JP2003277525A - Polypropylene-based composite material - Google Patents

Polypropylene-based composite material

Info

Publication number
JP2003277525A
JP2003277525A JP2002080022A JP2002080022A JP2003277525A JP 2003277525 A JP2003277525 A JP 2003277525A JP 2002080022 A JP2002080022 A JP 2002080022A JP 2002080022 A JP2002080022 A JP 2002080022A JP 2003277525 A JP2003277525 A JP 2003277525A
Authority
JP
Japan
Prior art keywords
polypropylene
composite material
carbon fiber
based composite
modified
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002080022A
Other languages
Japanese (ja)
Inventor
Yutaka Kobayashi
豊 小林
Yoshihisa Saeki
芳久 佐伯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Idemitsu Petrochemical Co Ltd
Original Assignee
Honda Motor Co Ltd
Idemitsu Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd, Idemitsu Petrochemical Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2002080022A priority Critical patent/JP2003277525A/en
Publication of JP2003277525A publication Critical patent/JP2003277525A/en
Pending legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Moulding By Coating Moulds (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polypropylene-based composite material which reduces production time and production cost, and enables coating. <P>SOLUTION: The polypropylene-based composite material is a composite material of polypropylene and carbon fibers, and the polypropylene is modified with 1.0-15 wt.%, based on the entire amount of the polymer, unsaturated acid or its derivative, and the weight ratio of the polypropylene to the carbon fibers is in the range of 30:70 to 70:30, and the number average molecular weight of the polypropylene is in the range of 3,000-50,000. The carbon fibers are provided with sizing treatment to introduce functional groups on their surfaces. A molded product is obtained by filling a preform composed of the above carbon fibers in a specifically shaped mold, impregnating the preform with the above polypropylene, and then curing the polypropylene. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ポリプロピレンと
炭素繊維(一方向繊維、織物、又は組紐された長繊維)
とからなるポリプロピレン系複合材料に関するものであ
る。
TECHNICAL FIELD The present invention relates to polypropylene and carbon fiber (unidirectional fiber, woven fabric, or braided long fiber).
And a polypropylene-based composite material comprising

【0002】[0002]

【従来の技術】従来、プラスチックに高い剛性を付与す
るために、炭素繊維強化エポキシ樹脂、炭素繊維強化ポ
リアミド等の複合材料が知られている。
2. Description of the Related Art Conventionally, composite materials such as carbon fiber reinforced epoxy resin and carbon fiber reinforced polyamide have been known in order to impart high rigidity to plastics.

【0003】前記炭素繊維強化エポキシ樹脂は、高い剛
性を備える反面、比重が大であり、自動車の外装パネル
類、エアロパーツ類等のように軽量性が要求される分野
には余り適していない。また、前記エポキシ樹脂は、熱
硬化性樹脂であるため、硬化させるために2時間以上を
要し成形サイクルが長くなる、硬化性を保持している寿
命が冷蔵庫中でも3か月程度の制限があり貯蔵性が低い
等の問題がある。
Although the carbon fiber reinforced epoxy resin has high rigidity, it has a large specific gravity and is not very suitable for fields requiring lightness such as exterior panels of automobiles and aero parts. Further, since the epoxy resin is a thermosetting resin, it takes 2 hours or more to cure and the molding cycle becomes long, and the life of curability is limited to about 3 months even in a refrigerator. There are problems such as low storability.

【0004】前記炭素繊維強化エポキシ樹脂に対し、ポ
リプロピレンは比重が小さい上、ヒンジのような部分に
おける屈曲の繰返しにも耐える耐屈曲性を備えているの
で、自動車の外装パネル類、エアロパーツ類等の材料と
して好適である。また、前記ポリプロピレンは、熱可塑
性樹脂であるので成形時間が10分以下と短く、使用可
能な期間に制限が無く、冷蔵庫に貯蔵する必要も無く、
貯蔵性に大変優れているという長所も備えている。
Compared with the carbon fiber reinforced epoxy resin, polypropylene has a small specific gravity and also has bending resistance to withstand repeated bending in a portion such as a hinge. Therefore, exterior panels of automobiles, aero parts, etc. It is suitable as a material. Further, since the polypropylene is a thermoplastic resin, the molding time is as short as 10 minutes or less, there is no limit to the usable period, and there is no need to store it in the refrigerator.
It also has the advantage of being extremely excellent in storability.

【0005】一方、炭素繊維強化ポリプロピレンは、溶
融状態のポリプロピレンを炭素繊維に含浸せしめるとき
に、ポリプロピレンと炭素繊維との濡れ性が低く、空孔
ができやすいとの問題がある。前記空孔の発生を防止す
るためには、ポリプロピレンのペレットを微粉砕して濡
れ性を上げておく必要がある。
On the other hand, the carbon fiber reinforced polypropylene has a problem that when the molten polypropylene is impregnated into the carbon fiber, the wettability between the polypropylene and the carbon fiber is low and pores are easily formed. In order to prevent the formation of the voids, it is necessary to finely pulverize polypropylene pellets to improve the wettability.

【0006】しかしながら、ポリプロピレンのペレット
を微粉砕するには、長時間を要し、製造コストが増大す
るとの不都合がある。
However, it takes a long time to finely pulverize polypropylene pellets, resulting in an increase in manufacturing cost.

【0007】[0007]

【発明が解決しようとする課題】本発明は、かかる不都
合を解消して、空孔が無く、製造時間と製造コストとを
低減することができるポリプロピレン系複合材料を提供
することを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a polypropylene-based composite material which eliminates such inconveniences and has no voids, which can reduce the manufacturing time and the manufacturing cost.

