JP2003275767A - Method for controlling electric deionizer - Google Patents

Method for controlling electric deionizer

Info

Publication number
JP2003275767A
JP2003275767A JP2002081174A JP2002081174A JP2003275767A JP 2003275767 A JP2003275767 A JP 2003275767A JP 2002081174 A JP2002081174 A JP 2002081174A JP 2002081174 A JP2002081174 A JP 2002081174A JP 2003275767 A JP2003275767 A JP 2003275767A
Authority
JP
Japan
Prior art keywords
chamber
concentration
water
deionization
silica
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002081174A
Other languages
Japanese (ja)
Other versions
JP4026385B2 (en
Inventor
Shin Sato
伸 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2002081174A priority Critical patent/JP4026385B2/en
Publication of JP2003275767A publication Critical patent/JP2003275767A/en
Application granted granted Critical
Publication of JP4026385B2 publication Critical patent/JP4026385B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To control an electric deionizer for the purpose of sure production of produced water of a target concentration. <P>SOLUTION: The rate of silica transfer by potential from a desalting chamber 2 to a concentrating chamber 5 and the rate of silica transfer from the concentrating chamber 5 to the desalting chamber 2 by a concentration gradient are computed and the energizing current value of the electric deionizer is computed in accordance with the flow rate of the desalting chamber, the flow rate of the concentrating chamber, the volume of the circulating concentrate, the concentration of the raw water silica, and the target concentration of the silica, by which the deionizer is controlled. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は原水を電気的に脱塩
処理(脱イオン処理)するための電気脱イオン装置の制
御方法に係り、特に電気脱イオン装置への通電電流値を
制御する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of controlling an electric deionization apparatus for electrically desalting (deionizing) raw water, and more particularly to a method of controlling an electric current value to the electric deionization apparatus. Regarding

【0002】[0002]

【従来の技術】従来、半導体製造工場、液晶製造工場、
製薬工業、食品工業、電力工業等の各種の産業又は民生
用ないし研究施設等において使用される脱イオン水の製
造装置として、図3に示す如く、電極(陽極11,陰極
12)の間に複数のアニオン交換膜13及びカチオン交
換膜14を交互に配列して濃縮室15と脱塩室16とを
交互に形成し、脱塩室16にイオン交換樹脂、イオン交
換繊維もしくはグラフト交換体等からなるアニオン交換
体及びカチオン交換体を混合もしくは複層状に充填した
電気脱イオン装置が公知である(特許第1782943
号、特許第2751090号、特許第2699256
号)。なお、図3において、17は陽極室、18は陰極
室である。
2. Description of the Related Art Conventionally, semiconductor manufacturing plants, liquid crystal manufacturing plants,
As shown in FIG. 3, a plurality of deionized water producing devices used in various industries such as the pharmaceutical industry, food industry, electric power industry, or for consumer use or research facilities are provided between electrodes (anode 11, cathode 12). The anion exchange membranes 13 and the cation exchange membranes 14 are alternately arranged to form the concentrating chambers 15 and the desalting chambers 16 alternately, and the desalting chambers 16 are made of an ion exchange resin, an ion exchange fiber or a graft exchanger. An electric deionization device in which an anion exchanger and a cation exchanger are mixed or packed in a multi-layered manner is known (Patent No. 1782943).
No., Japanese Patent No. 2751090, Japanese Patent No. 2699256
issue). In FIG. 3, 17 is an anode chamber and 18 is a cathode chamber.

【0003】電気脱イオン装置は、水解離によってH
イオンとOHイオンを生成させ、脱塩室内に充填され
ているイオン交換体を連続して再生することによって、
効率的な脱塩処理が可能であり、従来から広く用いられ
てきたイオン交換樹脂装置のような薬品を用いた再生処
理を必要とせず、完全な連続採水が可能で、高純度の水
が得られるという優れた効果を発揮する。
The electric deionization apparatus uses H + by water dissociation.
Ions and OH ions are generated and the ion exchanger filled in the desalting chamber is continuously regenerated,
Efficient desalination treatment is possible, complete regeneration is possible without the need for regeneration treatment using chemicals such as ion exchange resin devices that have been widely used in the past, and high purity water can be obtained. It has an excellent effect of being obtained.

【0004】このような電気脱イオン装置におけるシリ
カ除去性能に電流値が関係することは知られていたが、
濃縮室における濃度の影響等は明確とされていなかっ
た。
It has been known that the current value is related to the silica removal performance in such an electric deionization apparatus.
The effects of concentration in the concentration room were not clarified.

【0005】このため、従来においては、電流値とシリ
カ除去率との関係などの経験的なデータをもとに定めら
れた運転マニュアル等により電気脱イオン装置の電流制
御が行われていた。
Therefore, conventionally, the current control of the electric deionization apparatus has been performed by an operation manual or the like determined based on empirical data such as the relationship between the current value and the silica removal rate.

【0006】しかし、このような制御方法では、水量や
回収率等の条件が異なった場合や、被処理水の濃度変動
等に対応して必要電流値を正確に求めることができな
い。このようなことから、従来においては、電気脱イオ
ン装置の電流値の自動制御運転等は全く行われていな
い。
However, with such a control method, the required current value cannot be accurately obtained when the conditions such as the amount of water and the recovery rate are different, or when the concentration of the water to be treated changes. For this reason, conventionally, the automatic control operation of the current value of the electric deionization apparatus has not been performed at all.

【0007】[0007]

【発明が解決しようとする課題】本発明は、電気脱イオ
ン装置における脱塩のための電流値を制御し、目標とす
る濃度の生産水を生産することを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to control a current value for desalination in an electric deionization apparatus to produce a product water having a target concentration.

【0008】[0008]

【課題を解決するための手段】本発明の電気脱イオン装
置の制御方法は、水を脱イオン処理するための電気脱イ
オン装置を制御する方法であって、該電気脱イオン装置
は、陽極及び陰極と、該陽極と陰極との間にカチオン交
換膜及びアニオン交換膜を配置することに形成された濃
縮室及び脱塩室とを備えており、該脱塩室に原水が通水
されて生産水として取り出され、該濃縮室に濃縮水が通
水され、該陽極と陰極との間に電源装置から直流電流が
通電され、この電流量が制御装置によって制御される電
気脱イオン装置の制御方法において、該電気脱イオン装
置における脱イオン動作モデルを設定し、該脱塩室に導
入される原水の濃度及び流量と、目標とする生産水の濃
度とを該制御装置に入力して目標とする生産水の濃度を
達成するために必要な電流値を演算し、この演算された
電流を該陽極と陰極の間に通電することを特徴とするも
のである。
A method of controlling an electric deionization apparatus according to the present invention is a method of controlling an electric deionization apparatus for deionizing water, which comprises an anode and It is provided with a cathode and a concentrating chamber and a desalting chamber formed by disposing a cation exchange membrane and an anion exchange membrane between the anode and the cathode, and raw water is passed through the desalination chamber to produce. A method for controlling an electric deionization apparatus, in which concentrated water is taken out as water, the concentrated water is passed through the concentrating chamber, a direct current is passed from a power supply device between the anode and the cathode, and the amount of this current is controlled by a control device. In, the deionization operation model in the electric deionization device is set, and the concentration and flow rate of the raw water introduced into the deionization chamber and the concentration of the target production water are input to the control device to be targeted. Required to achieve the concentration of product water Calculates the a current value, is characterized in that energizing the computed current between the anode and the cathode.

【0009】かかる本発明によると、脱イオン動作モデ
ルを設定し、原濃度及び流量と生産水の目標濃度とを制
御装置に与えて電流値を決定するため、制御を自動化す
ることができる。
According to the present invention, since the deionization operation model is set and the original concentration and flow rate and the target concentration of the product water are given to the control device to determine the current value, the control can be automated.

【0010】本発明では、原水の一部と、前記濃縮室流
出水の一部とを濃縮室に導入し、濃縮室流出水の残部を
電気脱イオン装置外に排出する方法であって、脱塩室内
の流量Q、濃縮室内の流量s・Q、電気脱イオン装置外
に排出する濃縮水量r・Qをそれぞれ設定しておき、こ
れらの設定値を予め前記制御装置に入力しておき、原水
の濃度と目標生産水濃度とに応じて前記電流値を演算す
ることにより、目標濃度の生産水を確実に生産すること
ができる。ここで、sは脱塩室流量に対する濃縮室流量
の比率、rは脱塩室流量に対する濃縮室からの排出流量
の比率である。
According to the present invention, a part of the raw water and a part of the water discharged from the concentration chamber are introduced into the concentration chamber, and the rest of the water discharged from the concentration chamber is discharged to the outside of the electric deionization apparatus. The flow rate Q in the salt chamber, the flow rate s · Q in the concentrating chamber, and the concentrated water amount r · Q to be discharged to the outside of the electric deionization device are set respectively, and these set values are input to the control device in advance to obtain the raw water. By calculating the current value in accordance with the concentration and the target product water concentration, it is possible to reliably produce the target water product concentration. Here, s is the ratio of the concentration chamber flow rate to the deionization chamber flow rate, and r is the ratio of the discharge flow rate from the concentration chamber to the deionization chamber flow rate.

【0011】特に、本発明では、電気脱イオン装置にお
ける脱イオン動作モデルは、脱塩室から濃縮室へのイオ
ンの移動量を、[脱塩室内のイオン濃度、及び、電流値
に比例して脱塩室から濃縮室へ移動するイオン移動量]
から、[イオン交換膜の膜面積、及び、濃縮室内のイオ
ン濃度と脱塩室内のイオン濃度との濃度差に比例して濃
縮室から脱塩室へ移動するイオン移動量]を減算した量
として設定した構成とすることが好ましい。
In particular, in the present invention, the deionization operation model in the electric deionization apparatus is such that the transfer amount of ions from the deionization chamber to the concentration chamber is proportional to the ion concentration in the deionization chamber and the current value. Amount of ions transferred from desalination chamber to concentration chamber]
From [the amount of ions transferred from the concentration chamber to the desalting chamber in proportion to the membrane area of the ion exchange membrane and the concentration difference between the ion concentration in the concentration chamber and the ion concentration in the deionization chamber] It is preferable to have the set configuration.

【0012】本発明では、脱塩室は、一端側に原水の流
入口を備え、他端側に生産水の流出口を備えたものであ
り、脱イオン動作モデルは、この一端側の所定範囲では
弱電解質が脱塩室から濃縮室へ移動しないものとして設
定されることにより、動作モデルを実モデルに十分に近
似させることができる。特に、この所定範囲を、電気脱
イオン装置の電流効率に比例して設定することにより、
動作モデルを実モデルに著しく近似させることができ
る。
In the present invention, the deionization chamber is provided with an inlet for raw water on one end side and an outlet for production water on the other end side, and the deionization operation model is a predetermined range on this one end side. Since the weak electrolyte is set so as not to move from the deionization chamber to the concentration chamber, the behavioral model can be sufficiently approximated to the actual model. In particular, by setting this predetermined range in proportion to the current efficiency of the electric deionization device,
The motion model can be remarkably approximated to the real model.

【0013】[0013]

【発明の実施の形態】以下、図面を参照して実施の形態
について説明する。図1は実施の形態に係る制御方法が
適用される電気脱イオン装置の概略的なモデル図、図2
は動作解析を差分方程式にて行う場合のモデル図であ
る。
DETAILED DESCRIPTION OF THE INVENTION Embodiments will be described below with reference to the drawings. FIG. 1 is a schematic model diagram of an electric deionization apparatus to which the control method according to the embodiment is applied, and FIG.
[Fig. 4] is a model diagram in the case of performing motion analysis by a difference equation.

【0014】図1において、原水は配管1から流量Qに
て脱塩室2に導入され、同じく流量Qにて脱塩室2から
配管3を介して生産水として取り出される。
In FIG. 1, raw water is introduced into the desalination chamber 2 from the pipe 1 at a flow rate Q, and is also taken out as product water from the desalination chamber 2 at a flow rate Q via the pipe 3.

【0015】原水の一部は、配管1から分岐した配管4
を介して濃縮室5に導入され、濃縮室流出水の一部は配
管6から電気脱イオン装置外に排出される。濃縮室流出
水の残部は、配管6から分岐した配管7及びポンプ8を
介して前記配管4内の分岐原水と合流されて濃縮室5に
循環される。脱塩室3と濃縮室5とはイオン交換膜9
(この場合はアニオン交換膜)により隔てられている。
A part of the raw water is a pipe 4 branched from the pipe 1.
Is introduced into the concentrating chamber 5 through the pipe, and a part of the concentrating chamber outflow water is discharged from the pipe 6 to the outside of the electric deionization device. The remaining portion of the concentrated chamber outflow water is combined with the branched raw water in the pipe 4 via the pipe 7 branched from the pipe 6 and the pump 8 and circulated to the concentrated chamber 5. The deionization chamber 3 and the concentration chamber 5 have an ion exchange membrane 9
They are separated by (anion exchange membrane in this case).

【0016】濃縮室内の流量は、脱塩室流量Qに比率s
を乗じた流量s・Qであり、電気脱イオン装置外に排出
される流量は、脱塩室流量Qに比率rを乗じた流量r・
Qである。当然ながら、電気脱イオン装置に供給される
原水の総量は(1+r)Qであり、また、配管7を流れ
る濃縮水循環流量は、(s−r)・Qとして表現され
る。
The flow rate in the concentration chamber is proportional to the flow rate Q in the demineralization chamber by s.
Is the flow rate s · Q, and the flow rate discharged to the outside of the electric deionization apparatus is the flow rate r · which is the deionization chamber flow rate Q multiplied by the ratio r.
Q. Naturally, the total amount of raw water supplied to the electric deionization apparatus is (1 + r) Q, and the concentrated water circulation flow rate flowing through the pipe 7 is expressed as (s−r) · Q.

【0017】原水中の除去対象とする解離性化合物(こ
の実施の形態ではシリカ)濃度がc (μg/L)であ
り、生産水の目標濃度がcである。
The dissociative compound to be removed in raw water (this
Embodiment, the silica) concentration is c 0(Μg / L)
And the target concentration of product water is cNIs.

【0018】脱塩室2内の流入口から距離xの地点で
は、水中のシリカ濃度はcとなっている。
At a point at a distance x from the inflow port in the desalination chamber 2, the silica concentration in water is c.

【0019】濃縮室5では、流入口のシリカ濃度は
’であり、流出する濃縮水のシリカ濃度はc’で
ある。濃縮室5内の流入口から距離xの地点では、水中
のシリカ濃度はc’となっている。
In the concentrating chamber 5, the silica concentration at the inflow port is c 0 'and the silica concentration in the outflowing concentrated water is c N '. At a point at a distance x from the inflow port in the concentration chamber 5, the silica concentration in water is c '.

【0020】また、脱塩室2から濃縮室5へ電気脱イオ
ン装置の電極間の電位差に基づいて移動する単位時間当
りのシリカ移動量をK(μg/Hr)とし、濃縮室5か
ら脱塩室2へシリカ濃度差に基づいて移動する単位時間
当りのシリカ移動量をK’(μg/Hr)とする。
Further, the amount of silica transferred per unit time from the desalting chamber 2 to the concentrating chamber 5 based on the potential difference between the electrodes of the electrodeionization apparatus is K (μg / Hr), and the desalting chamber 5 is desalted. The amount of silica transferred per unit time to the chamber 2 based on the difference in silica concentration is K ′ (μg / Hr).

【0021】電気脱イオン装置の陽極から陰極へ流れる
電流をi(A)とする。
The current flowing from the anode of the electric deionization device to the cathode is i (A).

【0022】図1に示す通り、流入口から距離xの地点
における水の流れ方向(流入口と流出口とを結ぶ方向。
図1の左右方向)の微少幅をdxとする。この微少幅d
xに属するイオン交換膜8の膜面積をmとする。この膜
面積mはdxに脱塩室の幅を乗じた面積である。脱塩室
の幅は、上記の水の流れ方向と直交方向の幅である。
As shown in FIG. 1, the flow direction of water at a point at a distance x from the inlet (the direction connecting the inlet and the outlet).
A minute width in the left-right direction in FIG. 1 is dx. This minute width d
The membrane area of the ion exchange membrane 8 belonging to x is m. The membrane area m is an area obtained by multiplying dx by the width of the deionization chamber. The width of the deionization chamber is the width in the direction orthogonal to the flow direction of water.

【0023】この微少幅dxに属する膜面積mの領域を
電位差により脱塩室2から濃縮室5へ透過する単位時間
当りのシリカ移動量dKは、脱塩室シリカ濃度cと電流
値iに比例するので、比例定数kを用いて dK=k・c・i・dx (1) として表される。
The amount of silica migration dK per unit time that permeates the region of the membrane area m belonging to this minute width dx from the desalting chamber 2 to the concentrating chamber 5 due to the potential difference is proportional to the silica concentration c of the desalting chamber and the current value i. Therefore, it is expressed as dK = k · c · i · dx (1) using the proportional constant k.

【0024】同様に、シリカ濃度に用いて該領域を濃縮
室5から脱塩室2へ透過する単位時間当りのシリカ移動
量dK’は両室のシリカ濃度差(c’−c)と該領域の
面積mとに比例するので比例定数k’を用いて dK’=k’・(c’−c)・m・dx (2) として表される。
Similarly, the silica migration amount dK 'per unit time which is used as the silica concentration and permeates the region from the concentrating chamber 5 to the desalting chamber 2 is the silica concentration difference (c'-c) in both chambers and the region. Since it is proportional to the area m of d, it is expressed as dK ′ = k ′ · (c′−c) · m · dx (2) using the proportional constant k ′.

【0025】脱塩室2内における前記距離xの地点にお
ける物質収支から次の(3)式が導かれる。 Q・dc/dx=dK/dx−dK’/dx (3) 左辺のdc/dxは、前記流入口から距離xの地点にお
ける水の流れ方向の濃度勾配であり、Q・dc/dx
は、この距離xの地点の脱塩室断面を通過することによ
り減少するシリカ量である。
The following equation (3) is derived from the material balance at the point of the distance x in the desalination chamber 2. Q · dc / dx = dK / dx−dK ′ / dx (3) dc / dx on the left side is the concentration gradient in the flow direction of water at a point of distance x from the inlet, and Q · dc / dx
Is the amount of silica that decreases by passing through the cross section of the desalination chamber at the point of this distance x.

【0026】(3)式の右辺のdK/dxは地点xにお
ける脱塩室から濃縮室への移動シリカ量であり、dK’
/dxは地点xにおける濃縮室から脱塩室への移動シリ
カ量であるから、両者の差(dK/dx−dK’/d
x)は上記Q・dc/dxに等しい。
DK / dx on the right side of the equation (3) is the amount of migrated silica from the desalting chamber to the concentrating chamber at the point x, and dK '
/ Dx is the amount of migrated silica from the concentrating chamber to the desalting chamber at point x, so the difference between the two (dK / dx-dK '/ d
x) is equal to the above Q · dc / dx.

【0027】同様に、濃縮室5内における流入口から距
離xの地点での物質収支より次の(4)式が導かれる。 −s・Q・dc’/dx=dK/dx−dK’/dx (4) なお、(4)式の左辺のs・Qが濃縮室内の流量である
ことは前記の通りである。
Similarly, the following equation (4) is derived from the material balance at the point of distance x from the inlet in the concentrating chamber 5. −s · Q · dc ′ / dx = dK / dx−dK ′ / dx (4) Note that, as described above, s · Q on the left side of the equation (4) is the flow rate in the concentrating chamber.

【0028】この電気脱イオン装置の全体のシリカ収
支、即ち単位時間当りの電気脱イオン装置への原水総量
中のシリカ量と、生産水(流量Q)及び排出濃縮水(流
量r・Q)とによって持ち出されるシリカ量とが等しい
ことから、次の(5)式が導かれる。 (1+r)・Q・c=Q・c+r・Q・c’ (5)
The total silica balance of this electric deionization apparatus, that is, the amount of silica in the total amount of raw water to the electric deionization apparatus per unit time, the product water (flow rate Q) and the discharged concentrated water (flow rate r · Q) The following formula (5) is derived from the fact that the amount of silica brought out by is equal. (1 + r) · Q · c 0 = Q · c N + r · Q · c N '(5)

【0029】同様に、配管4と配管7との合流地点での
シリカ収支より、次の(6)式が導かれる。当然なが
ら、(6)式の右辺は配管4と配管7とから流入するシ
リカ量の和であり、左辺は合流後のシリカ量である。 s・Q・c’=r・Q・c0+(s−r)・Q・c’ (6)
Similarly, the following equation (6) is derived from the silica balance at the confluence of the pipe 4 and the pipe 7. As a matter of course, the right side of the equation (6) is the sum of the amounts of silica flowing in from the pipe 4 and the pipe 7, and the left side is the amount of silica after joining. s · Q · c 0 ′ = r · Q · c 0 + (s−r) · Q · c N ′ (6)

【0030】上記各式(1)〜(6)と変数・定数の内
容を次にまとめて示す。 dK=k・c・i・dx (1) dK’=k’・(c’−c)・m・dx (2) Q・dc/dx=dK/dx−dK’/dx (3) −s・Q・dc’/dx=dK/dx−dK’/dx (4) (1+r)・Q・c=Q・c+r・Q・c’ (5) s・Q・c’=r・Q・c0+(s−r)・Q・c’ (6) Q:脱塩室流量(L/min) s・Q:濃縮室流量(L/min) r・Q:電気脱イオン装置外への排出濃縮水流量(L/
min) K:脱塩室から濃縮室への電位による移動量(μg/m
in) k:定数 c:脱塩室濃度(μg/L) i:電流(dx部)(A) K’:濃縮室から脱塩室への電位による移動量(μg/
min) k’:定数 c’:濃縮室濃度(μg/L) m:膜面積(dx部)(cm) なお、上記の流量、濃度等の単位は一例であり、これに
限定されない。
The contents of the above equations (1) to (6) and variables / constants are summarized below. dK = k * c * i * dx (1) dK '= k' * (c'-c) * m * dx (2) Q * dc / dx = dK / dx-dK '/ dx (3) -s · Q · dc '/ dx = dK / dx-dK' / dx (4) (1 + r) · Q · c 0 = Q · c N + r · Q · c N '(5) s · Q · c 0' = r · Q · c 0 + (s−r) · Q · c N ′ (6) Q: Desalination chamber flow rate (L / min) s · Q: Concentration chamber flow rate (L / min) r · Q: Electrical desorption Discharged concentrated water flow rate (L /
min) K: Amount of movement from the desalting chamber to the concentrating chamber due to potential (μg / m
in) k: Constant c: Desalination chamber concentration (μg / L) i: Current (dx part) (A) K ′: Transfer amount from the concentration chamber to the desalination chamber (μg / L)
min) k ′: Constant c ′: Concentration chamber concentration (μg / L) m: Membrane area (dx part) (cm 2 ) The unit of the above flow rate, concentration, etc. is an example, and not limited to this.

【0031】上記の(1)〜(6)式では、電極間の電
流iは各室の水の流れ方向において均一に流れる(電流
密度が同じ)ことを前提としている。種々の実験の結
果、電流分布はほぼ均一として扱い得ることが認められ
た。
In the above equations (1) to (6), it is premised that the current i between the electrodes flows uniformly in the flow direction of water in each chamber (the current density is the same). As a result of various experiments, it was confirmed that the current distribution can be treated as almost uniform.

【0032】なお、実験の結果、脱塩室2のうち流入口
近傍では、塩素イオンが多量に存在し、シリカは殆ど解
離せず、脱塩室から濃縮室へは移動しない現象が認めら
れた。そこで、流入口に近い所定の範囲では、シリカは
移動せず、残りの範囲でのみシリカが移動(膜を透過)
するものとして扱うのが適切である。本発明では、シリ
カ移動が生じない範囲は、脱塩室全長Xに対し電流効率
e(%)を乗じた範囲即ちL=X・(e/100)の範
囲と扱うのが好適である。
As a result of the experiment, in the desalting chamber 2, in the vicinity of the inflow port, a large amount of chlorine ions were present, silica was hardly dissociated, and the phenomenon that the silica did not move from the desalting chamber to the concentrating chamber was observed. . Therefore, silica does not move in a predetermined range near the inlet, and silica moves only in the remaining range (permeates the membrane).
It is appropriate to treat it as something to do. In the present invention, the range in which silica migration does not occur is preferably treated as a range obtained by multiplying the total deionization chamber length X by the current efficiency e (%), that is, a range of L = X · (e / 100).

【0033】水道水を活性炭、逆浸透(RO)装置、脱
気膜で処理したシリカ濃度200μg/Lの水を用いて
実験を行ったところ、 脱塩室流量Q:13.3L/min 膜面積:739.2cm 濃縮室シリカ平均濃度:2000μg/L 脱塩室シリカ平均濃度:100μg/L 濃縮室流出水シリカ濃度:2157μg/L であり、これらの値を(2)式の積分式に代入すること
により k’=0.000229 と算出された。kについては、種々のkの値を用いてシ
ミュレーションを行い、実測値と照合したところk=1
20を採用すればよいことが認められた。なお、この場
合、シリカの透過は流入側のX・(e/100)の範囲
では行われないと扱った。シミュレーションに際して
は、(1)〜(6)式を解く必要があり、この場合
(1)〜(6)式より次のようにして後述の(10)式
を導き、これを差分法により解いた。
Tap water is treated with activated carbon, reverse osmosis (RO) equipment,
Using water with a silica concentration of 200 μg / L
When I conducted an experiment, Desalination chamber flow rate Q: 13.3 L / min Membrane area: 739.2 cmTwo Concentration chamber Silica average concentration: 2000 μg / L Desalination chamber silica average concentration: 100 μg / L Concentration chamber runoff water silica concentration: 2157 μg / L And substituting these values into the integral formula (2)
By k '= 0.000229 Was calculated. For k, the value of
When simulation was performed and the measured value was compared, k = 1
It was recognized that 20 should be adopted. In addition, this place
In the case of silica, the permeation of silica is in the range of X · (e / 100) on the inflow side.
I treated it as not done. In simulation
Needs to solve equations (1) to (6), and in this case
From equations (1) to (6), the following equation (10) is obtained as follows.
Was derived and solved by the difference method.

【0034】即ち、(5),(6)式より、 c’=(r・c+(s−r)×((1+r)・(c−c)/r)/s (8) ここで、cはcに著しく大である、即ち、c>>
であるので、 c−c=c (9)
That is, from the equations (5) and (6), c 0 '= (r · c 0 + (s−r) × ((1 + r) · (c 0 −c N ) / r) / s (8 ) Where c 0 is significantly greater than c N , ie c 0 >>
Since it is c N , c 0 −c N = c 0 (9)

【0035】(8),(9)式より、次の(10)式が
導かれる。 c’=(r・c+(s−r)×((1+r)・c)/r)/s (10)
From the equations (8) and (9), the following equation (10) is derived. c 0 ′ = (r · c 0 + (s−r) × ((1 + r) · c 0 ) / r) / s (10)

【0036】ここで、図1は図2の通り脱塩室濃度分布
が階段状に変化する差分型とみなし、(1)〜(4)式
を差分方程式と扱い、差分式とした(3),(4)式に
差分式とした(1),(2)式を代入して次の(1
2),(13)式を導いた。 cn+1=c+(k・c・i−k’・(c’−c)・m)/ Q×Δx (12) cn+1’=c’−(k・c・i−k’・(c’−c)・m )/(s・Q)×Δx (13)
Here, FIG. 1 is regarded as a difference type in which the concentration distribution of the desalting chamber changes stepwise as shown in FIG. 2, and the equations (1) to (4) are treated as a difference equation, and a difference equation (3) is obtained. , (4) are substituted into the equations (1) and (2), and the following (1
Equations (2) and (13) were derived. c n + 1 = c n + (k · c n · i n -k '· (c n' -c n) · m n) / Q × Δx (12) c n + 1 '= c n' - (k · c n · i n -k '· (c n' -c n) · m n) / (s · Q) × Δx (13)

【0037】(12),(13)式において、Δxを十
分小さくして例えばΔx=1cmとし、c〜cまで
順次計算を行うことにより、生産水濃度が求められる。
In equations (12) and (13), the product water concentration can be obtained by making Δx sufficiently small, for example, Δx = 1 cm, and sequentially calculating from c 0 to c N.

【0038】電流値iを種々変えて生産水シリカ濃度を
演算しこの生産水のシリカ濃度が目標濃度となる電流値
iを選び出して電気脱イオン装置に通電すればよい。実
際には安全率(例えば1.2)をiに乗じた通電を行う
のが好ましい。
It is sufficient to calculate the silica concentration of the product water by changing the current value i variously, select the current value i at which the silica concentration of the product water becomes the target concentration, and energize the electrodeionization device. In practice, it is preferable to carry out energization by multiplying i by a safety factor (for example, 1.2).

【0039】なお、図2において、脱塩室内のシリカ濃
度は、流入口側がcであり、幅Δx毎にc,c
………,c,cn+1………と階段状に変化し、
生産水シリカ濃度がcとなっている。濃縮室内は、同
様にシリカ濃度が流入口から流出口にかけてc’,c
’,c’………,c’,cn+1’………c
と階段状に変化する。
In FIG. 2, the silica concentration in the desalting chamber is c 0 on the inlet side, and c 1 , c 2 ,
c 3 ........., c n, changes in c n + 1 ......... and stepped,
The product water silica concentration is c N. Similarly, in the concentration chamber, the silica concentration from the inlet to the outlet is c 0 ', c
1 ', c 2' ........., c n ', c n + 1' ......... c N '
And changes like a staircase.

【0040】本発明では、原水中のシリカ濃度は連続式
測定器によって連続して測定するのが好ましい。電気脱
イオン装置の電源装置としては安定化電源装置が好まし
い。電気脱イオン装置は単段で運転されてもよく、2段
以上直列に接続されてもよい。
In the present invention, it is preferable that the silica concentration in the raw water is continuously measured by a continuous measuring device. A stabilized power supply device is preferable as a power supply device for the electric deionization device. The electric deionization device may be operated in a single stage or may be connected in series in two or more stages.

【0041】本発明において、pH条件については以下
のように扱ってもよい。即ち、原水が中性であれば解離
によるシリカのイオン比はほぼ0であるため、上記Lの
範囲においてシリカ移動はないとし、また例えば原水p
H=9.86であれば上記Lの範囲内において、式
(1)にイオン解離率=0.5を掛けた移動量となるよ
うに計算する。
In the present invention, the pH condition may be treated as follows. That is, if the raw water is neutral, the ion ratio of silica due to dissociation is almost 0, so there is no migration of silica in the range of L above.
If H = 9.86, calculation is performed so that the movement amount is obtained by multiplying the formula (1) by the ion dissociation rate = 0.5 within the range of L.

【0042】[0042]

【実施例】水道水を活性炭−RO−脱気膜で処理した水
を原水とし、図1の電気脱イオン装置に通水した。電気
脱イオン装置は、3室の脱塩室を有し、有効高さ66c
m×幅11.2cm×厚さ2.5mmとした。イオン交
換樹脂として、アニオン交換樹脂60%、カチオン交換
樹脂40%の混合樹脂を、脱塩室にのみ充填した。濃縮
室内にはスペーサを配置した。
[Examples] Tap water was treated with activated carbon-RO-deaeration membrane as raw water and passed through the electric deionization apparatus of FIG. The electric deionization device has three deionization chambers and an effective height of 66c.
m × width 11.2 cm × thickness 2.5 mm. As the ion exchange resin, a mixed resin of 60% anion exchange resin and 40% cation exchange resin was filled only in the desalting chamber. Spacers were placed in the concentration chamber.

【0043】通水量Q等は次の通りである。 Q=13.3L/Hr(脱塩室1室当り) r=0.9 s=0.3The water flow rate Q and the like are as follows. Q = 13.3L / Hr (per desalting chamber) r = 0.9 s = 0.3

【0044】コンピュータで前記式(9),(10)に
従って生産水シリカ濃度を10ppbにするように自動
計算、自動制御させた。
The computer automatically calculated and controlled the concentration of produced water silica to 10 ppb according to the above equations (9) and (10).

【0045】運転当初は供給水のシリカ濃度を100p
pbで運転したところ、自動計算された0.3Aの電流
値で運転が行われた。また、運転500時間からシリカ
を添加し供給水のシリカ濃度を500ppbとしたとこ
ろ、自動計算された0.8Aで運転が行われた。運転時
間1000時間より1500時間まで、シリカ濃度を2
00ppbで運転したところ、自動計算された電流値
0.4Aで運転が行われた。
At the beginning of operation, the silica concentration in the feed water is 100 p
When operated at pb, the operation was performed at an automatically calculated current value of 0.3A. Further, when silica was added from the operation for 500 hours and the silica concentration of the feed water was set to 500 ppb, the operation was performed at 0.8 A which was automatically calculated. Run time 1000 hours to 1500 hours, silica concentration 2
When operated at 00 ppb, operation was performed at an automatically calculated current value of 0.4 A.

【0046】処理水のシリカを連続モニターした結果
は、いずれの時期においても8〜10ppbであり、自
動制御運転により低シリカ濃度の生産水を生産できるこ
とが認められた。
The result of continuous monitoring of silica in the treated water was 8 to 10 ppb at any time, and it was confirmed that the product water having a low silica concentration can be produced by the automatic control operation.

【0047】[0047]

【発明の効果】以上の通り、本発明によると、目標とす
る濃度の生産水を確実に生産するよう電気脱イオン装置
を制御することができる。
As described above, according to the present invention, the electric deionization apparatus can be controlled so as to reliably produce the target concentration of the product water.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施の形態に係る方法が適用される電気脱イオ
ン装置の制御方法の模式図である。
FIG. 1 is a schematic diagram of a control method of an electrodeionization apparatus to which a method according to an embodiment is applied.

【図2】実施の形態に係る方法が適用される電気脱イオ
ン装置の制御方法の模式図である。
FIG. 2 is a schematic diagram of a control method of an electrodeionization apparatus to which the method according to the embodiment is applied.

【図3】電気脱イオン装置の一般的な構成を示す模式的
な断面図である。
FIG. 3 is a schematic cross-sectional view showing a general configuration of an electric deionization device.

【符号の説明】[Explanation of symbols]

2 脱塩室 5 濃縮室 8 ポンプ 9 イオン交換膜 10 イオン交換体 11 陽極 12 陰極 13 アニオン交換膜 14 カチオン交換膜 15 濃縮室 16 脱塩室 17 陽極室 18 陰極室 2 desalination room 5 Concentration room 8 pumps 9 Ion exchange membrane 10 Ion exchanger 11 Anode 12 cathode 13 Anion exchange membrane 14 Cation exchange membrane 15 Concentration room 16 Desalination chamber 17 Anode chamber 18 Cathode chamber

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4D006 GA17 JA30Z KA22 KE02Q KE03Q KE04Q KE12P KE13R KE18P KE18R PA01 PB02 PB23 PC01 PC11 PC31 PC42 4D061 DA01 DB18 DC18 EA09 EB01 EB04 EB13 EB19 EB37 EB39 FA08 GA05 GC12 GC18    ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 4D006 GA17 JA30Z KA22 KE02Q                       KE03Q KE04Q KE12P KE13R                       KE18P KE18R PA01 PB02                       PB23 PC01 PC11 PC31 PC42                 4D061 DA01 DB18 DC18 EA09 EB01                       EB04 EB13 EB19 EB37 EB39                       FA08 GA05 GC12 GC18

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 水を脱イオン処理するための電気脱イオ
ン装置を制御する方法であって、 該電気脱イオン装置は、陽極及び陰極と、該陽極と陰極
との間にカチオン交換膜及びアニオン交換膜を配置する
ことに形成された濃縮室及び脱塩室とを備えており、 該脱塩室に原水が通水されて生産水として取り出され、
該濃縮室に濃縮水が通水され、 該陽極と陰極との間に電源装置から直流電流が通電さ
れ、この電流量が制御装置によって制御される電気脱イ
オン装置の制御方法において、 該電気脱イオン装置における脱イオン動作モデルを設定
し、 該脱塩室に導入される原水の濃度及び流量と、目標とす
る生産水の濃度とを該制御装置に入力して目標とする生
産水の濃度を達成するために必要な電流値を演算し、こ
の演算された電流を該陽極と陰極の間に通電することを
特徴とする電気脱イオン装置の制御方法。
1. A method for controlling an electrodeionization apparatus for deionizing water, the electrodeionization apparatus comprising an anode and a cathode, a cation exchange membrane and an anion between the anode and the cathode. It is provided with a concentrating chamber and a desalting chamber formed by disposing an exchange membrane, and raw water is passed through the desalting chamber to be taken out as product water,
Concentrated water is passed through the concentrating chamber, a direct current is passed from a power supply between the anode and the cathode, and the amount of this current is controlled by a controller. The deionization operation model in the ion apparatus is set, and the concentration and flow rate of the raw water introduced into the desalting chamber and the target concentration of the produced water are input to the control device to set the target concentration of the produced water. A method for controlling an electric deionization apparatus, comprising: calculating a current value necessary for achieving the current value; and applying the calculated current between the anode and the cathode.
【請求項2】 請求項1において、前記原水の一部と、
前記濃縮室流出水の一部とを濃縮室に導入し、濃縮室流
出水の残部を電気脱イオン装置外に排出する方法であっ
て、 脱塩室内の流量Q、 濃縮室内の流量s・Q、 電気脱イオン装置外に排出する濃縮水量r・Qをそれぞ
れ設定しておき、これらの設定値を予め前記制御装置に
入力しておき、原水の濃度と目標生産水濃度とに応じて
前記電流値を演算することを特徴とする電気脱イオン装
置の制御方法。
2. The part of the raw water according to claim 1,
A method of introducing a part of the effluent water of the concentration chamber into the concentration chamber and discharging the rest of the effluent water of the concentration chamber to the outside of the electric deionization device, wherein a flow rate Q in the desalting chamber and a flow rate s · Q in the concentration chamber , The concentrated water amounts r and Q to be discharged to the outside of the electric deionization device are respectively set, and these set values are input to the control device in advance, and the current is changed according to the concentration of the raw water and the target production water concentration. A method for controlling an electric deionization device, which comprises calculating a value.
【請求項3】 請求項1又は2において、前記電気脱イ
オン装置における脱イオン動作モデルは、前記脱塩室か
ら濃縮室へのイオンの移動量を、 [脱塩室内のイオン濃度、及び、電流値に比例して脱塩
室から濃縮室へ移動するイオン移動量]から、 [イオン交換膜の膜面積、及び、濃縮室内のイオン濃度
と脱塩室内のイオン濃度との濃度差に比例して濃縮室か
ら脱塩室へ移動するイオン移動量]を減算した量として
設定したものであることを特徴とする電気脱イオン装置
の制御方法。
3. The deionization operation model in the electric deionization device according to claim 1, wherein the amount of ions transferred from the deionization chamber to the concentration chamber is defined by: [ion concentration in the deionization chamber and current The amount of ions transferred from the demineralization chamber to the concentration chamber in proportion to the value] [in proportion to the membrane area of the ion exchange membrane and the concentration difference between the ion concentration in the concentration chamber and the ion concentration in the deionization chamber The amount of ions transferred from the concentration chamber to the deionization chamber] is set as a subtracted amount.
【請求項4】 請求項1ないし3のいずれか1項におい
て、前記脱塩室は、一端側に原水の流入口を備え、他端
側に生産水の流出口を備えたものであり、 前記動作モデルは、この一端側の所定範囲では弱電解質
が脱塩室から濃縮室へ移動しないものとして設定されて
いることを特徴とする電気脱イオン装置の制御方法。
4. The desalination chamber according to claim 1, wherein the demineralization chamber has an inlet for raw water at one end and an outlet for product water at the other end. The operation model is set such that the weak electrolyte does not move from the deionization chamber to the concentration chamber within a predetermined range on the one end side.
【請求項5】 請求項4において、前記所定範囲を、電
気脱イオン装置の電流効率に比例して設定することを特
徴とする電気脱イオン装置の制御方法。
5. The method for controlling an electric deionization device according to claim 4, wherein the predetermined range is set in proportion to the current efficiency of the electric deionization device.
JP2002081174A 2002-03-22 2002-03-22 Control method of electrodeionization apparatus Expired - Fee Related JP4026385B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002081174A JP4026385B2 (en) 2002-03-22 2002-03-22 Control method of electrodeionization apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002081174A JP4026385B2 (en) 2002-03-22 2002-03-22 Control method of electrodeionization apparatus

Publications (2)

Publication Number Publication Date
JP2003275767A true JP2003275767A (en) 2003-09-30
JP4026385B2 JP4026385B2 (en) 2007-12-26

Family

ID=29206537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002081174A Expired - Fee Related JP4026385B2 (en) 2002-03-22 2002-03-22 Control method of electrodeionization apparatus

Country Status (1)

Country Link
JP (1) JP4026385B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018235366A1 (en) * 2017-06-23 2018-12-27 栗田工業株式会社 Method for controlling and method for designing electrical deionization device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018235366A1 (en) * 2017-06-23 2018-12-27 栗田工業株式会社 Method for controlling and method for designing electrical deionization device
CN110612154A (en) * 2017-06-23 2019-12-24 栗田工业株式会社 Control method and design method of electrodeionization device
KR20200020665A (en) 2017-06-23 2020-02-26 쿠리타 고교 가부시키가이샤 Control method and design method of electric deionizer
JPWO2018235366A1 (en) * 2017-06-23 2020-04-23 栗田工業株式会社 Control method and design method of electric deionization apparatus
KR102521139B1 (en) * 2017-06-23 2023-04-12 쿠리타 고교 가부시키가이샤 Control method and design method of electric deionization device

Also Published As

Publication number Publication date
JP4026385B2 (en) 2007-12-26

Similar Documents

Publication Publication Date Title
JP3273718B2 (en) Method for treating water to be treated by electrodeionization and apparatus used for the method
US4871431A (en) Apparatus for the removal of dissolved solids from liquids using bipolar membranes
US6274019B1 (en) Electrodeionization apparatus
US4969983A (en) Apparatus and process for the removal of acidic and basic gases from fluid mixtures using bipolar membranes
TWI740026B (en) Control method and design method of electrodeionization device
US20060027457A1 (en) Apparatus for electrodeionization and method for operating the same
WO2005049507A1 (en) Water treatment system and method
SU1757725A1 (en) Method and membrane apparatus for reducing salt content of aqueous solutions
JP3951642B2 (en) Method for operating electrodeionization apparatus, electrodeionization apparatus and electrodeionization system
JP5277864B2 (en) Operation method of electric desalination equipment
JP2002143854A (en) Electrochemical water treating device
JP5114307B2 (en) Electric deionized water production equipment
CN104370352A (en) Electrodialysis system and method capable of continuous concentration and desalting
TW201725181A (en) Water treatment device and water treatment method
JP2003275767A (en) Method for controlling electric deionizer
JP2004033977A (en) Operation method of electrically deionizing apparatus
JPH10323673A (en) Deionized water-producing method
JP4599668B2 (en) Operation method of electrodeionization equipment
CN112823050B (en) Electrodialysis method with high recovery rate
JP7176586B2 (en) Control method for electrodeionization apparatus
JP2003266077A (en) Electrical deionizing device
JP4631148B2 (en) Pure water production method
WO2023002693A1 (en) Method for operating pure-water production system
JP3951816B2 (en) Electric regenerative deionized water production method
JP4660890B2 (en) Operation method of electrodeionization equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070918

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071001

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101019

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4026385

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101019

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111019

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111019

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121019

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121019

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131019

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees