JP2003277310A - METHOD FOR PRODUCING HIGHLY PURE beta-DIKETONATE COMPLEX OF ALKALINE-EARTH METAL AND HIGHLY PURE beta-DIKETONATE COMPLEX FOR FORMING THIN FILM BY CHEMICAL VAPOR DEPOSITION METHOD - Google Patents

METHOD FOR PRODUCING HIGHLY PURE beta-DIKETONATE COMPLEX OF ALKALINE-EARTH METAL AND HIGHLY PURE beta-DIKETONATE COMPLEX FOR FORMING THIN FILM BY CHEMICAL VAPOR DEPOSITION METHOD

Info

Publication number
JP2003277310A
JP2003277310A JP2003103095A JP2003103095A JP2003277310A JP 2003277310 A JP2003277310 A JP 2003277310A JP 2003103095 A JP2003103095 A JP 2003103095A JP 2003103095 A JP2003103095 A JP 2003103095A JP 2003277310 A JP2003277310 A JP 2003277310A
Authority
JP
Japan
Prior art keywords
complex
highly pure
earth metal
dpm
diketonate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003103095A
Other languages
Japanese (ja)
Other versions
JP3787125B2 (en
Inventor
Kazumi Kobayashi
一三 小林
Yoshiaki Sugimori
由章 杉森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Oxygen Co Ltd
Nippon Sanso Corp
Original Assignee
Japan Oxygen Co Ltd
Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Oxygen Co Ltd, Nippon Sanso Corp filed Critical Japan Oxygen Co Ltd
Priority to JP2003103095A priority Critical patent/JP3787125B2/en
Publication of JP2003277310A publication Critical patent/JP2003277310A/en
Application granted granted Critical
Publication of JP3787125B2 publication Critical patent/JP3787125B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To produce a highly pure β-diketonate complex of an alkaline-earth metal useful as a raw material for forming thin layers by CVD (chemical vapor deposition) method. <P>SOLUTION: The method for producing the highly pure β-diketonate complex of the alkaline-earth metal is to mix an acetone solution of DPM (dipivaloylmethane) with an acetone solution of BaCl<SB>2</SB>, drop a methanol solution of NaOH under sufficient agitation and react DPM with Ba. Highly pure Ba(DPM)<SB>2</SB>containing <0.01% evaporation of impurities and ≥99.5% evaporation of chelates detected by thermogravimetric analysis in vacuum as shown in figure 1 (C), and having 99.1-101.0% carbon content based on the theoretical value, 99.0-101.0% hydrogen content based on the theoretical value measured by elementary analysis and 99.0-101.0% metal content based on the theoretical value detected by ICP (Inductively-Coupled Plasmaspectrometer) analysis is obtained. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、化学気相析出法
(以下、CVD法と略記する)によってアルカリ土類金
属を含む酸化物などの薄層を形成するための原料として
有用な、従来にない高純度なアルカリ土類金属のβ−ジ
ケトネート錯体およびその製法に関する。
TECHNICAL FIELD The present invention relates to a conventional method useful as a raw material for forming a thin layer such as an oxide containing an alkaline earth metal by a chemical vapor deposition method (hereinafter abbreviated as a CVD method). High-purity alkaline earth metal β-diketonate complex and method for producing the same.

【0002】[0002]

【従来の技術】近年、酸化物系のセラミックス薄膜ある
いは層状セラミック等の製造方法としてCVD法が有力
な手段として用いられるようになり、その研究開発も盛
んに行われるようになった。例えば、超電導体薄膜、誘
電体薄膜や各種集積回路の製造工程においてCVD法が
用いられている。そしてその原料としてβ−ジケトネー
ト金属錯体が多く用いられている。β−ジケトネート金
属錯体については、以前からガスクロマトグラフィーに
よる微量金属の分析や、金属錯体における立体化学や異
性体化学、配位子の交換、弱求核試薬相互作用などの研
究に用いられ、さらにはガソリンのアンチノック剤、内
燃機関の炭素除去用触媒などへの応用も考えられている
(R.E.Sievers;Science,201(1978)217-223頁)。
2. Description of the Related Art In recent years, the CVD method has come to be used as a promising means for producing oxide-based ceramic thin films or layered ceramics, and the research and development thereof have been actively conducted. For example, the CVD method is used in the manufacturing process of superconductor thin films, dielectric thin films, and various integrated circuits. A β-diketonate metal complex is often used as the raw material. Regarding β-diketonate metal complexes, it has been used for a long time in the analysis of trace metals by gas chromatography, in the studies of stereochemistry and isomer chemistry in metal complexes, ligand exchange, weak nucleophilic reagent interaction, etc. Is also considered to be used as an anti-knock agent for gasoline and as a catalyst for carbon removal in internal combustion engines (RESievers; Science, 201 (1978) pp. 217-223).

