JP2003275854A - High performance shock absorber and its producing method - Google Patents

High performance shock absorber and its producing method

Info

Publication number
JP2003275854A
JP2003275854A JP2002076436A JP2002076436A JP2003275854A JP 2003275854 A JP2003275854 A JP 2003275854A JP 2002076436 A JP2002076436 A JP 2002076436A JP 2002076436 A JP2002076436 A JP 2002076436A JP 2003275854 A JP2003275854 A JP 2003275854A
Authority
JP
Japan
Prior art keywords
metal
pseudo
shock absorber
manufacturing
plate material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002076436A
Other languages
Japanese (ja)
Other versions
JP3627019B2 (en
Inventor
Tadashi Asahina
正 朝比奈
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2002076436A priority Critical patent/JP3627019B2/en
Publication of JP2003275854A publication Critical patent/JP2003275854A/en
Application granted granted Critical
Publication of JP3627019B2 publication Critical patent/JP3627019B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Vibration Dampers (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high performance shock absorber composed of a structure continuing pseudo-hollow metallic spheres having high ratio of voids and excellent deforming performance and high strength and this laminated structure, and its producing method. <P>SOLUTION: In this producing method for shock absorber having drastically high strength and high shock energy absorbing performance, this shock absorber is produced, with which a metallic plate materials are specially formed with a low pressure casting method or a die casting method by using a die for casting having a special shape and further, these are combined in the mutually reverse direction to produce the laminated structure continuing the pseudo-hollow metallic spheres and successively, these are laminated. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、金属の衝撃吸収用
多孔質要素構成体に関するものであり、更に詳しくは、
特に、空隙率の高い多孔質要素構成体を作製する際に適
用して好適な衝撃吸収性を発揮させる中空擬似球体の製
造方法及び衝撃吸収用多孔質要素構成体に関するもので
ある。本発明は、高変形能及び高強度を有する中空擬似
金属球を要素とする衝撃吸収材料の生産とその利用を実
現化するものとして有用である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a metallic shock absorbing porous element structure, and more specifically,
In particular, the present invention relates to a method for producing a hollow pseudo sphere that is applied when producing a porous element structure having a high porosity and exhibits suitable shock absorption properties, and a shock absorbing porous element structure. INDUSTRIAL APPLICABILITY The present invention is useful for realizing the production and use of a shock absorbing material having a hollow pseudo metal sphere having high deformability and high strength as an element.

【0002】[0002]

【従来の技術】従来、一般に、衝撃の吸収に使用される
構造体は、所定の空間に中空の要素を充填し、その構造
の有する変形特性により衝撃エネルギーを吸収させるよ
うに設計される場合が多い。例えば、ハニカムパネルの
ような金属製構造体がその好例である。しかし、こうし
た構造では、特定の方向では大きな衝撃吸収特性が得ら
れるものの、その方向がわずかでもずれると、極めて小
さな衝撃吸収特性しか得られないという欠点がある。
2. Description of the Related Art Conventionally, a structure used for absorbing shock is generally designed so that a predetermined space is filled with a hollow element and the shock energy is absorbed by the deformation characteristic of the structure. Many. For example, a metal structure such as a honeycomb panel is a good example. However, in such a structure, although a large impact absorption characteristic is obtained in a specific direction, if the direction is slightly deviated, only a very small impact absorption characteristic is obtained.

【0003】一方、大きな力がかからない条件下で、軽
量かつ安価に衝撃吸収性を確保したい場合には、例え
ば、軟質の樹脂や発泡性樹脂等がこの目的に使用されて
いることも多い。しかし、この種の材料を用いた場合に
は、樹脂特有の変形能の小ささと、変形応力の低さか
ら、十分な衝撃エネルギー吸収が行われないという欠点
があった。
On the other hand, when it is desired to ensure shock absorption at a light weight and at a low cost under the condition that a large force is not applied, for example, a soft resin or a foaming resin is often used for this purpose. However, when this kind of material is used, there is a drawback that sufficient impact energy absorption is not performed due to the small deformability peculiar to the resin and the low deformation stress.

【0004】そこで、これらの材料の問題点を改善する
ために、この種の衝撃吸収用材料を、金属製多孔質要素
構成体とすることが考えられる。すなわち、この構成体
は、所定の空間に、中空の球材、円柱材、角柱材、積層
材、中空箱材等の金属製構成要素を充填した構造を有す
るものである。その際に、これらの構成体は、要素の充
填率とその強度の点から、中空の球材ないし擬似球材が
最も望ましいことが判っている。このように、衝撃吸収
用材料を中空の球材ないし擬似球材からなる金属製多孔
要素構成体とした場合には、金属材料が有する最適な変
形応力と、その靱性に由来する変形能の大きさから、極
めて大きな衝撃エネルギー吸収性能を実現することがで
きる。また、衝撃吸収用材料材料を、このような多孔要
素構成体とすることで、金属材料を用いながらこれを極
めて軽量化することが実現できる。
Therefore, in order to improve the problems of these materials, it is conceivable to use this kind of shock absorbing material as a metallic porous element structure. That is, this structure has a structure in which a predetermined space is filled with metal constituent elements such as hollow spheres, columnar materials, prismatic materials, laminated materials, and hollow box materials. At that time, it has been found that hollow spheres or pseudo spheres are most preferable for these components in terms of the filling factor of the elements and the strength thereof. As described above, when the shock absorbing material is a metal porous element structure composed of a hollow sphere or a pseudo sphere, the optimum deformation stress of the metal material and the large deformability derived from its toughness are obtained. Therefore, extremely large impact energy absorption performance can be realized. Further, by using such a porous element structure as the shock absorbing material, it is possible to realize an extremely light weight while using a metal material.