【0008】[0008]

【課題を解決するための手段】かかる目的を達成するた
めに、本発明のポリプロピレン系複合材料は、ポリプロ
ピレンと炭素繊維とからなる複合材料であって、該ポリ
プロピレンは重合体全量の1.0〜15重量%の不飽和
酸又はその誘導体で変性されており、該ポリプロピレン
と該炭素繊維との重量比が30:70〜70:30の範
囲にあることを特徴とする。
In order to achieve the above object, the polypropylene-based composite material of the present invention is a composite material comprising polypropylene and carbon fiber, and the polypropylene is 1.0 to 10% of the total amount of the polymer. It is characterized by being modified with 15% by weight of an unsaturated acid or a derivative thereof, and the weight ratio of the polypropylene to the carbon fiber is in the range of 30:70 to 70:30.

【0009】前記ポリプロピレンは、前記範囲の量の不
飽和酸又はその誘導体で変性して表面に酸素結合を導入
することにより、前記酸素結合の部分で反応しやすくな
るので、炭素繊維との間で好適な濡れ性を得ることがで
きる。従って、本発明のポリプロピレン系複合材料によ
れば、空孔が無く、更に前記ポリプロピレンをペレット
の段階で微粉砕する必要がなく、製造時間と製造コスト
とを大幅に低減することができる。
The polypropylene is modified with an unsaturated acid or a derivative thereof in an amount within the above range to introduce an oxygen bond into the surface of the polypropylene, which facilitates reaction at the oxygen bond portion. A suitable wettability can be obtained. Therefore, according to the polypropylene-based composite material of the present invention, there are no voids, and it is not necessary to pulverize the polypropylene at the stage of pelleting, and the manufacturing time and the manufacturing cost can be significantly reduced.

【0010】前記ポリプロピレンの変性に用いる不飽和
酸又はその誘導体の量は、前記ポリプロピレン全体の
1.0重量%未満では前記炭素繊維との間の濡れ性を改
善する効果を得ることができない。一方、前記不飽和酸
又はその誘導体の量が15重量%を超えると、流動性が
増大して前記ポリプロピレンが該炭素繊維間に保持され
にくくなり、前記ポリプロピレン系複合材料を得ること
ができない。
If the amount of the unsaturated acid or its derivative used for modifying the polypropylene is less than 1.0% by weight of the total polypropylene, the effect of improving the wettability with the carbon fiber cannot be obtained. On the other hand, when the amount of the unsaturated acid or its derivative exceeds 15% by weight, fluidity is increased and the polypropylene is hard to be held between the carbon fibers, and the polypropylene-based composite material cannot be obtained.

【0011】前記ポリプロピレン系複合材料では、前記
ポリプロピレンの含有量が70重量部を超え前記炭素繊
維の含有量が30重量部未満になると、所望の剛性を得
ることができない。また、前記ポリプロピレンの含有量
が30重量部未満で前記炭素繊維の含有量が70重量部
を超えると、樹脂としての機能が損なわれる。
In the polypropylene-based composite material, if the polypropylene content exceeds 70 parts by weight and the carbon fiber content is less than 30 parts by weight, desired rigidity cannot be obtained. Further, when the content of the polypropylene is less than 30 parts by weight and the content of the carbon fibers exceeds 70 parts by weight, the function as a resin is impaired.

【0012】尚、前記ポリプロピレン系複合材料では、
後述するように炭素繊維を表面処理してポリプロピレン
との濡れ性を十分に向上させることにより、未変性ポリ
プロピレンに比べ高価で、機械的強度も低い、不飽和酸
又はその誘導体で変性されたポリプロピレンの配合量が
30重量%未満の場合でも、本発明の目的を達成できる
場合もある。
In the polypropylene-based composite material,
By sufficiently improving the wettability with polypropylene by surface-treating carbon fiber as described below, it is more expensive than unmodified polypropylene and has a low mechanical strength, and is of a polypropylene modified with an unsaturated acid or its derivative. In some cases, the object of the present invention can be achieved even when the amount is less than 30% by weight.

【0013】本発明のポリプロピレン系複合材料におい
て、前記ポリプロピレンは、数平均分子量が3000〜
50000の範囲にあることを特徴とする。前記ポリプ
ロピレンの数平均分子量は、前記不飽和酸又はその誘導
体の含有量と関連し、前記不飽和酸又はその誘導体の含
有量が1.0重量%未満では数平均分子量が50000
を超え、前記不飽和酸又はその誘導体の含有量が15重
量%を超えると数平均分子量は小さくなる。また、前記
ポリプロピレンの数平均分子量が3000未満では前記
ポリプロピレン系複合材料において十分な耐衝撃性が得
られないことがあり、50000を超えると流動性が低
くなり前記炭素繊維に含浸せしめたときに空孔が形成さ
れやすくなる。
In the polypropylene-based composite material of the present invention, the polypropylene has a number average molecular weight of 3,000 to
It is characterized by being in the range of 50,000. The number average molecular weight of the polypropylene is related to the content of the unsaturated acid or its derivative, and when the content of the unsaturated acid or its derivative is less than 1.0% by weight, the number average molecular weight is 50,000.
And the content of the unsaturated acid or its derivative exceeds 15% by weight, the number average molecular weight becomes small. Further, if the number average molecular weight of the polypropylene is less than 3000, sufficient impact resistance may not be obtained in the polypropylene-based composite material, and if it exceeds 50,000, the fluidity becomes low and the carbon fiber becomes empty when impregnated. Holes are easily formed.