【0003】β−ジケトネート金属錯体は、比較的蒸気
圧が高く、反応性に富むのでCVD用の原料として有用
性が高いものである。そして、β−ジケトネート金属錯
体のCVD法用原料としての有用性については、錯体を
形成する金属種によって錯体の性質に与える影響と、R
1−CO−CH2−CO−R2で示される錯体の配位子R1
およびR2の種類による影響について、熱重量分析(以
下、TGと略記する)曲線と蒸気圧のデータによって解
析され、明らかにされている(T.Ozawa:Volatility of
Metal β-Diketonates for Chemical Vapor Deposition
of Oxide of Supercoductor Thermochimica Acta,174
(1991)185-199頁)。またCVD法で再現性良く、良
好な薄膜を得るためには、高純度の原料を用いることが
必要であるが、β−ジケトネート金属錯体の純度につい
ては、示差熱分析(以下、DTAと略記する)曲線によ
って評価することができる。
Since the β-diketonate metal complex has a relatively high vapor pressure and is highly reactive, it is highly useful as a raw material for CVD. Regarding the usefulness of the β-diketonate metal complex as a raw material for the CVD method, the effect of the metal species forming the complex on the properties of the complex and R
Ligands R 1 complex represented by 1 -CO-CH 2 -CO-R 2
And the influence of R 2 type have been analyzed and clarified by thermogravimetric analysis (hereinafter abbreviated as TG) curve and vapor pressure data (T.Ozawa: Volatility of
Metal β-Diketonates for Chemical Vapor Deposition
of Oxide of Supercoductor Thermochimica Acta, 174
(1991) 185-199). Further, in order to obtain a good thin film with good reproducibility by the CVD method, it is necessary to use a high-purity raw material, but with respect to the purity of the β-diketonate metal complex, a differential thermal analysis (hereinafter abbreviated as DTA). ) Can be evaluated by a curve.

【0004】アルカリ土類金属は、酸化物系超電導体
(例えば、Y−Ba−Cu酸化物超電導体等)や強・高
誘電体などの構成元素として重要な金属元素であり、ア
ルカリ土類金属のβ−ジケトネート錯体の製法として、
従来いくつかの方法が知られている。例えば、代表的な
方法としては、塩化物などのアルカリ土類金属ハロゲン
化物の水溶液中で、アンモニアや水酸化ナトリウムなど
の反応性塩基性試薬を滴下してβ−ジケトンと反応させ
る方法がある。しかしながら、β−ジケトネート金属錯
体は一般に空気中の水分や炭酸ガスの影響を受けて劣化
し易い。そのため、上記の方法では、水溶液を経由する
ため、工程中で脱水が極めて困難であり、水分の影響で
純度の高い錯体ができないという欠点があった。また、
水溶液を経由する製法によるものでも、メタノール中で
再結晶するなど不純物の除去に注意を払うことによっ
て、ある程度、キレート蒸発量を向上させることができ
るものの、依然として不純物を含むものしか得られなか
った。例えば、ジピバロイルメタン(以下、DPMと記
載する)((CH33・C・CO・CH2・CO・C・
(CH33)は代表的なβ−ジケトンであるが、そのア
ルカリ土類金属錯体を、従来の水溶液を経由する方法で
製造し、さらにメタノール中で再結晶を行った。得られ
たBa(DPM)2について、TG(アルゴン大気圧
下)による評価を行ったところ、図1(B’)に示すよ
うにキレート蒸発量は92%であり、不純物蒸発量、お
よび蒸発残量も認められた。 このように不純物を含む
原料をCVD法に用いた場合には、再現性が悪く、良好
な薄膜を得るのが困難である。
Alkaline earth metal is an important metal element as a constituent element of oxide type superconductors (for example, Y-Ba-Cu oxide superconductors) and strong and high dielectric materials. As a method for producing the β-diketonate complex of
Several methods are conventionally known. For example, as a typical method, there is a method in which a reactive basic reagent such as ammonia or sodium hydroxide is dropped in an aqueous solution of an alkaline earth metal halide such as chloride to react with β-diketone. However, the β-diketonate metal complex is generally susceptible to deterioration under the influence of moisture and carbon dioxide in the air. Therefore, in the above method, there is a drawback that dehydration is extremely difficult in the process since it passes through an aqueous solution, and a complex of high purity cannot be formed due to the influence of water. Also,
Even by the production method via an aqueous solution, the amount of chelate vaporization can be improved to some extent by paying attention to the removal of impurities such as recrystallization in methanol, but only those containing impurities were obtained. For example, dipivaloylmethane (hereinafter referred to as DPM) ((CH 3 ) 3 · C · CO · CH 2 · CO · C.
(CH 3 ) 3 ) is a typical β-diketone, and its alkaline earth metal complex was produced by a conventional method of passing through an aqueous solution and recrystallized in methanol. The obtained Ba (DPM) 2 was evaluated by TG (under argon atmospheric pressure). As a result, as shown in FIG. 1 (B ′), the chelate evaporation amount was 92%, and the impurity evaporation amount and evaporation residue were The amount was also recognized. When a raw material containing impurities is used in the CVD method as described above, reproducibility is poor and it is difficult to obtain a good thin film.

【0005】またβ−ジケトネート金属錯体は、保存状
態が悪かったり、長時間保存しておくと、空気中の水分
や炭酸ガスなどによって、変質ないし劣化して、性能が
低下するという問題がある。例えば、固体のBa(DP
M)2をその保存状態から取り出し、TG装置を用いて
アルゴン大気圧下、400℃で加熱蒸発させたところ、
90%が蒸発し、10%の残査が残った。このものを、
ガラス製ネジ口サンプル瓶に入れて、1ヶ月室温にて保
存後、同様にして蒸発試験を行ったところ、54%が揮
発し、46%が残査として残り、著しく劣化した。ま
た、TG装置に試料をセットする間にも揮発性に若干の
変化が認められた。このように不安定な原料をCVD法
に用いて良好な結果が得られない場合に、原料に原因が
あるのか、CVD法の操作に原因があるのか、明らかに
ならないこともある。したがって現状では、アルカリ土
類金属のβ−ジケトネート金属錯体には、まだCVD法
用の原料として信頼性に不安があり、その製法および保
存方法には問題点も多いものであった。
Further, the β-diketonate metal complex has a problem that it is deteriorated or deteriorated due to moisture in the air or carbon dioxide gas when it is stored in a bad state or stored for a long period of time, resulting in deterioration in performance. For example, solid Ba (DP
M) 2 was taken out from the storage state and was heated and evaporated at 400 ° C. under an atmospheric pressure of argon using a TG apparatus,
90% was evaporated leaving 10% residue. This one
When placed in a glass screw cap sample bottle and stored at room temperature for 1 month and then subjected to an evaporation test in the same manner, 54% volatilized and 46% remained as a residue, resulting in remarkable deterioration. Also, a slight change in volatility was observed during setting the sample in the TG device. When good results cannot be obtained by using such an unstable raw material in the CVD method, it may not be clear whether the raw material is the cause or the operation of the CVD method is the cause. Therefore, at present, the β-diketonate metal complex of an alkaline earth metal is still unreliable as a raw material for the CVD method, and there are many problems in its production method and storage method.