【0005】このように、金属多孔質要素構成体を衝撃
吸収用材料に用いることで種々の利点が得られるが、こ
の種の金属多孔質要素構成体は、その多孔質構造に由来
して、以下のような各種用途に用いることができる。す
なわち、この種の多孔質構造体はその多孔質構造に由来
して熱伝導率が低く、従って、低い熱伝導率が求められ
るような用途の材料として、あるいは、その多孔質構造
に由来して弾性率が低減されるために、振動の抑制が求
められる用途の材料、その他として、好適に用いること
ができる。
As described above, various advantages can be obtained by using the metal porous element structure as a shock absorbing material. However, this kind of metal porous element structure is derived from its porous structure. It can be used for various purposes such as the following. That is, this type of porous structure has a low thermal conductivity due to its porous structure, and therefore, as a material for applications requiring low thermal conductivity, or due to its porous structure. Since the elastic modulus is reduced, it can be suitably used as a material for applications where vibration suppression is required, and the like.

【0006】ところで、この種の金属多孔質要素、すな
わち、中空の金属球あるいは擬似金属球の製造方法とし
て、従来、以下のような方法が知られている。第1の方
法は、発泡ポリウレタンのような易燃焼性の球形高分子
材料の周囲に金属スラリーをまぶし、乾燥後、高分子材
料を焼失すると同時に金属を焼結させ、球状の中空金属
を作製する方法である。
By the way, as a method for producing this kind of metal porous element, that is, a hollow metal sphere or a pseudo metal sphere, the following methods are conventionally known. The first method is to sprinkle a metal slurry around a flammable spherical polymeric material such as polyurethane foam, and after drying, burn out the polymeric material and at the same time sinter the metal to produce a spherical hollow metal. Is the way.

【0007】第2の方法は、発泡ポリウレタンのような
易燃焼性の球形高分子材料の周囲に、メッキや溶融金属
のスプレーによって金属皮膜を形成し、その後、高分子
材料を焼失させることによって、球状の中空金属を作製
する方法である。第3の方法は、板材からプレス等で成
形したり、ダイキャスト鋳造法や低圧鋳造法を用いて半
球状の金属を製造し、その二つの半球を溶接、ロウ付
け、かしめ等で接合して、中空の金属球とする方法であ
る。
The second method is to form a metal film around a flammable spherical polymeric material such as polyurethane foam by plating or spraying a molten metal, and then burn out the polymeric material. This is a method for producing a spherical hollow metal. The third method is to form a hemispherical metal from a plate material by a press or a die casting method or a low pressure casting method, and join the two hemispheres by welding, brazing, or caulking. The method is a hollow metal sphere.

【0008】しかしながら、上記第1の方法、すなわ
ち、金属スラリーを用いる方法の場合は、形成された金
属膜を高分子材料の燃焼ガスが通過する必要があり、ま
た、金属スラリーから焼結するため、金属膜が極めて多
孔質となり、強度が著しく低いものしか作製できないと
いう問題がある。その上、この方法では、そのプロセス
が複雑となり、製造コストがかなり高いものとなる。
However, in the case of the above-mentioned first method, that is, the method of using the metal slurry, it is necessary for the combustion gas of the polymer material to pass through the formed metal film, and the sintering is performed from the metal slurry. However, there is a problem that the metal film becomes extremely porous, and only a film having extremely low strength can be produced. Moreover, this method complicates the process and makes the manufacturing cost significantly higher.

【0009】一方、第2の方法、すなわち、メッキやス
プレーを用いる方法の場合は、作製できる中空金属構造
体がニッケル等や低融点金属に限定されてしまう上、生
産性が低いという問題がある。また、この方法では、第
1の方法と同様に、高分子材料の燃焼ガスを形成された
金属膜を通して外部に出す必要があるため、金属皮膜に
ガスが透過した穴が局所的に発生し、 一様な金属皮膜を
取得することは困難である。
On the other hand, in the case of the second method, that is, the method using plating or spraying, there is a problem that the hollow metal structure which can be produced is limited to nickel or a low melting point metal and the productivity is low. . Further, in this method, similarly to the first method, since it is necessary to discharge the combustion gas of the polymer material to the outside through the formed metal film, a hole through which the gas has permeated is locally generated in the metal film, It is difficult to obtain a uniform metal film.