【0014】本発明のポリプロピレン系複合材料におい
て、前記炭素繊維は、表面に官能基を導入するサイジン
グ処理が施されていることを特徴とする。前記炭素繊維
は、前記サイジング処理が施されていることにより、前
記ポリプロピレンとの間でさらに好適な濡れ性を得るこ
とができる。
In the polypropylene-based composite material of the present invention, the carbon fiber is characterized by being subjected to a sizing treatment for introducing a functional group on the surface. Since the carbon fiber has been subjected to the sizing treatment, it is possible to obtain more suitable wettability with the polypropylene.

【0015】本発明のポリプロピレン系複合材料は、前
記炭素繊維からなるプリフォームを所定の形状の型に充
填し、該プリフォームに前記ポリプロピレンを含浸せし
めた後、該ポリプロピレンを硬化させることにより得ら
れた成形体として用いることができる。
The polypropylene-based composite material of the present invention is obtained by filling a mold having a predetermined shape with a preform composed of the carbon fiber, impregnating the preform with the polypropylene, and then curing the polypropylene. It can be used as a molded body.

【0016】[0016]

【発明の実施の形態】次に、本発明の実施の形態につい
てさらに詳しく説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Next, embodiments of the present invention will be described in more detail.

【0017】本実施形態のポリプロピレン系複合材料
は、重合体全量の1.0〜15重量%、好ましくは3〜
12重量%の不飽和酸又はその誘導体で変性され、数平
均分子量3000〜50000、好ましくは3000〜
20000のポリプロピレンと、炭素繊維とが、30:
70〜70:30の範囲の重量比で混合されたものであ
る。
The polypropylene-based composite material of this embodiment contains 1.0 to 15% by weight, preferably 3 to 15% by weight of the total amount of the polymer.
It is modified with 12% by weight of an unsaturated acid or its derivative and has a number average molecular weight of 3,000 to 50,000, preferably 3,000.
20,000 polypropylene and carbon fiber 30:
It is mixed in a weight ratio in the range of 70 to 70:30.

【0018】前記ポリプロピレンは、前記範囲の量の不
飽和酸又はその誘導体で変性されていることにより、前
記炭素繊維との間で優れた濡れ性を得ることができる。
前記ポリプロピレンは、どのような製造方法によって得
られたものであってもよく、前記範囲の量の不飽和酸又
はその誘導体で変性されており、数平均分子量が前記範
囲にあるポリプロピレンを1種のみ単独で用いてもよ
く、2種以上混合して用いてもよい。
Since the polypropylene is modified with the unsaturated acid or the derivative thereof in the amount in the above range, excellent wettability with the carbon fiber can be obtained.
The polypropylene may be obtained by any manufacturing method and is modified with an unsaturated acid or a derivative thereof in an amount in the above range, and only one polypropylene having a number average molecular weight in the above range is used. They may be used alone or in combination of two or more.

【0019】前記ポリプロピレンを変性する不飽和酸又
はその誘導体としては、マレイン酸、無水マレイン酸、
アクリル酸、又はメタクリル酸等のカルボン酸基を含有
する低分子量化合物、スルホン酸等のスルホ基を含有す
る不飽和低分子量化合物、ホスホン酸等のホスホ基を含
有する不飽和低分子量化合物、又はそれらの誘導体を挙
げることができる。これらの中でもカルボン酸基を含有
する低分子化合物が好ましく、特にマレイン酸、無水マ
レイン酸、アクリル酸、及びメタクリル酸等が好まし
い。変性に使用する酸は、これらの1種を選択して使用
してもよく、2種以上を選択して併用することもでき
る。
As the unsaturated acid or its derivative for modifying polypropylene, maleic acid, maleic anhydride,
Acrylic acid, or a low molecular weight compound containing a carboxylic acid group such as methacrylic acid, an unsaturated low molecular weight compound containing a sulfo group such as sulfonic acid, an unsaturated low molecular weight compound containing a phospho group such as phosphonic acid, or those The derivatives thereof can be mentioned. Among these, low molecular weight compounds containing a carboxylic acid group are preferable, and maleic acid, maleic anhydride, acrylic acid, methacrylic acid and the like are particularly preferable. As the acid used for modification, one of these may be selected and used, or two or more thereof may be selected and used in combination.

【0020】前記炭素繊維はどのようなものであっても
よいが、高い強度を備えていることから、ポリアクリロ
ニトリルを原料とするポリアクリロニトリル(PAN)
系炭素繊維を用いることが好ましい。また、前記炭素繊
維は、サイジング処理が施されることにより、表面にカ
ルボキシル基やフェノール性水酸基等の官能基が導入さ
れていることが好ましい。前記炭素繊維は、前記サイジ
ング処理により、前記ポリプロピレンとの間で優れた濡
れ性を得ることができる。
The carbon fiber may be of any type, but since it has a high strength, polyacrylonitrile (PAN) made from polyacrylonitrile is used as a raw material.
It is preferable to use carbon-based carbon fibers. Further, it is preferable that the carbon fiber is subjected to a sizing treatment so that a functional group such as a carboxyl group or a phenolic hydroxyl group is introduced on the surface thereof. The carbon fiber can obtain excellent wettability with the polypropylene by the sizing treatment.