【0006】また、通常行われている、大気圧下での錯
体の蒸発特性の評価法にも問題がある。一般にβ−ジケ
トネート金属錯体は、従来、アルゴンなどの不活性ガス
中、大気圧下でのTGによって評価されており、各種カ
タログなどにもその結果が記載されている。これに対し
て、β−ジケトネート金属錯体を実際にCVD法に用い
る際には、10Torr程度の減圧下で気化させ、キャ
リヤーガスで搬送して反応に供する方法が行われてい
る。このように、評価とCVD法における気化条件が異
なるため、大気圧下での評価結果が必ずしもCVD法に
用いた時の結果に反映されない場合がしばしば起る。例
えば、図1(B’)に示したBa(DPM)2の場合、
アルゴンガス大気圧下でのTG(昇温速度:10℃/m
in)を行うと、蒸発開始温度は260℃、蒸発終了温
度は420℃であった。しかし、実際のCVD装置で
は、一般に10Torrの減圧下で行うもので、もっと
低温の220℃で蒸発が行われる。また、400℃にお
けるアルゴン大気圧下でのTGで残査が残っても、実際
のCVD法装置においては、必ずしも残査が残らないこ
ともある。これは、大気圧下のTGにおいては過度な高
温に晒されるため、錯体の分解などが起こり、試験中に
蒸発残査成分が生成している可能性がある。このように
従来の評価方法は、錯体の定性的な傾向を把握するため
には簡便であるが、CVD法用の原料の評価法として
は、実情に合わない過度の評価法であった。
Further, there is a problem in the evaluation method of the evaporation characteristic of the complex under atmospheric pressure which is usually performed. In general, β-diketonate metal complexes have been conventionally evaluated by TG in an inert gas such as argon under atmospheric pressure, and the results are also described in various catalogs. On the other hand, when the β-diketonate metal complex is actually used in the CVD method, a method is used in which the β-diketonate metal complex is vaporized under a reduced pressure of about 10 Torr, and is carried by a carrier gas for reaction. As described above, since the vaporization conditions in the evaluation and the CVD method are different from each other, the evaluation result under the atmospheric pressure often does not always reflect the result when the CVD method is used. For example, in the case of Ba (DPM) 2 shown in FIG.
TG under argon gas atmospheric pressure (temperature rising rate: 10 ° C / m
in), the evaporation start temperature was 260 ° C and the evaporation end temperature was 420 ° C. However, in an actual CVD apparatus, the evaporation is generally performed under a reduced pressure of 10 Torr, and the evaporation is performed at a lower temperature of 220 ° C. Further, even if a residue remains in TG at 400 ° C. under an atmospheric pressure of argon, the residue may not always remain in an actual CVD method apparatus. This is because TG under atmospheric pressure is exposed to an excessively high temperature, so that decomposition of the complex or the like may occur and an evaporation residue component may be generated during the test. As described above, the conventional evaluation method is simple for grasping the qualitative tendency of the complex, but the evaluation method of the raw material for the CVD method is an excessive evaluation method that does not fit the actual situation.

【0007】[0007]

【発明が解決しようとする課題】本発明はこのような現
状に鑑みてなされたもので、適性な揮発性能の評価法を
確立し、実質的に不純物を含まない、高純度なアルカリ
土類金属のβ−ジケトネート錯体およびその製法を提供
することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of such a situation as described above, and has established a suitable method for evaluating volatility and has a high purity alkaline earth metal containing substantially no impurities. The object of the present invention is to provide a β-diketonate complex of and a method for producing the same.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
に、本発明のアルカリ土類金属の高純度β−ジケトネー
ト錯体の製法は、有機溶媒中で、塩基性反応促進剤を添
加して、アルカリ土類金属とβ−ジケトンとを反応させ
るものである。
In order to solve the above-mentioned problems, the method for producing a highly pure β-diketonate complex of an alkaline earth metal of the present invention comprises adding a basic reaction promoter in an organic solvent, It is for reacting an alkaline earth metal with a β-diketone.

【0009】また本発明は、上記製法によって製造され
たCVD法による薄膜形成用高純度β−ジケトネート錯
体を提供するものである。
The present invention also provides a high-purity β-diketonate complex for thin film formation by the CVD method manufactured by the above-mentioned manufacturing method.

【0010】[0010]

【作用】本発明のアルカリ土類金属のβ−ジケトネート
錯体は、実質的に100%の高純度なものであるので、
CVD法用原料として有用であり、これを用いて良好な
薄膜を得ることができる。本発明のアルカリ土類金属の
高純度β−ジケトネート錯体の製法は有機溶媒を用いる
ことによって、水溶液を経由しないでアルカリ土類金属
の高純度β−ジケトネート錯体を製造することができる
ので、高純度な錯体が得られる。
The alkaline earth metal β-diketonate complex of the present invention has a high purity of substantially 100%.
It is useful as a raw material for the CVD method and can be used to obtain a good thin film. The method for producing a high-purity β-diketonate complex of an alkaline earth metal of the present invention, by using an organic solvent, it is possible to produce a high-purity β-diketonate complex of an alkaline earth metal without going through an aqueous solution, and thus a high purity Complex is obtained.

