
の総面積比でも優れている傾向が見受けられるため、前
述したように開口面積比は60%前後が好ましいことを
示している。また、開口面積比60%一定の条件の試料
No.202,104,105,106,107,20
3については、試料No.202・104・105では
前述したドロップアウト数と総面積比との関係と同様の
傾向が見受けられるが、試料No.202でも本実施例
における耐久性の基準値は満たしている。一方、試料N
o.107と試料No.203との間の低下変動割合
は、試料No.106と試料No.107との間の変動
割合と殆ど変化がないが、本実施例における耐久性の基
準値を下回った。この原因は、総面積比が高くなるに従
い原料ガスの供給量が増加しプラズマ化していない原料
ガスもダイヤモンド状炭素膜中に混入する、及び/また
は総面積比の増加に伴い電圧印加手段17からの供給電
流量が不足(すなわち、単位面積当たりの電流密度が低
下)により原料ガスのプラズマ化が低下することが要因
と想定される。なお、本実施例では総面積比100倍程
度までであれば耐久性の基準値を満足したが、総面積比
110倍では基準値を下回ったため、総面積比の上限は
100倍程度であることが分かった。
Next, the relationship between the durability and the total area ratio will be considered using the opening area ratio as a parameter. From the viewpoint of durability, it can be seen that the opening area ratio of 60% is superior to any total area ratio or any total area ratio. Therefore, as described above, the opening area ratio is preferably around 60%. . In addition, the sample No. under the condition that the opening area ratio is constant at 60%. 202, 104, 105, 106, 107, 20
For sample 3, In Nos. 202, 104, and 105, the same tendency as the above-mentioned relationship between the number of dropouts and the total area ratio is seen, but the sample No. Even in 202, the durability reference value in this embodiment is satisfied. On the other hand, sample N
o. 107 and sample No. The decrease variation ratio between the sample No. 203 and the sample No. 106 and sample No. 106. There was almost no change with the fluctuation ratio between the values of 107 and 107, but the value was below the reference value of durability in this example. This is because the supply amount of the raw material gas increases as the total area ratio increases, and the raw material gas that has not been turned into plasma also mixes into the diamond-like carbon film, and / or the voltage applying means 17 increases the total area ratio. It is assumed that the factor is that the supply gas amount is insufficient (that is, the current density per unit area decreases), and the plasma generation of the source gas decreases. In this example, the standard value of durability was satisfied when the total area ratio was up to about 100 times, but was lower than the reference value when the total area ratio was 110 times. Therefore, the upper limit of the total area ratio is about 100 times. I understood.

【0030】以上のことから、プラズマ励起電極18の
開口面積比は30%以上97%以下が好ましいことが分
かり、この範囲を外れるとドロップアウト数でも耐久性
でも変動割合が急峻に低下することが判明した。また、
総面積比に関しては2倍未満であるとドロップアウト数
では急峻に低下するものの変動量は開口面積よりも緩や
かであり、開口面積比の最適化により総面積比による特
性劣化は吸収できる可能性もある。しかしながら、上述
の実施例から総面積比は2倍以上100倍以下が望まし
いと言える。
From the above, it is found that the opening area ratio of the plasma excitation electrode 18 is preferably 30% or more and 97% or less, and if it is out of this range, the variation ratio in both the dropout number and the durability may sharply decrease. found. Also,
If the total area ratio is less than 2 times, the dropout number drops sharply, but the fluctuation amount is gentler than the opening area ratio, and it is possible that the characteristic deterioration due to the total area ratio can be absorbed by optimizing the opening area ratio. is there. However, it can be said from the above-mentioned embodiment that the total area ratio is preferably 2 times or more and 100 times or less.

【0031】なお、本実施例ではプラズマ励起電極18
の材料をSUS打ち抜き板、積層エキスパンド金属、焼
結金属を用いてサンプルを作製したが、前記材料の組合
せあるいは発砲金属を用いてもほぼ同様の結果が得られ
た。
In this embodiment, the plasma excitation electrode 18
A sample was prepared using the material of (1) above with a SUS punched plate, a laminated expanded metal, and a sintered metal, but almost the same results were obtained even if a combination of the above materials or a foam metal was used.

【0032】また、本実施例ではプラズマ励起電極18
の外形形状は4角を面取りした電極形状を適用したが、
矩形であっても適用可能である。しかしながら、外形を
矩形形状にすると、角に電流が集中し異常放電が発生す
る可能性が高いため、本実施例のように面取りを施す方
が好ましい。また、外形形状は楕円形でも適用できる
が、楕円形状を適用すると軸方向24に不均一性が発生
するため、本実施例のような面取りした長方形の形状が
好ましい。空隙加工部25の形状も本実施例では楕円形
状を採用したが、プラズマ励起電極18の外形形状を相
似形でも長方形状でも何れでも適用できる。
Further, in this embodiment, the plasma excitation electrode 18
For the outer shape of, the electrode shape with chamfered squares was applied,
Even a rectangular shape can be applied. However, if the outer shape is rectangular, current is likely to concentrate at the corners and abnormal discharge is likely to occur. Therefore, it is preferable to chamfer as in this embodiment. The outer shape may be an elliptical shape, but when the elliptical shape is applied, non-uniformity occurs in the axial direction 24. Therefore, a chamfered rectangular shape as in this embodiment is preferable. The shape of the void processing portion 25 is also elliptical in this embodiment, but the external shape of the plasma excitation electrode 18 may be either a similar shape or a rectangular shape.

【0033】また、本実施例ではバックコート層5を成
膜する前段階の磁性基材7に保護膜3を成膜したが、磁
性基材7に予めバックコート層5を成膜した後で保護膜
3を形成しても良いこと当然である。
In this embodiment, the protective film 3 is formed on the magnetic base material 7 before the back coat layer 5 is formed, but after the back coat layer 5 is formed on the magnetic base material 7 in advance. Of course, the protective film 3 may be formed.

【0034】(実施例2)次に、本発明の電極部材を用
いた他の実施例について説明する。図4は、本発明の薄
膜製造方法の他の実施例として、半導体素子の層間絶縁
膜の製造装置の要部概念構成図である。同図において、
真空ポンプ14、バルブ15、電圧印加手段17、プラ
ズマ励起電極18、開口部19、囲い20、放電管2
1、原料導入管22は実施例1において図1を参照して
説明したプラズマCVD成膜部等と同じである。図1と
異なる点は、基板キャリアー31を搬送する搬送ローラ
32だけであり、基板26は基板キャリアー31により
成膜室16中を一定の速度で搬送される。成膜室16
は、基板キャリアー31に基板26を載置する載置室
(図示は省略)及び基板キャリアー31から絶縁膜基板
28に電極を成膜する電極成膜室(図示は省略)に原料
の混入を防ぐため隔離されている。本実施例では、図5
に示したように、基板26にシリコン基板を適用し、シ
リコン基板26上に層間絶縁膜27として酸化シリコン
を適用し、層間絶縁膜27の上に形成する電極29とし
てアルミニウムを形成したモデル基板30で、層間絶縁
膜27の成膜を検討した。層間絶縁膜27の原料ガスに
はテトラエトキシシランを40Paの圧力で原料導入管
22から導入し、プラズマCVD法で酸化シリコン薄膜
を2μm成膜した。層間絶縁膜27を形成した後電極2
9をスパッタ法で5μm成膜し、試料No.111〜1
20と試料No.270〜212を得た。なお、本実施
例で用いたプラズマ励起電極18は、実施例1で用いた
電極と同一である。
(Embodiment 2) Next, another embodiment using the electrode member of the present invention will be described. FIG. 4 is a conceptual configuration diagram of a main part of an apparatus for manufacturing an interlayer insulating film of a semiconductor element as another embodiment of the thin film manufacturing method of the present invention. In the figure,
Vacuum pump 14, valve 15, voltage applying means 17, plasma excitation electrode 18, opening 19, enclosure 20, discharge tube 2
1. The raw material introduction pipe 22 is the same as the plasma CVD film forming unit and the like described in Embodiment 1 with reference to FIG. The only difference from FIG. 1 is the carrying roller 32 that carries the substrate carrier 31, and the substrate 26 is carried by the substrate carrier 31 through the film forming chamber 16 at a constant speed. Film forming chamber 16
Prevents the raw material from mixing in a mounting chamber (not shown) for mounting the substrate 26 on the substrate carrier 31 and an electrode film forming chamber (not shown) for forming an electrode on the insulating film substrate 28 from the substrate carrier 31. Therefore, it is isolated. In this embodiment, FIG.
As shown in FIG. 6, a model substrate 30 in which a silicon substrate is applied to the substrate 26, silicon oxide is applied as the interlayer insulating film 27 on the silicon substrate 26, and aluminum is formed as the electrode 29 formed on the interlayer insulating film 27. Then, the formation of the interlayer insulating film 27 was examined. Tetraethoxysilane was introduced into the material gas for the interlayer insulating film 27 at a pressure of 40 Pa from the material introducing pipe 22, and a silicon oxide thin film was formed to a thickness of 2 μm by the plasma CVD method. After forming the interlayer insulating film 27, the electrode 2
9 was formed into a film with a thickness of 5 μm by a sputtering method, and sample No. 111-1
20 and sample No. 20. 270-212 were obtained. The plasma excitation electrode 18 used in this example is the same as the electrode used in Example 1.