【0010】また、第3の方法、すなわち、それぞれの
球体を機械加工で製造する方法の場合は、緻密で高強度
の皮膜が作れるものの、その生産性は極めて低く、この
方法は、衝撃吸収材料として使用するような安価な球体
ないし擬似球体を多数作製することが必要とされる場合
には不適当である。
Further, in the case of the third method, that is, the method of manufacturing each sphere by machining, a dense and high-strength coating can be formed, but the productivity is extremely low, and this method is used for shock absorbing materials. It is unsuitable when it is necessary to produce a large number of inexpensive spheres or pseudo spheres used as.

【0011】[0011]

【発明が解決しようとする課題】このような状況の中
で、本発明者は、上記従来技術に鑑みて、上記従来技術
の諸問題を抜本的に解消することが可能な新しい衝撃吸
収用金属多孔質要素構成体を簡便かつ低コストで生産す
る方法を開発することを目標として鋭意研究を進める過
程で、低圧鋳造法ないしダイキャスト鋳造法を用いて作
製した特定構造の擬似中空球が並んだ平面構造要素を使
用することにより所期の目的を達成し得ることを見出
し、本発明に到達するに至った。すなわち、本発明は、
大きな変形性能と高い強度を有する衝撃吸収用金属多孔
質要素構成体を提供することを目的とする。また、本発
明は、上記金属多孔質要素構成体を簡便な方法かつ低コ
ストで高効率に生産することが可能な上記金属多孔質要
素構成体の製造方法を提供することを目的とする。
Under these circumstances, the present inventor has, in view of the above-mentioned prior art, a new shock absorbing metal capable of drastically solving the problems of the above-mentioned prior art. In the process of earnestly researching with the aim of developing a simple and low-cost method for producing a porous element structure, pseudo hollow spheres with a specific structure produced by low pressure casting or die casting were lined up. The inventors have found that the intended purpose can be achieved by using a planar structure element, and have arrived at the present invention. That is, the present invention is
An object of the present invention is to provide a metal porous element structure for impact absorption, which has large deformation performance and high strength. Another object of the present invention is to provide a method for producing the above-mentioned metal porous element structure, which enables the above-mentioned metal porous element structure to be produced simply and at low cost and with high efficiency.

【0012】[0012]

【課題を解決するための手段】上記課題を解決するため
の本発明は、以下の技術的手段から構成される。 (1)低圧鋳造法ないしダイキャスト鋳造法を用い、形
状が等しく先端が半球ドーム状の多数の突起と、同じ形
状を有する多数の半球ドーム状の窪みを、連続かつ交互
に形成した金属板材を作製することを特徴とする衝撃変
形量を大きくした板材の成形方法。 (2)隣接する半球ドーム状の突起と窪みがそれぞれ正
方形の対角の位置を占め、かつ突起と窪みが接すること
を特徴とする前記(1)記載の板材の成形方法。 (3)一直線上に互いに接して並ぶ半球ドーム状の突起
に対し、隣接する二つの突起を正三角形の頂点とするこ
とで定まる位置を、半球ドーム状の窪みが占めることを
特徴とする前記(1)記載の板材の成形方法。 (4)前記(1)から(3)のいずれかに記載の方法で
成形した板材の窪みの上に、前記低圧鋳造法ないしダイ
キャスト鋳造法を用いて、別途作製した板材の半球ドー
ムを被せることを特徴とする、平面上に擬似金属球が多
数並ぶ衝撃変形を吸収する構造要素の製造方法。 (5)前記(4)記載の構造要素の各擬似金属球の直上
に、次の構成要素の擬似金属球が置かれることを特徴と
する衝撃吸収体の製造方法。 (6)上記構造要素の3つあるいは4つの擬似金属球で
作られる谷間に、次の構成要素の擬似金属球が置かれる
ことを特徴とする前記(5)記載の衝撃吸収体の製造方
法。 (7)前記金属板材が、アルミニウム、マグネシウム、
チタニウム、鉄、ニッケル、銅の何れかの単体若しくは
合金であることを特徴とする前記(5)の衝撃吸収体の
製造方法。 (8)形成される擬似金属球の直径が、1mmないし5
0mmの範囲にある前記(5)記載の衝撃吸収体の製造
方法。 (9)形成される擬似金属球の厚さが、0.1mmない
し1mmの範囲にある前記(5)記載の衝撃吸収体の製
造方法。 (10)前記(5)から(9)のいずれかに記載の方法
によって作製されたことを特徴とする衝撃吸収体。
The present invention for solving the above-mentioned problems comprises the following technical means. (1) Using a low pressure casting method or a die casting method, a metal plate material in which a large number of hemispherical dome-shaped protrusions having the same shape and a large number of hemispherical dome-shaped depressions having the same shape are formed continuously and alternately A method for forming a plate material having a large amount of impact deformation, which is characterized by being manufactured. (2) The method for forming a plate material according to (1), wherein the adjacent hemispherical dome-shaped projections and depressions occupy diagonal positions of a square, and the projections and depressions are in contact with each other. (3) A hemispherical dome-shaped depression occupies a position that is determined by forming two adjacent protrusions as the vertices of an equilateral triangle with respect to hemispherical dome-shaped protrusions that are arranged in contact with each other on a straight line. 1) The method for forming a plate material as described above. (4) A hemispherical dome of a plate material separately produced is covered on the depression of the plate material formed by the method according to any one of (1) to (3) above by using the low pressure casting method or the die cast casting method. A method of manufacturing a structural element which absorbs impact deformation in which a large number of pseudo metal balls are arranged on a plane. (5) A method of manufacturing a shock absorber, characterized in that the pseudo metal spheres of the following constituents are placed directly above the pseudo metal spheres of the structural element described in (4) above. (6) The method for manufacturing an impact absorber according to (5), wherein the pseudo metal spheres of the following constituents are placed in a valley formed by three or four pseudo metal spheres of the structural element. (7) The metal plate material is aluminum, magnesium,
The shock absorber manufacturing method according to (5) above, which is a simple substance or an alloy of any of titanium, iron, nickel, and copper. (8) The diameter of the formed pseudo metal sphere is 1 mm to 5
The method for producing an impact absorber according to (5) above, which is in the range of 0 mm. (9) The method for manufacturing an impact absorber according to the above (5), wherein the thickness of the formed pseudo metal sphere is in the range of 0.1 mm to 1 mm. (10) A shock absorber manufactured by the method according to any one of (5) to (9).