【0011】[0011]

【発明の実施の形態】以下、本発明を詳しく説明する。
まず、本発明におけるβ−ジケトネート金属錯体の評価
方法について説明する。本発明では、実際のCVD法の
条件に近い真空下でTGを行う真空TG法を用いて、高
純度錯体の評価を行う。尚、本発明において真空とは1
Torr以下の状態をいう。図1(B’)に従来例とし
て示したBa(DPM)2に対して、真空下でのTGを
試みたところ、図1(B)に示すように、蒸発温度が低
温側へ大幅にシフトするという結果が得られた。図1
(B)においては、蒸発開始温度:190℃、蒸発終了
温度:300℃となり、蒸発残渣も減少した。このよう
に、真空TG法は実際のCVD法の条件に近いため、得
られる結果はCVD法の条件(220℃)の妥当性をよ
く示しており、また、CVD法の条件設定のためにも有
効であることを示唆する等、錯体の使用指針としても役
立つことが認められる。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention is described in detail below.
First, the evaluation method of the β-diketonate metal complex in the present invention will be described. In the present invention, the high-purity complex is evaluated by using the vacuum TG method in which TG is performed under a vacuum close to the conditions of the actual CVD method. In the present invention, vacuum means 1
A state of Torr or lower. When TG under vacuum was tried for Ba (DPM) 2 shown in FIG. 1 (B ′) as a conventional example, as shown in FIG. 1 (B), the evaporation temperature was significantly shifted to the low temperature side. The result of doing is obtained. Figure 1
In (B), the evaporation start temperature was 190 ° C., the evaporation end temperature was 300 ° C., and the evaporation residue was also reduced. Thus, since the vacuum TG method is close to the conditions of the actual CVD method, the obtained results show the validity of the conditions of the CVD method (220 ° C.), and also for setting the conditions of the CVD method. It is recognized that it is useful as a guideline for using the complex by suggesting that it is effective.

【0012】次に、本発明のアルカリ土類金属の高純度
β−ジケトネート金属錯体とその製法について、アルカ
リ土類金属の例としてBaを、また、β−ジケトンの例
としてDPMを挙げて説明する。本発明の製法において
用いられる有機溶媒としては、n−ヘキサン、ベンゼ
ン、キシレン、エーテル、アセトンなどがあり、これら
は、十分に脱水処理されて用いられる。まず、アルカリ
土類金属の塩化物BaCl2とDPMをそれぞれキシレ
ン等の有機溶媒に溶解させた後、これらの溶液を混合す
る。そして、ここに反応性塩基性試薬として水酸化カリ
ウムや水酸化ナトリウムなどのアルコール溶液を滴下す
ることによって、目的の錯体が無水状態で合成される。
Next, the high-purity β-diketonate metal complex of an alkaline earth metal of the present invention and a method for producing the same will be described by using Ba as an example of the alkaline earth metal and DPM as an example of the β-diketone. . As the organic solvent used in the production method of the present invention, there are n-hexane, benzene, xylene, ether, acetone and the like, which are sufficiently dehydrated before use. First, the alkaline earth metal chlorides BaCl 2 and DPM are dissolved in an organic solvent such as xylene, and then these solutions are mixed. Then, the target complex is synthesized in an anhydrous state by dropping an alcohol solution such as potassium hydroxide or sodium hydroxide as a reactive basic reagent.

【0013】このような本発明の製法により得られたB
a(DPM)2に対して、真空TG法による評価を行っ
た結果を図1(C)に示し、DTAによる評価結果を図
2(C)に示す。ここで、比較のために、従来の水溶液
を経由する製法で得られたBa(DPM)2の真空TG
曲線およびDAT曲線を図1(A)および図2(A)に
それぞれ示す。尚、図1(B)は上述のように、従来の
水溶液を経由して製造し、さらにエタノール中で再結晶
を行って得られたBa(DPM)2の真空TG曲線であ
り、このBa(DPM)2のDTA曲線を図2(B)に
示す。
B obtained by the production method of the present invention
FIG. 1C shows the result of evaluation by a vacuum TG method on a (DPM) 2 , and FIG. 2C shows the result of evaluation by DTA. Here, for comparison, a vacuum TG of Ba (DPM) 2 obtained by a conventional manufacturing method via an aqueous solution is used.
The curve and the DAT curve are shown in FIG. 1 (A) and FIG. 2 (A), respectively. As described above, FIG. 1 (B) is a vacuum TG curve of Ba (DPM) 2 obtained by manufacturing the conventional aqueous solution and recrystallizing it in ethanol. The DTA curve of DPM) 2 is shown in FIG.

【0014】図1(C)に示されるように、本発明の製
法で得られたBa(DPM)2は、不純物蒸発量と、蒸
発残渣がともに認められず、実質的に100%の錯体で
あった。また、このBa(DPM)2は、そのDTA曲
線を図2(C)に示すように、200℃以下には、全く
ピークが認められない極めて高純度なものであった。さ
らに、得られた錯体を元素分析した結果、Ba(DP
M)2の構成元素のうち、炭素(C)、および水素
(H)の含有量がいずれも理論量の99.0〜101.
0%となり、またICP分析の結果、バリウム(Ba)
の含有量も理論量の99.0〜101.0%となり、実
質的に理論量と等しかった。
As shown in FIG. 1 (C), the Ba (DPM) 2 obtained by the production method of the present invention has substantially no impurity evaporation amount and no evaporation residue, and is substantially 100% complex. there were. In addition, as shown in the DTA curve of FIG. 2 (C), this Ba (DPM) 2 was extremely high purity with no peak observed at 200 ° C. or lower. Furthermore, as a result of elemental analysis of the obtained complex, Ba (DP
Of the constituent elements of M) 2 , the contents of carbon (C) and hydrogen (H) are all 99.0 to 101.
It became 0%, and as a result of ICP analysis, barium (Ba)
Content was 99.0 to 101.0% of the theoretical amount, which was substantially equal to the theoretical amount.

