JP2003277887A - Thin steel sheet for nitriding treatment - Google Patents

Thin steel sheet for nitriding treatment

Info

Publication number
JP2003277887A
JP2003277887A JP2002085678A JP2002085678A JP2003277887A JP 2003277887 A JP2003277887 A JP 2003277887A JP 2002085678 A JP2002085678 A JP 2002085678A JP 2002085678 A JP2002085678 A JP 2002085678A JP 2003277887 A JP2003277887 A JP 2003277887A
Authority
JP
Japan
Prior art keywords
nitriding treatment
steel sheet
grain boundary
boundary area
per unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002085678A
Other languages
Japanese (ja)
Other versions
JP3928454B2 (en
Inventor
Tsutomu Kami
力 上
Akihiro Aoyanagi
昭宏 青柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2002085678A priority Critical patent/JP3928454B2/en
Publication of JP2003277887A publication Critical patent/JP2003277887A/en
Application granted granted Critical
Publication of JP3928454B2 publication Critical patent/JP3928454B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thin steel sheet for nitriding treatment in which a high surface hardness and a sufficient hardening depth can be obtained after the nitriding treatment. <P>SOLUTION: The thin steel sheet comprises, by mass, >0.01 to 0.09% C, 0.005 to 0.5% Si, 0.01 to 3.0% Mn, 0.005 to 2.0% Al, 0.50 to 4.0% Cr, ≤0.10% P, ≤0.01% S and ≤0.010% N, and the balance Fe with inevitable impurities. Also, the grain boundary area per unit volume Sv is controlled to the range of 80 to 1,300 mm<SP>-1</SP>. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、工具、機械構造
用部品および自動車の部品など、耐摩耗性、耐疲労強度
および耐焼付性が必要とされる部品、特に窒化処理によ
ってこれらの諸特性を付加する部品に供して好適な窒化
処理用鋼板に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to parts that require wear resistance, fatigue strength and seizure resistance, such as tools, parts for machine structures and parts for automobiles. The present invention relates to a nitriding steel plate suitable for use as an additional component.

【0002】[0002]

【従来の技術】工具、機械構造用部品および自動車の部
品などは、耐摩耗性、耐疲労強度および耐焼付性が必要
とされるため、表面硬化処理を施すことが通例であり、
かような表面硬化処理の典型例として窒化処理がある。
これは、鋼中に窒素を侵入させる処理であり、表面硬化
能に優れるため、従来から広く利用されてきた。
2. Description of the Related Art Tools, parts for machine structures, parts for automobiles, etc. are required to have wear resistance, fatigue resistance and seizure resistance.
A typical example of such surface hardening treatment is nitriding treatment.
This is a process of invading nitrogen into steel, and has been widely used since it has excellent surface hardening ability.

【0003】窒化処理が施される部品に供される鋼は、
例えば特開昭59−31850 号および同59−50168 号各公報
に記載されているように、窒化促進元素を多量に含有し
ているため、窒化処理前の鋼板は高強度である反面、加
工性に乏しいものであった。従って、複雑な部品形状の
製品を製造する場合は、バルクから研削加工によって所
定形状に形成し、その後窒化処理を施すことが一般的で
あった。
Steel used for parts that are subjected to nitriding treatment is
For example, as described in JP-A-59-31850 and JP-A-59-50168, since a large amount of nitriding-promoting elements are contained, the steel sheet before nitriding treatment has high strength, but the workability is high. It was poor. Therefore, in the case of manufacturing a product having a complicated part shape, it is general that a bulk is ground into a predetermined shape and then a nitriding treatment is performed.

【0004】しかしながら、研削加工によって複雑な部
品形状に仕上げるには、研削に要するコストが嵩むこと
から、深絞り成形や張り出し成形などのプレス成形によ
って部品を作製することが検討されている。すなわち、
プレス成形性に優れた鋼板を用いて成形加工を行えば、
複雑な部品形状でも成形が可能であり、部品形成に要す
る時間およびコストを大幅に削減できる。
However, in order to finish a complicated part shape by grinding, the cost required for grinding increases, so it has been considered to manufacture parts by press forming such as deep drawing or stretch forming. That is,
If forming is performed using a steel plate with excellent press formability,
Molding is possible even with complicated parts shapes, and the time and cost required for forming parts can be greatly reduced.

【0005】ところが、耐摩耗性および耐疲労強度など
が強く要求される場合には、従来から知られている低炭
素鋼や極低炭素鋼などの鋼板を適用しても、十分な表面
硬さが得られないという問題があった。
However, when abrasion resistance and fatigue resistance are strongly required, sufficient surface hardness can be obtained even if a conventionally known steel plate such as low carbon steel or ultra low carbon steel is applied. There was a problem that could not be obtained.

【0006】[0006]

【発明が解決しようとする課題】このように、プレス加
工や曲げ加工などの塑性加工によって成形体を得ること
は、従来の薄鋼板を用いても可能であるが、従来鋼板で
は窒化処理後の表面硬さおよびその硬化深さ分布が十分
とはいえず、所望の耐磨耗性および耐疲労強度などの必
要特性を満足させることはできなかった。そのため、プ
レス加工や曲げ加工などの簡便な成形法で成形すること
ができ、しかも窒化処理後に十分な表面硬さや硬化深さ
を得ることができる窒化処理用薄鋼板の開発が切望され
ていた。
As described above, it is possible to obtain a compact by plastic working such as pressing or bending, even if a conventional thin steel sheet is used. The surface hardness and the distribution of the hardening depth were not sufficient, and it was not possible to satisfy the required properties such as desired wear resistance and fatigue strength. Therefore, it has been earnestly desired to develop a thin steel sheet for nitriding treatment that can be formed by a simple forming method such as pressing or bending and that can obtain sufficient surface hardness and hardening depth after nitriding treatment.

【0007】本発明は、上記の要望に有利に応えるもの
で、窒化処理によって十分な表面硬化能と硬化深さを得
ることができる窒化処理用薄鋼板を提案することを目的
とする。
The present invention advantageously meets the above-mentioned demands, and an object of the present invention is to propose a thin steel sheet for nitriding treatment which can obtain a sufficient surface hardening ability and hardening depth by nitriding treatment.

【0008】[0008]

【課題を解決するための手段】さて、発明者らは、鋼組
成および鋼組織が窒化処理後の硬度に及ばす影響につい
て鋭意検討を行った結果、鋼中に、Cr,Al,V,Ti,Nb
といった窒化物形成元素を鋼板の成形性を阻害しない範
囲で含有させた上で、単位体積当たりの粒界面積を所定
の範囲に制御することにより、窒化処理後に高い表面硬
さと十分な硬化深さの両者が併せて得られるという新規
知見を得た。
[Means for Solving the Problems] As a result of intensive studies on the effects of the steel composition and the steel structure on the hardness after nitriding treatment, the inventors have found that Cr, Al, V, Ti , Nb
By including such a nitride-forming element in the range that does not impair the formability of the steel sheet, and controlling the grain boundary area per unit volume within a predetermined range, high surface hardness and sufficient hardening depth after nitriding treatment We obtained a new finding that both of them can be obtained together.

【0009】本発明は上記の知見に立脚するものであ
る。すなわち、本発明は、質量%で、C:0.01%超、0.
09%以下、Si:0.005 〜0.5 %、Mn:0.01〜3.0 %、A
l:0.005 〜2.0 %、Cr:0.50〜4.0 %、P:0.10%以
下、S:0.01%以下およびN:0.010 %以下を含有し、
残部はFeおよび不可避的不純物の組成になり、単位体積
当たりの粒界面積Sv が80mm-1以上、1300mm-1以下であ
ることを特徴とする窒化処理用薄鋼板である。
The present invention is based on the above findings. That is, the present invention, in% by mass, C: more than 0.01%, 0.
09% or less, Si: 0.005-0.5%, Mn: 0.01-3.0%, A
l: 0.005-2.0%, Cr: 0.50-4.0%, P: 0.10% or less, S: 0.01% or less and N: 0.010% or less,
The balance is a composition of Fe and unavoidable impurities, and the grain boundary area Sv per unit volume is 80 mm -1 or more and 1300 mm -1 or less, which is a thin steel sheet for nitriding treatment.

【0010】また、本発明では、鋼板中に、質量%でさ
らに、V:0.01〜1.0 %Ti:0.01〜1.0 %およびNb:0.
01〜1.0 %のうちから選んだ1種または2種以上を含有
させることができる。
Further, in the present invention, in the steel sheet, V: 0.01 to 1.0% Ti: 0.01 to 1.0% and Nb: 0.
One kind or two kinds or more selected from 01 to 1.0% can be contained.

【0011】[0011]

【発明の実施の形態】以下、本発明を具体的に説明す
る。まず、本発明において、鋼板の成分組成を上記の範
囲に限定した理由について説明する。なお、成分に関す
る「%」表示は特に断らない限り質量%を意味するもの
とする。 C:0.01%超、0.09%以下 Cは、成形性に影響を及ぼす元素であり、含有量が多く
なると成形性が低下する。従って、C量の上限値は0.09
%とした。一方、C量が0.01%以下では機械構造用鋼と
しての強度不足を招くので、強度確保の観点からC量の
下限は0.01%超とした。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be specifically described below. First, the reason why the composition of the steel sheet is limited to the above range in the present invention will be described. In addition, unless otherwise indicated, "%" display regarding components means mass%. C: more than 0.01% and 0.09% or less C is an element that affects the formability, and if the content increases, the formability decreases. Therefore, the upper limit of the amount of C is 0.09
%. On the other hand, if the C content is 0.01% or less, the strength of the steel for machine structural use is insufficient, so the lower limit of the C content is set to more than 0.01% from the viewpoint of securing the strength.

【0012】Si:0.005 〜0.5 % Siは、強度を高める作用を有する元素であるが、過度の
添加は加工性低下の原因になるだけでなく、表面酸化が
大きくなって窒化反応が阻害されるので、Siの上限値は
0.5%とした。一方、Si量を 0.005%未満とすること
は、製鋼コストの増大を招くので、下限値は 0.005%と
した。
Si: 0.005 to 0.5% Si is an element having a function of increasing strength. Excessive addition not only causes deterioration of workability, but also increases surface oxidation and inhibits nitriding reaction. Therefore, the upper limit of Si is
It was set to 0.5%. On the other hand, if the amount of Si is less than 0.005%, the steelmaking cost will increase, so the lower limit was made 0.005%.

【0013】Mn:0.01〜3.0 % Mnは、Siと同様に、鋼の強度を高める作用を有する元素
であるが、過度の添加は加工性を低下させるだけでな
く、表面酸化による窒化反応の阻害を招くので、Mnの上
限値は 3.0%とした。一方、Mn量を0.01%未満とするこ
とは、製鋼コストの増大を招くので、下限値は0.01%と
した。
Mn: 0.01-3.0% Mn is an element having an action of enhancing the strength of steel, like Si, but excessive addition not only lowers the workability but also inhibits the nitriding reaction due to surface oxidation. Therefore, the upper limit of Mn is set to 3.0%. On the other hand, if the Mn content is less than 0.01%, the steelmaking cost will increase, so the lower limit was made 0.01%.

【0014】Al:0.005 〜2.0 % Alは、溶鋼の脱酸剤として有効に寄与し、ブローホール
等の欠陥の発生を防止するには、0.005 %以上添加する
必要がある。一方、2.0 %を超える過度の添加は加工性
を低下させるので、上限値は 2.0%とした。なお、Alは
窒素との親和力が強く、窒化処理後に生じる表層の化合
物層の硬度を高める作用も有しているが、この効果を有
効に発揮させるためには0.10%以上添加することが好ま
しい。
Al: 0.005 to 2.0% Al effectively contributes as a deoxidizing agent for molten steel, and it is necessary to add 0.005% or more in order to prevent the occurrence of defects such as blowholes. On the other hand, excessive addition exceeding 2.0% deteriorates workability, so the upper limit was made 2.0%. Note that Al has a strong affinity with nitrogen and also has an effect of increasing the hardness of the surface compound layer formed after the nitriding treatment, but in order to effectively exhibit this effect, it is preferable to add 0.10% or more.

【0015】Cr:0.50〜4.0 % Crは、窒化硬化に重要な元素であり、含有量が0.50%未
満では窒化処理後に十分な硬度上昇および硬化深さが得
られない。一方、4.0 %を超えて含有されると成形性が
低下する。よって、Cr量は0.50〜4.0 %の範囲に限定し
た。
Cr: 0.50 to 4.0% Cr is an important element for nitriding hardening, and if the content is less than 0.50%, sufficient hardness increase and hardening depth cannot be obtained after nitriding treatment. On the other hand, if the content is more than 4.0%, the moldability is lowered. Therefore, the Cr content is limited to the range of 0.50 to 4.0%.

【0016】P:0.10%以下 Pは、加工性を低下させることなく強度を向上させる元
素であるが、含有量が0.10%を超えると鋼板の成形性お
よび2次加工脆性の観点から好ましくない。よって、P
は0.10%以下で含有させるものとした。なお、Pを 0.0
01%未満にすることは、製鋼コストが飛躍的に増大し、
経済的に不利となるので、Pは0.001 %以上含有させる
ことが好ましいが、製鋼コストの問題がなければ 0.001
%未満であってもよい。
P: 0.10% or less P is an element that improves strength without lowering workability, but if the content exceeds 0.10%, it is not preferable from the viewpoint of formability and secondary work embrittlement of the steel sheet. Therefore, P
Was contained at 0.10% or less. In addition, P is 0.0
If it is less than 01%, steelmaking cost will increase dramatically,
Since it is economically disadvantageous, it is preferable to contain P in an amount of 0.001% or more, but 0.001 if there is no problem in steelmaking cost.
It may be less than%.

【0017】S:0.01%以下 S量が0.01%を超えると、表面疵の発生および延性の低
下を招くので、S量は0.01%以下に抑制するものとす
る。
S: 0.01% or less If the S content exceeds 0.01%, the occurrence of surface flaws and the decrease in ductility will occur, so the S content should be suppressed to 0.01% or less.

【0018】N:0.010 %以下 Nは、深絞り性を確保するためには少ない方がよく、0.
010 %を超えると深絞り性が劣化する。よって、Nは
0.010%以下に制限するものとした。
N: 0.010% or less N is preferably as small as possible in order to secure deep drawability.
If it exceeds 010%, the deep drawability deteriorates. Therefore, N is
The limit is 0.010% or less.

【0019】以上、必須成分について説明したが、本発
明ではその他にも、以下に述べる元素を適宜含有させる
ことができる。 V:0.01〜1.0 % Vは、窒化物形成元素であり、窒化処理後の硬化量を高
める作用を有する。さらに、Vは窒素の拡散を促進させ
る作用を有し、窒化処理後の硬化深さを深める上でも有
用な元素でもある。これらの作用を発揮させるために
は、0.01%以上含有させることが好ましい。但し、V量
が 1.0%を超えると成形性が劣化するので上限は 1.0%
とした。また、Vは炭化物形成元素でもあるので、C量
に対して過剰に含有させると、結晶粒界に固溶するCを
減少させて粒界強度の低下を招き、熱間圧延時のスラブ
割れや窒化処理品の靱性低下を招くおそれがある。従っ
て、Vは、次式 V<51/12C 但し、V, Cは各元素の含有量(質量%)の範囲で含有
させることがさらに好ましい。
Although the essential components have been described above, other elements described below can be appropriately contained in the present invention. V: 0.01 to 1.0% V is a nitride-forming element and has an effect of increasing the amount of hardening after the nitriding treatment. Further, V has a function of promoting diffusion of nitrogen, and is also a useful element in increasing the hardening depth after the nitriding treatment. In order to exert these effects, it is preferable to contain 0.01% or more. However, if the V content exceeds 1.0%, the formability deteriorates, so the upper limit is 1.0%.
And Further, since V is also a carbide-forming element, when it is contained in an excessive amount with respect to the amount of C, the amount of C that forms a solid solution in the grain boundaries is reduced, resulting in a decrease in grain boundary strength, and slab cracking during hot rolling and The toughness of the nitriding product may be deteriorated. Therefore, V is represented by the following formula V <51 / 12C. However, V and C are more preferably contained within the range of the content (mass%) of each element.

【0020】Ti:0.01〜1.0 % Tiも、窒化物形成元素であり、窒化処理後の硬化量を高
める作用を有し、鋼がTiを含有していると、短時間の窒
化処理で表面硬さを高めることができる。この効果を得
るためには、0.01%以上添加することが好ましいが、Ti
量が 1.0%を超えると成形性が劣化するので、Tiは0.01
〜1.0 %の範囲で含有させることが好ましい。また、Ti
は、Vと同様、炭化物形成元素であり、C量に対して過
剰に含有させると、結晶粒界に固溶するC量を減少させ
て粒界強度の低下を招き、熱間圧延時のスラブ割れや窒
化処理品の靱性低下を招くおそれがある。従って、Ti
は、次式 Ti<48/12C 但し、Ti, Cは各元素の含有量(質量%)の範囲で含有
させることがさらに好ましい。
Ti: 0.01 to 1.0% Ti is also a nitride-forming element, and has the effect of increasing the amount of hardening after nitriding treatment. If the steel contains Ti, the surface hardness is shortened by nitriding treatment for a short time. The height can be increased. To obtain this effect, it is preferable to add 0.01% or more.
If the amount exceeds 1.0%, the formability deteriorates, so Ti is 0.01
It is preferable that the content is in the range of 1.0%. Also, Ti
Is a carbide-forming element similar to V, and when contained in excess with respect to the amount of C, it reduces the amount of C that forms a solid solution in the grain boundaries and causes a decrease in grain boundary strength. It may cause cracking or decrease in toughness of the nitrided product. Therefore, Ti
Is the following formula Ti <48 / 12C. However, Ti and C are more preferably contained in the range of the content (mass%) of each element.

【0021】Nb:0.01〜1.0 % Nbも、窒化物形成元素であり、窒化処理後の硬化量を高
める作用を有し、鋼がNbを含有していると、短時間の窒
化処理で表面硬さを高めることができる。この効果を得
るためには、0.01%以上添加することが好ましいが、Nb
量が 1.0%を超えると成形性が劣化するので、Nbは0.01
〜1.0 %の範囲で含有させることが好ましい。また、Nb
も、VやTiと同様、炭化物形成元素であり、C量に対し
て過剰に含有させると、結晶粒界に固溶するC量を減少
させて粒界強度の低下を招き、熱間圧延時のスラブ割れ
や窒化処理品の靱性低下を招くおそれがある。従って、
Nbは、次式 Nb<93/12C 但し、Nb、Cは各元素の含有量(質量%)の範囲で含有
させることがさらに好ましい。
Nb: 0.01 to 1.0% Nb is also a nitride-forming element and has the effect of increasing the amount of hardening after nitriding treatment. If Nb is contained in the steel, the surface hardness is shortened by nitriding treatment for a short time. The height can be increased. To obtain this effect, it is preferable to add 0.01% or more, but Nb
If the amount exceeds 1.0%, the formability deteriorates, so Nb is 0.01
It is preferable that the content is in the range of 1.0%. Also, Nb
Also, like V and Ti, it is a carbide-forming element, and if it is contained in an excessive amount with respect to the amount of C, the amount of C that forms a solid solution in the grain boundaries is reduced, leading to a decrease in grain boundary strength, and during hot rolling. There is a risk of causing slab cracking and deterioration of the toughness of the nitrided product. Therefore,
Nb is represented by the following formula Nb <93 / 12C. However, it is more preferable that Nb and C be contained within the range of the content (mass%) of each element.

【0022】以上説明した元素以外は、Feおよび不可避
的不純物であるが、その他にも、Cu,Ni,Moなどの強度
上昇能を有する元素を、加工性を害さない範囲で添加し
てもよい。
Other than the above-described elements, Fe and unavoidable impurities may be added. In addition to these, elements having the ability to increase the strength such as Cu, Ni and Mo may be added within a range that does not impair the workability. .

【0023】次に、単位体積当たりの粒界面積Sv (mm
-1)の限定理由について述べる。さて、発明者らは、窒
化処理後に所望の表面硬さと硬化深さを得ることができ
る条件について鋭意検討を重ねた結果、単位体積当たり
の粒界面積を制御することが重要であることを見出し
た。図1は、単位体積当たりの粒界面積が、窒化処理後
の表面硬さと硬化深さに及ぼす影響を示す図である。図
1に示す実験結果は、C:0.055 %, Si:0.02%, Mn:
0.3 %, P:0.02%, S:0.004 %, N:0.0035%, A
l:0.13%およびCr:1.3 %を含有し、残部はFeおよび
不可避的不純物の組成になる鋼塊を用い、熱間圧延処理
あるいは熱間圧延処理に引き続き冷間圧延処理を施して
再結晶処理を行うことにより、種々の単位体積当りの粒
界面積を持つ板厚:1.6 mmの薄鋼板を製造し、この薄鋼
板に対して、RXとNH3 ガスを含む雰囲気ガス中にて 5
70℃, 3時間のガス窒化処理を施したのち、油冷したも
のをサンプルとして、表面硬さと硬化深さを調査した結
果に基づくものである。
Next, the grain boundary area per unit volume Sv (mm
-1 ) The reason for limitation is described. Now, as a result of intensive studies on the conditions under which the desired surface hardness and hardening depth can be obtained after the nitriding treatment, the inventors have found that it is important to control the grain boundary area per unit volume. It was FIG. 1 is a diagram showing the influence of the grain boundary area per unit volume on the surface hardness and the hardening depth after the nitriding treatment. The experimental results shown in FIG. 1 show that C: 0.055%, Si: 0.02%, Mn:
0.3%, P: 0.02%, S: 0.004%, N: 0.0035%, A
l: 0.13% and Cr: 1.3%, with the balance being Fe and unavoidable impurities in the steel ingot, hot rolling or hot rolling followed by cold rolling followed by recrystallization By carrying out the above, a thin steel plate with a plate thickness of 1.6 mm having various grain boundary areas per unit volume is manufactured, and this thin steel plate is subjected to an atmosphere gas containing RX and NH 3 gas.
This is based on the results of examining the surface hardness and the hardening depth of a sample that was oil-cooled after being subjected to gas nitriding treatment at 70 ° C for 3 hours.

【0024】ここで、表面硬さとは、マイクロビッカー
ス硬度計を用いて、最表層より板厚方向へ 0.030mmの深
さ位置を測定することにより求められる硬度(Hv)のこ
とをいう。また、硬化深さは、板厚中央部のビッカース
硬度値に対して+50Hvとなる位置の最表層からの距離
(mm)で定義する。単位体積当たりの粒界面積Sv (mm
-1)は、薄鋼板の製造時に、熱間圧延時の圧下率や圧延
温度、冷間圧延時の圧下率や再結晶焼鈍温度を調整する
ことによって変化させた。
Here, the surface hardness means a hardness (Hv) obtained by measuring a depth position of 0.030 mm from the outermost layer in the plate thickness direction using a micro Vickers hardness meter. The hardening depth is defined as the distance (mm) from the outermost layer at the position where the Vickers hardness value at the center of the plate thickness is +50 Hv. Grain boundary area per unit volume Sv (mm
-1 ) was changed by adjusting the reduction ratio and rolling temperature during hot rolling, the reduction ratio during cold rolling and the recrystallization annealing temperature during the production of the thin steel sheet.

【0025】また、単位体積当たりの粒界面積Sv の測
定は、光学顕微鏡によって観察した金属組織から、切断
法により平均粒切片長さL(mm)を求めることにより行
った。この方法は、光学顕微鏡写真の上に既知の長さの
直線を引き、これと交わるフェライト粒の数を計算する
方法である。そして、単位体積当たりの粒界面積Sv(m
m-1)は平均切片長さL(mm)より、次式 Sv =2/L により求めることができる。この式は、単位体積当たり
の粒界面積を算出する式としてよく知られており、結晶
粒の形や分布には全く影響されないことも知られてい
る。
The grain boundary area Sv per unit volume was measured by determining the average grain section length L (mm) from the metal structure observed by an optical microscope by the cutting method. This method is a method of drawing a straight line of a known length on an optical micrograph and calculating the number of ferrite grains intersecting the straight line. And the grain boundary area Sv (m
m -1 ) can be calculated from the average intercept length L (mm) by the following equation Sv = 2 / L. This formula is well known as a formula for calculating the grain boundary area per unit volume, and it is also known that it is not affected by the shape and distribution of crystal grains at all.

【0026】図1より、単位体積当たりの粒界面積Sv
が大きくなるほど、表面硬さは増大し、一方硬化深さは
小さくなる傾向があることが分かる。そして、表面硬さ
と硬化深さとを両立させるためには、単位体積当たりの
粒界面積Sv を80mm-1以上、1300mm-1以下とする必要が
あることが分かる。単位体積当りの粒界面積Sv が80mm
-1未満では、硬化深さは深いものの、表面硬さが低くな
る。一方、単位体積当りの粒界面積Sv が1300mm-1超で
は、表面硬さは著しく高いけれども硬化深さが浅くな
る。
From FIG. 1, the grain boundary area Sv per unit volume is
It can be seen that the surface hardness tends to increase and the curing depth tends to decrease as the value increases. Further, it is understood that the grain boundary area Sv per unit volume needs to be 80 mm -1 or more and 1300 mm -1 or less in order to achieve both surface hardness and hardening depth. Grain boundary area Sv per unit volume is 80mm
When it is less than -1 , although the hardening depth is deep, the surface hardness is low. On the other hand, when the grain boundary area Sv per unit volume exceeds 1300 mm -1 , the surface hardness is extremely high, but the hardening depth becomes shallow.

【0027】ガス軟窒化時のNおよびCの板厚方向へ向
かう拡散は、主に結晶粒界に沿って起っており、結晶粒
界に沿って析出する微細な炭窒物が硬さの上昇に寄与
し、単位体積当たりの粒界面積が大きくなるほど、微細
な炭窒化物が多数析出して表面硬さが大きくなるものと
考えられる。このことは、反面、NおよびCの板厚方向
中心部へ向けての拡散が遅くなることになり、単位体積
当たりの粒界面積が大きくなると硬化深さが浅くなるも
のと考えられる。
Diffusion of N and C in the plate thickness direction at the time of gas nitrocarburizing occurs mainly along the crystal grain boundaries, and the fine carbonitrides precipitated along the crystal grain boundaries have different hardness. It is considered that as the grain boundary area per unit volume increases, the number of fine carbonitrides precipitates and the surface hardness increases as the grain boundary area contributes to the increase. This means that, on the other hand, the diffusion of N and C toward the central portion in the plate thickness direction becomes slower, and it is considered that the hardening depth becomes shallower as the grain boundary area per unit volume increases.

【0028】次に、図2に、窒化処理後の最表層から板
厚方向へ 0.030mmの深さ位置における結晶粒界を透過電
子顕微鏡(TEM)で観察した結果を示す。結晶粒界の
近傍には析出物が多数認められ、またこれら析出物はCr
やAlの窒化物、複合窒化物、炭窒化物、複合炭窒化物で
あることがEELS、EDXによる分析結果から確認で
きた。上記の観察結果から、窒化処理時の窒素および炭
素の板厚方向に向かう拡散は、主に結晶粒界に沿って起
っていることが分かる。発明者らの調査では、これらの
析出物が微細であると、硬度が大きくなり、特に 300nm
以下にまで微細化していると、硬度上昇が十分となるこ
とが確認できた。
Next, FIG. 2 shows a result of observing a crystal grain boundary at a depth position of 0.030 mm in the plate thickness direction from the outermost layer after nitriding treatment with a transmission electron microscope (TEM). Many precipitates were found near the grain boundaries, and these precipitates were
It was confirmed from the analysis results by EELS and EDX that it was a nitride of Al or Al, a composite nitride, a carbonitride, or a composite carbonitride. From the above observation results, it can be seen that the diffusion of nitrogen and carbon in the plate thickness direction during the nitriding treatment mainly occurs along the crystal grain boundaries. In our investigation, if these precipitates were fine, the hardness increased, especially at 300 nm.
It was confirmed that the hardness was sufficiently increased when the grain size was reduced to the following.

【0029】なお、単位体積当たりの粒界面積は、薄鋼
板の製造時に、熱間圧延時の圧下率や圧延温度、冷間圧
延時の圧下率や再結晶焼鈍温度を調整することによっ
て、80mm-1以上、1300mm-1の範囲で調整可能である。
The grain boundary area per unit volume can be adjusted to 80 mm by adjusting the rolling reduction rate and rolling temperature during hot rolling, the rolling reduction rate during cold rolling and the recrystallization annealing temperature during the production of the thin steel sheet. Adjustable from -1 or more to 1300mm -1 .

【0030】[0030]

【実施例】実施例1 表1に示す成分組成になる鋼を溶製し、連続鋳造により
スラブとしたのち、熱間圧延、酸洗を施して熱延鋼板と
した。この時、スラブ加熱温度は1180℃、熱延仕上温度
は 870℃以上、巻取温度は 590℃とした。得られた熱延
鋼板について、プレスによる塑性加工を実施したのち、
ガス軟窒化処理法により窒化処理を施した。窒化処理
は、RXとNH3 を含む混合ガス雰囲気中で 580℃, 3時
間の処理を行ったのち、油冷することにより行った。窒
化処理後に、板厚方向位置でのビッカース硬さ(試験
力:0.9807N)を測定して表面硬さと硬化深さを調査し
た。表面硬さは、最表層から板厚方向に 0.030mmの深さ
位置でのビッカース硬さで評価し、一方硬化深さは、板
厚中央部の硬さに対して50Hvだけ硬さが高くなる位置の
表層からの距離で評価した。
Example 1 Steels having the chemical compositions shown in Table 1 were melted, continuously cast into slabs, hot-rolled and pickled to obtain hot-rolled steel sheets. At this time, the slab heating temperature was 1180 ° C, the hot rolling finishing temperature was 870 ° C or higher, and the coiling temperature was 590 ° C. After performing plastic working by pressing on the obtained hot rolled steel sheet,
Nitriding was performed by the gas soft nitriding method. The nitriding treatment was performed by performing treatment at 580 ° C. for 3 hours in a mixed gas atmosphere containing RX and NH 3 and then cooling with oil. After the nitriding treatment, the Vickers hardness (test force: 0.9807N) at the position in the plate thickness direction was measured to investigate the surface hardness and the hardening depth. The surface hardness is evaluated by the Vickers hardness at a depth of 0.030 mm from the outermost layer in the plate thickness direction, while the hardening depth is 50 Hv higher than the hardness at the center of the plate thickness. The position was evaluated by the distance from the surface layer.

【0031】また、窒化処理前の熱延鋼板について、単
位体積当たりの粒界面積Sv (mm-1)、降伏点YP(MP
a)、引張強さTS(MPa)、伸びEl(%)を求めた。単
位体積当たりの粒界面積Sv (mm-1)は、光学顕微鏡観
察結果から前述した方法により求めた。降伏点YP(MP
a)、引張強さTS(MPa)および伸びEl(%)は、熱延
鋼板よりJIS 5号試験片を採取し、JIS Z 2241に記載の
金属材料引張試験方法に準拠して引張試験を行った結果
から求めた。窒化処理前の熱延鋼板についての粒界面積
Sv 、降伏点YP、引張強さTS、伸びElの調査結果
および窒化処理後の表面硬さ、硬化深さの測定結果を表
2に示す。
Regarding the hot-rolled steel sheet before nitriding, the grain boundary area Sv (mm -1 ) per unit volume and the yield point YP (MP
a), tensile strength TS (MPa) and elongation El (%) were determined. The grain boundary area Sv (mm -1 ) per unit volume was determined by the method described above from the results of observation with an optical microscope. Yield point YP (MP
a), tensile strength TS (MPa) and elongation El (%), JIS No. 5 test piece is taken from the hot rolled steel sheet, and the tensile test is performed according to the metal material tensile test method described in JIS Z 2241. It was calculated from the results. Table 2 shows the investigation results of the grain boundary area Sv, the yield point YP, the tensile strength TS, and the elongation El of the hot rolled steel sheet before the nitriding treatment, and the measurement results of the surface hardness and the hardening depth after the nitriding treatment.

【0032】[0032]

【表1】 [Table 1]

【0033】[0033]

【表2】 [Table 2]

【0034】表2に示したとおり、発明例であるNo.1〜
7はいずれも、成分組成、単位体積当たりの粒界面積S
v ともに本発明の範囲内であり、表面硬さは650 Hv以上
の高い硬度を示し、硬化深さは0.30mm以上を確保するこ
とができた。これに対し、No.8は、C量が少ないためT
Sが低い値を示しているだけでなく、単位体積当たりの
粒界面積Sv が80mm-1に満たず、そのため表面硬さが低
い。また、No.9は、Ti量が多すぎるため、硬化深さが浅
い。これは、窒化処理時にはTiNを形成しながらNの拡
散が進行するが、TiN形成に時間を要することと、析出
したTiNが拡散を阻害するために硬化深さが浅くなった
ものと考えられる。さらに、No.10 は、Crの含有量が少
ないため、表面硬さが小さく、また硬化深さも浅く、窒
化処理による硬化の程度が小さい。
As shown in Table 2, the invention examples No. 1 to
7 is the composition, grain boundary area S per unit volume
Both v were within the range of the present invention, the surface hardness showed a high hardness of 650 Hv or more, and the hardening depth of 0.30 mm or more could be secured. On the other hand, No. 8 has a small amount of C, so T
Not only does S show a low value, but the grain boundary area Sv per unit volume is less than 80 mm -1 , and therefore the surface hardness is low. In addition, No. 9 has an excessively large amount of Ti, so the hardening depth is shallow. It is considered that N is diffused while TiN is being formed during the nitriding treatment, but it takes time to form TiN and that the precipitated TiN hinders the diffusion so that the hardening depth becomes shallow. Further, No. 10 has a small Cr content, so that the surface hardness is small, and the hardening depth is shallow, and the hardening degree by nitriding treatment is small.

【0035】実施例2 表3に示す成分組成になる鋼を溶製し、連続鋳造により
スラブとしたのち、スラブ加熱温度を1200℃として、仕
上圧延温度:870 ℃以上で熱間圧延を行い、板厚:3.5
mmの熱延鋼板とした。この熱延鋼板を酸洗後、圧下率:
60%の冷間圧延を施したのち、 800〜950 ℃の温度域で
再結晶焼鈍を施して、単位体積当たりの粒界面積Sv を
種々に変化させた冷延鋼板を得た。得られた冷延鋼板に
ついて、プレスによる塑性加工を実施したのち、ガス軟
窒化処理法により窒化処理を施した。窒化処理は、RX
とNH3 を含む混合ガス雰囲気中で 570℃, 4時間の処理
を行ったのち、油冷することにより行った。窒化処理後
に、板厚方向位置でのビッカース硬さ(試験力:0.9807
N)を測定して表面硬さと硬化深さを調査した。表面硬
さおよび硬化深さは、上述の実施例1にて説明した方法
と同様にして求めた。また、窒化処理前の冷延鋼板につ
いて、単位体積当たりの粒界面積Sv (mm-1)を、上述
の実施例1の場合と同様にして求めた。冷延鋼板製造の
際の焼鈍温度、窒化処理前の冷延鋼板についての粒界面
積Svおよび窒化処理後の表面硬さ、硬化深さの測定結
果を表4に示す。
Example 2 Steels having the chemical compositions shown in Table 3 were melted and made into slabs by continuous casting, and then hot rolling was performed at a slab heating temperature of 1200 ° C and a finishing rolling temperature of 870 ° C or higher. Plate thickness: 3.5
mm hot rolled steel sheet. After pickling this hot-rolled steel sheet, the reduction rate:
After cold rolling at 60%, recrystallization annealing was performed at a temperature range of 800 to 950 ° C to obtain cold rolled steel sheets in which the grain boundary area Sv per unit volume was variously changed. The cold-rolled steel sheet thus obtained was subjected to plastic working by pressing and then subjected to nitriding treatment by a gas soft nitriding treatment method. The nitriding treatment is RX
Treatment was carried out at 570 ° C. for 4 hours in a mixed gas atmosphere containing NH 3 and NH 3 and then oil cooling was performed. After nitriding, Vickers hardness in the thickness direction (test force: 0.9807
N) was measured and surface hardness and hardening depth were investigated. The surface hardness and the curing depth were determined by the same method as described in Example 1 above. Further, the grain boundary area Sv (mm −1 ) per unit volume of the cold rolled steel sheet before nitriding treatment was determined in the same manner as in the case of Example 1 described above. Table 4 shows the measurement results of the annealing temperature during the production of the cold rolled steel sheet, the grain boundary area Sv of the cold rolled steel sheet before the nitriding treatment, the surface hardness after the nitriding treatment, and the hardening depth.

【0036】[0036]

【表3】 [Table 3]

【0037】[0037]

【表4】 [Table 4]

【0038】表4に示したとおり、No.11, 12, 15, 16
はいずれも、焼鈍温度が適正であるため、単位体積当た
りの粒界面積が本発明の範囲内となっており、表面硬
さ、硬化深さともに満足できる値を示している。これに
対し、No.13 は、焼鈍温度が高すぎて結晶粒が粗大化
し、単位体積当たりの粒界面積が小さくなっている。そ
のため窒化処理後の表面硬さが小さい。またNo.14 は、
焼鈍温度が低かったため、単位体積当たりの粒界面積が
大きくなってしまい、結果として硬化深さが浅くなって
いる。
As shown in Table 4, Nos. 11, 12, 15, 16
In all cases, since the annealing temperature is appropriate, the grain boundary area per unit volume is within the range of the present invention, and both the surface hardness and the hardening depth show satisfactory values. On the other hand, in No. 13, the annealing temperature was too high and the crystal grains were coarsened, and the grain boundary area per unit volume was small. Therefore, the surface hardness after nitriding is small. No.14 is
Since the annealing temperature was low, the grain boundary area per unit volume was large, resulting in a shallow hardening depth.

【0039】[0039]

【発明の効果】かくして、本発明によれば、プレス成形
によって部品形状に容易に加工することができ、またそ
の後の窒化処理によって高い表面硬さと十分な硬化深さ
を併せて得ることができる窒化処理用薄鋼板を安定して
提供することができる。従って、本発明によれば、寸法
精度、強度および耐久性に優れた高強度一般構造用部品
や自動車部品等を低コストで製造することが可能とな
る。
As described above, according to the present invention, it is possible to easily process the shape of a component by press molding, and it is possible to obtain a high surface hardness and a sufficient hardening depth by the subsequent nitriding treatment. A thin steel plate for processing can be stably provided. Therefore, according to the present invention, it is possible to manufacture high-strength general structural parts, automobile parts, and the like having excellent dimensional accuracy, strength, and durability at low cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】 単位体積当たりの粒界面積Sv が表面硬さお
よび硬化深さに及ぼす影響を示すグラフである。
FIG. 1 is a graph showing the effect of grain boundary area Sv per unit volume on surface hardness and hardening depth.

【図2】 窒化処理後の最表層から板厚方向へ 0.030mm
の深さ位置における結晶粒界の透過電子顕微鏡(TE
M)写真である。
[Fig. 2] 0.030 mm in the plate thickness direction from the outermost layer after nitriding
Transmission electron microscope (TE) of grain boundaries at the depth of
M) It is a photograph.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 質量%で、 C:0.01%超、0.09%以下、 Si:0.005 〜0.5 %、 Mn:0.01〜3.0 %、 Al:0.005 〜2.0 %、 Cr:0.50〜4.0 %、 P:0.10%以下、 S:0.01%以下および N:0.010 %以下 を含有し、残部はFeおよび不可避的不純物の組成にな
り、単位体積当たりの粒界面積Sv が80mm-1以上、1300
mm-1以下であることを特徴とする窒化処理用薄鋼板。
1. By mass%, C: more than 0.01%, 0.09% or less, Si: 0.005-0.5%, Mn: 0.01-3.0%, Al: 0.005-2.0%, Cr: 0.50-4.0%, P: 0.10. % Or less, S: 0.01% or less and N: 0.010% or less, the balance is Fe and inevitable impurities, and the grain boundary area Sv per unit volume is 80 mm -1 or more, 1300
A thin steel sheet for nitriding treatment, characterized in that it is less than mm -1 .
【請求項2】 請求項1において、鋼板が、質量%でさ
らに、 V:0.01〜1.0 % Ti:0.01〜1.0 %および Nb:0.01〜1.0 % のうちから選んだ1種または2種以上を含有する組成に
なることを特徴とする窒化処理用薄鋼板。
2. The steel sheet according to claim 1, further comprising, in mass%, one or more selected from V: 0.01 to 1.0% Ti: 0.01 to 1.0% and Nb: 0.01 to 1.0%. A thin steel sheet for nitriding treatment, which has the following composition.
JP2002085678A 2002-03-26 2002-03-26 Thin steel sheet for nitriding Expired - Lifetime JP3928454B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002085678A JP3928454B2 (en) 2002-03-26 2002-03-26 Thin steel sheet for nitriding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002085678A JP3928454B2 (en) 2002-03-26 2002-03-26 Thin steel sheet for nitriding

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006356293A Division JP4462264B2 (en) 2006-12-28 2006-12-28 Manufacturing method of cold rolled steel sheet for nitriding treatment

Publications (2)

Publication Number Publication Date
JP2003277887A true JP2003277887A (en) 2003-10-02
JP3928454B2 JP3928454B2 (en) 2007-06-13

Family

ID=29232552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002085678A Expired - Lifetime JP3928454B2 (en) 2002-03-26 2002-03-26 Thin steel sheet for nitriding

Country Status (1)

Country Link
JP (1) JP3928454B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006117982A (en) * 2004-10-20 2006-05-11 Exedy Corp Method for manufacturing vehicle drive system component
JP2008280598A (en) * 2007-05-14 2008-11-20 Jfe Steel Kk Steel sheet for soft nitriding treatment, and its manufacturing method
WO2014002288A1 (en) 2012-06-27 2014-01-03 Jfeスチール株式会社 Steel sheet for soft nitriding and process for producing same
WO2014002287A1 (en) 2012-06-27 2014-01-03 Jfeスチール株式会社 Steel sheet for soft nitriding and process for producing same
KR20170015991A (en) 2014-06-13 2017-02-10 신닛테츠스미킨 카부시키카이샤 Soft-nitriding steel sheet, method for manufacturing same, and soft-nitrided steel
US10301698B2 (en) 2012-01-31 2019-05-28 Jfe Steel Corporation Hot-rolled steel sheet for generator rim and method for manufacturing the same
JP2020169371A (en) * 2019-04-05 2020-10-15 日本製鉄株式会社 Nitriding steel sheet

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006117982A (en) * 2004-10-20 2006-05-11 Exedy Corp Method for manufacturing vehicle drive system component
JP2008280598A (en) * 2007-05-14 2008-11-20 Jfe Steel Kk Steel sheet for soft nitriding treatment, and its manufacturing method
US10301698B2 (en) 2012-01-31 2019-05-28 Jfe Steel Corporation Hot-rolled steel sheet for generator rim and method for manufacturing the same
WO2014002288A1 (en) 2012-06-27 2014-01-03 Jfeスチール株式会社 Steel sheet for soft nitriding and process for producing same
WO2014002287A1 (en) 2012-06-27 2014-01-03 Jfeスチール株式会社 Steel sheet for soft nitriding and process for producing same
KR20150023745A (en) 2012-06-27 2015-03-05 제이에프이 스틸 가부시키가이샤 Steel sheet for soft nitriding and process for producing same
US10077489B2 (en) 2012-06-27 2018-09-18 Jfe Steel Corporation Steel sheet for soft-nitriding and method for manufacturing the same
US10077485B2 (en) 2012-06-27 2018-09-18 Jfe Steel Corporation Steel sheet for soft-nitriding and method for manufacturing the same
KR20170015991A (en) 2014-06-13 2017-02-10 신닛테츠스미킨 카부시키카이샤 Soft-nitriding steel sheet, method for manufacturing same, and soft-nitrided steel
US10344371B2 (en) 2014-06-13 2019-07-09 Nippon Steel & Sumitomo Metal Corporation Steel sheet for soft-nitriding treatment, method of manufacturing same, and soft-nitrided steel
JP2020169371A (en) * 2019-04-05 2020-10-15 日本製鉄株式会社 Nitriding steel sheet
JP7230651B2 (en) 2019-04-05 2023-03-01 日本製鉄株式会社 Steel plate for nitriding

Also Published As

Publication number Publication date
JP3928454B2 (en) 2007-06-13

Similar Documents

Publication Publication Date Title
EP3530769B1 (en) Martensitic stainless steel sheet
WO2016148037A1 (en) Steel sheet for carburization having excellent cold workability and toughness after carburizing heat treatment
JP5126844B2 (en) Steel sheet for hot pressing, manufacturing method thereof, and manufacturing method of hot pressed steel sheet member
JP5664797B2 (en) Hot-rolled steel sheet for nitriding excellent in fatigue strength, cold-rolled steel sheet for nitriding, production method thereof, and automotive parts excellent in fatigue strength using them
JP2007154283A (en) High strength steel sheet having excellent formability and shape fixability
JP5979326B1 (en) High strength plated steel sheet and method for producing the same
KR101733513B1 (en) Steel sheet for nitriding and production method therefor
EP2868762B1 (en) Steel sheet for soft nitriding and process for producing same
JP3460659B2 (en) Soft high carbon steel strip with small heat treatment distortion and method for producing the same
EP2868764B1 (en) Steel sheet for soft nitriding and method for manufacturing the same
JP2010229514A (en) Cold rolled steel sheet and method for producing the same
EP3498876A1 (en) High-strength steel sheet, and production method therefor
JP4462264B2 (en) Manufacturing method of cold rolled steel sheet for nitriding treatment
JP2019011508A (en) Low-yield-ratio high strength steel sheet and method for producing the same
JP3578435B2 (en) Hot-rolled steel sheet for structural use excellent in press formability and surface properties and method for producing the same
JP3928454B2 (en) Thin steel sheet for nitriding
JP2019011510A (en) Steel sheet for carburization excellent in cold workability and toughness after carburization heat treatment
JP4325245B2 (en) Nitrided member excellent in durability fatigue characteristics and method for producing the same
JP6870590B2 (en) Hot-rolled steel sheet with excellent cold forging properties and its manufacturing method
JP2021155806A (en) Nitriding component and manufacturing method of nitriding component
JP3888187B2 (en) Steel sheet for nitriding and method for producing nitrided steel product
JP2005264318A (en) Soft nitriding treated steel superior in wear resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040728

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060801

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070226

R150 Certificate of patent or registration of utility model

Ref document number: 3928454

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100316

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110316

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120316

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130316

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130316

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140316

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term