【0013】[0013]

【発明の実施の形態】次に、本発明について更に詳細に
説明する。本発明の方法は、まず、平面上に擬似中空金
属球が並ぶ構成要素を作製し、更に、それを効果的に積
層することにより、高い衝撃エネルギー吸収性能を有す
る金属多孔質要素構成体を実現するものである。すなわ
ち、まず、金属板材を、図1(ア)に模式的にその断面
図が示されているように、半球ドームを有する鋳型の周
囲Iから溶融金属を注入し、中央の抜き口Oから注入溶
融金属の一部があふれ出るように、十分に鋳型内に溶融
金属を充填して、半球状の突起を連続して作製する。こ
の際に、ドームを形成する肉厚がほぼ等しく、同程度の
強度を発揮するように冷却速度に配慮することが重要か
つ効果的である。これらの方法については特に制限され
るものではなく、適宜の方法を使用することができる。
BEST MODE FOR CARRYING OUT THE INVENTION Next, the present invention will be described in more detail. According to the method of the present invention, first, a component having pseudo hollow metal spheres arranged on a plane is produced, and by further stacking the components effectively, a metal porous element component having high impact energy absorption performance is realized. To do. That is, first, as shown in the cross-sectional view of FIG. 1A, the molten metal is first injected from the periphery I of the mold having the hemispherical dome, and then from the central opening O. The mold is sufficiently filled with the molten metal so that a part of the molten metal overflows, and hemispherical projections are continuously formed. At this time, it is important and effective to consider the cooling rate so that the walls forming the dome have substantially the same thickness and exhibit the same strength. These methods are not particularly limited, and an appropriate method can be used.

【0014】低圧鋳造法ないしダイキャスト鋳造法で形
成される突起と窪みの平面上の配置は、図2(ア)に模
式的に示すような正方形状の配置ないし図2(イ)に模
式的に示すような正三角形状の配置が望ましい。ここ
で、Tは突起、Dは窪みを示す。しかし、これらに制限
されるものではない。次に、成形した材種を用い低圧鋳
造ないしダイキャスト鋳造により、上記方法で作製され
た突起及び窪みと同形状の半球を別途作製し、これを窪
みの上にかぶせることにより、図3に模式的に示すよう
な衝撃吸収体の構成要素を作製する。
The projections and depressions formed by the low-pressure casting method or the die-cast casting method are arranged in a square shape as schematically shown in FIG. 2 (a) or as shown in FIG. 2 (a). An equilateral triangular arrangement as shown in is desirable. Here, T is a protrusion and D is a depression. However, it is not limited to these. Next, a hemisphere having the same shape as the projections and depressions produced by the above method is separately produced by low-pressure casting or die-cast casting using the formed material, and the hemispheres are placed on the depressions, as shown in FIG. The components of the shock absorber as shown in FIG.

【0015】本発明の実施形態の一例を図2ないし図4
に示す。本発明の上記構成要素は、それが使用される部
位、負荷応力、負荷エネルギー供給速度、吸収すべきエ
ネルギー量等によって大幅に変化するものである。その
ために、図示した例は、それを、わかりやすく単純化し
たものであり、実際の形状を直接反映したものではな
い。
An example of an embodiment of the present invention is shown in FIGS.
Shown in. The above-mentioned constituent elements of the present invention greatly vary depending on the site where they are used, load stress, load energy supply rate, amount of energy to be absorbed, and the like. Therefore, the illustrated example is a simplified and easy-to-understand example, and does not directly reflect the actual shape.