【0015】これに対して図1(A)に示されるよう
に、従来の水溶液を経由する方法で得られたBa(DP
M)2は、TG曲線においてキレート蒸発量は85%程
度であり、不純物蒸発量および蒸発残査が認められた。
そして図2(A)に示されるように、DTA曲線におい
て約217℃に錯体の融点に対応する吸熱ピークが観察
されるほかに、200℃以下に複雑な不純物のピークが
観察された。また、このような水溶液を経由する方法で
得られたものを、さらにメタノール中で再結晶するなど
不純物の除去に注意を払うことによって、図1(B)に
示すようにキレート蒸発量を95%程度まで向上させる
ことができたが、図2(B)に示すように、200℃以
下に僅かながら不純物のピークが認められた。
On the other hand, as shown in FIG. 1 (A), Ba (DP) obtained by the conventional method of passing an aqueous solution is used.
In M) 2 , the chelate evaporation amount was about 85% in the TG curve, and the impurity evaporation amount and evaporation residue were recognized.
Then, as shown in FIG. 2A, an endothermic peak corresponding to the melting point of the complex was observed at about 217 ° C. in the DTA curve, and a complex impurity peak was observed at 200 ° C. or lower. Further, by paying attention to the removal of impurities such as recrystallization of the product obtained by the method of passing through such an aqueous solution, the chelate evaporation amount is 95% as shown in FIG. 1 (B). Although it could be improved to some extent, as shown in FIG. 2B, a slight impurity peak was observed at 200 ° C. or lower.

【0016】また、本発明の高純度なBa(DPM)2
は、以下のような製法によっても得られる。まず、DP
Mのキシレン溶液にアルカリ土類金属を加えて、反応性
塩基性試薬を用いずに、一定時間還流することにより、
目的の錯体が直接合成される。このようにして得られた
Ba(DPM)2も、TG曲線において、不純物蒸発量
と蒸発残査がともに零となり、実質的に100%の錯体
であった。さらに、得られた錯体を元素分析した結果、
Ba(DPM)2の構成元素のうち、炭素(C)、およ
び水素(H)の含有量がいずれも理論量の99.0〜1
01.0%となり、またICP分析の結果、バリウム
(Ba)の含有量も理論量の99.0〜101.0%と
なり、実質的に理論量と等しかった。
The high-purity Ba (DPM) 2 of the present invention is also used.
Can also be obtained by the following manufacturing method. First, DP
By adding an alkaline earth metal to the xylene solution of M and refluxing for a certain time without using a reactive basic reagent,
The desired complex is directly synthesized. The Ba (DPM) 2 thus obtained was also a complex of substantially 100%, in which both the amount of impurity evaporation and the evaporation residue were zero in the TG curve. Furthermore, as a result of elemental analysis of the obtained complex,
Among the constituent elements of Ba (DPM) 2 , the contents of carbon (C) and hydrogen (H) are both theoretical amounts of 99.0 to 1
As a result of ICP analysis, the barium (Ba) content was 99.0 to 101.0% of the theoretical amount, which was substantially equal to the theoretical amount.

【0017】以上、Baを例に挙げて説明したが、Ba
以外の他のアルカリ土類金属についても、本発明の製法
によって同様に高純度なβ−ジケトネート錯体が得られ
る。さらに、アルカリ土類金属のβ−ジケトネート錯体
は、これを保存する際にデシケータ中に保存する等の注
意を払っても、TGの結果に変化が認められることがあ
る等、不安定なものであるため、本発明によって得られ
た高純度錯体を変質せずに保存して、使用に供する必要
がある。そのためには、合成した錯体を、直ちに、求核
性有機溶媒に溶解(特願平3−238386号)して保
存するか、または、積極的に求核性有機化合物で錯体を
六配位化(特願平3−255592号)すればよい。
In the above description, Ba has been taken as an example.
With respect to other alkaline earth metals other than the above, similarly highly pure β-diketonate complex can be obtained by the production method of the present invention. Furthermore, the β-diketonate complex of an alkaline earth metal is unstable because the TG result may change even if care is taken to store it in a desiccator. Therefore, it is necessary to store the high-purity complex obtained by the present invention without deterioration and use it. For that purpose, the synthesized complex is immediately dissolved in a nucleophilic organic solvent (Japanese Patent Application No. 3-238386) and stored, or the complex is positively coordinated with a nucleophilic organic compound. (Japanese Patent Application No. 3-255592).

【0018】[0018]

【実施例】以下、本発明の実施例を示す。尚、以下の実
施例で使用する有機溶媒(アセトン、ベンゼン、n−ヘ
キサン、キシレン)は、いずれも下記の方法で脱水した
ものを使用した。適量の有機溶媒を三角フラスコに注
ぎ、引き続き、250℃で脱気した適量のモレキューラ
ーシーブのペレットを加えて脱水した後、乾燥窒素ガス
雰囲気中で保存した。また、メチルアルコールについて
も同様に脱水処理したものを用いた。
EXAMPLES Examples of the present invention will be shown below. The organic solvents (acetone, benzene, n-hexane, xylene) used in the following examples were all dehydrated by the following method. An appropriate amount of organic solvent was poured into an Erlenmeyer flask, and subsequently, an appropriate amount of pellets of the molecular sieve degassed at 250 ° C. was added to dehydrate, and then stored in a dry nitrogen gas atmosphere. Further, the dehydrated methyl alcohol was also used.