【0021】又、サイジング処理は、前記炭素繊維を液
体状変性ポリオレフィンで処理することにより行うこと
もできる。前記液体状変性ポリオレフィンとしては、塩
素変性ポリプロピレンのトルエン溶液、無水マレイン酸
変性ポリプロピレンのトルエン溶液、末端変性水素添加
ポリブタジエン等を挙げることができる。前記塩素変性
ポリプロピレンは、塩素含有率が30重量%を超えると
熱により劣化しやすくなるので、塩素含有率が5〜30
重量%の範囲にあることが好ましい。また、前記炭素繊
維は、前記サイジング処理に先立って、公知の陽極酸化
法等の方法により、表面にカルボキシル基や水酸基が導
入されていてもよい。
The sizing treatment can also be carried out by treating the carbon fiber with a liquid modified polyolefin. Examples of the liquid modified polyolefin include a toluene solution of chlorine modified polypropylene, a toluene solution of maleic anhydride modified polypropylene, and a terminal modified hydrogenated polybutadiene. When the chlorine content of the chlorine-modified polypropylene exceeds 30% by weight, it is easily deteriorated by heat.
It is preferably in the range of% by weight. In addition, prior to the sizing treatment, the carbon fiber may have a carboxyl group or a hydroxyl group introduced on its surface by a known method such as an anodic oxidation method.

【0022】本実施形態のポリプロピレン系複合材料
は、例えば、前記炭素繊維を長さ方向に引き揃えてなる
プリフォームを所定の形状の型に充填し、型を閉じた
後、該プリフォームに溶融状態の前記ポリプロピレンを
含浸せしめ、該ポリプロピレンを硬化させることにより
得られた成形体として用いることができる。
In the polypropylene-based composite material of the present embodiment, for example, a preform formed by aligning the carbon fibers in the length direction is filled in a mold of a predetermined shape, the mold is closed, and then the preform is melted. It can be used as a molded product obtained by impregnating the polypropylene in the state and curing the polypropylene.

【0023】本実施形態では、前記ポリプロピレンは、
前記のように不飽和酸又はその誘導体により変性されて
いるので、プロピレンの重合時に微粉化されており、あ
えて粉砕されていなくても、前記炭素繊維のプリフォー
ムに容易に含浸せしめることができる。しかし、前記ポ
リプロピレンは、前記含浸をさらに良好にするために、
予め微粉砕した後、溶融することが好ましい。
In this embodiment, the polypropylene is
Since it is modified with the unsaturated acid or its derivative as described above, it is finely pulverized during the polymerization of propylene and can be easily impregnated into the preform of the carbon fiber even if it is not pulverized. However, the polypropylene is added in order to improve the impregnation further.
It is preferable that the powder is pulverized in advance and then melted.

【0024】予め前記ポリプロピレンを微粉砕する場合
には、最大粒径が200μm未満、好ましくは50μm
未満とする。前記ポリプロピレンの最大粒径が200μ
mを超えると、前記炭素繊維のプリフォームに含浸せし
めた際に、繊維間に溶融したポリプロピレンが詰まって
空孔が形成されることがある。
When the polypropylene is pulverized beforehand, the maximum particle size is less than 200 μm, preferably 50 μm.
Less than The maximum particle size of polypropylene is 200μ
If it exceeds m, when impregnated into the carbon fiber preform, molten polypropylene may be clogged between the fibers to form pores.

【0025】本実施形態のポリプロピレン系複合材料
は、前記ポリプロピレンの効果を著しく損なわない範囲
で、該ポリプロピレン以外の樹脂を含んでいてもよい。
前記樹脂として、例えば、高密度ポリエチレン、低密度
ポリエチレン、線状低密度ポリエチレン、エチレン−α
オレフィン共重合ゴム、スチレン−ブテン共重合ゴム等
を挙げることができる。
The polypropylene-based composite material of this embodiment may contain a resin other than polypropylene within a range that does not significantly impair the effects of the polypropylene.
As the resin, for example, high-density polyethylene, low-density polyethylene, linear low-density polyethylene, ethylene-α
Examples thereof include olefin copolymer rubber and styrene-butene copolymer rubber.

【0026】また、本実施形態のポリプロピレン系複合
材料は、必要に応じて、オレフィン系重合体に一般に使
用されている各種添加剤を用いるようにしてもよい。前
記添加剤として、例えば、中和剤、耐候剤、酸化防止
剤、熱安定剤、紫外線吸収剤、難燃剤、核剤、加工性改
良剤、滑剤、耐電防止剤、顔料等を挙げることができ
る。
The polypropylene-based composite material of the present embodiment may use various additives generally used for olefin-based polymers, if necessary. Examples of the additive include a neutralizing agent, a weathering agent, an antioxidant, a heat stabilizer, an ultraviolet absorber, a flame retardant, a nucleating agent, a processability improving agent, a lubricant, an antistatic agent, and a pigment. .

【0027】次に、実施例及び比較例を示す。Next, examples and comparative examples will be shown.

【0028】[0028]

【実施例1〜4】まず、出光石油化学株式会社製ポリプ
ロピレン(商品名:J700G)に、無水マレイン酸を
重合体全量に対して、1.0〜15重量%の範囲となる
ように変量して加えて、公知の方法(特開昭54−12
4095号公報参照)にて変性し、4種類の無水マレイ
ン酸変性ポリプロピレンを調製した。
Examples 1 to 4 First, polypropylene (trade name: J700G) manufactured by Idemitsu Petrochemical Co., Ltd. was mixed with maleic anhydride so as to be in the range of 1.0 to 15% by weight based on the total amount of the polymer. In addition, a known method (Japanese Patent Laid-Open No. 54-12
No. 4095), and four types of maleic anhydride-modified polypropylene were prepared.