【0016】すなわち、上記構成要素のサイズ、形状、
球の数は、それらの使用目的、使用条件等により適宜選
択することができるものである。また、上記構成要素の
積層方法についても同様である。本発明の一例として、
このようにして作製した衝撃吸収体の構成要素を、積層
して、衝撃吸収体を作製する方法を、以下に具体的に説
明する。
That is, the size, shape, and
The number of spheres can be appropriately selected depending on the purpose of use, conditions of use, and the like. The same applies to the method of laminating the above-mentioned constituent elements. As an example of the present invention,
A method for producing a shock absorber by laminating the components of the shock absorber thus produced will be specifically described below.

【0017】衝撃吸収を行う疑似球体が平面上に正方形
状に並んだ場合においては、図4(ア)に示すように、
各擬似金属球の直上に、次の構成要素の擬似金属球を置
く単純立方状に配置するか、図4(イ)に示すように、
4つの擬似金属球で作られる谷間に、次の構成要素の擬
似金属球を置く体心立方状に配置することが望ましい。
しかし、これらに制限されるものではない。
When the shock absorbing spheres are arranged in a square shape on a plane, as shown in FIG.
Immediately above each pseudo metal sphere, the pseudo metal spheres of the following components are placed in a simple cube shape, or as shown in FIG.
It is desirable to arrange the following constituent pseudo metal balls in a body-centered cubic shape in a valley formed by four pseudo metal balls.
However, it is not limited to these.

【0018】一方、隣接する二つの突起が平面上に正三
角形状に並んだ場合においては、図4(ア)に示すよう
に、各擬似金属球の直上に次の構成要素の擬似金属球を
置く配置とするか、図4(イ)に示すように、3つの擬
似金属球で作られる谷間に、次の構成要素の擬似金属球
を置く面心立方状ないし稠密六方状に配置することが望
ましい。しかし、これらに制限されるものではない。
On the other hand, in the case where two adjacent protrusions are arranged in a regular triangle on a plane, as shown in FIG. 4A, the pseudo metal spheres of the following constituents are immediately above each pseudo metal sphere. It may be placed or placed in a face-centered cubic or close-packed hexagonal shape where the pseudo metal spheres of the next component are placed in a valley formed by three pseudo metal spheres, as shown in FIG. desirable. However, it is not limited to these.

【0019】本発明の方法により、中空金属球充填型金
属製多孔質構造体が作製される。この構造体は、他の方
法で作製した中空金属球充填型金属製多孔質材料に比べ
て、中空球の形状がそろい、かつその充填方法を極めて
よく制御することができるために、変形能が大きく、か
つ強度も高強度化できる上、製造コストを著しく低減で
きるため、衝撃吸収用材料として、特に好適なものとし
て利用することができる。
By the method of the present invention, a hollow metal sphere-filled type metallic porous structure is produced. This structure has a uniform shape of the hollow spheres as compared with a hollow metal sphere-filled metallic porous material produced by another method, and since the filling method can be controlled extremely well, the deformability is high. Since it is large and the strength can be increased, and the manufacturing cost can be remarkably reduced, it can be used as a particularly suitable material for impact absorption.

【0020】本発明においては、上記金属板材の材料と
して、アルミニウム、マグネシウム、チタニウム、鉄、
ニッケル、銅の何れかの単体若しくは合金を好適に用い
ることができる。しかし、これらに制限されるものでは
なく、その使用目的に応じて、適宜の材料を使用するこ
とができる。特に、衝撃吸収用材料として用いる場合に
は、その軽量性と材料価格の面から、アルミニウム板材
が好適に使用される。
In the present invention, as the material of the metal plate material, aluminum, magnesium, titanium, iron,
Either nickel or copper alone or an alloy can be preferably used. However, the material is not limited to these, and an appropriate material can be used according to the purpose of use. In particular, when used as a shock absorbing material, an aluminum plate material is preferably used in terms of its light weight and material cost.

【0021】また、本発明においては、形成される擬似
金属球の直径が、1mmないし50mmの範囲にあるも
のを好適に用いることができる。また、本発明において
は、上記形成される擬似金属球の厚さが、0.1mmな
いし1mmの範囲にあるものを好適に用いることができ
る。しかし、これらに制限されるものではない。
Further, in the present invention, it is possible to preferably use a pseudo metal ball having a diameter in the range of 1 mm to 50 mm. Further, in the present invention, the pseudo metal spheres formed as described above having a thickness in the range of 0.1 mm to 1 mm can be preferably used. However, it is not limited to these.

【0022】[0022]

【作用】本発明の衝撃吸収体の製造方法は、2枚の板材
を組み合わせてなる擬似中空球が並んだ構造要素の各擬
似金属球の直上に、次の構成要素の擬似金属球が置かれ
るように上記構成要素を積層することを特徴としてい
る。すなわち、本発明の方法では、まず、擬似中空金属
球が並ぶ構成要素を作製し、更に、それを最適化して効
果的に積層することにより高い衝撃エネルギー吸収性能
を有する金属多孔質要素構成体を作製する。本発明は、
上記構成要素の擬似金属球のサイズ、形状、球の数、充
填方法及びそれらの配置方式を任意に調整することによ
り、使用目的、使用条件等に多角的に対応した多様な変
形性能及び強度を有する多品種の衝撃吸収体を任意に作
製することを可能とする。それにより、本発明では、衝
撃吸収用材料として、任意の衝撃吸収特性と任意の形態
を有する金属多孔質要素構成体を高効率で生産すること
が可能であり、本発明は、簡便かつ低コストに衝撃吸収
体を生産する方法及びその製品として、広汎な技術分野
で多角的に利用することができる。
According to the method of manufacturing the shock absorber of the present invention, the pseudo metal spheres of the following constituents are placed directly above the respective pseudo metal spheres of the structural element in which the pseudo hollow spheres formed by combining two plate materials are arranged. As described above, the above-mentioned constituent elements are laminated. That is, in the method of the present invention, first, a constituent element in which pseudo hollow metal spheres are arranged is prepared, and further, by optimizing the constituent element and effectively stacking the constituent element, a metal porous element constituent element having high impact energy absorption performance is obtained. Create. The present invention is
By arbitrarily adjusting the size, shape, number of spheres, filling method and arrangement method of the above-mentioned constituent pseudo-metal balls, various deformation performances and strengths corresponding to the purpose of use, conditions of use, etc. can be obtained. It is possible to arbitrarily manufacture various types of shock absorbers. As a result, in the present invention, it is possible to highly efficiently produce, as the shock absorbing material, a metal porous element constituent having any shock absorbing characteristic and any form, and the present invention is simple and low cost. As a method of producing a shock absorber and a product thereof, it can be used in various fields in a wide variety of technical fields.

【0023】[0023]

【実施例】次に、本発明を実施例に基づいて具体的に説
明するが、本発明は、以下の実施例によって何ら限定さ
れるものではない。 実施例 (1)衝撃吸収体の製造 縦横両方向に窪みと突起がそれぞれ交互に5つずつ並ん
だ、正方形型配置を有するSKD鋼製の隙間厚0.5m
mの割り型空間に、ダイキャスト鋳造法によりAC4A
相当の鋳造合金を約750℃で注入し、図1(ハ)に示
すような、構造体を作製した。なお、窪みの外形は約1
0mmとした。このダイキャスト鋳造で得られた成形体
に、同様にダイキャスト鋳造で作製した板厚0.5mm
のAC4A相当の鋳造合金半球状のドームを100個作
製し、それぞれの窪みの上にかぶせることで、衝撃吸収
体の構成要素とした。
EXAMPLES Next, the present invention will be specifically described based on examples, but the present invention is not limited to the following examples. Example (1) Manufacture of shock absorber SKD steel gap thickness 0.5 m having a square type arrangement in which five recesses and five protrusions are alternately arranged in both vertical and horizontal directions.
AC4A by die casting method in m space
A corresponding cast alloy was injected at about 750 ° C. to produce a structure as shown in FIG. The outer shape of the depression is about 1
It was set to 0 mm. The molded body obtained by this die-cast casting has a plate thickness of 0.5 mm, which is also produced by die-cast casting.
The AC4A equivalent cast alloy hemispherical dome was manufactured, and the dome was covered with the dome to form a shock absorber.

【0024】更に、この構成要素を10組作製し、球体
の上に球体が位置する構造で、10層を積層して、内径
100mmx100mm、肉厚1mm、高さ120mm
の矩形断面容器内に収納して、衝撃吸収材とした。
Further, 10 sets of these constituent elements were produced, and 10 layers were laminated in a structure in which the sphere was located on the sphere, and the inner diameter was 100 mm × 100 mm, the wall thickness was 1 mm, and the height was 120 mm.
It was housed in a rectangular cross-section container to be used as a shock absorber.

【0025】(2)衝撃吸収特性 この衝撃吸収体に対して、20m/秒の速度で50%変
形をするまで衝撃エネルギーを加えた際に、約7MJ/
3 のエネルギー吸収が実現できた。これは、通常の中
空体充填型衝撃エネルギー吸収体で得られ得る衝撃エネ
ルギー吸収量、2〜3MJ/m3 に比してきわめて大き
い。このように、本発明によれば、従来の方法に比べ
て、高強度かつ高吸収エネルギー衝撃吸収体が得られ
る。以上、本発明の一実施例を示したが、更に、低圧鋳
造法により、上記方法と同様にして衝撃吸収体を作製し
たところ、同様の結果が得られた。
(2) Impact absorption characteristics When impact energy is applied to this impact absorber at a speed of 20 m / sec until it is deformed by 50%, about 7 MJ /
Energy absorption of m 3 was realized. This is extremely large as compared with the impact energy absorption amount which can be obtained by a usual hollow body-filled impact energy absorber, which is 2 to 3 MJ / m 3 . As described above, according to the present invention, a high-strength and high-absorption-energy-impact absorber can be obtained as compared with the conventional method. As described above, one example of the present invention was shown. Further, when a shock absorber was manufactured by the low pressure casting method in the same manner as the above method, the same result was obtained.

【0026】[0026]

【発明の効果】以上詳述したように、本発明は、高性能
衝撃吸収体及びその製造方法に係るものであり、本発明
により、以下のような格別の効果が奏される。 (1)金属製の中空擬似球体からなる衝撃吸収体を簡便
な方法及び低コストで製造することができる。 (2)従来の方法に比べて、高強度かつ高吸収エネルギ
ー性能を有する衝撃吸収体が得られる。 (3)高変形能及び高強度を有する衝撃吸収材料として
有用である。 (4)軽量性、低価格性を実現化できる。 (5)金属製の中空擬似球体を高効率で生産する方法を
提供することができる。 (6)全方向からの衝撃エネルギーを効率よく吸収でき
る。
As described above in detail, the present invention relates to a high-performance shock absorber and a method for manufacturing the same, and the present invention has the following special effects. (1) It is possible to manufacture a shock absorber made of a metal hollow pseudosphere by a simple method and at low cost. (2) An impact absorber having high strength and high absorbed energy performance can be obtained as compared with the conventional method. (3) It is useful as an impact absorbing material having high deformability and high strength. (4) Light weight and low price can be realized. (5) It is possible to provide a method of producing a hollow hollow sphere made of metal with high efficiency. (6) Impact energy from all directions can be efficiently absorbed.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、本発明の鋳造加工方法の模式図及び疑
似中空金属球の部分構造を示す説明図である。
FIG. 1 is a schematic view of a casting method of the present invention and an explanatory view showing a partial structure of a pseudo hollow metal sphere.

【図2】図2は、突起部及び窪み部の配置関係を示す模
式図である。
FIG. 2 is a schematic diagram showing a positional relationship between protrusions and depressions.

【図3】図3は、疑似中空金属球が板状に連続した構造
を示す模式図である。
FIG. 3 is a schematic diagram showing a structure in which pseudo hollow metal spheres are continuous in a plate shape.

【図4】図4は、衝撃吸収要素を積層する方法を示す模
式図である。
FIG. 4 is a schematic diagram showing a method of stacking shock absorbing elements.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B22D 21/04 B22D 21/04 A B 21/06 21/06 25/02 25/02 Z F16F 7/12 F16F 7/12 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) B22D 21/04 B22D 21/04 A B 21/06 21/06 25/02 25/02 Z F16F 7/12 F16F 7/12

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 低圧鋳造法ないしダイキャスト鋳造法を
用い、形状が等しく先端が半球ドーム状の多数の突起
と、同じ形状を有する多数の半球ドーム状の窪みを、連
続かつ交互に形成した金属板材を作製することを特徴と
する衝撃変形量を大きくした板材の成形方法。
1. A metal formed by a low pressure casting method or a die casting method, wherein a large number of hemispherical dome-shaped projections having the same shape and a plurality of hemispherical dome-shaped depressions having the same shape are continuously and alternately formed. A method for forming a plate material having a large impact deformation amount, which comprises manufacturing a plate material.
【請求項2】 隣接する半球ドーム状の突起と窪みがそ
れぞれ正方形の対角の位置を占め、かつ突起と窪みが接
することを特徴とする請求項1記載の板材の成形方法。
2. The method for forming a plate material according to claim 1, wherein adjacent hemispherical dome-shaped projections and depressions occupy diagonal positions of a square, and the projections and depressions are in contact with each other.
【請求項3】 一直線上に互いに接して並ぶ半球ドーム
状の突起に対し、隣接する二つの突起を正三角形の頂点
とすることで定まる位置を、半球ドーム状の窪みが占め
ることを特徴とする請求項1記載の板材の成形方法。
3. A hemispherical dome-shaped depression occupies a position determined by forming two adjacent protrusions as the vertices of an equilateral triangle with respect to hemispherical dome-shaped protrusions arranged in contact with each other on a straight line. The method for forming a plate material according to claim 1.
【請求項4】 請求項1から3のいずれかに記載の方法
で成形した板材の窪みの上に、前記低圧鋳造法ないしダ
イキャスト鋳造法を用いて、別途作製した板材の半球ド
ームを被せることを特徴とする、平面上に擬似金属球が
多数並ぶ衝撃変形を吸収する構造要素の製造方法。
4. A hemispherical dome of a plate material separately produced by using the low-pressure casting method or the die-cast casting method on the depression of the plate material formed by the method according to claim 1. And a method for manufacturing a structural element that absorbs impact deformation in which a large number of pseudo metal balls are arranged on a plane.
【請求項5】 請求項4記載の構造要素の各擬似金属球
の直上に、次の構成要素の擬似金属球が置かれることを
特徴とする衝撃吸収体の製造方法。
5. A method of manufacturing a shock absorber, wherein the pseudo metal spheres of the following constituents are placed directly on the pseudo metal spheres of the structural element according to claim 4.
【請求項6】 上記構造要素の3つあるいは4つの擬似
金属球で作られる谷間に、次の構成要素の擬似金属球が
置かれることを特徴とする請求項5記載の衝撃吸収体の
製造方法。
6. The method of manufacturing a shock absorber according to claim 5, wherein a pseudo metal sphere of the next component is placed in a valley formed by three or four pseudo metal spheres of the structural element. .
【請求項7】 前記金属板材が、アルミニウム、マグネ
シウム、チタニウム、鉄、ニッケル、銅の何れかの単体
若しくは合金であることを特徴とする請求項5の衝撃吸
収体の製造方法。
7. The method for manufacturing a shock absorber according to claim 5, wherein the metal plate material is a simple substance or an alloy of any of aluminum, magnesium, titanium, iron, nickel and copper.
【請求項8】 形成される擬似金属球の直径が、1mm
ないし50mmの範囲にある請求項5記載の衝撃吸収体
の製造方法。
8. The diameter of the pseudo metal sphere formed is 1 mm.
The method for manufacturing an impact absorber according to claim 5, wherein the impact absorber is in the range of 50 mm to 50 mm.
【請求項9】 形成される擬似金属球の厚さが、0.1
mmないし1mmの範囲にある請求項5記載の衝撃吸収
体の製造方法。
9. The thickness of the pseudo metal sphere formed is 0.1.
The method for manufacturing an impact absorber according to claim 5, which is in the range of mm to 1 mm.
【請求項10】 請求項5から9のいずれかに記載の方
法によって作製されたことを特徴とする衝撃吸収体。
10. A shock absorber produced by the method according to any one of claims 5 to 9.
JP2002076436A 2002-03-19 2002-03-19 High performance shock absorber and manufacturing method thereof Expired - Lifetime JP3627019B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002076436A JP3627019B2 (en) 2002-03-19 2002-03-19 High performance shock absorber and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002076436A JP3627019B2 (en) 2002-03-19 2002-03-19 High performance shock absorber and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2003275854A true JP2003275854A (en) 2003-09-30
JP3627019B2 JP3627019B2 (en) 2005-03-09