【0019】(実施例1)DPM 20.0gをアセト
ン100mlに溶解して、DPMのアセトン溶液を用意
した。塩化マグネシウム(MgCl2)5.2gをアセ
トン100mlに投入して、MgCl2のアセトン溶液
を用意した。水酸化ナトリウム(NaOH)4.4gを
メチルアルコール100mlに溶解して、NaOHのメ
チルアルコール溶液を用意した。上記DPMのアセトン
溶液と、上記MgCl2のアセトン溶液を混合して、よ
く攪拌しながら、上記NaOHのメチルアルコール溶液
を徐々に滴下すると、塩化ナトリウム(NaCl)を主
体とした沈澱が生成した。この溶液をろ過して、ろ液を
70mlまで濃縮し、−20℃に冷却して24時間静置
すると、Mg(DPM)2の白色固体が析出した。この
析出物をろ別して回収し、真空乾燥した。得られた固体
をメチルアルコール中で再結晶して、高純度なMg(D
PM)2を得た。得られた錯体の分析結果を下に示す。 真空TG キレート気化量:99.9% 不純物気化量 :0.00% 元素分析 C :67.65%(理論量67.61の100.1%) H :9.81%(理論量9.80の100.1%) ICP分析 Mg:6.21%(理論量6.22%の99.8%)
Example 1 20.0 g of DPM was dissolved in 100 ml of acetone to prepare an acetone solution of DPM. 5.2 g of magnesium chloride (MgCl 2 ) was added to 100 ml of acetone to prepare an acetone solution of MgCl 2 . 4.4 g of sodium hydroxide (NaOH) was dissolved in 100 ml of methyl alcohol to prepare a methyl alcohol solution of NaOH. When the acetone solution of DPM and the acetone solution of MgCl 2 were mixed, and the methyl alcohol solution of NaOH was gradually added dropwise while stirring well, a precipitate mainly composed of sodium chloride (NaCl) was formed. This solution was filtered, the filtrate was concentrated to 70 ml, cooled to −20 ° C., and allowed to stand for 24 hours, whereby a white solid of Mg (DPM) 2 was deposited. The precipitate was collected by filtration and vacuum dried. The obtained solid was recrystallized in methyl alcohol to obtain highly pure Mg (D
PM) 2 . The analysis results of the obtained complex are shown below. Vacuum TG Chelate vaporization amount: 99.9% Impurity vaporization amount: 0.00% Elemental analysis C: 67.65% (theoretical amount 67.61 100.1%) H: 9.81% (theoretical amount 9.80 100.1%) ICP analysis Mg: 6.21% (99.8% of theoretical amount 6.22%)

【0020】(実施例2)DPM 50.0gをベンゼ
ン500mlに溶解して、DPMのベンゼン溶液を用意
した。塩化カルシウム(CaCl2)28.3gをベン
ゼン200mlに投入して、CaCl2のベンゼン溶液
を用意した。水酸化ナトリウム(NaOH)15.2g
をメチルアルコール500mlに溶解して、NaOHの
メチルアルコール溶液を用意した。上記DPMのベンゼ
ン溶液と、上記CaCl2のベンゼン溶液を混合して、
よく攪拌しながら、上記NaOHのメチルアルコール溶
液を徐々に滴下すると、塩化ナトリウム(NaCl)を
主体とした沈澱が生成した。この溶液をろ過して、ろ液
を200mlまで濃縮し、−20℃に冷却して24時間
静置すると、Ca(DPM)2の白色固体が析出した。
この析出物をろ別して回収し、真空乾燥した。得られた
固体をメチルアルコール中で再結晶して、高純度なCa
(DPM)2を得た。得られた錯体の分析結果を下に示
す。 真空TG キレート気化量:100% 不純物気化量 :0.00% 元素分析 C :64.96%(理論量64.94の100.0%) H :9.41%(理論量9.42の99.9%) ICP分析 Ca:9.85%(理論量9.86%の99.9%)
Example 2 50.0 g of DPM was dissolved in 500 ml of benzene to prepare a benzene solution of DPM. 28.3 g of calcium chloride (CaCl 2 ) was added to 200 ml of benzene to prepare a benzene solution of CaCl 2 . Sodium hydroxide (NaOH) 15.2g
Was dissolved in 500 ml of methyl alcohol to prepare a methyl alcohol solution of NaOH. The benzene solution of DPM and the benzene solution of CaCl 2 are mixed,
The above methyl alcohol solution of NaOH was gradually added dropwise with good stirring to form a precipitate mainly containing sodium chloride (NaCl). The solution was filtered, the filtrate was concentrated to 200 ml, cooled to −20 ° C., and allowed to stand for 24 hours, and Ca (DPM) 2 white solid was precipitated.
The precipitate was collected by filtration and vacuum dried. The obtained solid is recrystallized in methyl alcohol to obtain high-purity Ca.
(DPM) 2 was obtained. The analysis results of the obtained complex are shown below. Vacuum TG Chelate vaporization amount: 100% Impurity vaporization amount: 0.00% Elemental analysis C: 64.96% (theoretical amount 64.94 100.0%) H: 9.41% (theoretical amount 9.42 99.9%) ICP analysis Ca: 9.85% (theory) 99.9% of the amount 9.86%)