【0029】各無水マレイン酸変性ポリプロピレンの無
水マレイン酸含有量、樹脂流動性、数平均分子量を表1
に示す。前記樹脂の流動性は、前記炭素繊維に対する該
無水マレイン酸変性ポリプロピレンの含浸性の指標とな
る。
The maleic anhydride content, resin fluidity and number average molecular weight of each maleic anhydride modified polypropylene are shown in Table 1.
Shown in. The fluidity of the resin is an index of the impregnability of the maleic anhydride-modified polypropylene into the carbon fibers.

【0030】尚、前記無水マレイン酸変性ポリプロピレ
ンに含まれる無水マレイン酸が6.0重量%を超えたも
のについては、前記樹脂流動性が大きすぎ、測定できな
かった。
When the maleic anhydride contained in the maleic anhydride-modified polypropylene exceeded 6.0% by weight, the resin fluidity was too large to be measured.

【0031】次に、東邦テナックス株式会社製PAN系
炭素繊維(商品名:IM600)の長繊維を繊維方向に
引き揃えたプリフォームを所定の型に充填した後、型を
閉じ、前記プリフォームに溶融状態の前記各無水マレイ
ン酸変性ポリプロピレンを含浸せしめた。尚、前記無水
マレイン酸変性ポリプロピレンと炭素繊維との重量比
は、いずれも40:60となるようにした。
Next, a preform obtained by aligning long fibers of PAN-based carbon fiber (trade name: IM600) manufactured by Toho Tenax Co., Ltd. in the fiber direction is filled in a predetermined mold, and then the mold is closed to form the preform. Each of the above-mentioned maleic anhydride-modified polypropylenes in a molten state was impregnated. The weight ratio of the maleic anhydride-modified polypropylene to the carbon fiber was set to 40:60 in all cases.

【0032】そして、200℃で前記無水マレイン酸変
性ポリプロピレンを硬化させることにより、4種類の炭
素繊維強化ポリプロピレン成形体を形成した。各成形体
は平板状であり、400mm×500mm、厚さ2mm
の大きさを備えている。
Then, the maleic anhydride-modified polypropylene was cured at 200 ° C. to form four types of carbon fiber reinforced polypropylene moldings. Each molded product has a flat plate shape, 400 mm x 500 mm, and a thickness of 2 mm.
It has the size of.

【0033】次に、得られた4種類の成形体について、
前記炭素繊維に対する前記無水マレイン酸変性ポリプロ
ピレンの含浸性を評価し、比重、弾性率、塗装性を測定
した。結果を表1に併せて示す。
Next, with respect to the obtained four types of molded articles,
The impregnating property of the maleic anhydride-modified polypropylene with respect to the carbon fiber was evaluated, and the specific gravity, elastic modulus, and coatability were measured. The results are also shown in Table 1.

【0034】前記含浸性は、前記成形体の断面を目視ま
たは顕微鏡で観察することによ評価した。また、前記比
重はJIS K 7117に準拠して測定し、前記弾性
率はJIS K 7073に準拠して測定した。
The impregnating property was evaluated by observing the cross section of the molded body with eyes or with a microscope. The specific gravity was measured according to JIS K 7117, and the elastic modulus was measured according to JIS K 7073.

【0035】また、前記塗装性は、前記平板状成形体を
純水で洗浄した後、日本ビー・ケミカル株式会社製プラ
イマー(商品名:RB109)、日本ビー・ケミカル株
式会社製ベースコート(商品名:R212S)、日本ビ
ー・ケミカル株式会社製クリアコート(商品名:R28
8)を順次塗装し、120℃で30分焼き付けして調製
した試料に対し、48時間後に碁盤目試験を施すことに
より評価した。結果は、塗装が剥離していない碁盤目の
数(n)の碁盤目の全数(100)に対する割合(n/
100)により示した。
As for the coating property, after washing the flat plate-shaped molded body with pure water, Nippon Bee Chemical Co., Ltd. primer (trade name: RB109), Nippon Bee Chemical Co., Ltd. base coat (product name: R212S), Nippon Bee Chemical Co., Ltd. clear coat (trade name: R28)
The sample prepared by sequentially coating 8) and baking at 120 ° C. for 30 minutes was evaluated by conducting a cross-cut test 48 hours later. The result is the ratio of the number of grids (n) where the coating is not peeled off (n) to the total number of grids (100) (n /
100).

【0036】[0036]

【比較例1】前記実施例で用いた無水マレイン酸変性ポ
リプロピレンに替えて、ジャパンエポキシレジン株式会
社製エポキシ樹脂(商品名:EP828)を用いた以外
は、前記実施例と同一にして、炭素繊維強化エポキシ樹
脂成形体を形成した。
[Comparative Example 1] Carbon fiber was used in the same manner as in the above-mentioned example except that an epoxy resin (trade name: EP828) manufactured by Japan Epoxy Resin Co., Ltd. was used in place of the maleic anhydride-modified polypropylene used in the above-mentioned example. A reinforced epoxy resin molding was formed.

【0037】次に、得られた成形体について、前記実施
例と全く同一にして前記炭素繊維に対する前記エポキシ
樹脂の含浸性を評価し、比重、弾性率、塗装性を測定し
た。結果を表1に示す。
Then, the obtained molded product was evaluated for the impregnating property of the epoxy resin with respect to the carbon fiber in exactly the same manner as in the above example, and the specific gravity, elastic modulus and coatability were measured. The results are shown in Table 1.

【0038】[0038]

【比較例2】前記実施例で用いたポリプロピレンを全く
変性しなかった以外は、前記実施例と全く同一にして炭
素繊維強化ポリプロピレン成形体の形成を試みたが、該
ポリプロピレンは樹脂流動性が5(g/10分)と低い
ために、炭素繊維に対する含浸性が悪く、成形体を得る
ことができなかった。結果を表1に示す。
Comparative Example 2 An attempt was made to form a carbon fiber reinforced polypropylene molded article in exactly the same manner as in the above Example except that the polypropylene used in the above Example was not modified at all. Since it was as low as (g / 10 minutes), the impregnation property with respect to the carbon fiber was poor and a molded product could not be obtained. The results are shown in Table 1.

【0039】[0039]

【比較例3】前記実施例で用いたポリプロピレンに、無
水マレイン酸を重合体全量に対して、0.5重量%の範
囲となるようにして加えて無水マレイン酸変性ポリプロ
ピレンを調製した以外は、前記実施例と全く同一にして
炭素繊維強化ポリプロピレン成形体を形成した。
Comparative Example 3 A maleic anhydride-modified polypropylene was prepared by adding maleic anhydride to the polypropylene used in the above Example in an amount of 0.5% by weight based on the total amount of the polymer. A carbon fiber reinforced polypropylene molding was formed in exactly the same manner as in the above example.

【0040】本比較例で用いた無水マレイン酸変性ポリ
プロピレンの無水マレイン酸含有量、樹脂流動性、数平
均分子量を表1に示す。
Table 1 shows the maleic anhydride content, resin fluidity, and number average molecular weight of the maleic anhydride-modified polypropylene used in this comparative example.

【0041】次に、得られた成形体について、前記実施
例と全く同一にして前記炭素繊維に対する前記エポキシ
樹脂の含浸性を評価し、比重、弾性率、塗装性を測定し
た。結果を表1に併せて示す。
Then, the obtained molded product was evaluated for the impregnating property of the epoxy resin with respect to the carbon fiber in exactly the same manner as in the above example, and the specific gravity, elastic modulus and coatability were measured. The results are also shown in Table 1.

【0042】[0042]

【表1】 [Table 1]

【0043】表1から、炭素繊維強化ポリプロピレンか
らなる実施例1〜4の成形体は、実用上十分な弾性率を
備え、炭素繊維強化エポキシ樹脂からなる比較例1の成
形体に比較して、比重は小さく、塗装性に優れているこ
とが明らかである。
From Table 1, the molded products of Examples 1 to 4 made of carbon fiber reinforced polypropylene have a practically sufficient elastic modulus, and are compared with the molded product of Comparative Example 1 made of carbon fiber reinforced epoxy resin. It is clear that the specific gravity is small and the paintability is excellent.

【0044】また、実施例1〜4の成形体は、無水マレ
イン酸含有量が1.0重量%未満である比較例2,3の
成形体に比較して、前記無水マレイン酸変性ポリプロピ
レンの前記炭素繊維に対する含浸性に優れていることが
明らかである。
In addition, the molded products of Examples 1 to 4 were different from the molded products of Comparative Examples 2 and 3 in which the content of maleic anhydride was less than 1.0% by weight. It is clear that the carbon fiber has excellent impregnation property.

【0045】[0045]

【実施例5】実施例1〜4で用いたPAN系炭素繊維
を、予め日本製紙株式会社製変性ポリプロピレン(商品
名:スーパークロン851L)でサイジング処理した以
外は、実施例3と全く同一にして、炭素繊維強化ポリプ
ロピレン成形体を形成した。実施例3と本実施例とで
は、前記無水マレイン酸変性ポリプロピレンの無水マレ
イン酸含有量が同一の6.0重量%となっている。
[Example 5] The same procedure as in Example 3 except that the PAN-based carbon fibers used in Examples 1 to 4 were pre-sized with a modified polypropylene (trade name: Supercron 851L) manufactured by Nippon Paper Industries Co., Ltd. , A carbon fiber reinforced polypropylene molded body was formed. In Example 3 and this example, the maleic anhydride-modified polypropylene has the same maleic anhydride content of 6.0% by weight.

【0046】次に、得られた成形体について、前記実施
例と全く同一にして前記炭素繊維に対する無水マレイン
酸変性ポリプロピレンの含浸性を評価し、比重、弾性
率、塗装性を測定した。前記炭素繊維に前記サイジング
処理を施した本実施例の成形体は、前記サイジング処理
を施さなかった実施例3の成形体に比較して、前記無水
マレイン酸変性ポリプロピレンの前記炭素繊維に対する
含浸性が非常に優れていた。
Then, the obtained molded body was evaluated for the impregnating ability of the maleic anhydride-modified polypropylene with respect to the carbon fiber in the same manner as in the above-mentioned Examples, and the specific gravity, elastic modulus and coatability were measured. The molded body of this example obtained by subjecting the carbon fiber to the sizing treatment has a higher impregnation property with respect to the carbon fiber of the maleic anhydride-modified polypropylene than the molded body of Example 3 not subjected to the sizing treatment. Was very good.

【0047】実施例3の成形体と、本実施例の成形体と
の、比重、弾性率、塗装性、含浸性を表2に示す。
Table 2 shows the specific gravity, elastic modulus, coating property and impregnating property of the molded body of Example 3 and the molded body of this Example.

【0048】[0048]

【表2】 [Table 2]

【0049】表2から、前記炭素繊維に前記サイジング
処理を施した本実施例の成形体は、前記サイジング処理
を施さなかった実施例3の成形体と略同等の比重、弾性
率を備え、塗装性にも優れていることが明らかである。
From Table 2, it can be seen that the molded body of this example obtained by subjecting the carbon fiber to the sizing treatment has substantially the same specific gravity and elastic modulus as those of the molded body of Example 3 not subjected to the sizing treatment. It is clear that it is also excellent in sex.

【0050】上述のように、本実施形態のポリプロピレ
ン系複合材料は、製造時間、製造コストを低減でき、実
用上十分な弾性率を備えている上、比重が小さいので軽
量であり、塗装性にも優れている。そこで、本実施形態
のポリプロピレン系複合材料は、二輪車、四輪車、特に
スポーツ車、レース車、電気自動車等のフェンダー、ド
アパネル、ホイルカバー、タイヤカバー等のカバー類等
の外装パネル、四輪車のフロント、リアウィング、スカ
ート類等のエアロパーツ等に好適に用いることができ
る。
As described above, the polypropylene-based composite material of the present embodiment can reduce the manufacturing time and the manufacturing cost, has a practically sufficient elastic modulus, and has a small specific gravity so that it is lightweight and has good coating properties. Is also excellent. Therefore, the polypropylene-based composite material of the present embodiment is applied to two-wheeled vehicles, four-wheeled vehicles, especially sports cars, race cars, electric vehicles and other fenders, exterior panels such as door panels, wheel covers, tire covers, and other exterior panels, four-wheeled vehicles. It can be suitably used for aero parts such as front and rear wings and skirts.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B29K 105:06 B29C 67/14 P (72)発明者 佐伯 芳久 埼玉県和光市中央1丁目4番1号 株式会 社本田技術研究所内 Fターム(参考) 4F072 AA04 AB22 AB28 AB30 AC05 AD04 AD53 AD54 4F205 AA11J AD02 AD16 AH17 HA19 HA22 HA44 HC17 HE21 HM01 4J002 BB211 DA016 GN00 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) B29K 105: 06 B29C 67/14 P (72) Inventor Yoshihisa Saeki 1-4-1 Chuo, Wako-shi, Saitama F-term in Honda R & D Co., Ltd. (reference) 4F072 AA04 AB22 AB28 AB30 AC05 AD04 AD53 AD54 4F205 AA11J AD02 AD16 AH17 HA19 HA22 HA44 HC17 HE21 HM01 4J002 BB211 DA016 GN00

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】ポリプロピレンと炭素繊維とからなる複合
材料であって、該ポリプロピレンは重合体全量の1.0
〜15重量%の不飽和酸又はその誘導体で変性されてお
り、該ポリプロピレンと該炭素繊維との重量比が30:
70〜70:30の範囲にあることを特徴とするポリプ
ロピレン系複合材料。
1. A composite material comprising polypropylene and carbon fiber, wherein the polypropylene is 1.0% of the total amount of the polymer.
Modified with an unsaturated acid or a derivative thereof in an amount of up to 15% by weight, and the weight ratio of the polypropylene to the carbon fiber is 30:
A polypropylene-based composite material, which is in the range of 70 to 70:30.
【請求項2】前記ポリプロピレンは、数平均分子量が3
000〜50000の範囲にあることを特徴とする請求
項1記載のポリプロピレン系複合材料。
2. The polypropylene has a number average molecular weight of 3
The polypropylene-based composite material according to claim 1, which is in a range of 000 to 50,000.
【請求項3】前記炭素繊維は、表面に官能基を導入する
サイジング処理が施された、一方向繊維、織物、組紐さ
れた長繊維のいずれかであることを特徴とする請求項1
または請求項2記載のポリプロピレン系複合材料。
3. The carbon fibers are unidirectional fibers, woven fabrics, or braided long fibers, which have been subjected to a sizing treatment for introducing a functional group on the surface.
Alternatively, the polypropylene-based composite material according to claim 2.
【請求項4】前記炭素繊維からなるプリフォームを所定
の形状の型に充填し、該プリフォームに前記ポリプロピ
レンを含浸せしめた後、該ポリプロピレンを硬化させる
ことにより得られた成形体からなることを特徴とする請
求項1乃至請求項3のいずれか1項記載のポリプロピレ
ン系複合材料。
4. A molded article obtained by filling a mold having a predetermined shape with the carbon fiber preform, impregnating the preform with the polypropylene, and then curing the polypropylene. The polypropylene-based composite material according to any one of claims 1 to 3, which is characterized by the above-mentioned.
JP2002080022A 2002-03-22 2002-03-22 Polypropylene-based composite material Pending JP2003277525A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002080022A JP2003277525A (en) 2002-03-22 2002-03-22 Polypropylene-based composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002080022A JP2003277525A (en) 2002-03-22 2002-03-22 Polypropylene-based composite material

Publications (1)

Publication Number Publication Date
JP2003277525A true JP2003277525A (en) 2003-10-02

Family

ID=29229225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002080022A Pending JP2003277525A (en) 2002-03-22 2002-03-22 Polypropylene-based composite material

Country Status (1)