Family

ID=29205212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002076436A Expired - Lifetime JP3627019B2 (en) 2002-03-19 2002-03-19 High performance shock absorber and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3627019B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007278344A (en) * 2006-04-04 2007-10-25 Murata Hatsujo Kk Plate spring
JP2013158814A (en) * 2012-02-07 2013-08-19 Mazda Motor Corp Method and device for estimating metal die life

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007278344A (en) * 2006-04-04 2007-10-25 Murata Hatsujo Kk Plate spring
JP2013158814A (en) * 2012-02-07 2013-08-19 Mazda Motor Corp Method and device for estimating metal die life

Also Published As

Publication number Publication date
JP3627019B2 (en) 2005-03-09

Similar Documents

Publication Publication Date Title
US10005690B2 (en) Foams made of amorphous hollow spheres and methods of manufacture thereof
US6585151B1 (en) Method for producing microporous objects with fiber, wire or foil core and microporous cellular objects
JP5698133B2 (en) Truss type periodic porous material in which some of the cells existing inside are filled with solid
EP2237939A2 (en) Method for producing highly mechanically demanded pieces and specially tools from low cost ceramics or polymers, like concrete, by casting the desired shape and then coating with a metallic or high property ceramic layer
JP2003275861A (en) High performance shock absorber and its producing method
JP2003275854A (en) High performance shock absorber and its producing method
JP3928037B2 (en) Impact energy absorbing structure
JP2003275825A (en) Impact absorbing body and method for manufacturing it
JP2003275835A (en) Impact absorber and method for manufacturing the same
JP3928038B2 (en) Impact energy absorber
JP2003320424A (en) Impact energy absorbing structure
JP6182140B2 (en) Porous body manufacturing method, porous body, and structure
RU2005121496A (en) METHOD FOR MAKING THERMAL PROTECTIVE COATING FOR A SOLID FUEL ROCKET ENGINE AND A ROCKET ENGINE MADE WITH THE APPLICATION OF THIS METHOD
JP2019171441A (en) Base-metal-integrated open porous metal and method of manufacturing the same
JP4389073B2 (en) Porous metal material and manufacturing method thereof
CN115182948A (en) Mechanical metamaterial unit and structure
KR100253710B1 (en) Multi-layer, porous aluminium powder sintered material with a wire-net shaped reinforcing member therein and a manufacturing method thereof
JPH02294410A (en) Manufacture of thermally conducting module using hydrogen occlusion alloy
JP4230441B2 (en) Magnesium alloy hollow metal sphere
Rajak et al. Introduction to metallic foams
KR101298812B1 (en) Truss type periodic cellular materials having internal cells, some of which are filled with solid materials
JPH01215933A (en) Metallic porous body and its manufacture
CN101089417A (en) Energy absorber of filling deformed foam aluminium and aluminium alloy
CN110551911A (en) micron-pore capillary structure foamed aluminum block with high water absorption
LV15322B (en) Composite material containing minispheres

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041109

R150 Certificate of patent or registration of utility model

Ref document number: 3627019

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term