【0035】こうしてシリコン基板26に2μmの層間
絶縁膜27を形成し、5μmの電極を形成したモデル基
板30の層間絶縁膜27の特性を評価するため、10m
m角に切断し、切断直後の初期抵抗値と、80℃相対湿
度90%の雰囲気で7日間放置した後の放置後抵抗値と
を、直流12Vの電圧印加で各々10サンプル測定しそ
の平均値を各試料No.の計測結果とし、プラズマ励起
電極18の材料と共に(表2)に示す。
In order to evaluate the characteristics of the interlayer insulating film 27 of the model substrate 30 in which the interlayer insulating film 27 of 2 μm is formed on the silicon substrate 26 and the electrode of 5 μm is formed in this way,
The initial resistance value immediately after cutting and the resistance value after standing for 7 days in an atmosphere of 80 ° C. and 90% relative humidity were each measured by applying a voltage of DC 12 V, and the average value was measured. For each sample No. The measurement results are shown in (Table 2) together with the material of the plasma excitation electrode 18.

【0036】層間絶縁膜の抵抗値及び変化率はそれぞれ
高ければ高いほど好ましいが、実用面を鑑みると初期抵
抗値は200kΩ以上、放置後の抵抗値は100kΩ、
すなわち抵抗変化率が50%以上が一般的に要請される
ため、本実施例では三者を満足することを評価基準とし
た。
The higher the resistance value and the rate of change of the interlayer insulating film, the more preferable, but from the practical point of view, the initial resistance value is 200 kΩ or more, and the resistance value after leaving is 100 kΩ.
That is, a resistance change rate of 50% or more is generally required, and therefore, in the present embodiment, the satisfaction of the three conditions was used as the evaluation criterion.

【0037】[0037]

【表2】 [Table 2]

【0038】先ず、(表2)に記載した初期抵抗値と開
口面積比及び総面積比との関係について述べる。総面積
比をパラメータとして初期抵抗値と開口面積比との関係
については、開口面積比30%以上97%以下の条件で
あれば200kΩの初期抵抗値を満足している。これに
対し開口面積比29%の試料No.205の初期抵抗値
が低い原因は、プラズマ励起電極18の面積が小さいた
め原料プラズマの絶対量が不足し均一な酸化シリコン膜
が成膜し難いためか、またはプラズマ化されていない原
料ガスが層間絶縁膜27中に混入し膜質を劣化させてい
るためかの何れかが想定される。また、開口面積比98
%の試料No.208の初期抵抗値が低い原因は、プラ
ズマ励起電極18と開口部19との間隙に原料ガスが通
過する際に囲い20の内壁に当たり跳ね返りプラズマ励
起電極18の上に薄膜が堆積し、堆積した薄膜が剥離膜
となり層間絶縁膜28中に混入したためと想定される。
従って開口面積比は30%以上97%以下が好ましく、
60%前後が望ましいことが分かる。
First, the relationship between the initial resistance value and the opening area ratio and the total area ratio shown in (Table 2) will be described. Regarding the relationship between the initial resistance value and the opening area ratio using the total area ratio as a parameter, the initial resistance value of 200 kΩ is satisfied under the condition that the opening area ratio is 30% or more and 97% or less. On the other hand, Sample No. with an opening area ratio of 29%. The reason why the initial resistance value of 205 is low is that the area of the plasma excitation electrode 18 is small and the absolute amount of the source plasma is insufficient, and it is difficult to form a uniform silicon oxide film. It is assumed that either of them is mixed in the insulating film 27 and deteriorates the film quality. The opening area ratio is 98
% Of sample No. The reason why the initial resistance value of 208 is low is that when the source gas passes through the gap between the plasma excitation electrode 18 and the opening 19, it hits the inner wall of the enclosure 20 and rebounds, and a thin film is deposited on the plasma excitation electrode 18, and the deposited thin film. Is assumed to be a peeling film and mixed in the interlayer insulating film 28.
Therefore, the opening area ratio is preferably 30% or more and 97% or less,
It can be seen that around 60% is desirable.

【0039】次に、開口面積比をパラメータとして初期
抵抗値と総面積との関係は、開口面積比が29%及び9
8%の試料No.206及び207、総面積比110倍
の試料No.207以外では初期抵抗値の200kΩ以
上を満足している。この内試料No.206及び207
が初期抵抗値を満足していない原因は上述したことによ
ることが想定される。試料No.207が初期抵抗値を
満足していない主原因は、総面積比が大きいため電流密
度が低下し原料をプラズマ化する能力不足の兆しがある
ことが想定される。但し、試料No.207の初期抵抗
値は195kΩと僅かに200kΩに達してはいないだ
けで、電流密度と想定される原因の影響は極僅かであ
る。以上の結果から、本実施例の基準では、初期抵抗値
の面からは総面積比は100倍以下であるといえるが、
110倍であっても用途によれば寿分適用できる。
Next, regarding the relation between the initial resistance value and the total area with the opening area ratio as a parameter, the opening area ratio is 29% and 9%.
8% of sample No. 206 and 207, sample No. with a total area ratio of 110 times. Other than 207, the initial resistance value of 200 kΩ or more is satisfied. Sample No. 206 and 207
It is presumed that the reason why the resistance value does not satisfy the initial resistance value is due to the above. Sample No. It is assumed that the main reason why 207 does not satisfy the initial resistance value is that the total area ratio is large, so that the current density is lowered and there is a sign of insufficient ability to turn the raw material into plasma. However, the sample No. The initial resistance value of 207 is 195 kΩ, which does not reach 200 kΩ, and the influence of the cause assumed to be the current density is extremely small. From the above results, it can be said that the total area ratio is 100 times or less in terms of the initial resistance value according to the criteria of the present embodiment.
Even if it is 110 times, it can be applied for life depending on the application.

【0040】次に、総面積比をパラメータとし抵抗変化
率と開口面積比との関係から、開口面積比に関してほぼ
一様に抵抗変化率の値も増加する傾向が見受けられ、試
料No.111,112,113,114,116,1
17,118,119,120,206,207全ての
抵抗変化率は本実施例の評価基準値の50%以上を満足
している。従って抵抗変化率の開口面積比依存性につい
ては値的には満足しているが、試料No.205と11
2との間の傾き、及び試料No.119と208との間
の傾きには特異であることから、試料No.205及び
208の層間絶縁膜27の膜質に不連続性があることを
示唆している。これは(表2)に示した値から分かるよ
うに、2つの試料とも初期抵抗値が低く、初期抵抗値が
低いということは前述したように層間絶縁膜27に欠陥
が存在すると共に、元来抵抗値が低い膜に信頼性試験を
行ったとしても、膜質が良好な絶縁膜に比べると変化が
少ないことを示していると考えられる。また、開口面積
比をパラメータとした抵抗変化率の総面積比の依存性に
おいても、総面積比が2倍を切る試料No.206では
抵抗変化率は急激に低下し、層間絶縁膜27が均一に成
膜されていないことを示し、総面積比が100倍を越え
る試料No.207でも抵抗変化率は急激に低下してい
ることから、剥離膜による異常放電または剥離膜が層間
絶縁膜27中に混入していることが予想される。従っ
て、これらのことから開口面積比は30%以上97%以
下が好ましく、60%程度以上がより好ましいといえ、
総面積比は2倍以上100倍以下が好ましく、10倍以
上がより好ましい。
From the relationship between the resistance change rate and the opening area ratio using the total area ratio as a parameter, it can be seen that the value of the resistance change rate increases almost uniformly with respect to the opening area ratio. 111, 112, 113, 114, 116, 1
The resistance change rates of all 17, 118, 119, 120, 206, and 207 satisfy 50% or more of the evaluation reference value of this embodiment. Therefore, although the dependency of the resistance change rate on the opening area ratio is numerically satisfied, the sample No. 205 and 11
2 and the sample No. Since the inclination between 119 and 208 is peculiar, the sample No. It suggests that the film quality of the interlayer insulating film 27 of 205 and 208 has discontinuity. As can be seen from the values shown in (Table 2), the two samples have low initial resistance values, and the low initial resistance values mean that there are defects in the interlayer insulating film 27 as described above, and Even if a reliability test is performed on a film having a low resistance value, it is considered that the change is smaller than that of an insulating film having a good film quality. Further, in the dependence of the total area ratio of the resistance change rate with the opening area ratio as a parameter, the total area ratio of Sample No. 2 is less than twice. In Sample No. 206, the rate of change in resistance sharply decreased, indicating that the interlayer insulating film 27 was not uniformly formed, and the total area ratio exceeded 100 times. Also in 207, the rate of resistance change sharply decreases, so it is expected that abnormal discharge due to the peeling film or the peeling film is mixed in the interlayer insulating film 27. Therefore, from these facts, the opening area ratio is preferably 30% or more and 97% or less, and more preferably about 60% or more,
The total area ratio is preferably 2 times or more and 100 times or less, and more preferably 10 times or more.

【0041】なお、上記実施例では磁気記録媒体の保護
膜と半導体に用いられる層間絶縁膜について説明した
が、液晶絶縁膜、光電変換素子、超伝導薄膜等の耐久
性,変換効率,通電容量及び寿命の向上等が認められ
る。
Although the protective film of the magnetic recording medium and the interlayer insulating film used for the semiconductor have been described in the above embodiments, the durability, the conversion efficiency, the current carrying capacity and the durability of the liquid crystal insulating film, the photoelectric conversion element, the superconducting thin film, etc. Improvement of life is recognized.

【0042】[0042]

【発明の効果】以上のように本発明の電極部材は、電圧
を印加しながら成膜を行う薄膜形成方法に適用すると、
電極部材上にも堆積した堆積膜に起因する微少異常放電
及び/または成膜した薄膜中に当該堆積膜が混在する等
の悪影響を抑制できるため、膜質が均一、緻密で成膜効
率が高い薄膜形成を実現できる。その結果例えば磁気記
録媒体の保護膜形成に適用すると良好な磁気特性を長期
間維持でき、半導体の層間絶縁膜形成に適用すると、信
頼性の高い薄膜が得られる。
As described above, when the electrode member of the present invention is applied to a thin film forming method for forming a film while applying a voltage,
A thin film having a uniform film quality, high density, and high film formation efficiency, because it is possible to suppress adverse effects such as a minute abnormal discharge caused by a film deposited on the electrode member and / or the film being mixed in the formed film. Can be formed. As a result, good magnetic properties can be maintained for a long period of time when applied to the formation of a protective film of a magnetic recording medium, and a highly reliable thin film can be obtained when applied to the formation of an interlayer insulating film of a semiconductor.

【図面の簡単な説明】[Brief description of drawings]

【図1】薄膜製造装置の一実施例を示す要部構成図FIG. 1 is a configuration diagram of essential parts showing an embodiment of a thin film manufacturing apparatus.

【図2】磁気記録媒体の断面概念図FIG. 2 is a conceptual sectional view of a magnetic recording medium.

【図3】放電管の平面図FIG. 3 is a plan view of a discharge tube.

【図4】薄膜製造装置の他の実施例を示す要部構成図FIG. 4 is a main part configuration diagram showing another embodiment of the thin film manufacturing apparatus.

【図5】半導体の断面概念図FIG. 5 is a conceptual sectional view of a semiconductor.

【符号の説明】[Explanation of symbols]

1 非磁性基材 2 磁性層 3 保護膜 6 磁気記録媒体 9 繰出ローラ 10 メインローラ 11 巻取ローラ 12 パスローラ 13 パスローラ 16 成膜室 18 プラズマ励起電極 19 開口部 20 囲い 21 放電管 25 空隙加工部 26 シリコン基板 27 層間絶縁膜 29 電極 1 Non-magnetic base material 2 Magnetic layer 3 protective film 6 Magnetic recording media 9 Feeding roller 10 Main roller 11 winding roller 12 pass rollers 13 Pass Roller 16 Film forming chamber 18 Plasma excitation electrode 19 opening 20 enclosure 21 discharge tube 25 Void processing part 26 Silicon substrate 27 Interlayer insulation film 29 electrodes

───────────────────────────────────────────────────── フロントページの続き (72)発明者 早瀬 至広 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 4K030 BA28 BA44 CA04 CA07 CA12 EA06 GA14 KA15 LA20 5D112 AA07 BC05 FA10    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor, Toshihiro Hayase             1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric             Sangyo Co., Ltd. F-term (reference) 4K030 BA28 BA44 CA04 CA07 CA12                       EA06 GA14 KA15 LA20                 5D112 AA07 BC05 FA10

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 板状部材と、開口部を有する囲いとを含
み、前記板状部材の主面が前記開口部と対向すると共
に、前記板状部材は前記囲いに収納され、前記開口部の
前記板状部材への投影面積に対する前記板状部材の面積
の比が、30%以上97%以下であることを特徴とする
電極部材。
1. A plate-shaped member and an enclosure having an opening, a main surface of the plate-shaped member facing the opening, the plate-shaped member being housed in the enclosure, An electrode member, wherein a ratio of an area of the plate-shaped member to an area projected on the plate-shaped member is 30% or more and 97% or less.
【請求項2】 開口部に対向する板状部材の主面を表面
とし、前記板状部材の前記表面に対向する主面を裏面と
すると、前記表面から前記裏面まで連続する空隙部を前
記板状部材に備え、前記空隙部が形成する空隙の壁面、
前記板状部材の外周側面、前記表面及び前記裏面の合計
の総表面積が、前記表面の面積の2倍以上100倍以下
であることを特徴とする請求項1記載の電極部材。
2. When the main surface of the plate-shaped member facing the opening is the front surface and the main surface of the plate-shaped member facing the front surface is the back surface, a void portion continuous from the front surface to the back surface is formed in the plate. For the wall-shaped member, the wall surface of the void formed by the void,
The electrode member according to claim 1, wherein a total total surface area of the outer peripheral side surface, the front surface, and the back surface of the plate-shaped member is 2 times or more and 100 times or less of an area of the surface.
【請求項3】 請求項1または2何れかに記載の板状部
材の囲いの中に気体を流入する流入管と、前記板状部材
に電圧を供給する配線とを備え、 前記囲いを減圧し、前記流入管から原料ガスを前記囲い
中に流入すると共に、前記配線から前記板状部材に電圧
を印加し、前記板状部材から前記原料ガスに放電し前記
原料ガスに電荷を持たせ、前記開口部に関して前記板状
部材と反対側に離隔して備えた基材に、電荷を持った前
記原料ガスを前記囲いの開口部から放出し薄膜を形成す
ることを特徴とする薄膜形成方法。
3. An inflow pipe for flowing gas into the enclosure of the plate-like member according to claim 1, and a wire for supplying a voltage to the plate-like member, and decompressing the enclosure. A raw material gas is flown into the enclosure from the inflow pipe, a voltage is applied to the plate-shaped member from the wiring, the raw material gas is discharged from the plate-shaped member, and the raw material gas is charged. A method for forming a thin film, comprising: discharging a charged raw material gas from an opening of the enclosure to form a thin film on a base material provided on the opposite side of the plate member with respect to the opening.
JP2002075739A 2002-03-19 2002-03-19 Electrode member Pending JP2003277937A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002075739A JP2003277937A (en) 2002-03-19 2002-03-19 Electrode member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002075739A JP2003277937A (en) 2002-03-19 2002-03-19 Electrode member

Publications (1)

Publication Number Publication Date
JP2003277937A true JP2003277937A (en) 2003-10-02

Family

ID=29227728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002075739A Pending JP2003277937A (en) 2002-03-19 2002-03-19 Electrode member

Country Status (1)

Country Link
JP (1) JP2003277937A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008514439A (en) * 2004-09-30 2008-05-08 エクゾネツト・アクチエンゲゼルシヤフト Method for producing expanded material and cutting means therefor
JP2009209381A (en) * 2008-02-29 2009-09-17 Fujifilm Corp Film-forming apparatus, gas barrier film, and method for producing gas barrier film
CN106756868A (en) * 2016-11-10 2017-05-31 北京师范大学 A kind of method for improving doped diamond-like film layer quality

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008514439A (en) * 2004-09-30 2008-05-08 エクゾネツト・アクチエンゲゼルシヤフト Method for producing expanded material and cutting means therefor
JP2009209381A (en) * 2008-02-29 2009-09-17 Fujifilm Corp Film-forming apparatus, gas barrier film, and method for producing gas barrier film
JP4669017B2 (en) * 2008-02-29 2011-04-13 富士フイルム株式会社 Film forming apparatus, gas barrier film, and gas barrier film manufacturing method
CN106756868A (en) * 2016-11-10 2017-05-31 北京师范大学 A kind of method for improving doped diamond-like film layer quality
CN106756868B (en) * 2016-11-10 2019-07-09 北京师范大学 A method of improving doped diamond-like film layer quality

Similar Documents

Publication Publication Date Title
JP2830544B2 (en) Magnetic recording media
JP2000248365A (en) Device and method for forming thin film, and guide roll
US7638020B2 (en) Vertical magnetic recording medium and manufacturing method thereof
US5496595A (en) Method for forming film by plasma CVD
JP2003277937A (en) Electrode member
JPH1186275A (en) Magnetic recording medium
EP1345213B1 (en) Magnetic recording medium and method and apparatus for manufacturing the same
JP2505024B2 (en) Method and apparatus for manufacturing magnetic recording medium
JP3132224B2 (en) Plasma CVD film forming method
JP4124680B2 (en) Magnetic recording medium manufacturing method and manufacturing apparatus thereof
US20080026259A1 (en) Magnetic recording medium and method of fabricating the same
JP3232948B2 (en) Manufacturing method of magnetic recording medium
JP2843252B2 (en) Method and apparatus for manufacturing magnetic recording medium
JPH01166329A (en) Production of magnetic recording medium
JPH0762536A (en) Film forming device
JPH0991653A (en) Recording medium
JPH11117074A (en) Apparatus for production of thin film and production of the apparatus
JPH103663A (en) Production of magnetic recording medium
JP2003346323A (en) Magnetic recording medium
JP2004295996A (en) Method and device for manufacturing magnetic recording medium, and the magnetic recording medium
JP2003147512A (en) Thin film deposition apparatus
JPS58222437A (en) Magnetic recording medium and its manufacture
JPH103653A (en) Magnetic recording medium
JPH11279765A (en) Thin film forming apparatus and method, and cylindrical can
JP2005129157A (en) Magnetic recording medium, its manufacturing method and manufacturing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050318

RD01 Notification of change of attorney

Effective date: 20050706

Free format text: JAPANESE INTERMEDIATE CODE: A7421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070910

A131 Notification of reasons for refusal

Effective date: 20070925

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20071126

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080318