Country Link
JP (1) JP2003277525A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005125581A (en) * 2003-10-23 2005-05-19 Daicel Chem Ind Ltd Carbon long fiber-reinforced resin pellet, its manufacturing method, and molded article
WO2006101269A1 (en) * 2005-03-25 2006-09-28 Teijin Techno Products Limited Carbon fiber strand for reinforcing thermoplastic resins and method of producing the same
WO2009069649A1 (en) 2007-11-28 2009-06-04 Mitsui Chemicals, Inc. Aid for filler-reinforced resin, filler-reinforced polypropylene resin composition, and molded article thereof
US7571702B2 (en) * 2005-10-07 2009-08-11 Toyo Roki Mfg. Co., Ltd. Resin composition for intake system part for internal combustion engine and intake system part
WO2011064994A1 (en) 2009-11-30 2011-06-03 株式会社カネカ Carbon fiber reinforced composite materials
CN104419060A (en) * 2013-08-29 2015-03-18 合肥杰事杰新材料股份有限公司 Continuous organic fiber-filled polypropylene composite material and preparation method thereof
WO2018173678A1 (en) 2017-03-23 2018-09-27 新日鉄住金化学株式会社 Adhesion improver for carbon-fiber-reinforced resin composition
WO2018180332A1 (en) 2017-03-30 2018-10-04 三井化学株式会社 Filler-reinforced resin structure
WO2022190857A1 (en) 2021-03-09 2022-09-15 三井化学株式会社 Recycled carbon fiber-reinforced polyolefin composition and use of same

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005125581A (en) * 2003-10-23 2005-05-19 Daicel Chem Ind Ltd Carbon long fiber-reinforced resin pellet, its manufacturing method, and molded article
WO2006101269A1 (en) * 2005-03-25 2006-09-28 Teijin Techno Products Limited Carbon fiber strand for reinforcing thermoplastic resins and method of producing the same
US7571702B2 (en) * 2005-10-07 2009-08-11 Toyo Roki Mfg. Co., Ltd. Resin composition for intake system part for internal combustion engine and intake system part
WO2009069649A1 (en) 2007-11-28 2009-06-04 Mitsui Chemicals, Inc. Aid for filler-reinforced resin, filler-reinforced polypropylene resin composition, and molded article thereof
JP5740313B2 (en) * 2009-11-30 2015-06-24 株式会社カネカ Carbon fiber reinforced composite material
WO2011064994A1 (en) 2009-11-30 2011-06-03 株式会社カネカ Carbon fiber reinforced composite materials
US20120295504A1 (en) * 2009-11-30 2012-11-22 Kaneka Corporation Carbon fiber reinforced composite materials
CN104419060A (en) * 2013-08-29 2015-03-18 合肥杰事杰新材料股份有限公司 Continuous organic fiber-filled polypropylene composite material and preparation method thereof
CN104419060B (en) * 2013-08-29 2017-09-05 合肥杰事杰新材料股份有限公司 A kind of continuous organic fiber filling polypropylene composite material and preparation method thereof
WO2018173678A1 (en) 2017-03-23 2018-09-27 新日鉄住金化学株式会社 Adhesion improver for carbon-fiber-reinforced resin composition
WO2018180332A1 (en) 2017-03-30 2018-10-04 三井化学株式会社 Filler-reinforced resin structure
WO2022190857A1 (en) 2021-03-09 2022-09-15 三井化学株式会社 Recycled carbon fiber-reinforced polyolefin composition and use of same
KR20230134600A (en) 2021-03-09 2023-09-21 미쓰이 가가쿠 가부시키가이샤 Recycled carbon fiber reinforced polyolefin composition and uses thereof

Similar Documents

Publication Publication Date Title
EP2459376B1 (en) Overmolded heat resistant polyamide composite structures and processes for their preparation
AU2016222779B2 (en) Polyamide composition including hollow glass microspheres and articles and methods relating to the same
KR101526742B1 (en) A resin composition of carbon fiber reinforced polypropylene with excellent molding property
JP4950308B2 (en) Process and article for thermoplastic fiber concentrate
KR20120058347A (en) Thermo plastic complex for stiffener and Preparing method thereof
CA2768549A1 (en) Heat resistant semi-aromatic polyamide composite structures and processes for their preparation
JPWO2015064484A1 (en) Method for producing carbon fiber reinforced polyarylene sulfide
CN102311530A (en) Method for in situ polymerization of surface modified hollow micro glass bead from urea-formaldehyde resin
JP2020514434A (en) Polymer composition
JP2003277525A (en) Polypropylene-based composite material
JP2016196142A (en) Molding and method for producing the same
CN106188824B (en) Polymer resin composition, polymer composite tape, and front bumper for automobile
KR101438917B1 (en) Polypropylene Resin Composition For Interior Meterials Of Automobile with Advanced Paint Adnesion And low-specific weight
KR101306382B1 (en) Polyamide moulding compositions with improved flowability
Verma et al. An introduction to high-performance advanced polymers composites, their types, processing, and applications in automotive industries
KR20170043720A (en) Thermoplastic resin composite composition with light weight
KR101425975B1 (en) Polymer resin blend composition for automotive exterior, article for automotive exterior and preparing method of the same
KR101551970B1 (en) Polypropylene resin composition
KR101322698B1 (en) Low odor and high efficient long fiber reinforced polypropylene composition, low odor article for automobile and electronic equipment/industry produced with the same
KR20140103834A (en) Resin composite material and method for manufacturing resin composite material
KR101664554B1 (en) Carbon Fiber-reinforced Polyamide Resin Composition having excellent Impact Resistance
JP3487035B2 (en) PET resin molding material
Verma et al. 1Department of Mechanical Engineering, Graphic Era Hill University, Dehradun, India
JP2018024763A (en) Prepreg
KR960011755B1 (en) Method for manufacturing frtp having excellent heat-resistance

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20041227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20041227

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050309

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060223

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060223

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060420

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070213

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070417