【0021】(参考例1)DPM42.0gをn−ヘキ
サン400mlに溶解した。この溶液に、n−ヘキサン
でよく洗浄した金属ストロンチウム(Sr)10.0g
を投入し、69℃に加熱して48時間還流して沈澱を得
た。溶剤を蒸発させ、真空乾燥して得た固体粉末をメチ
ルアルコール中で再結晶して、高純度なSr(DPM)
2得た。得られた錯体の分析結果を下に示す。 真空TG キレート気化量:99.9% 不純物気化量 :0.00% 元素分析 C :58.20%(理論量58.18の100.0%) H :8.46%(理論量8.44の100.2%) ICP分析 Sr:19.28%(理論量19.28%の99.9%)
Reference Example 1 42.0 g of DPM was dissolved in 400 ml of n-hexane. To this solution, 10.0 g of metal strontium (Sr) thoroughly washed with n-hexane
Was charged, heated to 69 ° C., and refluxed for 48 hours to obtain a precipitate. The solvent was evaporated and the solid powder obtained by vacuum drying was recrystallized in methyl alcohol to obtain high-purity Sr (DPM).
Got two . The analysis results of the obtained complex are shown below. Vacuum TG Chelate vaporization amount: 99.9% Impurity vaporization amount: 0.00% Elemental analysis C: 58.20% (100.0% of theoretical amount 58.18) H: 8.46% (100.2% of theoretical amount 8.44) ICP analysis Sr: 19.28% (99.9% of the theoretical amount of 19.28%)

【0022】(参考例2)DPM 27.0gをキシレ
ン300mlに溶解した。この溶液に、キシレンでよく
洗浄した金属バリウム(Ba)10.0gを投入し、1
39℃に加熱して48時間還流して沈澱を得た。溶剤を
蒸発させ、真空乾燥して得た固体粉末をメチルアルコー
ル中で再結晶して、高純度なBa(DPM)2を得た。
得られた錯体の分析結果を下に示す。 真空TG キレート気化量:99.9% 不純物気化量 :0.00% 元素分析 C :52.46%(理論量52.44の100.0%) H :7.61%(理論量7.60の100.1%) ICP分析 Ba:27.25%(理論量27.26%の100.0%)
Reference Example 2 27.0 g of DPM was dissolved in 300 ml of xylene. 10.0 g of metal barium (Ba) thoroughly washed with xylene was added to this solution, and 1
The mixture was heated to 39 ° C. and refluxed for 48 hours to obtain a precipitate. The solvent was evaporated, and the solid powder obtained by vacuum drying was recrystallized in methyl alcohol to obtain high-purity Ba (DPM) 2 .
The analysis results of the obtained complex are shown below. Vacuum TG Chelate vaporization amount: 99.9% Impurity vaporization amount: 0.00% Elemental analysis C: 52.46% (100.0% of theoretical amount 52.44) H: 7.61% (100.1% of theoretical amount 7.60) ICP analysis Ba: 27.25% (100.0% of theoretical 27.26%)

【0023】(比較例1)DPMと塩化バリウム水溶液
を混合し、この溶液を攪拌しながら、水酸化カリウムを
滴下して白色沈澱を得た。この沈澱をろ過・水洗し、メ
タノール中で再結晶してBa(DPM)2を得た。得ら
れた錯体の分析結果を下に示す。 真空TG キレート気化量:95% 不純物気化量 : 2% 元素分析 C :50.7%(理論量52.44の96.8%) H : 7.4%(理論量7.60の97%) ICP分析 Ba:28.2%(理論量27.26%の103%)
Comparative Example 1 DPM and an aqueous barium chloride solution were mixed, and potassium hydroxide was added dropwise while stirring the solution to obtain a white precipitate. The precipitate was filtered, washed with water, and recrystallized in methanol to obtain Ba (DPM) 2 . The analysis results of the obtained complex are shown below. Vacuum TG Chelate vaporization amount: 95% Impurity vaporization amount: 2% Elemental analysis C: 50.7% (96.8% of theoretical amount 52.44) H: 7.4% (97% of theoretical amount 7.60) ICP analysis Ba: 28.2% (theoretical amount 27.26) % 103%)

【0024】[0024]

【発明の効果】本発明の製法は、水溶液を経由しないの
で、製造工程中に水分の影響を受けることなく、高純度
なアルカリ土類金属のβ−ジケトネート錯体を得ること
ができる。本発明のアルカリ土類金属のβ−ジケトネー
ト錯体は、真空TGおよび元素分析によって、実質的に
100%と認められる高純度なものであるので、CVD
法用原料として、極めて信頼性が高いものである。した
がって、本発明のアルカリ土類金属のβ−ジケトネート
錯体をCVD法用の原料として用いた場合、原料品質の
ばらつきに起因する成膜不良を防止することができ、良
好な薄膜を安定して得ることができる。
Since the production method of the present invention does not pass through an aqueous solution, a highly pure β-diketonate complex of an alkaline earth metal can be obtained without being affected by moisture during the production process. The β-diketonate complex of an alkaline earth metal of the present invention is a highly pure substance which is recognized to be substantially 100% by vacuum TG and elemental analysis, and therefore, it is CVD
It is extremely reliable as a raw material for law. Therefore, when the alkaline earth metal β-diketonate complex of the present invention is used as a raw material for the CVD method, it is possible to prevent film formation defects due to variations in raw material quality, and obtain a good thin film stably. be able to.

【図面の簡単な説明】[Brief description of drawings]

【図1】 アルカリ土類金属のβ−ジケトネート錯体の
TG曲線を示すグラフである。
FIG. 1 is a graph showing a TG curve of a β-diketonate complex of an alkaline earth metal.

【図2】 アルカリ土類金属のβ−ジケトネート錯体の
DTA曲線を示すグラフである。
FIG. 2 is a graph showing a DTA curve of a β-diketonate complex of an alkaline earth metal.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4H006 AA02 AC41 BB11 BB14 BB16 BE10 BE62 4H048 AA02 AC41 BB11 BB14 BB16 BE10 BE61 VA60 VB10 4K030 AA11 BA42    ─────────────────────────────────────────────────── ─── Continued front page    F term (reference) 4H006 AA02 AC41 BB11 BB14 BB16                       BE10 BE62                 4H048 AA02 AC41 BB11 BB14 BB16                       BE10 BE61 VA60 VB10                 4K030 AA11 BA42

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】有機溶媒中で、反応性塩基性試薬を添加し
て、アルカリ土類金属とβ−ジケトンとを反応させるこ
とを特徴とするアルカリ土類金属の高純度β−ジケトネ
ート錯体の製法。
1. A method for producing a highly pure β-diketonate complex of an alkaline earth metal, which comprises reacting an alkaline earth metal with a β-diketone by adding a reactive basic reagent in an organic solvent. .
【請求項2】請求項1記載の製法によって製造された化
学気相析出法(CVD法)による薄膜形成用高純度β−
ジケトネート錯体。
2. A high-purity β-for forming a thin film by the chemical vapor deposition method (CVD method) produced by the method according to claim 1.
Diketonate complex.
JP2003103095A 2003-04-07 2003-04-07 Preparation of high purity β-diketonate complexes of alkaline earth metals Expired - Fee Related JP3787125B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003103095A JP3787125B2 (en) 2003-04-07 2003-04-07 Preparation of high purity β-diketonate complexes of alkaline earth metals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003103095A JP3787125B2 (en) 2003-04-07 2003-04-07 Preparation of high purity β-diketonate complexes of alkaline earth metals

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP05569392A Division JP3505192B2 (en) 1992-03-13 1992-03-13 Composition for thin film formation by chemical vapor deposition

Publications (2)

Publication Number Publication Date
JP2003277310A true JP2003277310A (en) 2003-10-02
JP3787125B2 JP3787125B2 (en) 2006-06-21

Family

ID=29244541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003103095A Expired - Fee Related JP3787125B2 (en) 2003-04-07 2003-04-07 Preparation of high purity β-diketonate complexes of alkaline earth metals

Country Status (1)

Country Link
JP (1) JP3787125B2 (en)

Also Published As

Publication number Publication date
JP3787125B2 (en) 2006-06-21

Similar Documents

Publication Publication Date Title
US8580989B2 (en) Process for the preparation of indium chlordialkoxides
JP4097979B2 (en) Chemical source vapor deposition method for CVD and ruthenium or ruthenium compound thin film
TWI795553B (en) Method for manufacturing thin film with the use of a raw material for forming thin film by atomic layer deposition method
JP2001521940A (en) Anhydrous mononuclear tris (β-diketonate) bismuth composition for depositing bismuth-containing films and method of making the composition
JP2008094728A (en) Organic ruthenium compound for chemical vapor deposition and chemical vapor deposition method using the organic ruthenium compound
JP2002534431A (en) Lewis base adduct of anhydrous mononuclear tris (β-diketonate) bismuth composition used for deposition of bismuth-containing film and method for producing the adduct
KR20180090346A (en) AHU-377 and a method for producing crystal form II of a process hydrate of trisalbano trisodium salt
US20070231251A1 (en) Capacitor Film Forming Material
JP3505192B2 (en) Composition for thin film formation by chemical vapor deposition
JPH05132776A (en) Organometallic complex for chemical vapor deposition and solution of the complex
JP5214191B2 (en) Thin film forming raw material and thin film manufacturing method
JP2003277310A (en) METHOD FOR PRODUCING HIGHLY PURE beta-DIKETONATE COMPLEX OF ALKALINE-EARTH METAL AND HIGHLY PURE beta-DIKETONATE COMPLEX FOR FORMING THIN FILM BY CHEMICAL VAPOR DEPOSITION METHOD
CN113717233B (en) Aminopyridyl chloride Co (II) compound for information storage material
JP3191975B2 (en) Raw materials for forming dielectric films of titanium-containing composite oxides by chemical vapor deposition
JP2003321416A (en) Raw material compound for cvd, and method of vacuum chemical vapor deposition for iridium or iridium compound thin film
JPWO2006049059A1 (en) Metal compound, thin film forming raw material, and thin film manufacturing method
CN111344294A (en) Ruthenium compound, thin film-forming raw material, and method for producing thin film
EP3505511A1 (en) Diazadienyl compound, raw material for forming thin film, and method for producing thin film
Dorovskikh et al. Hybrid film structures based on palladium layers and metal phthalocyanines
WO2018173724A1 (en) Chemical vapor deposition raw material comprising iridium complex, and chemical vapor deposition method in which said chemical vapor deposition raw material is used
JPH05117855A (en) Organometallic compound solution for chemical vapor deposition
JP4059662B2 (en) Copper raw material for chemical vapor deposition and method for producing thin film using the same
JP3434835B2 (en) Method for producing high purity β-diketonate lead complex
JP3379315B2 (en) Raw materials for forming platinum thin films by metal organic chemical vapor deposition
KR100298129B1 (en) PROCESS FOR THE PREPARATION OF (Ba, Sr)TiO3 THIN LAYER

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060323

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20100331

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100331

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100331

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20110331

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110331

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees