JP2003275182A - Boosting device for cuff and hemadynamometer with the boosting device - Google Patents

Boosting device for cuff and hemadynamometer with the boosting device

Info

Publication number
JP2003275182A
JP2003275182A JP2002087558A JP2002087558A JP2003275182A JP 2003275182 A JP2003275182 A JP 2003275182A JP 2002087558 A JP2002087558 A JP 2002087558A JP 2002087558 A JP2002087558 A JP 2002087558A JP 2003275182 A JP2003275182 A JP 2003275182A
Authority
JP
Japan
Prior art keywords
cuff
valve
pressure
fluid transfer
compressed air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002087558A
Other languages
Japanese (ja)
Inventor
Takahiro Soma
孝博 相馬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Terumo Corp
Original Assignee
Terumo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Terumo Corp filed Critical Terumo Corp
Priority to JP2002087558A priority Critical patent/JP2003275182A/en
Publication of JP2003275182A publication Critical patent/JP2003275182A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a boosting device for a cuff capable of reducing the number of parts, easily maintaining a reliability, and shortening a boosting time and a hemadynamometer with the boosting device. <P>SOLUTION: In these boosting device for the cuff and the hemadynamometer with the boosting device, valve devices 4, 5, and 6 are installed in a fluid feed passage between the cuff 1 and a pressurizing pump 8, a fluid feed passage between the pressurizing pump 8 and a pressurizing container 7, and a fluid feed passage between the cuff 1 and the pressurizing container 7. A pressure sensor 9 is connected to fluid feed passages for connecting the valve devices 4 and 5 to the pressurizing pump 8 to use a low power valve device, and easily maintain the reliability of the entire boosting device and hemadynamometer. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、血圧測定に際し
て、生体の一部を圧迫するカフを昇圧する昇圧装置、お
よびそれを備える血圧計に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a booster for boosting a cuff that compresses a part of a living body when measuring blood pressure, and a sphygmomanometer including the booster.

【0002】[0002]

【従来の技術】血圧測定に際して、上腕部などの生体の
一部に巻回されたカフに空気を圧送してこれを昇圧し、
これにより生体の一部を圧迫する一方、そのカフ内から
空気を徐々に排気することにより圧迫圧力(カフ圧力)
を所定の速度(例えば、2〜3mmHg/秒)で減圧さ
せ、その減圧過程でのカフ圧力の変化に伴い生成消滅す
るコロトコフ音の検出や心拍に同期して生じるカフの圧
力振動(脈波)の大きさの変化を検出することにより、
血圧(最高血圧、最低血圧)を決定する電子血圧計が従
来から提案されている。このような電子血圧計について
は、血圧測定に要する時間を短くするために、血圧測定
に直接関わらないカフの昇圧時間はできるだけ短くする
ことが望ましい。
2. Description of the Related Art When measuring blood pressure, air is pressure-fed to a cuff wrapped around a part of a living body such as an upper arm to pressurize the air,
As a result, a part of the living body is compressed, while the air is gradually exhausted from the inside of the cuff to compress the pressure (cuff pressure).
Is depressurized at a predetermined speed (for example, 2 to 3 mmHg / sec), and the pressure vibration (pulse wave) of the cuff that is generated in synchronization with the detection of Korotkoff sound that is generated and disappears with the change of the cuff pressure in the depressurization process and the heartbeat is generated. By detecting the change in the size of
An electronic sphygmomanometer for determining blood pressure (maximum blood pressure, minimum blood pressure) has been conventionally proposed. In such an electronic sphygmomanometer, in order to shorten the time required for blood pressure measurement, it is desirable to shorten the pressurization time of the cuff that is not directly related to blood pressure measurement as much as possible.

【0003】そして、特公平6―57200号公報に
は、圧縮空気を蓄積する圧力容器(タンク)を用いて、
カフの昇圧時には、予め蓄積されている圧縮空気をカフ
に放出することで急速にカフ圧力の昇圧を行い、この圧
縮空気の放出だけで目標カフ圧力に達しない場合に、電
磁開閉弁により流体移送路を切り替えて、電動ポンプ
(加圧ポンプ)から空気を圧送することで、昇圧時間を
短縮する昇圧装置を備える血圧計が開示されている。
In Japanese Patent Publication No. 6-57200, a pressure vessel (tank) for storing compressed air is used.
When the pressure of the cuff is increased, the pressure of the cuff is rapidly increased by releasing the pre-stored compressed air to the cuff, and if the target cuff pressure is not reached only by the release of this compressed air, the fluid is transferred by the solenoid opening / closing valve. A sphygmomanometer is disclosed that includes a booster device that shortens the boosting time by switching the path and pumping air from an electric pump (pressurizing pump).

【0004】しかしながら、このような従来のカフの昇
圧時間を短縮する血圧計では、図3(特公平6―572
00号の第1図)にみるように、カフの圧力と圧力容器
(タンク)の圧力を検出するために、独立した2つの圧
力センサが必要となる構成となっている。圧力センサで
は、精度のよい圧力検出が要求されるため、従来の昇圧
装置では、2つの圧力センサに関わる電子回路は各々に
ついて必要となり(すなわち、精度の要求される電子部
品の点数が多くなり)、それらが調整されて搭載される
必要があった。従って、従来のカフの昇圧装置およびそ
れを備える血圧計は全体として信頼性を維持するのか難
しかった。
However, in such a conventional sphygmomanometer for shortening the pressurizing time of the cuff, as shown in FIG. 3 (Japanese Patent Publication No. 6-572).
As shown in FIG. 1 of No. 00), two independent pressure sensors are required to detect the pressure of the cuff and the pressure of the pressure container (tank). Since the pressure sensor requires accurate pressure detection, in the conventional booster, electronic circuits related to the two pressure sensors are required for each (that is, the number of electronic components requiring accuracy increases). , They had to be adjusted and mounted. Therefore, it has been difficult to maintain the reliability of the conventional cuff pressurizing device and the sphygmomanometer including the same.

【0005】また、従来のカフの昇圧時間を短縮する血
圧計の配管(流体移送路)の構成では、電磁開閉弁の中
を流れる圧縮空気の流れる方向が変化するようになって
いた。すなわち、図3(特公平6―57200号の第1
図)にみるように、電動ポンプからタンクへ圧縮空気を
蓄積する場合とタンクからカフに圧縮空気を放出する場
合で、電磁開閉弁MV1を通して圧縮空気の流れる方向
が異なっていた。このため、電磁開閉弁MV1にローパ
ワーで作動する電力消費の少ない電磁開閉弁を用いる場
合には、弁の中を流れる圧縮空気(加圧空気)の流れの
方向によっては、圧縮空気の動圧(流体から受ける圧
力)の影響を受け弁を開いた状態に維持することが難し
かった。
Further, in the structure of the piping (fluid transfer path) of the sphygmomanometer for shortening the pressurization time of the conventional cuff, the flow direction of the compressed air flowing through the electromagnetic on-off valve has been changed. That is, FIG. 3 (first of Japanese Patent Publication No. 6-57200)
As shown in the drawing), the direction in which the compressed air flows through the electromagnetic on-off valve MV1 is different between the case where the compressed air is accumulated in the tank from the electric pump and the case where the compressed air is discharged from the tank to the cuff. Therefore, when an electromagnetic on-off valve that operates at low power and consumes less power is used as the electromagnetic on-off valve MV1, the dynamic pressure of the compressed air may vary depending on the direction of the compressed air (pressurized air) flowing through the valve. It was difficult to keep the valve open under the influence of (pressure received from fluid).

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は、圧力
センサを1つにすることで、部品点数を少なくし信頼性
を維持するのが容易である、昇圧時間を短縮できるカフ
の昇圧装置およびそれを備える血圧計を提供することに
ある。さらに、電磁開閉弁の中を流れる圧縮空気の流れ
る方向を一方向とすることで、ローパワーで作動する電
磁開閉弁を用いることができる、昇圧時間を短縮できる
カフの昇圧装置およびそれを備える血圧計を提供するこ
とにある。
SUMMARY OF THE INVENTION It is an object of the present invention to reduce the number of parts and maintain reliability by using a single pressure sensor, and a pressure increasing device for a cuff capable of shortening the pressure increasing time. And to provide a sphygmomanometer equipped with the same. Furthermore, by setting the flow direction of the compressed air flowing in the electromagnetic on-off valve to be one direction, the electromagnetic on-off valve that operates at low power can be used, and the pressure increasing device of the cuff capable of shortening the pressure increasing time and the blood pressure provided with the device. To provide the total.

【0007】[0007]

【課題を解決するための手段】上記目的は、下記の
(1)(2)(3)(4)(5)(6)(7)の発明に
よって達せられる。 (1)圧縮空気を蓄積する圧力容器と、該圧力容器に圧
縮空気を供給するための加圧ポンプと、生体の一部を圧
迫するためのカフと、該カフと該加圧ポンプとの間の流
体移送路に設けられた第1弁装置と、該圧力容器と該加
圧ポンプとの間の流体移送路に設けられた第2弁装置と
を備え、該第1弁装置と該第2弁装置は該加圧ポンプ側
の流体移送路を介して連結し、圧力センサが該第1弁装
置と該第2弁装置と該加圧ポンプとの間の流体移送路に
接続していることを特徴とするカフの昇圧装置。 (2)該カフと該圧力容器との間の流体移送路に設けら
れた第3弁装置を備え、該第3弁装置と該第1弁装置は
該カフ側の流体移送路を介して連結し、該第3弁装置と
該第2弁装置は該圧力容器側の流体移送路を介して連結
していることを特徴とする上記(1)に記載のカフの昇
圧装置。 (3)微速排気弁と急速排気弁とが、該カフと該第1弁
装置と該第3弁装置との間の流体移送路に接続している
ことを特徴とする上記(2)に記載のカフの昇圧装置。 (4)圧縮空気を蓄積する圧縮空気蓄積手段と、該圧縮
空気蓄積手段に圧縮空気を供給するための圧縮空気供給
手段と、生体の一部を圧迫するためのカフと、該カフと
該圧縮空気供給手段との間の流体移送路に設けられた第
1弁手段と、該圧縮空気蓄積手段と該圧縮空気供給手段
との間の流体移送路に設けられた第2弁手段とを備え、
該第1弁手段と該第2弁手段は該圧縮空気供給手段側の
流体移送路を介して連結し、圧力検出手段が該第1弁手
段と該第2弁手段と該圧縮空気供給手段との間の流体移
送路に接続していることを特徴とするカフの昇圧装置。 (5)該カフと該圧縮空気蓄積手段との間の流体移送路
に設けられた第3弁手段を備え、該第3弁手段と該第1
弁手段は該カフ側の流体移送路を介して連結し、該第3
弁手段と該第2弁手段は該圧縮空気蓄積手段側の流体移
送路を介して連結していることを特徴とする上記(4)
に記載のカフの昇圧装置。 (6)微速排気手段と急速排気手段とが、該カフと該第
1弁手段と該第3弁手段との間の流体移送路に接続して
いることを特徴とする上記(5)に記載のカフの昇圧装
置。 (7)上記(1)ないし(6)のいずれかに記載のカフ
の昇圧装置を備える血圧計。
The above objects can be achieved by the inventions of (1), (2), (3), (4), (5), (6) and (7) below. (1) A pressure vessel for accumulating compressed air, a pressure pump for supplying compressed air to the pressure vessel, a cuff for compressing a part of a living body, and between the cuff and the pressure pump And a second valve device provided in a fluid transfer path between the pressure vessel and the pressurizing pump. The first valve device and the second valve device are provided in the fluid transfer path between the pressure vessel and the pressurizing pump. The valve device is connected via the fluid transfer passage on the side of the pressurizing pump, and the pressure sensor is connected to the fluid transfer passage between the first valve device, the second valve device and the pressurizing pump. Cuff booster characterized by. (2) A third valve device provided in a fluid transfer path between the cuff and the pressure vessel is provided, and the third valve device and the first valve device are connected via the fluid transfer path on the cuff side. The third valve device and the second valve device are connected via a fluid transfer path on the pressure container side, and the pressure increasing device for the cuff according to (1) above. (3) The slow speed exhaust valve and the quick exhaust valve are connected to a fluid transfer path between the cuff, the first valve device and the third valve device. Cuff booster. (4) Compressed air accumulating means for accumulating compressed air, compressed air supplying means for supplying compressed air to the compressed air accumulating means, cuff for compressing a part of a living body, the cuff and the compression A first valve means provided in a fluid transfer path between the air supply means and a second valve means provided in a fluid transfer path between the compressed air storage means and the compressed air supply means;
The first valve means and the second valve means are connected via a fluid transfer path on the side of the compressed air supply means, and the pressure detection means includes the first valve means, the second valve means and the compressed air supply means. A pressure increasing device for a cuff, characterized in that it is connected to a fluid transfer path between the two. (5) A third valve means is provided in a fluid transfer path between the cuff and the compressed air accumulating means, and the third valve means and the first valve means are provided.
The valve means is connected via the fluid transfer path on the cuff side,
The valve means and the second valve means are connected via a fluid transfer path on the compressed air accumulating means side (4).
Cuff pressurizing device according to. (6) The above-mentioned (5), wherein the slow speed exhaust means and the quick exhaust means are connected to a fluid transfer path between the cuff, the first valve means and the third valve means. Cuff booster. (7) A sphygmomanometer including the cuff pressurizing device according to any one of (1) to (6).

【0008】[0008]

【発明の実施の形態】以下、本発明のカフの昇圧装置お
よびそれを備える血圧計を、好適実施例に基いて、詳し
く述べる。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, a cuff pressurizing device of the present invention and a sphygmomanometer including the same will be described in detail based on preferred embodiments.

【0009】図1は、本発明の実施例のカフの昇圧装置
およびそれを備える血圧計の空気系と測定系のブロック
図である。
FIG. 1 is a block diagram of an air system and a measurement system of a cuff pressurizing device and a sphygmomanometer including the same according to an embodiment of the present invention.

【0010】カフ1はチュ−ブ(流体移送路)17によ
り微速排気弁2、急速排気弁3、圧力センサ(圧力検出
部)9、第1弁装置(第1エア−遮断バルブ)4、第3
弁装置(第3エア−遮断バルブ)6とに連結している。
そして、第1弁装置(第1エア−遮断バルブ)4のカフ
1側のチューブと第3弁装置(第3エア−遮断バルブ)
6のカフ1側のチューブは連結している。すなわち、第
1弁装置(第1エア−遮断バルブ)4と第3弁装置(第
3エア−遮断バルブ)6はカフ1側のチューブ(流体移
送路)17を介して連結している。
The cuff 1 uses a tube (fluid transfer path) 17 for a slow exhaust valve 2, a rapid exhaust valve 3, a pressure sensor (pressure detector) 9, a first valve device (first air-cutoff valve) 4, and a first valve device. Three
It is connected to a valve device (third air-cutoff valve) 6.
The tube on the cuff 1 side of the first valve device (first air-cutoff valve) 4 and the third valve device (third air-cutoff valve)
The tubes on the side of the cuff 1 of 6 are connected. That is, the first valve device (first air-shutoff valve) 4 and the third valve device (third air-shutoff valve) 6 are connected via the tube (fluid transfer path) 17 on the cuff 1 side.

【0011】エア−貯留タンク(圧力容器)7はチュ−
ブ(流体移送路)19により第2弁装置(第2エア−遮
断バルブ)5と第3弁装置(第3エア−遮断バルブ)6
とに連結している。そして、第2弁装置(第2エア−遮
断バルブ)5のエア−貯留タンク(圧力容器)7側のチ
ューブと第3弁装置(第3エア−遮断バルブ)6のエア
−貯留タンク(圧力容器)7側のチューブは連結してい
る。すなわち、第2弁装置(第2エア−遮断バルブ)5
と第3弁装置(第3エア−遮断バルブ)6はエア−貯留
タンク(圧力容器)7側のチューブ(流体移送路)19
を介して連結している。
The air-storage tank (pressure vessel) 7 is a tu
The second valve device (second air-shutoff valve) 5 and the third valve device (third air-shutoff valve) 6 by the valve (fluid transfer path) 19.
It is linked to and. The tube on the side of the air-storage tank (pressure container) 7 of the second valve device (second air-shutoff valve) 5 and the air-storage tank (pressure container of the third valve device (third air-shutoff valve) 6) ) The tube on the 7 side is connected. That is, the second valve device (second air-cutoff valve) 5
And the third valve device (third air-cutoff valve) 6 is a tube (fluid transfer path) 19 on the side of the air-storage tank (pressure container) 7
Are connected via.

【0012】加圧ポンプ8はチュ−ブ(流体移送路)1
8により第1弁装置(第1エア−遮断バルブ)4と第2
弁装置(第2エア−遮断バルブ)5とに連結している。
そして、第1弁装置(第1エア−遮断バルブ)4の加圧
ポンプ8側のチューブと第2弁装置(第2エア−遮断バ
ルブ)5の加圧ポンプ8側のチューブは連結している。
すなわち、第1弁装置(第1エア−遮断バルブ)4と第
2弁装置(第2エア−遮断バルブ)5は、加圧ポンプ8
側のチューブ(流体移送路)18を介して連結してい
る。また、圧力センサ9は、第1弁装置(第1エア−遮
断バルブ)4と第2弁装置(第2エア−遮断バルブ)5
と加圧ポンプ8の間を連結するチューブ(流体移送路)
18に接続していて、チューブ(流体移送路)18の中
の圧力を検出できるようになっている。
The pressurizing pump 8 is a tube (fluid transfer path) 1
8 the first valve device (first air-cutoff valve) 4 and the second
It is connected to a valve device (second air-cutoff valve) 5.
The tube on the pressure pump 8 side of the first valve device (first air-cutoff valve) 4 and the tube on the pressure pump 8 side of the second valve device (second air-shutoff valve) 5 are connected. .
That is, the first valve device (first air-shutoff valve) 4 and the second valve device (second air-shutoff valve) 5 are the pressurizing pump 8
They are connected via a tube (fluid transfer path) 18 on the side. The pressure sensor 9 includes a first valve device (first air-cutoff valve) 4 and a second valve device (second air-cutoff valve) 5.
And a tube that connects the pressure pump 8 (fluid transfer path)
It is connected to 18 so that the pressure in the tube (fluid transfer path) 18 can be detected.

【0013】微速排気弁2は、測定時のカフ1の減圧ス
ピ−ドを2〜3mmHg/秒にコントロ−ルすることが
可能な自立型微速排気弁である。急速排気弁3はノ−マ
ルオ−プンタイプの電磁開閉弁でCPU13により制御
される。圧力センサ9は、例えば、ヒズミゲ−ジを使用
したダイヤフラム方式の変換器、あるいは半導体圧力変
換素子が使用される。第1弁装置(第1エア−遮断バル
ブ)4と第2弁装置(第2エア−遮断バルブ)5と第3
弁装置(第3エア−遮断バルブ)6はノ−マルクロ−ズ
タイプの電磁開閉弁でCPU13により制御される。加
圧ポンプ8は乾電池21によってモ−タ駆動するダイヤ
フラム型加圧ポンプでCPU13により制御される。加
圧容器(エア−貯留タンク)7は圧縮空気圧に耐える剛
性を持った200〜500cc程度の容積をもつタンク
である。
The slow speed exhaust valve 2 is a self-standing slow speed exhaust valve capable of controlling the depressurizing speed of the cuff 1 at the time of measurement to 2-3 mmHg / sec. The quick exhaust valve 3 is a normally-open type electromagnetic opening / closing valve and is controlled by the CPU 13. As the pressure sensor 9, for example, a diaphragm type converter using a strain gauge or a semiconductor pressure converting element is used. First valve device (first air-shutoff valve) 4, second valve device (second air-shutoff valve) 5, third
The valve device (third air-cutoff valve) 6 is a normally closed type electromagnetic on-off valve, and is controlled by the CPU 13. The pressurizing pump 8 is a diaphragm-type pressurizing pump driven by a dry battery 21 and is controlled by the CPU 13. The pressurized container (air-storage tank) 7 is a tank having a rigidity of withstanding compressed air pressure and having a volume of about 200 to 500 cc.

【0014】圧力センサ9のアナログ出力は増幅器10
にて増幅される。増幅器10からのアナログ出力は、加
圧時のポンプノイズ、および、CPU13の発生するク
ロックノイズである高周波ノイズをカットする遮断周波
数が15Hz程度のロ−パスフィルタ11に入力され
る。ロ−パスフィルタ11のアナログ出力はA/Dコン
バ−タ12によりデジタル値に変換される。CPU13
は定期的(20ms毎)にA/Dコンバ−タ12の出力を
取り込む。圧力センサ9は、前述のように、チューブ1
8の中の圧力を検出するものであるが、後述の処理動作
のフローチャートで説明するように、3つのエアー遮断
バルブの開閉により、カフ圧力とエアー貯留タンク内の
圧力の双方を検出できる。
The analog output of the pressure sensor 9 is an amplifier 10
Is amplified in. The analog output from the amplifier 10 is input to a low-pass filter 11 having a cutoff frequency of about 15 Hz that cuts pump noise during pressurization and high-frequency noise that is clock noise generated by the CPU 13. The analog output of the low pass filter 11 is converted into a digital value by the A / D converter 12. CPU13
Takes in the output of the A / D converter 12 periodically (every 20 ms). The pressure sensor 9 is the tube 1 as described above.
Although the pressure in 8 is detected, both the cuff pressure and the pressure in the air storage tank can be detected by opening and closing the three air shutoff valves, as will be described later in the flowchart of the processing operation.

【0015】CPU13は、入力された圧力信号(カフ
圧力信号)から、脈波信号を分離してカフ圧力信号と脈
波信号を記憶する記憶機能と記憶した脈波信号から脈波
振幅を演算する脈波レベル検出機能とこの脈波レベルと
カフ圧力信号により最高血圧と最低血圧を決定する機能
を有する。さらに、決定した最高血圧と最低血圧を表示
器14に表示する機能を有する。電源SW(スイッチ)
15は、乾電池21を接続するスイッチである。端子1
51からは、急速排気弁3、第1エア−遮断バルブ4、
第2エア−遮断バルブ5、第3エア−遮断バルブ6、加
圧ポンプ8に電源が供給される。端子152からは、電
源安定部よって安定にされた電源が、圧力センサ9、ア
ナログ増幅器10、ローパスフィルタ11、A/Dコン
バ−タ12、CPU13、表示器14に供給される。測
定SW(スイッチ)16は血圧測定を開始するときにC
PU13に測定(計測)開始を入力するスイッチであ
る。
The CPU 13 separates the pulse wave signal from the input pressure signal (cuff pressure signal) and stores the cuff pressure signal and the pulse wave signal, and calculates the pulse wave amplitude from the stored pulse wave signal. It has a pulse wave level detection function and a function of determining the systolic blood pressure and the diastolic blood pressure based on the pulse wave level and the cuff pressure signal. Further, it has a function of displaying the determined maximum blood pressure and minimum blood pressure on the display unit 14. Power SW (switch)
Reference numeral 15 is a switch for connecting the dry battery 21. Terminal 1
From 51, the quick exhaust valve 3, the first air-cutoff valve 4,
Power is supplied to the second air-shutoff valve 5, the third air-shutoff valve 6, and the pressurizing pump 8. From the terminal 152, the power stabilized by the power stabilizing unit is supplied to the pressure sensor 9, the analog amplifier 10, the low-pass filter 11, the A / D converter 12, the CPU 13, and the display 14. The measurement SW (switch) 16 is C when starting the blood pressure measurement.
It is a switch for inputting a measurement (measurement) start to the PU 13.

【0016】図2は、本発明の実施例のカフの昇圧装置
およびそれを備える血圧計の具体的な処理動作の概略を
示すフロ−チャ−トである。
FIG. 2 is a flow chart showing an outline of a concrete processing operation of the cuff pressurizing device and the sphygmomanometer including the same according to the embodiment of the present invention.

【0017】電源SW15をONにすると、第1エア−
遮断バルブ4を開き圧力検出部(圧力センサ)9の出力
について0セットが行われる(ST1)。その後、第1
エア−遮断バルブ4を閉じ、第2エア−遮断バルブ5を
開き(ST2)、加圧ポンプ8がONになる(ST
3)。加圧ポンプ8がONになって、チューブ18を介
して加圧空気(圧縮空気)のエアー貯留タンク7への送
気(供給)が開始されると、ポンプ駆動時間監視タイマ
ーがスタートして予め設定された規定時間(所定時間)
が経過したか否かがチェックされる(ST4)。この加
圧空気のエアー貯留タンク7への送気(供給)の間、圧
力センサ9はチューブ18、19を介してエアー貯留タ
ンク7の圧力を検出して、加圧空気(圧縮空気)のエア
ー貯留タンク7への蓄積状態を監視する。所定時間が経
過したら加圧ポンプをOFFにし(ST5)、第2エア
−遮断バルブ5を閉じて(ST6)、ポンプ駆動時間監
視タイマーをストップする。尚、ここでは、加圧空気の
エアー貯留タンク7への送気は、時間によって制御され
ているが、圧力センサ9により検出されるエアー貯留タ
ンク7の内部の圧力が所定圧力(例えば、400mmH
g)に達すると加圧ポンプをOFFにするように圧力に
よって制御することもできる。
When the power switch SW15 is turned on, the first air-
The shutoff valve 4 is opened, and the output of the pressure detection unit (pressure sensor) 9 is set to 0 (ST1). Then the first
The air shutoff valve 4 is closed, the second air shutoff valve 5 is opened (ST2), and the pressure pump 8 is turned on (ST
3). When the pressurizing pump 8 is turned on and the supply (supply) of the compressed air (compressed air) to the air storage tank 7 via the tube 18 is started, the pump drive time monitoring timer is started in advance. Set specified time (predetermined time)
It is checked whether or not has passed (ST4). During the air supply (supply) of the pressurized air to the air storage tank 7, the pressure sensor 9 detects the pressure of the air storage tank 7 via the tubes 18 and 19, and the compressed air is compressed. The accumulation state in the storage tank 7 is monitored. When a predetermined time has elapsed, the pressurizing pump is turned off (ST5), the second air-cutoff valve 5 is closed (ST6), and the pump drive time monitoring timer is stopped. Here, although the supply of the pressurized air to the air storage tank 7 is controlled by time, the pressure inside the air storage tank 7 detected by the pressure sensor 9 is a predetermined pressure (for example, 400 mmH).
It is also possible to control by pressure so that the pressurizing pump is turned off when g) is reached.

【0018】測定SW16がONにされると(ST
7)、急速排気弁3を閉じ(ST8)、第1エア−遮断
バルブ4と第3エア−遮断バルブ6を開き(ST9)、
チューブ17、18を介して圧力センサ9でカフ圧力を
検出しながら、エアー貯留タンク7の内部の圧縮空気を
チューブ17、19を通してカフに送気(供給)して、
カフ圧力が第1所定圧力(例えば、100mmHg)に
達したならば第3エア−遮断バルブ6を閉じる(ST1
1)。引き続き、加圧ポンプ8をONにして(ST1
2)、チューブ17、18を通して、加圧ポンプの加圧
空気の送気によりカフ圧力を上昇させる。圧力センサ9
によって、カフ圧力が最高血圧以上の第2設定圧力に達
したことを検出したならば(ST13)、加圧ポンプを
OFFにする(ST14)。尚、ここでは、エアー貯留
タンク7の内部の圧縮空気のカフへの送給は、圧力セン
サ9で検出されるカフ圧力が第1所定圧力(例えば、1
00mmHg)になった時点で停止するように制御され
ているが、圧力センサ9によって検出されるカフ圧力の
上昇の割合が小さくなる時点でエアー貯留タンク7の内
部の圧縮空気のカフへの送給を停止するように制御する
こともできる。
When the measurement SW16 is turned on (ST
7), the quick exhaust valve 3 is closed (ST8), the first air-cutoff valve 4 and the third air-cutoff valve 6 are opened (ST9),
While the cuff pressure is detected by the pressure sensor 9 via the tubes 17 and 18, the compressed air inside the air storage tank 7 is sent (supplied) to the cuff through the tubes 17 and 19.
When the cuff pressure reaches the first predetermined pressure (for example, 100 mmHg), the third air-cutoff valve 6 is closed (ST1.
1). Then, turn on the pressure pump 8 (ST1
2) The cuff pressure is increased by supplying pressurized air from the pressure pump through the tubes 17 and 18. Pressure sensor 9
When it is detected that the cuff pressure has reached the second set pressure equal to or higher than the systolic blood pressure (ST13), the pressurizing pump is turned off (ST14). In addition, here, the compressed air in the air storage tank 7 is fed to the cuff when the cuff pressure detected by the pressure sensor 9 is the first predetermined pressure (for example, 1).
It is controlled so as to stop when the pressure becomes 00 mmHg), but when the rate of increase in the cuff pressure detected by the pressure sensor 9 becomes small, the compressed air in the air storage tank 7 is fed to the cuff. Can also be controlled to stop.

【0019】カフ圧力が最高血圧以上の設定圧力(第2
設定圧力)に達して加圧ポンプをOFFにされて後、カ
フ圧力は微速排気弁2により2〜3mmHg/秒で減圧
される。この減圧過程で、チューブ17、18を介して
圧力センサ9で検出されるカフ圧力の信号から脈波信号
の抽出が開始され(ST15)、脈波レベルとして脈波
振幅が演算され(ST16)、演算された脈波振幅がそ
の時点でのカフ圧力と共に記憶される。拍出毎の脈波振
幅は比較され、脈波振幅の最大値(最大脈波振幅)が検
出され(ST17)記憶される(ST18)。記憶され
た最大脈波振幅から最低血圧と最高血圧に該当する脈波
振幅が演算される。拍出毎の脈波振幅が最低血圧に該当
する振幅となる時点でのカフ圧力を最低血圧として検出
する(ST19)。最低血圧が検出されると、急速排気
弁3が開き(ST20)、カフ圧力は大気圧まで減圧さ
れる。次に、記憶されている脈波振幅から最高血圧に該
当する振幅となる時点でのカフ圧力が最高血圧として検
出され(ST21)、検出された最低血圧と共に、表示
器(LCD)14に表示される(ST22)。
The set pressure at which the cuff pressure is higher than the systolic blood pressure (second
After the pressurizing pump is turned off after reaching the set pressure), the cuff pressure is reduced by the slow speed exhaust valve 2 at 2 to 3 mmHg / sec. In this depressurization process, extraction of the pulse wave signal is started from the cuff pressure signal detected by the pressure sensor 9 via the tubes 17 and 18 (ST15), and the pulse wave amplitude is calculated as the pulse wave level (ST16). The calculated pulse wave amplitude is stored together with the cuff pressure at that time. The pulse wave amplitudes for each beat are compared, and the maximum value of the pulse wave amplitude (maximum pulse wave amplitude) is detected (ST17) and stored (ST18). From the stored maximum pulse wave amplitude, pulse wave amplitudes corresponding to the minimum blood pressure and the maximum blood pressure are calculated. The cuff pressure at the time when the pulse wave amplitude at each beat becomes the amplitude corresponding to the minimum blood pressure is detected as the minimum blood pressure (ST19). When the minimum blood pressure is detected, the quick exhaust valve 3 is opened (ST20), and the cuff pressure is reduced to atmospheric pressure. Next, the cuff pressure at the time when the amplitude corresponding to the systolic blood pressure is obtained from the stored pulse wave amplitude is detected as systolic blood pressure (ST21), and is displayed on the display (LCD) 14 together with the detected diastolic blood pressure. (ST22).

【0020】その後、ST2に戻り、第1エア−遮断バ
ルブ4を閉じ、第2エア−遮断バルブ5を開き、加圧ポ
ンプ8をONにし(ST3)、所定時間の圧縮空気の送
給を行い、エア−貯留タンク7に次回の測定の時の昇圧
用のエア−を貯留して、測定SW16の入力を待つ。
Thereafter, returning to ST2, the first air-shutoff valve 4 is closed, the second air-shutoff valve 5 is opened, the pressurizing pump 8 is turned on (ST3), and the compressed air is fed for a predetermined time. , Air for increasing pressure at the time of the next measurement is stored in the air-storage tank 7 and the input of the measurement SW 16 is waited for.

【0021】以上、本発明のカフの昇圧装置およびそれ
を備える血圧計の好適実施例を説明したが、本発明の好
適実施例と従来例との大きな相違は、図1と図3の比較
から、明らかなように、本発明では3つの弁装置(エア
−遮断バルブ)と1つの圧力センサを有し、従来例で
は、2つの弁装置(エア−遮断バルブ)と2つの圧力セ
ンサを有するという点である。
The preferred embodiments of the pressure increasing device for a cuff of the present invention and the sphygmomanometer equipped with the same have been described above. The major difference between the preferred embodiment of the present invention and the conventional example is from the comparison of FIGS. 1 and 3. As is apparent, the present invention has three valve devices (air-cutoff valves) and one pressure sensor, and the conventional example has two valve devices (air-cutoff valves) and two pressure sensors. It is a point.

【0022】ところで、弁装置では、開閉のみの制御で
あることから、特に調整される電子部品を多く用いる必
要はないことから故障の可能性は小さい。しかし、圧力
センサでは、精度のよい圧力検出が要求されるため、セ
ンサ毎に、調整された、増幅器、ロ−パスフィルタ、A
/Dコンバ−タなど多くの電子部品が必要となり、一般
に、弁装置に比べて、故障の可能性は大きい。
By the way, since the valve device controls only opening and closing, it is not necessary to use many electronic parts to be adjusted, so that the possibility of failure is small. However, since a pressure sensor requires accurate pressure detection, an adjusted amplifier, low-pass filter, A
Many electronic components such as a / D converter are required, and the possibility of failure is generally greater than that of the valve device.

【0023】そのため、本発明では、カフの昇圧装置お
よび血圧計の全体としては、従来例に比べて、故障の可
能性が小さく、信頼性を維持するのか容易となってい
る。
Therefore, in the present invention, the entire cuff pressurizing device and sphygmomanometer have less possibility of failure as compared with the conventional example, and it is easy to maintain reliability.

【0024】また、本発明のチューブ(流体移送路)と
弁装置の配置では、3つの弁装置(エア−遮断バルブ)
4、5、6のいずれの中においても、圧縮空気(加圧空
気)は、一方向に流れる構成となっている。すなわち、
圧縮空気は、第1エア−遮断バルブ4では、加圧ポンプ
8側からカフ1側に向かい、第2エアー遮断バルブで
は、加圧ポンプ8側からエアー貯留タンク7側に向か
い、第3エアー遮断バルブでは、エアー貯留タンク7側
からカフ1側に向かい、この方向が切り替わることはな
い。このため、圧縮空気の流れの方向によっては、圧縮
空気の動圧(流体から受ける圧力)の影響を受け弁を開
いた状態に維持することが難しいローパワーで作動する
電力消費の少ない弁装置(エアー遮断バルブ)について
も、この動圧の不都合な影響を受けないように配置する
ことで用いることができる。
Further, in the arrangement of the tube (fluid transfer path) and the valve device of the present invention, three valve devices (air-cutoff valve) are used.
Compressed air (pressurized air) flows in one direction in any of 4, 5, and 6. That is,
The compressed air flows from the pressure pump 8 side to the cuff 1 side in the first air-shutoff valve 4, and from the pressure pump 8 side to the air storage tank 7 side in the second air cutoff valve to the third air cutoff. The valve does not switch from the air storage tank 7 side to the cuff 1 side, and this direction is not switched. Therefore, depending on the flow direction of the compressed air, it is difficult to maintain the valve in an open state under the influence of the dynamic pressure of the compressed air (pressure received from the fluid). The air shutoff valve) can also be used by arranging it so as not to be adversely affected by the dynamic pressure.

【0025】本発明のカフの昇圧装置およびそれを備え
る血圧計については、好適実施例をもとに説明したが、
本発明はこれらに限定されるものではない。特に、実施
例の血圧計は、カフ圧力の減圧過程で生じるカフの圧力
振動(脈波)の大きさの変化を検出することにより、血
圧(最高血圧、最低血圧)を決定するものであるが、拍
動に伴い生成消滅するコロトコフ音により血圧(最高血
圧、最低血圧)を決定するものであってもよい。
The cuff pressurizing device and the sphygmomanometer including the same according to the present invention have been described based on the preferred embodiments.
The present invention is not limited to these. In particular, the sphygmomanometer of the embodiment determines the blood pressure (maximum blood pressure, minimum blood pressure) by detecting a change in the magnitude of pressure vibration (pulse wave) of the cuff that occurs during the depressurization process of the cuff pressure. The blood pressure (maximum blood pressure, minimum blood pressure) may be determined by the Korotkoff sound that is generated and disappears with the pulsation.

【0026】[0026]

【発明の効果】以上説明してきたように、本発明の急速
加圧を実現するカフの昇圧装置、およびそれを用いる血
圧計では、1つの圧力センサでカフ圧力と加圧容器の圧
力が検出できるように空気系が構成されていることか
ら、2つの圧力センサ(複数の圧力センサ)を用いてカ
フ圧力と加圧容器の圧力を別々に検出することに比べ
て、精度の要求される電子部品の点数が少なくてすむ。
従って、それらを調整して構成される、カフの昇圧装置
およびそれを用いる血圧計の全体としての信頼性を維持
するのが容易である。さらに、3つの電磁開閉弁と流体
移送路の適切な配置によって、電磁開閉弁の中を流れる
圧縮空気の流れる方向を一方向にすることができること
から、ローパワーで作動する電磁開閉弁を用いることが
できる。
As described above, in the pressure increasing device for a cuff and the sphygmomanometer using the same according to the present invention, one pressure sensor can detect the cuff pressure and the pressure of the pressure vessel. Since the air system is configured as described above, electronic components that are required to have a higher accuracy than those in which the cuff pressure and the pressure of the pressurized container are detected separately by using two pressure sensors (a plurality of pressure sensors). The score of is small.
Therefore, it is easy to maintain the overall reliability of the cuff pressurizing device configured by adjusting them and the sphygmomanometer using the same. Further, by appropriately arranging the three electromagnetic on-off valves and the fluid transfer path, the flow direction of the compressed air flowing through the electromagnetic on-off valves can be set to one direction, so that the electromagnetic on-off valves operating at low power should be used. You can

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例のカフの昇圧装置およびそれを
備える血圧計の空気系と測定系のブロック図である。
FIG. 1 is a block diagram of an air system and a measurement system of a cuff pressurizing device and a sphygmomanometer including the same according to an embodiment of the present invention.

【図2】本発明の実施例のカフの昇圧装置およびそれを
備える血圧計の具体的な処理動作の概略を示すフロ−チ
ャ−トである。
FIG. 2 is a flowchart showing an outline of a specific processing operation of the cuff pressurizing device and the sphygmomanometer including the same according to the embodiment of the present invention.

【図3】従来例のカフの昇圧装置およびそれを備える血
圧計の空気系と測定系のブロック図である。
FIG. 3 is a block diagram of an air system and a measurement system of a conventional cuff pressurizing device and a sphygmomanometer including the same.

【符号の説明】[Explanation of symbols]

1…カフ 2…微速排気弁 3…急速排気弁 4…第1弁装置(第1エア−遮断バルブ) 5…第2弁装置(第2エア−遮断バルブ) 6…第3弁装置(第3エア−遮断バルブ) 7…圧力容器(エアー貯留タンク) 8…加圧ポンプ(電動ポンプ) 9…圧力センサ 10…アナログ増幅器 11…ローパスフィルタ 12…A/Dコンバ−タ 13…CPU 14…表示器(LCD) 15…電源スイッチ 151、152…端子 16…測定スイッチ 17、18、19…チューブ(流体移送路) 20…電源安定部 21…乾電池 1 ... Cuff 2 ... Slow speed exhaust valve 3 ... quick exhaust valve 4 ... First valve device (first air-cutoff valve) 5 ... Second valve device (second air-cutoff valve) 6 ... Third valve device (third air-cutoff valve) 7 ... Pressure vessel (air storage tank) 8 ... Pressure pump (electric pump) 9 ... Pressure sensor 10 ... Analog amplifier 11 ... Low-pass filter 12 ... A / D converter 13 ... CPU 14 ... Display (LCD) 15 ... Power switch 151, 152 ... Terminal 16 ... Measurement switch 17, 18, 19 ... Tube (fluid transfer path) 20 ... Power supply stabilization unit 21 ... Batteries

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】圧縮空気を蓄積する圧力容器と、該圧力容
器に圧縮空気を供給するための加圧ポンプと、生体の一
部を圧迫するためのカフと、該カフと該加圧ポンプとの
間の流体移送路に設けられた第1弁装置と、該圧力容器
と該加圧ポンプとの間の流体移送路に設けられた第2弁
装置とを備え、該第1弁装置と該第2弁装置は該加圧ポ
ンプ側の流体移送路を介して連結し、圧力センサが該第
1弁装置と該第2弁装置と該加圧ポンプとの間の流体移
送路に接続していることを特徴とするカフの昇圧装置。
1. A pressure vessel for storing compressed air, a pressure pump for supplying compressed air to the pressure vessel, a cuff for compressing a part of a living body, the cuff and the pressure pump. A first valve device provided in a fluid transfer path between the pressure vessel and the pressurizing pump, and a second valve device provided in a fluid transfer path between the pressure vessel and the pressurizing pump. The second valve device is connected via the fluid transfer passage on the pressure pump side, and the pressure sensor is connected to the fluid transfer passage between the first valve device, the second valve device and the pressure pump. Cuff booster characterized by having.
【請求項2】該カフと該圧力容器との間の流体移送路に
設けられた第3弁装置を備え、該第3弁装置と該第1弁
装置は該カフ側の流体移送路を介して連結し、該第3弁
装置と該第2弁装置は該圧力容器側の流体移送路を介し
て連結していることを特徴とする請求項1に記載のカフ
の昇圧装置。
2. A third valve device provided in a fluid transfer path between the cuff and the pressure vessel, wherein the third valve device and the first valve device are connected via a fluid transfer path on the cuff side. 2. The cuff pressurizing device according to claim 1, wherein the third valve device and the second valve device are connected via a fluid transfer path on the pressure vessel side.
【請求項3】微速排気弁と急速排気弁とが、該カフと該
第1弁装置と該第3弁装置との間の流体移送路に接続し
ていることを特徴とする請求項2に記載のカフの昇圧装
置。
3. The slow speed exhaust valve and the quick exhaust valve are connected to a fluid transfer path between the cuff, the first valve device and the third valve device. Cuff booster as described.
【請求項4】圧縮空気を蓄積する圧縮空気蓄積手段と、
該圧縮空気蓄積手段に圧縮空気を供給するための圧縮空
気供給手段と、生体の一部を圧迫するためのカフと、該
カフと該圧縮空気供給手段との間の流体移送路に設けら
れた第1弁手段と、該圧縮空気蓄積手段と該圧縮空気供
給手段との間の流体移送路に設けられた第2弁手段とを
備え、該第1弁手段と該第2弁手段は該圧縮空気供給手
段側の流体移送路を介して連結し、圧力検出手段が該第
1弁手段と該第2弁手段と該圧縮空気供給手段との間の
流体移送路に接続していることを特徴とするカフの昇圧
装置。
4. Compressed air storage means for storing compressed air,
Compressed air supply means for supplying compressed air to the compressed air storage means, a cuff for compressing a part of a living body, and a fluid transfer path between the cuff and the compressed air supply means are provided. A first valve means and a second valve means provided in a fluid transfer path between the compressed air accumulating means and the compressed air supply means, the first valve means and the second valve means including the compressed air; It is connected via a fluid transfer path on the side of the air supply means, and the pressure detection means is connected to a fluid transfer path between the first valve means, the second valve means and the compressed air supply means. And a cuff booster.
【請求項5】該カフと該圧縮空気蓄積手段との間の流体
移送路に設けられた第3弁手段を備え、該第3弁手段と
該第1弁手段は該カフ側の流体移送路を介して連結し、
該第3弁手段と該第2弁手段は該圧縮空気蓄積手段側の
流体移送路を介して連結していることを特徴とする請求
項4に記載のカフの昇圧装置。
5. A third valve means provided in a fluid transfer path between the cuff and the compressed air accumulating means, wherein the third valve means and the first valve means are the fluid transfer path on the cuff side. Connected via
5. The cuff pressurizing device according to claim 4, wherein the third valve means and the second valve means are connected via a fluid transfer path on the compressed air accumulating means side.
【請求項6】微速排気手段と急速排気手段とが、該カフ
と該第1弁手段と該第3弁手段との間の流体移送路に接
続していることを特徴とする請求項5に記載のカフの昇
圧装置。
6. The slow speed exhaust means and the rapid exhaust means are connected to a fluid transfer path between the cuff, the first valve means and the third valve means. Cuff booster as described.
【請求項7】請求項1ないし請求項6のいずれかに記載
のカフの昇圧装置を備える血圧計。
7. A sphygmomanometer including the cuff pressurizing device according to claim 1.
JP2002087558A 2002-03-27 2002-03-27 Boosting device for cuff and hemadynamometer with the boosting device Pending JP2003275182A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002087558A JP2003275182A (en) 2002-03-27 2002-03-27 Boosting device for cuff and hemadynamometer with the boosting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002087558A JP2003275182A (en) 2002-03-27 2002-03-27 Boosting device for cuff and hemadynamometer with the boosting device

Publications (1)

Publication Number Publication Date
JP2003275182A true JP2003275182A (en) 2003-09-30

Family

ID=29207402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002087558A Pending JP2003275182A (en) 2002-03-27 2002-03-27 Boosting device for cuff and hemadynamometer with the boosting device

Country Status (1)

Country Link
JP (1) JP2003275182A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009124666A (en) * 2007-11-12 2009-06-04 Anywire:Kk Photoelectric sensor
JP2009299871A (en) * 2008-06-17 2009-12-24 Omron Healthcare Co Ltd Check valve structure, diaphragm pump, and sphygmomanometer
JP2015188646A (en) * 2014-03-28 2015-11-02 テルモ株式会社 Blood pressure measuring device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009124666A (en) * 2007-11-12 2009-06-04 Anywire:Kk Photoelectric sensor
JP2009299871A (en) * 2008-06-17 2009-12-24 Omron Healthcare Co Ltd Check valve structure, diaphragm pump, and sphygmomanometer
JP2015188646A (en) * 2014-03-28 2015-11-02 テルモ株式会社 Blood pressure measuring device

Similar Documents

Publication Publication Date Title
EP1591061B1 (en) Blood pressure measurement cuff wrapping control devices
JP3675796B2 (en) Blood pressure measurement device
WO2011052417A1 (en) Electronic blood pressure meter
JP2009284966A (en) Blood pressure information measuring instrument and indicator acquisition method
WO2012011353A1 (en) Electronic blood pressure sphygmomanometer
JPS61125327A (en) Blood pressure measuring apparatus
JPH0511845Y2 (en)
JP6241304B2 (en) Electronic blood pressure monitor and connection cuff type determination method
JP2003275182A (en) Boosting device for cuff and hemadynamometer with the boosting device
JP2015146894A5 (en)
JP3818853B2 (en) Electronic blood pressure monitor
JP3147256B2 (en) Non-invasive blood pressure measurement device
JP2002034938A (en) Sphygmomanometer
JPWO2006137231A1 (en) Pulse wave measuring device that can reduce manufacturing costs
JPH07313473A (en) Linear boosting type blood pressure measuring instrument
JP3002596B2 (en) Pressure pulse wave detector
TW201130461A (en) High-accurate hemadynamometer and method of using the same
JP5112767B2 (en) Blood pressure measurement device
JP3041936B2 (en) Electronic sphygmomanometer
JPH07236616A (en) Blood pressure monitoring device
JP2615858B2 (en) Electronic sphygmomanometer
JPH0480690B2 (en)
JP4352952B2 (en) Blood pressure measuring device
JP6823054B2 (en) Detection device used for blood pressure measurement system
JPH047216B2 (en)