JP2003274470A - Bone conduction voice vibration detecting element, manufacturing method of bone conduction voice vibration detecting element, and voice recognition system - Google Patents

Bone conduction voice vibration detecting element, manufacturing method of bone conduction voice vibration detecting element, and voice recognition system

Info

Publication number
JP2003274470A
JP2003274470A JP2002076943A JP2002076943A JP2003274470A JP 2003274470 A JP2003274470 A JP 2003274470A JP 2002076943 A JP2002076943 A JP 2002076943A JP 2002076943 A JP2002076943 A JP 2002076943A JP 2003274470 A JP2003274470 A JP 2003274470A
Authority
JP
Japan
Prior art keywords
bone conduction
voice vibration
plate
conduction voice
members
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002076943A
Other languages
Japanese (ja)
Inventor
Yoshimasa Hijikata
啓暢 土方
Yoshiyasu Yamada
山田  芳靖
Taku Kaneko
金子  卓
Naoki Mitsumoto
光本  直樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2002076943A priority Critical patent/JP2003274470A/en
Publication of JP2003274470A publication Critical patent/JP2003274470A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a bone conduction voice vibration detecting element with a novel configuration and excellent practicality, and to provide a manufacturing method of the bone conduction voice vibration detecting element, and a voice recognition system. <P>SOLUTION: A fixed member 40, a polyimide film 42, an electrode plate 30, a piezoelectric bimorph 10a, a connection washer 20a, a piezoelectric bimorph 10b, a connection washer 20b, a piezoelectric bimorph 10c, a connection washer 20c, a piezoelectric bimorph 10d, a connection washer 20d, a piezoelectric bimorph 10e, an electrode plate 31, a polyimide film 43, and a fixed member 41 are stacked sequentially and a shaft 1 is penetrated through each member in this state. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は骨伝導音声振動を検
出する素子に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an element for detecting bone conduction voice vibration.

【0002】[0002]

【従来の技術】音声認識技術は、研究段階から実用段階
を迎え、現在、自動車用のカーナビゲーションシステム
等で広く採用されるようになってきており、その認識率
も静寂環境なら90%以上の数値が得られるようになっ
てきている。
2. Description of the Related Art Speech recognition technology has entered a practical stage from a research stage and is now widely used in car navigation systems for automobiles, etc., and its recognition rate is 90% or more in a quiet environment. The numbers are becoming available.

【0003】しかしながら、周囲に騒音がある環境で
は、著しく認識率が低下することが一般的に知られてい
る。例えば、車室内においては、自動車のエンジン音や
風切り音、ロードノイズなどが目立った騒音源である
し、同乗者のおしゃべりの声やラジオ音声などで認識が
阻害されることが多々ある。そのような問題を解決する
ために従来より様々な対策が行われており、指向性マイ
クロホンの使用や、信号処理的な手法ではスペクトラム
サブトラクション法などの採用により、一定の効果をあ
げている。
However, it is generally known that the recognition rate is significantly reduced in an environment where there is noise in the surroundings. For example, in the passenger compartment, engine noise, wind noise, road noise, and the like are prominent noise sources, and recognition is often hindered by a passenger's chattering voice or radio voice. In order to solve such a problem, various measures have been taken so far, and a certain effect has been achieved by using a directional microphone and adopting a spectrum subtraction method as a signal processing method.

【0004】しかし、スペクトラムサブトラクション法
は、定常的なノイズの除去効果は大きいものの人の声な
どの非定常的なノイズの除去効果は小さく、十分でな
い。そのほかにも色々な雑音分離技術が提案されている
が、まだ実用に供されているものは少ない。
However, although the spectrum subtraction method has a great effect of removing stationary noise, it has a small effect of removing non-stationary noise such as human voice, and is not sufficient. Various other noise separation techniques have been proposed, but few have been put to practical use.

【0005】一方、人がしゃべって発せられた音声は空
気中を伝搬するものの他に、しゃべった本人の頭骨や皮
膚組織などを通って、内耳の聴覚神経に到達して伝わる
音声が存在する。これは、一般的に骨伝導音と呼ばれて
いる。しゃべった自分の声を自分で聞く場合と、テープ
レコーダーなどに録音した声を聞き比べると違って聞こ
えるのは、自分の耳には空気を伝わってきた音(気導
音)と骨伝導音が両方とも入ってくるからだといわれて
いる。この骨伝導音は固体を伝搬する音声であり、イン
ピーダンスの違いから空気中を伝わる騒音があったとし
ても、それから受ける影響は小さい。従って、周囲が騒
音環境であっても、発話者の声を高い対騒音信号比で取
得することが可能となり、それを用いれば騒音環境下で
も音声認識を実現することが可能であると考えられる。
On the other hand, in addition to the voice propagated in the air, a voice spoken by a person is transmitted by reaching the auditory nerve of the inner ear through the skull or skin tissue of the person who speaks. This is generally called bone conduction sound. The difference between hearing your own voice when you listen to yourself and the voice recorded on a tape recorder is that you hear different sounds (air conduction sound) and bone conduction sound in your ears. It is said that both come in. This bone conduction sound is a sound that propagates through a solid body, and even if there is noise that propagates in the air due to the difference in impedance, the effect of it is small. Therefore, it is possible to obtain the voice of the speaker with a high noise-to-noise signal ratio even in a noisy environment, and it is possible to realize voice recognition even in a noisy environment by using it. .

【0006】骨伝導音振動を外耳道で検出する振動検出
素子としては、特開昭51−94218号公報、特開昭
58−80997号公報および特開昭58−94298
号公報に示されるように圧電型のものや、マグネティッ
ク型のものなどがあった。
As a vibration detecting element for detecting bone conduction sound vibration in the external auditory meatus, Japanese Patent Laid-Open Nos. 51-94218, 58-80997, and 58-94298 are known.
There are a piezoelectric type and a magnetic type as shown in the publication.

【0007】しかしながら、音質が単一の梁の周波数特
性により決定されるので、骨伝導により減衰する音声振
動信号に対しては高域(1.0Hz以上)の出力が小さ
く、気道音マイクロフォンに比べ音質が著しく劣るとい
う欠点があった。
However, since the sound quality is determined by the frequency characteristics of a single beam, the output in the high range (1.0 Hz or higher) is small with respect to the voice vibration signal attenuated by bone conduction, which is lower than that of the airway sound microphone. It had the drawback of extremely poor sound quality.

【0008】この課題を解決するため、特開平8−19
5995号公報に開示された骨伝導音声振動検出素子に
おいては、図13に示すような構成を採用している。図
13において、ケース100内での支持部材101に対
し異なる固有振動数の複数の梁102,103が設けら
れ、それぞれの梁102,103は重り104,105
と検出部材106,107を有し、検出部材106,1
07の出力を電気的に加算している。
To solve this problem, Japanese Unexamined Patent Publication No. 8-19
The bone conduction voice vibration detection element disclosed in Japanese Patent No. 5995 has a configuration as shown in FIG. In FIG. 13, a plurality of beams 102 and 103 having different natural frequencies are provided to the support member 101 in the case 100, and the beams 102 and 103 respectively have weights 104 and 105.
And detecting members 106 and 107, and detecting members 106 and 1
The output of 07 is electrically added.

【0009】しかしながら、例えば外耳道のように狭い
場所で骨伝導音声振動を検出する場合、サイズ上の制約
のため少数の素子しか使用できないため、気道音に近い
音質および音声認識用の入力音声を出力することは困難
である。
However, when detecting bone conduction voice vibrations in a narrow place such as the ear canal, for example, only a small number of elements can be used due to size restrictions, so that sound quality close to airway sound and input voice for voice recognition are output. Is difficult to do.

【0010】[0010]

【発明が解決しようとする課題】本発明はこのような背
景の下になされたものであり、その目的は、新規な構成
にて実用性に優れた骨伝導音声振動検出素子、骨伝導音
声振動検出素子の製造方法および音声認識システムを提
供することにある。
SUMMARY OF THE INVENTION The present invention has been made under such a background, and an object thereof is a bone conduction voice vibration detecting element having a novel structure and excellent in practicality, and a bone conduction voice vibration. It is to provide a method of manufacturing a detection element and a voice recognition system.

【0011】[0011]

【課題を解決するための手段】請求項1に記載の骨伝導
音声振動検出素子によれば、シャフトに板材と連結部材
を交互に通すだけでよいため、小型化できるとともに、
検出素子の組立が容易になり、骨伝導音声振動検出素子
の生産性が向上する。
According to the bone conduction voice vibration detecting element of claim 1, since it is sufficient to pass the plate member and the connecting member alternately on the shaft, the size can be reduced, and
Assembly of the detection element is facilitated, and productivity of the bone conduction voice vibration detection element is improved.

【0012】請求項2に記載の骨伝導音声振動検出素子
によれば、シャフトの少なくとも一方の端面が平面とな
っているため、検出素子の組立精度が向上し、骨伝導音
声振動検出素子の生産性が向上する。
According to the bone conduction voice vibration detecting element of the second aspect, since at least one end surface of the shaft is a flat surface, the assembling accuracy of the detecting element is improved, and the bone conduction voice vibration detecting element is produced. The property is improved.

【0013】請求項4に記載の骨伝導音声振動検出素子
によれば、連結部材が導電性材料からなり圧電体が電気
的に直列に接続されているため、つまり、それぞれの圧
電体の出力を加算するため、小型化できるとともに、圧
電体の電気的接続が容易になり、骨伝導音声振動検出素
子の生産性が向上する。
According to the bone conduction voice vibration detecting element of the fourth aspect, since the connecting member is made of a conductive material and the piezoelectric bodies are electrically connected in series, that is, the output of each piezoelectric body is output. Because of the addition, the size can be reduced, the piezoelectric body can be easily electrically connected, and the productivity of the bone conduction voice vibration detection element can be improved.

【0014】請求項5に記載の骨伝導音声振動検出素子
によれば、骨伝導音声振動が板材に伝播する際に、高周
波成分ほど大きく増幅し伝達する伝達部材を介して伝わ
るため、骨伝導による減衰の大きい高域の振動に対する
検出感度を向上させることができる。
According to the bone conduction voice vibration detecting element of the fifth aspect, when the bone conduction voice vibration is propagated to the plate material, it is transmitted through the transmission member that amplifies and transmits the higher frequency component as much as possible. It is possible to improve the detection sensitivity for high-frequency vibration with large attenuation.

【0015】請求項6に記載の骨伝導音声振動検出素子
によれば、板材が、骨伝導音声振動を高周波成分ほど大
きく増幅し伝達する伝達部材を介して支持されているた
め、骨伝導による減衰の大きい高域の振動に対する検出
感度を向上させることができる。
According to the bone conduction sound vibration detection element of the sixth aspect, since the plate member is supported through the transmission member that amplifies and transmits the bone conduction sound vibration as much as a high frequency component, it is attenuated by bone conduction. It is possible to improve the detection sensitivity with respect to the vibration in the high frequency range where

【0016】請求項7,8,9に記載の骨伝導音声振動
検出素子によれば、機械的な振動の位相は同じでも、電
気的な位相は反転している状態を実現でき、共振周波数
毎の出力信号を加算した場合に、共振周波数間の感度を
向上させることができる。
According to the bone conduction voice vibration detecting element of the present invention, it is possible to realize a state in which the mechanical phase is the same but the electrical phase is reversed, and the resonance frequency is different for each resonance frequency. The sensitivity between the resonance frequencies can be improved when the output signals of 1 are added.

【0017】請求項10に記載のように、板材の梁の長
さのみで共振周波数を所定値に調整したときの梁の長さ
を「La」、自由端部分の重りと梁の長さで共振周波数
を所定値に調整したときの梁の長さを「Lb」、重りに
よって板材の先端にかかる荷重を「W」、板材の重さに
よって板材にかかる単位長さあたりの荷重を「w」とし
たとき、3・w・La4<8・W・Lb3を満たすLbを
有する板材を少なくとも1つ以上含むようにすると、発
生電圧が増大し感度を向上させることができる。
As described in claim 10, the length of the beam when the resonance frequency is adjusted to a predetermined value only by the length of the beam of the plate material is "La", and the weight of the free end portion and the length of the beam are used. The length of the beam when the resonance frequency is adjusted to a predetermined value is "Lb", the load applied to the tip of the plate material by the weight is "W", and the load per unit length applied to the plate material by the weight of the plate material is "w". In this case, if at least one plate material having Lb satisfying 3 · w · La 4 <8 · W · Lb 3 is included, the generated voltage increases and the sensitivity can be improved.

【0018】請求項11に記載の骨伝導音声振動検出素
子の製造方法によれば、請求項1に記載の骨伝導音声振
動検出素子を得ることができる。請求項12に記載のよ
うに、請求項1〜10のいずれか1項に記載の骨伝導音
声振動検出素子の出力を用い、音声認識させる音声認識
システムを構築するとよい。
According to the method for manufacturing a bone conduction voice vibration detecting element described in claim 11, the bone conduction voice vibration detecting element described in claim 1 can be obtained. According to a twelfth aspect, it is preferable to construct a voice recognition system for performing voice recognition using the output of the bone conduction voice vibration detection element according to any one of the first to tenth aspects.

【0019】[0019]

【発明の実施の形態】(第1の実施の形態)以下、この
発明を具体化した第1の実施の形態を図面に従って説明
する。
BEST MODE FOR CARRYING OUT THE INVENTION (First Embodiment) A first embodiment of the present invention will be described below with reference to the drawings.

【0020】図1は、本実施形態における骨伝導音声振
動検出素子の斜視図であり、図2は断面図である。ま
た、図3は、図2におけるA矢視図である。この骨伝導
音声振動検出素子は、骨伝導イヤホンマイクに用いられ
る。また、この骨伝導音声振動検出素子の出力は音声認
識装置本体に送られ、ここで音声認識が行われる。この
ように本検出素子の出力を用いて音声認識させる音声認
識システムを構築している。
FIG. 1 is a perspective view of a bone conduction voice vibration detecting element according to this embodiment, and FIG. 2 is a sectional view. Further, FIG. 3 is a view on arrow A in FIG. 2. This bone conduction voice vibration detection element is used in a bone conduction earphone microphone. The output of the bone conduction voice vibration detecting element is sent to the main body of the voice recognition device for voice recognition. In this way, a voice recognition system is constructed to perform voice recognition using the output of this detection element.

【0021】図2,3において、固定部材40、ポリイ
ミド膜42、電極板30、圧電体バイモルフ10a、連
結ワッシャ20a、圧電体バイモルフ10b、連結ワッ
シャ20b、圧電体バイモルフ10c、連結ワッシャ2
0c、圧電体バイモルフ10d、連結ワッシャ20d、
圧電体バイモルフ10e、電極板31、ポリイミド膜4
3、固定部材41が積層されている。この状態で各部材
にはシャフト1が貫通しており、シャフト1にて各部材
が連結支持されている。本例では、圧電体バイモルフ1
0a〜10eを、片持ち梁構造を有し骨伝導音声振動を
電気信号に変換するための板材として用いており、板材
全体が圧電体である。図4(a),(b),(c)に
は、電極板30,31、圧電体バイモルフ10a〜10
e、連結ワッシャ20a〜20dの単品の形状を示す。
さらに、図2に示す構造物が図1に示すようにプリント
回路基板50上に実装されている。
2 and 3, the fixing member 40, the polyimide film 42, the electrode plate 30, the piezoelectric bimorph 10a, the connecting washer 20a, the piezoelectric bimorph 10b, the connecting washer 20b, the piezoelectric bimorph 10c, and the connecting washer 2 are shown.
0c, a piezoelectric bimorph 10d, a connection washer 20d,
Piezoelectric bimorph 10e, electrode plate 31, polyimide film 4
3, the fixing member 41 is laminated. In this state, the shaft 1 penetrates each member, and the members are connected and supported by the shaft 1. In this example, the piezoelectric bimorph 1
0a to 10e are used as a plate material having a cantilever structure for converting bone conduction voice vibration into an electric signal, and the entire plate material is a piezoelectric body. 4A, 4B, and 4C, the electrode plates 30 and 31, the piezoelectric bimorphs 10a to 10 are shown.
e, the shape of each of the connecting washers 20a to 20d is shown.
Further, the structure shown in FIG. 2 is mounted on the printed circuit board 50 as shown in FIG.

【0022】詳しい構成は以下の通りである。図2に示
すように、シャフト1は直径が0.7mmの丸棒であ
り、その外周部は絶縁層としてのポリイミド膜(ポリイ
ミドチューブ)2で被覆されている。図4(b)に示す
ように、圧電体バイモルフ10a〜10eは長方形の板
状をなし、厚さが0.15mmであり、一端側にはシャ
フト1が通る透孔15が形成されている。また、各圧電
体バイモルフ10a〜10eは透孔15からの長さ(長
辺の長さ)が異なっている。詳しくは、図3のごとく圧
電体バイモルフ10a,10b,10c,10d,10
eの順に長くなっている。図4(c)に示すように、連
結ワッシャ20a〜20dは厚さが0.05mmのステ
ンレス鋼板材(SUS板)よりなり、円板状をなし、そ
の中心にはシャフト1が通る透孔25が形成されてい
る。図4(a)に示すように、電極板30,31は銅板
よりなり、長方形状をなし、厚さが0.3mmである。
また、この電極板30,31の一端部にはシャフト1が
通る透孔35が形成されている。
The detailed structure is as follows. As shown in FIG. 2, the shaft 1 is a round bar having a diameter of 0.7 mm, and the outer peripheral portion thereof is covered with a polyimide film (polyimide tube) 2 as an insulating layer. As shown in FIG. 4B, each of the piezoelectric bimorphs 10a to 10e has a rectangular plate shape and a thickness of 0.15 mm, and a through hole 15 through which the shaft 1 passes is formed at one end side. The piezoelectric bimorphs 10a to 10e are different in the length from the through hole 15 (long side length). Specifically, as shown in FIG. 3, piezoelectric bimorphs 10a, 10b, 10c, 10d, 10
It becomes longer in the order of e. As shown in FIG. 4 (c), the connecting washers 20a to 20d are made of a stainless steel plate material (SUS plate) having a thickness of 0.05 mm and have a disk shape, and a through hole 25 through which the shaft 1 passes at the center thereof. Are formed. As shown in FIG. 4A, the electrode plates 30 and 31 are made of copper plates, have a rectangular shape, and have a thickness of 0.3 mm.
Further, a through hole 35 through which the shaft 1 passes is formed at one end of each of the electrode plates 30 and 31.

【0023】図2に示すように、圧電体バイモルフ10
a〜10eが連結部材としての連結ワッシャ20a〜2
0dを挟んで積層されている。つまり、圧電体バイモル
フ10a〜10eと連結ワッシャ20a〜20dが交互
に配置されている。また、各圧電体バイモルフ10a〜
10eの一端側においてシャフト1が貫通し固定端を構
成し、各圧電体バイモルフ10a〜10eの他端側(自
由端)が同一方向(図2においては右側)に延びてい
る。圧電体バイモルフ10a〜10eと連結ワッシャ2
0a〜20dとの積層体における両側には電極板30,
31が配置されている。電極板30,31の一端側にお
いてシャフト1が貫通し、電極板30,31の他端側が
圧電体バイモルフ10a〜10eの自由端の延設方向と
は逆の方向(図2においては左側)に延びている。
As shown in FIG. 2, the piezoelectric bimorph 10
a to 10e are connection washers 20a to 2 as connection members
It is laminated with 0d in between. That is, the piezoelectric bimorphs 10a to 10e and the connection washers 20a to 20d are alternately arranged. In addition, each piezoelectric bimorph 10a-
The shaft 1 penetrates at one end side of 10e to form a fixed end, and the other end side (free end) of each of the piezoelectric bimorphs 10a to 10e extends in the same direction (right side in FIG. 2). Piezoelectric bimorphs 10a to 10e and connecting washers 2
On both sides of the laminated body with 0a to 20d, electrode plates 30,
31 are arranged. The shaft 1 penetrates at one end side of the electrode plates 30 and 31, and the other end side of the electrode plates 30 and 31 is in a direction (left side in FIG. 2) opposite to the extending direction of the free ends of the piezoelectric bimorphs 10a to 10e. It is extended.

【0024】さらに、圧電体バイモルフ10a〜10e
と連結ワッシャ20a〜20dと電極板30,31との
積層体における両側にはポリイミド膜42,43を介し
て固定部材40,41が配置されている。図2に示すよ
うに、固定部材40,41に形成した透孔45にシャフ
ト1が通っている。固定部材40,41はシャフト1に
固定されている。これにより、固定部材40,41間に
おいて、圧電体バイモルフ10a〜10eと連結ワッシ
ャ20a〜20dと電極板30,31とが加圧された状
態で支持(挟持)されている。ここで、連結ワッシャ2
0a〜20dは導電性材料からなることから、各圧電体
バイモルフ10a〜10e(広義の片持ち梁構成用板材
での圧電体)が電気的に直列に接続されている。さら
に、この直列回路は電極板30,31と電気的に接続さ
れている。
Further, the piezoelectric bimorphs 10a to 10e.
Fixing members 40 and 41 are arranged on both sides of the laminated body of the connecting washers 20a to 20d and the electrode plates 30 and 31 with polyimide films 42 and 43 interposed therebetween. As shown in FIG. 2, the shaft 1 passes through a through hole 45 formed in the fixing members 40 and 41. The fixing members 40 and 41 are fixed to the shaft 1. Thereby, between the fixing members 40 and 41, the piezoelectric bimorphs 10a to 10e, the connecting washers 20a to 20d, and the electrode plates 30 and 31 are supported (sandwiched) in a pressurized state. Here, the connection washer 2
Since 0a to 20d are made of a conductive material, the respective piezoelectric body bimorphs 10a to 10e (piezoelectric bodies in the broadly defined plate material for cantilever construction) are electrically connected in series. Furthermore, this series circuit is electrically connected to the electrode plates 30 and 31.

【0025】また、図1,3に示すように、電極板3
0,31はプリント回路基板50の上において導体パタ
ーン51,52と接合されている。そして、バイモルフ
の電極(30,31)、つまり、圧電体10a〜10e
の出力はプリント回路基板50の導体パターン51,5
2を通じて取り出される。
Further, as shown in FIGS.
0 and 31 are joined to the conductor patterns 51 and 52 on the printed circuit board 50. The bimorph electrodes (30, 31), that is, the piezoelectric bodies 10a to 10e.
Output is the conductor patterns 51, 5 of the printed circuit board 50.
Taken out through 2.

【0026】また、図1に示す各部材、即ち、基板5
0、電極板30,31、圧電体バイモルフ10a〜10
e等の部材は、ケース(図示略)に収納され、かつ当該
ケースは、検出素子を外耳道周辺の骨、皮膚、外耳道に
装着するためのプラスチック部材(図示略)に収納され
ている。そして、骨伝導による音声振動は、検出素子を
外耳道周辺の骨、皮膚、外耳道に装着するためのプラス
チック部材を介して、基板50や圧電体バイモルフ10
a〜10e等を収納するケースに伝達される。さらに、
プリント回路基板50に骨伝導音声振動が伝播し、ここ
から電極板30,31を介して圧電体バイモルフ10a
〜10eに骨伝導音声振動が伝わり電気信号に変換され
る。
Further, each member shown in FIG. 1, that is, the substrate 5
0, electrode plates 30, 31, piezoelectric bimorphs 10a to 10
Members such as e are housed in a case (not shown), and the case is housed in a plastic member (not shown) for mounting the detection element on the bone, skin, and ear canal around the ear canal. Then, the sound vibration caused by bone conduction is transmitted through the substrate 50 and the piezoelectric bimorph 10 through the plastic member for mounting the detection element on the bone, the skin, and the ear canal around the ear canal.
It is transmitted to a case that stores a to 10e and the like. further,
Bone conduction sound vibration propagates to the printed circuit board 50, and the piezoelectric bimorph 10a is transmitted from there through the electrode plates 30 and 31.
Bone conduction voice vibrations are transmitted to 10e and are converted into electric signals.

【0027】このように、片持ち梁構造を有し骨伝導音
声振動を電気信号に変換するための板材である圧電体バ
イモルフ10a〜10eが、複数、骨伝導音声振動が伝
播する部材に支持されている。圧電体バイモルフ10a
〜10eはその長さが異なり、共振周波数が異なってい
る。つまり、長さの異なる圧電体バイモルフによる梁を
複数設けて高感度化、広帯域化させている。
As described above, a plurality of piezoelectric bimorphs 10a to 10e, which have a cantilever structure and are plates for converting bone conduction voice vibrations into electric signals, are supported by a plurality of members through which bone conduction voice vibrations propagate. ing. Piezoelectric bimorph 10a
10e have different lengths and different resonance frequencies. That is, a plurality of beams made of piezoelectric bimorphs having different lengths are provided to increase the sensitivity and the band.

【0028】また、各圧電体バイモルフ10a〜10e
の電極同士はSUS製連結ワッシャ20a〜20dを介
して電気的に直列に接続されている。そして、骨伝導に
よる音声振動は、検出素子を外耳道周辺の骨、皮膚、外
耳道に装着するための、図示しないプラスチック部材、
検出素子を収納する図示しないケースに伝達され、さら
に基板50と電極板30,31を介して圧電体バイモル
フ10a〜10eに伝達される。この骨伝導による音声
振動は、伝達部材である電極板30,31において高域
ほど大きく増幅されるため、高域の感度が向上する。ま
た、伝達部材である電極板30,31を用いて基板50
と電気的に接続できることから電気的接続が容易であ
る。
Further, each piezoelectric bimorph 10a to 10e
The electrodes are electrically connected in series via SUS connecting washers 20a to 20d. Then, the sound vibration due to bone conduction is a plastic member (not shown) for mounting the detection element on the bone around the external auditory meatus, the skin, and the external auditory meatus,
It is transmitted to a case (not shown) that houses the detection element, and is further transmitted to the piezoelectric bimorphs 10a to 10e through the substrate 50 and the electrode plates 30 and 31. The sound vibration caused by the bone conduction is amplified to a higher level in the electrode plates 30 and 31 which are transmission members, so that the sensitivity in the high range is improved. In addition, the substrate 50 is formed by using the electrode plates 30 and 31 which are transmission members.
The electrical connection is easy because it can be electrically connected to.

【0029】次に、骨伝導音声振動検出素子の製造方法
(組立方法)を、図5を用いて説明する。図5(a)に
示すように、ポリイミド膜2で被覆したシャフト1を、
図示しない治具に固定し、シャフト1に固定部材40と
ポリイミド膜42を通す。そして、図5(b),(c)
に示すように、シャフト1に対し、電極板30、圧電体
バイモルフ10a、連結ワッシャ20a、圧電体バイモ
ルフ10b、連結ワッシャ20b、圧電体バイモルフ1
0c、連結ワッシャ20c、圧電体バイモルフ10d、
連結ワッシャ20d、圧電体バイモルフ10e、電極板
31、ポリイミド膜43、固定部材41を順に重ねてい
く。つまり、シャフト1に対し、圧電体バイモルフ10
a〜10eと連結ワッシャ20a〜20dが交互になる
とともにその両側に電極板30,31が位置し、さらに
その両側に固定部材40,41が位置するようにして、
各圧電体バイモルフ10a〜10eにおける固定端とな
る部位に形成した透孔15と、連結ワッシャ20a〜2
0dに形成した透孔25と、電極板30,31に形成し
た透孔35と、固定部材40,41に形成した透孔45
を通す。
Next, a manufacturing method (assembling method) of the bone conduction voice vibration detecting element will be described with reference to FIG. As shown in FIG. 5A, the shaft 1 covered with the polyimide film 2 is
After fixing to a jig (not shown), the fixing member 40 and the polyimide film 42 are passed through the shaft 1. And FIG. 5 (b), (c)
1, the electrode plate 30, the piezoelectric bimorph 10a, the connecting washer 20a, the piezoelectric bimorph 10b, the connecting washer 20b, the piezoelectric bimorph 1 are attached to the shaft 1.
0c, connection washer 20c, piezoelectric bimorph 10d,
The connecting washer 20d, the piezoelectric bimorph 10e, the electrode plate 31, the polyimide film 43, and the fixing member 41 are sequentially stacked. That is, with respect to the shaft 1, the piezoelectric bimorph 10
a-10e and connecting washers 20a-20d are alternated, the electrode plates 30 and 31 are located on both sides thereof, and the fixing members 40 and 41 are located on both sides thereof.
A through hole 15 formed at a fixed end portion of each of the piezoelectric bimorphs 10a to 10e and connecting washers 20a to 20e.
0d, through hole 25 formed in electrode plates 30 and 31, through hole 45 formed in fixing members 40 and 41
Pass through.

【0030】そして、固定部材40,41間において圧
力を加えながら、固定部材40,41とシャフト1の境
界部分にレーザ光を照射して固定部材40,41をシャ
フト1にレーザ溶接により固定する。つまり、固定部材
40,41の間に各圧電体バイモルフ10a〜10eと
連結ワッシャ20a〜20dと電極板30,31を挟持
する状態で固定部材40,41をシャフト1に溶接す
る。
Then, while applying pressure between the fixing members 40 and 41, the boundary portion between the fixing members 40 and 41 and the shaft 1 is irradiated with laser light to fix the fixing members 40 and 41 to the shaft 1 by laser welding. That is, the fixing members 40 and 41 are welded to the shaft 1 while sandwiching the piezoelectric bimorphs 10a to 10e, the connecting washers 20a to 20d, and the electrode plates 30 and 31 between the fixing members 40 and 41.

【0031】その後、シャフト1の両端における固定部
材40,41から突出した部位を切断する。そして、図
1に示すように、プリント回路基板50に実装する。詳
しくは、プリント回路基板50での導体パターン51,
52上に電極板30,31をハンダ付けする。
After that, the portions protruding from the fixing members 40 and 41 at both ends of the shaft 1 are cut. Then, as shown in FIG. 1, the printed circuit board 50 is mounted. Specifically, the conductor pattern 51 on the printed circuit board 50,
The electrode plates 30 and 31 are soldered on 52.

【0032】このようにして組立てられ、シャフト1を
用いることにより組立効率(速度)、位置決め精度が向
上する。以上のごとく本実施形態は、下記の特徴を有す
る。 (イ)各板材(圧電体バイモルフ)10a〜10eにおけ
る固定端となる部位が連結ワッシャ20a〜20dを挟
んで積層されるとともに、当該積層部にシャフト1が貫
通し、このシャフト1にて各板材10a〜10eが連結
支持されている。よって、シャフト1に板材10a〜1
0eと連結ワッシャ20a〜20dを交互に通すだけで
よいため、小型化できるとともに、検出素子の組立(梁
の組立)が容易になり、骨伝導音声振動検出素子の生産
性が向上する。 (ロ)シャフト1は、少なくとも一方の端面が平面であ
る。このようにシャフト1の端面に面取りがしてあるた
め、検出素子の組立精度が向上し、骨伝導音声振動検出
素子の生産性が向上する。 (ハ)連結ワッシャ20a〜20dは導電性材料からな
り、連結ワッシャ20a〜20dにて各板材(圧電体バ
イモルフ)10a〜10eでの圧電体(バイモルフ)が
電気的に直列に接続されている。このように、異なる共
振周波数を有する複数の圧電体バイモルフ(片持ち梁状
の圧電素子)を積層しそれぞれの圧電体の出力を加算す
る。そのため、小型化できるとともに、圧電体の組立
(梁の組立)と電気的接続が容易になり、骨伝導音声振
動検出素子の生産性が向上する。 (ニ)骨伝導音声振動を高周波成分ほど大きく増幅し伝
達する伝達部材よりなる電極板30,31がシャフト1
に対し貫通する状態で各板材(圧電体バイモルフ)10
a〜10eと共に連結支持され、この電極板30,31
が、骨伝導音声振動が伝播するプリント回路基板50に
固定され、電極板30,31を介して各圧電体バイモル
フ10a〜10e(各板材での圧電体)とプリント回路
基板50が電気的に接続されている。よって、骨伝導音
声振動が圧電体バイモルフ10a〜10e(梁構造を有
する板材)に伝播する際に、高周波成分ほど大きく増幅
し伝達する伝達部材(電極板)30,31を介して伝わ
るため、骨伝導による減衰の大きい高域の振動に対する
検出感度を向上させることができる。また、骨伝導によ
る音声振動の高域での減衰を補正するとともに、感度を
向上させることができ、気導音声に近い音質および音声
認識用の入力音声として使用可能な音質を確保すること
ができる。
By assembling in this way and using the shaft 1, the assembling efficiency (speed) and the positioning accuracy are improved. As described above, this embodiment has the following features. (A) The plate members (piezoelectric bimorphs) 10a to 10e are laminated with the fixed end portions sandwiching the connecting washers 20a to 20d, and the shaft 1 penetrates through the laminated portion. 10a-10e are connected and supported. Therefore, the shaft 1 is provided with the plate members 10a to 1a.
0e and the connecting washers 20a to 20d need only be passed through alternately, so that the size can be reduced, the assembly of the detection element (assembly of the beam) is facilitated, and the productivity of the bone conduction voice vibration detection element is improved. (B) At least one end surface of the shaft 1 is a flat surface. Since the end face of the shaft 1 is chamfered in this way, the assembly accuracy of the detection element is improved, and the productivity of the bone conduction voice vibration detection element is improved. (C) The connecting washers 20a to 20d are made of a conductive material, and the piezoelectric bodies (bimorphs) of the respective plate materials (piezoelectric bimorphs) 10a to 10e are electrically connected in series by the connecting washers 20a to 20d. In this way, a plurality of piezoelectric bimorphs (piezoelectric elements having a cantilever shape) having different resonance frequencies are laminated and the outputs of the respective piezoelectric bodies are added. Therefore, the size can be reduced, and the piezoelectric body assembly (beam assembly) and the electrical connection can be facilitated, and the productivity of the bone conduction voice vibration detection element can be improved. (D) The shaft 1 includes the electrode plates 30 and 31 formed of a transmission member that amplifies and transmits bone conduction voice vibration as much as high frequency components.
Each plate material (piezoelectric bimorph) 10 in a state of penetrating with respect to
The electrode plates 30 and 31 are connected and supported together with a to 10e.
Is fixed to the printed circuit board 50 through which bone conduction sound vibration propagates, and the piezoelectric body bimorphs 10a to 10e (piezoelectric body in each plate material) are electrically connected to the printed circuit board 50 via the electrode plates 30 and 31. Has been done. Therefore, when the bone conduction sound vibration propagates to the piezoelectric bimorphs 10a to 10e (a plate material having a beam structure), it is transmitted via the transmission members (electrode plates) 30 and 31 that amplify and transmit the higher frequency components as much as possible. It is possible to improve the detection sensitivity for high-frequency vibration that is greatly attenuated by conduction. Further, it is possible to correct the attenuation of the voice vibration due to bone conduction in the high frequency range and improve the sensitivity, and it is possible to secure the sound quality close to that of air conduction sound and the sound quality that can be used as an input sound for voice recognition. .

【0033】次に、変形例を説明する。図6に示すよう
に、固定部材40、圧電体バイモルフ10a、連結ワッ
シャ20a、圧電体バイモルフ10b、連結ワッシャ2
0b、圧電体バイモルフ10c、連結ワッシャ20c、
圧電体バイモルフ10d、連結ワッシャ20d、圧電体
バイモルフ10e、固定部材41を積層し、この状態で
各部材にシャフト1を貫通させてもよい。
Next, a modified example will be described. As shown in FIG. 6, the fixing member 40, the piezoelectric bimorph 10a, the connecting washer 20a, the piezoelectric bimorph 10b, and the connecting washer 2
0b, a piezoelectric bimorph 10c, a connection washer 20c,
The piezoelectric bimorph 10d, the connecting washer 20d, the piezoelectric bimorph 10e, and the fixing member 41 may be laminated, and the shaft 1 may be passed through each member in this state.

【0034】図7に示すように、シャフト1は円柱状で
はなく、角柱状であってもよく、例えば1辺が0.7m
mの角柱状とする。このように角柱のシャフト1を用い
れば圧電体バイモルフ(板材)10a〜10eの組立精
度が向上する。
As shown in FIG. 7, the shaft 1 may have a prismatic shape instead of a cylindrical shape. For example, one side is 0.7 m.
m is a prism. As described above, if the prismatic shaft 1 is used, the assembly accuracy of the piezoelectric bimorphs (plate materials) 10a to 10e is improved.

【0035】図8,9に示すように、固定部材60、ポ
リイミド膜62、圧電体バイモルフ10a、連結ワッシ
ャ20a、圧電体バイモルフ10b、連結ワッシャ20
b、圧電体バイモルフ10c、連結ワッシャ20c、圧
電体バイモルフ10d、連結ワッシャ20d、圧電体バ
イモルフ10e、ポリイミド膜63、固定部材61が積
層され、この状態で各部材にシャフト1を貫通させる。
そして、プリント回路基板50に搭載し、導体パターン
51,52と圧電体バイモルフ10a,10eを接合し
てもよい。 (第2の実施の形態)次に、第2の実施の形態を、第1
の実施の形態との相違点を中心に説明する。
As shown in FIGS. 8 and 9, the fixing member 60, the polyimide film 62, the piezoelectric bimorph 10a, the connecting washer 20a, the piezoelectric bimorph 10b, and the connecting washer 20.
b, the piezoelectric body bimorph 10c, the connecting washer 20c, the piezoelectric body bimorph 10d, the connecting washer 20d, the piezoelectric body bimorph 10e, the polyimide film 63, and the fixing member 61 are laminated, and the shaft 1 is passed through each member in this state.
Then, it may be mounted on the printed circuit board 50 and the conductor patterns 51, 52 and the piezoelectric bimorphs 10a, 10e may be joined. (Second Embodiment) Next, the second embodiment will be described with reference to the first embodiment.
The difference from the above embodiment will be mainly described.

【0036】図10は、本実施形態における骨伝導音声
振動検出素子の斜視図である。厚さ0.3mmの銅板8
0上に、複数の圧電体バイモルフ70a,70b,70
cの一端を固定している。各圧電体バイモルフ70a,
70b,70cの長さ(梁の長さ)は異なっている。こ
のように、圧電体バイモルフ(梁構造を有する板材)7
0a,70b,70cを複数にすることにより高感度
化、広帯域化させている。また、銅板80は支持プレー
ト81の上面に固定され、支持プレート81には骨伝導
音声振動が伝播する。
FIG. 10 is a perspective view of the bone conduction voice vibration detecting element in this embodiment. Copper plate 8 with a thickness of 0.3 mm
0, a plurality of piezoelectric bimorphs 70a, 70b, 70
One end of c is fixed. Each piezoelectric bimorph 70a,
70b and 70c have different lengths (beam lengths). In this way, the piezoelectric bimorph (a plate material having a beam structure) 7
A plurality of 0a, 70b and 70c are provided to increase the sensitivity and increase the bandwidth. Further, the copper plate 80 is fixed to the upper surface of the support plate 81, and the bone conduction voice vibration propagates to the support plate 81.

【0037】そして、骨伝導による音声振動は、検出素
子を外耳道周辺の骨、皮膚、外耳道に装着するための、
図示しないプラスチック部材、検出素子を収納する図示
しないケースに伝達され、さらに、支持プレート81お
よび伝達部材としての銅板80に伝達される。この銅板
80を介して骨伝導音声振動が圧電体バイモルフ(梁構
造を有する板材)70a,70b,70cに伝達され
る。ここで、伝達部材80において高域ほど大きく増幅
されるため、高域の感度を向上させることができる。
The sound vibration caused by bone conduction causes the detection element to be attached to the bone, the skin, and the ear canal around the ear canal.
It is transmitted to a plastic member (not shown), a case (not shown) that houses the detection element, and is further transmitted to the support plate 81 and the copper plate 80 as a transmission member. Bone conduction sound vibrations are transmitted to the piezoelectric bimorphs (plate members having a beam structure) 70a, 70b, 70c via the copper plate 80. Here, since the higher the frequency in the transmission member 80, the greater the amplification, the sensitivity in the high frequency range can be improved.

【0038】以上のごとく、片持ち梁構造を有し骨伝導
音声振動を電気信号に変換するための板材である圧電体
バイモルフ70a〜70cを、骨伝導音声振動を高周波
成分ほど大きく増幅し伝達する伝達部材(銅板)80を
介して支持している。よって、骨伝導による減衰の大き
い高域の振動に対する検出感度を向上させることができ
る。 (第3の実施の形態)次に、第3の実施の形態を、第1
の実施の形態との相違点を中心に説明する。
As described above, the piezoelectric bimorphs 70a to 70c, which are plates having a cantilever structure and used to convert bone conduction voice vibrations into electric signals, transmit the bone conduction voice vibrations by amplifying the bone conduction voice vibrations to a higher frequency. It is supported via a transmission member (copper plate) 80. Therefore, it is possible to improve the detection sensitivity for high-frequency vibration that is greatly attenuated by bone conduction. (Third Embodiment) Next, the third embodiment will be described with reference to the first embodiment.
The difference from the above embodiment will be mainly described.

【0039】図11は、本実施形態における骨伝導音声
振動検出素子の断面図である。複数の板材(圧電体バイ
モルフ)90a〜90eは、SUS製連結ワッシャ20
a〜20dを介し電気的に直列接続されている。複数の
板材のうち、板材90a,90c,90eは圧電効果の
現れる方向を同じにし、これら板材90a,90c,9
0eに対し板材90b,90dは逆向きにしている。つ
まり、共振周波数が異なる板材(圧電体バイモルフ)の
うち、共振周波数が隣り合う板材(圧電体バイモルフ)
での圧電体の分極方向を異ならせている。
FIG. 11 is a sectional view of the bone conduction voice vibration detecting element according to the present embodiment. The plurality of plate materials (piezoelectric bimorphs) 90a to 90e are made of SUS connecting washers 20.
They are electrically connected in series via a to 20d. Among the plurality of plate members, the plate members 90a, 90c, 90e have the same direction of the piezoelectric effect, and the plate members 90a, 90c, 9e have the same direction.
The plate members 90b and 90d are opposite to 0e. That is, among plate materials (piezoelectric bimorphs) having different resonance frequencies, plate materials having adjacent resonance frequencies (piezoelectric bimorph).
The polarization direction of the piezoelectric body is different.

【0040】この構造を採用することにより、機械的な
振動の位相は同じでも、電気的な位相は反転している状
態を実現できる。その結果、共振周波数毎の出力信号を
加算した場合(各圧電体を直列に接続した場合)に、図
12に示すように、共振周波数間の感度を向上させるこ
とができる。
By adopting this structure, it is possible to realize a state in which the mechanical vibration has the same phase but the electrical phase is reversed. As a result, when the output signals for each resonance frequency are added (when the piezoelectric bodies are connected in series), the sensitivity between resonance frequencies can be improved as shown in FIG.

【0041】この構造は、第2の実施の形態において用
いてもよい。即ち、図10での共振周波数が異なる板材
70a〜70cのうち、共振周波数が隣り合う板材での
圧電体の分極方向を異ならせるようにしてもよい。この
場合においても、機械的な振動の位相は同じでも、電気
的な位相は反転している状態を実現でき、共振周波数毎
の出力信号を加算した場合に、共振周波数間の感度を向
上させることができる。
This structure may be used in the second embodiment. That is, among the plate materials 70a to 70c having different resonance frequencies in FIG. 10, the polarization directions of the piezoelectric bodies may be different between the plate materials having adjacent resonance frequencies. Even in this case, even if the phase of mechanical vibration is the same, the state in which the electrical phase is reversed can be realized, and when the output signals for each resonance frequency are added, the sensitivity between resonance frequencies can be improved. You can

【0042】さらに、図11や図10の場合に限らず、
その他の構造を有する骨伝導音声振動検出素子に適用し
てもよい。要は、板材の共振周波数を異ならせ、この共
振周波数が異なる板材のうち、共振周波数が隣り合う板
材での圧電体の分極方向を異ならせればよい。
Further, not limited to the case of FIGS. 11 and 10,
It may be applied to a bone conduction voice vibration detection element having another structure. The point is that the resonance frequencies of the plate materials are made different, and the polarization directions of the piezoelectric bodies are made different between the plate materials having different resonance frequencies and having adjacent resonance frequencies.

【0043】これまで説明してきた各実施の形態におい
ては、板材(片持ち梁)には重りを設けなかったが重り
を設けてもよく、その場合において以下のようにすると
よい。
In each of the embodiments described so far, no weight is provided on the plate material (cantilever), but a weight may be provided. In that case, the following is preferable.

【0044】板材の梁の長さ(図3でのL寸法)のみで
共振周波数を所定値(AHz)に調整したときの梁の長
さを「La」、自由端部分の重りと梁の長さで共振周波
数を所定値(前述と同じAHz)に調整したときの梁の
長さを「Lb」、重りによって板材の先端にかかる荷重
を「W」、板材の重さによって板材にかかる単位長さあ
たりの荷重を「w」としたとき、 3・w・La4<8・W・Lb3 を満たすLbを有する板材を少なくとも1つ以上含むよ
うにする。
The beam length is "La" when the resonance frequency is adjusted to a predetermined value (AHz) only by the beam length (L dimension in FIG. 3) of the plate material, the weight of the free end portion and the beam length. Then, the length of the beam when the resonance frequency is adjusted to a predetermined value (the same AHz as above) is "Lb", the load applied to the tip of the plate by the weight is "W", and the unit length applied to the plate by the weight of the plate When the load per unit is “w”, at least one plate material having Lb satisfying 3 · w · La 4 <8 · W · Lb 3 is included.

【0045】こうすると、発生電圧が増大し感度を向上
させることができる。
In this way, the generated voltage is increased and the sensitivity can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1の実施の形態における骨伝導音声振動検出
素子の斜視図。
FIG. 1 is a perspective view of a bone conduction voice vibration detection element according to a first embodiment.

【図2】骨伝導音声振動検出素子の断面図。FIG. 2 is a sectional view of a bone conduction voice vibration detection element.

【図3】図1におけるA矢視図。FIG. 3 is a view on arrow A in FIG.

【図4】各部品を示す図。FIG. 4 is a diagram showing each component.

【図5】製造工程を説明するための断面図。FIG. 5 is a cross-sectional view for explaining the manufacturing process.

【図6】応用例における骨伝導音声振動検出素子の斜視
図。
FIG. 6 is a perspective view of a bone conduction voice vibration detection element in an application example.

【図7】応用例における骨伝導音声振動検出素子の斜視
図。
FIG. 7 is a perspective view of a bone conduction voice vibration detection element in an application example.

【図8】応用例における骨伝導音声振動検出素子の斜視
図。
FIG. 8 is a perspective view of a bone conduction voice vibration detection element in an application example.

【図9】応用例における骨伝導音声振動検出素子の断面
図。
FIG. 9 is a cross-sectional view of a bone conduction voice vibration detection element in an application example.

【図10】第2の実施の形態における骨伝導音声振動検
出素子の斜視図。
FIG. 10 is a perspective view of a bone conduction voice vibration detection element according to the second embodiment.

【図11】第3の実施の形態における骨伝導音声振動検
出素子の断面図。
FIG. 11 is a sectional view of a bone conduction voice vibration detecting element according to a third embodiment.

【図12】周波数特性を示す図。FIG. 12 is a diagram showing frequency characteristics.

【図13】従来の骨伝導音声振動検出素子の構成図。FIG. 13 is a block diagram of a conventional bone conduction voice vibration detection element.

【符号の説明】 1…シャフト、2…ポリイミド膜、10a〜10e…圧
電体バイモルフ、20a〜20d…連結ワッシャ、3
0,31…電極板、40,41…固定部材、50…プリ
ント回路基板、51,52…導体パターン、70a〜7
0c…圧電体バイモルフ、80…伝達部材(銅板)。
[Explanation of Codes] 1 ... Shaft, 2 ... Polyimide film, 10a-10e ... Piezoelectric bimorph, 20a-20d ... Connection washer, 3
0, 31 ... Electrode plate, 40, 41 ... Fixing member, 50 ... Printed circuit board, 51, 52 ... Conductor pattern, 70a-7
0c ... Piezoelectric bimorph, 80 ... Transmission member (copper plate).

───────────────────────────────────────────────────── フロントページの続き (72)発明者 金子 卓 愛知県刈谷市昭和町1丁目1番地 株式会 社デンソー内 (72)発明者 光本 直樹 愛知県刈谷市昭和町1丁目1番地 株式会 社デンソー内 Fターム(参考) 5D004 BB00 CC04 DD02 FF01 5D017 BA02    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Takashi Kaneko             1-1, Showa-cho, Kariya city, Aichi stock market             Inside the company DENSO (72) Inventor Naoki Mitsumoto             1-1, Showa-cho, Kariya city, Aichi stock market             Inside the company DENSO F-term (reference) 5D004 BB00 CC04 DD02 FF01                 5D017 BA02

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 骨伝導音声振動が伝播する部材に、片持
ち梁構造を有し骨伝導音声振動を電気信号に変換するた
めの板材が、複数、支持された骨伝導音声振動検出素子
であって、 前記各板材(10a〜10e)における固定端となる部
位が連結部材(20a〜20d)を挟んで積層されると
ともに、当該積層部にシャフト(1)が貫通し、このシ
ャフト(1)にて各板材(10a〜10e)が連結支持
されていることを特徴とする骨伝導音声振動検出素子。
1. A bone conduction voice vibration detection element in which a plurality of plate members having a cantilever structure and having a cantilever structure for converting the bone conduction voice vibration into an electric signal are supported as members for transmitting the bone conduction voice vibration. Then, portions of the respective plate members (10a to 10e) that are fixed ends are laminated with the connecting members (20a to 20d) sandwiched therebetween, and the shaft (1) penetrates through the laminated portion, and the shaft (1) is attached to the shaft (1). A bone conduction voice vibration detecting element, characterized in that each plate member (10a to 10e) is connected and supported.
【請求項2】 前記シャフト(1)は、少なくとも一方
の端面が平面であることを特徴とする請求項1に記載の
骨伝導音声振動検出素子。
2. The bone conduction voice vibration detecting element according to claim 1, wherein at least one end surface of the shaft (1) is a flat surface.
【請求項3】 前記シャフト(1)は、絶縁層(2)で
被覆されていることを特徴とする請求項1または2に記
載の骨伝導音声振動検出素子。
3. The bone conduction voice vibration detecting element according to claim 1, wherein the shaft (1) is covered with an insulating layer (2).
【請求項4】 前記連結部材(20a〜20d)は導電
性材料からなり、当該連結部材(20a〜20d)にて
各板材(10a〜10e)での圧電体が電気的に直列に
接続されていることを特徴とする請求項1〜3のいずれ
か1項に記載の骨伝導音声振動検出素子。
4. The connecting members (20a to 20d) are made of a conductive material, and the piezoelectric members of the plate members (10a to 10e) are electrically connected in series by the connecting members (20a to 20d). The bone conduction voice vibration detecting element according to any one of claims 1 to 3, wherein
【請求項5】 骨伝導音声振動を高周波成分ほど大きく
増幅し伝達する伝達部材よりなる電極板(30,31)
が前記シャフト(1)に対し貫通する状態で前記各板材
(10a〜10e)と共に連結支持され、この電極板
(30,31)が、骨伝導音声振動が伝播する回路基板
(50)に固定され、電極板(30,31)を介して各
板材(10a〜10e)での圧電体と回路基板(50)
が電気的に接続されていることを特徴とする請求項1〜
4のいずれか1項に記載の骨伝導音声振動検出素子。
5. An electrode plate (30, 31) comprising a transmission member for amplifying and transmitting bone conduction voice vibration as much as a high frequency component.
Is connected and supported together with the plate members (10a to 10e) in a state of penetrating the shaft (1), and the electrode plates (30, 31) are fixed to a circuit board (50) through which bone conduction voice vibration propagates. , The piezoelectric body in each plate material (10a to 10e) and the circuit board (50) via the electrode plates (30, 31)
Are electrically connected to each other.
The bone conduction voice vibration detection element according to any one of 4 above.
【請求項6】 骨伝導音声振動が伝播する部材に、片持
ち梁構造を有し骨伝導音声振動を電気信号に変換するた
めの板材が、複数、支持された骨伝導音声振動検出素子
であって、 前記板材(70a〜70c)が、骨伝導音声振動を高周
波成分ほど大きく増幅し伝達する伝達部材(80)を介
して支持されていることを特徴とする骨伝導音声振動検
出素子。
6. A bone conduction voice vibration detecting element in which a plurality of plate members having a cantilever structure and having a cantilever structure for converting the bone conduction voice vibration into an electric signal are supported as members for transmitting the bone conduction voice vibration. The bone conduction sound vibration detection element is characterized in that the plate members (70a to 70c) are supported via a transmission member (80) that amplifies and transmits the bone conduction sound vibration as much as a high frequency component.
【請求項7】 骨伝導音声振動が伝播する部材に、片持
ち梁構造を有し骨伝導音声振動を電気信号に変換するた
めの板材が、複数、支持された骨伝導音声振動検出素子
であって、 前記板材の共振周波数を異ならせ、この共振周波数が異
なる前記板材のうち、共振周波数が隣り合う板材での圧
電体の分極方向を異ならせたことを特徴とする骨伝導音
声振動検出素子。
7. A bone conduction voice vibration detecting element in which a plurality of plate members each having a cantilever structure for converting the bone conduction voice vibration into an electric signal are supported as members for transmitting the bone conduction voice vibration. The bone conduction voice vibration detecting element is characterized in that the resonance frequencies of the plate materials are made different, and the polarization directions of the piezoelectric bodies of the plate materials having different resonance frequencies are different from each other.
【請求項8】 共振周波数が異なる前記板材のうち、共
振周波数が隣り合う板材での圧電体の分極方向を異なら
せたことを特徴とする請求項1〜5のいずれか1項に記
載の骨伝導音声振動検出素子。
8. The bone according to claim 1, wherein among the plate materials having different resonance frequencies, the plate materials having adjacent resonance frequencies have different polarization directions of the piezoelectric body. Conducted voice vibration detector.
【請求項9】 共振周波数が異なる前記板材のうち、共
振周波数が隣り合う板材での圧電体の分極方向を異なら
せたことを特徴とする請求項6に記載の骨伝導音声振動
検出素子。
9. The bone conduction voice vibration detecting element according to claim 6, wherein among the plate materials having different resonance frequencies, the plate materials having adjacent resonance frequencies have different polarization directions of the piezoelectric body.
【請求項10】 前記板材の梁の長さのみで共振周波数
を所定値に調整したときの梁の長さを「La」、自由端
部分の重りと梁の長さで共振周波数を所定値に調整した
ときの梁の長さを「Lb」、重りによって板材の先端に
かかる荷重を「W」、板材の重さによって板材にかかる
単位長さあたりの荷重を「w」としたとき、 3・w・La4<8・W・Lb3 を満たすLbを有する板材を少なくとも1つ以上含むこ
とを特徴とする請求項1〜9のいずれか1項に記載の骨
伝導音声振動検出素子。
10. The beam length when the resonance frequency is adjusted to a predetermined value only by the beam length of the plate material is “La”, and the resonance frequency is set to a predetermined value by the weight of the free end portion and the beam length. When the length of the beam when adjusted is "Lb", the load applied to the tip of the plate by the weight is "W", and the load per unit length applied to the plate by the weight of the plate is "w", 3. The bone conduction voice vibration detection element according to claim 1, further comprising at least one plate material having Lb satisfying w · La 4 <8 · W · Lb 3 .
【請求項11】 骨伝導音声振動が伝播する部材に、片
持ち梁構造を有し骨伝導音声振動を電気信号に変換する
ための板材が、複数、支持された骨伝導音声振動検出素
子の製造方法であって、 シャフト(1)に対し、板材(10a〜10e)と連結
部材(20a〜20d)が交互になるとともにその両側
に固定部材(40,41)が位置するようにして、各板
材(10a〜10e)における固定端となる部位に形成
した透孔(15)と、連結部材(20a〜20d)に形
成した透孔(25)と、固定部材(40,41)に形成
した透孔(45)を通す工程と、 前記固定部材(40,41)の間に前記各板材(10a
〜10e)と連結部材(20a〜20d)を挟持する状
態で固定部材(40,41)をシャフト(1)に溶接す
る工程と、を備えたことを特徴とする骨伝導音声振動検
出素子の製造方法。
11. A method for producing a bone conduction voice vibration detecting element, wherein a plurality of plate members each having a cantilever structure and having a cantilever structure for converting the bone conduction voice vibration into an electric signal are supported on a member through which the bone conduction voice vibration propagates. A method, wherein plate members (10a to 10e) and connecting members (20a to 20d) are alternated with respect to the shaft (1), and fixing members (40, 41) are positioned on both sides of the plate members (10a to 10e). A through hole (15) formed in a portion to be a fixed end in (10a to 10e), a through hole (25) formed in the connecting member (20a to 20d), and a through hole formed in the fixing member (40, 41). (45), and between each of the plate members (10a) between the fixing members (40, 41).
10e) and a step of welding the fixing member (40, 41) to the shaft (1) while sandwiching the connecting member (20a to 20d) therebetween, and manufacturing the bone conduction voice vibration detecting element. Method.
【請求項12】 請求項1〜10のいずれか1項に記載
の骨伝導音声振動検出素子の出力を用い、音声認識させ
ることを特徴とする音声認識システム。
12. A voice recognition system, which uses the output of the bone conduction voice vibration detection element according to claim 1 for voice recognition.
JP2002076943A 2002-03-19 2002-03-19 Bone conduction voice vibration detecting element, manufacturing method of bone conduction voice vibration detecting element, and voice recognition system Pending JP2003274470A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002076943A JP2003274470A (en) 2002-03-19 2002-03-19 Bone conduction voice vibration detecting element, manufacturing method of bone conduction voice vibration detecting element, and voice recognition system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002076943A JP2003274470A (en) 2002-03-19 2002-03-19 Bone conduction voice vibration detecting element, manufacturing method of bone conduction voice vibration detecting element, and voice recognition system

Publications (1)

Publication Number Publication Date
JP2003274470A true JP2003274470A (en) 2003-09-26

Family

ID=29205515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002076943A Pending JP2003274470A (en) 2002-03-19 2002-03-19 Bone conduction voice vibration detecting element, manufacturing method of bone conduction voice vibration detecting element, and voice recognition system

Country Status (1)

Country Link
JP (1) JP2003274470A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010137242A1 (en) * 2009-05-25 2010-12-02 パナソニック株式会社 Piezoelectric acoustic transducer
JP2014158215A (en) * 2013-02-18 2014-08-28 Yuji Hosoi Stereo earphone
US9729971B2 (en) 2012-06-29 2017-08-08 Rohm Co., Ltd. Stereo earphone
WO2017217399A1 (en) * 2016-06-14 2017-12-21 第一精工株式会社 Bone conduction device
US9980024B2 (en) 2011-02-25 2018-05-22 Rohm Co., Ltd. Hearing system and finger ring for the hearing system
US10013862B2 (en) 2014-08-20 2018-07-03 Rohm Co., Ltd. Watching system, watching detection device, and watching notification device
US10075574B2 (en) 2013-08-23 2018-09-11 Rohm Co., Ltd. Mobile telephone
US10079925B2 (en) 2012-01-20 2018-09-18 Rohm Co., Ltd. Mobile telephone
US10103766B2 (en) 2013-10-24 2018-10-16 Rohm Co., Ltd. Wristband-type handset and wristband-type alerting device
JPWO2018021075A1 (en) * 2016-07-29 2019-05-16 第一精工株式会社 Vibration device
US10356231B2 (en) 2014-12-18 2019-07-16 Finewell Co., Ltd. Cartilage conduction hearing device using an electromagnetic vibration unit, and electromagnetic vibration unit
US10779075B2 (en) 2010-12-27 2020-09-15 Finewell Co., Ltd. Incoming/outgoing-talk unit and incoming-talk unit
US10778824B2 (en) 2016-01-19 2020-09-15 Finewell Co., Ltd. Pen-type handset
US10795321B2 (en) 2015-09-16 2020-10-06 Finewell Co., Ltd. Wrist watch with hearing function
US10967521B2 (en) 2015-07-15 2021-04-06 Finewell Co., Ltd. Robot and robot system
US11526033B2 (en) 2018-09-28 2022-12-13 Finewell Co., Ltd. Hearing device
RU2809949C1 (en) * 2020-12-31 2023-12-19 Шэньчжэнь Шокз Ко., Лтд. Sound transmission devices with bone conduction

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102106160A (en) * 2009-05-25 2011-06-22 松下电器产业株式会社 Piezoelectric acoustic transducer
KR20120017384A (en) * 2009-05-25 2012-02-28 파나소닉 주식회사 Piezoelectric acoustic transducer
WO2010137242A1 (en) * 2009-05-25 2010-12-02 パナソニック株式会社 Piezoelectric acoustic transducer
US8989412B2 (en) 2009-05-25 2015-03-24 Panasonic Intellectual Property Management Co., Ltd. Piezoelectric acoustic transducer
KR101654379B1 (en) 2009-05-25 2016-09-05 파나소닉 아이피 매니지먼트 가부시키가이샤 Piezoelectric acoustic transducer
US10779075B2 (en) 2010-12-27 2020-09-15 Finewell Co., Ltd. Incoming/outgoing-talk unit and incoming-talk unit
US9980024B2 (en) 2011-02-25 2018-05-22 Rohm Co., Ltd. Hearing system and finger ring for the hearing system
US10778823B2 (en) 2012-01-20 2020-09-15 Finewell Co., Ltd. Mobile telephone and cartilage-conduction vibration source device
US10079925B2 (en) 2012-01-20 2018-09-18 Rohm Co., Ltd. Mobile telephone
US10158947B2 (en) 2012-01-20 2018-12-18 Rohm Co., Ltd. Mobile telephone utilizing cartilage conduction
US10834506B2 (en) 2012-06-29 2020-11-10 Finewell Co., Ltd. Stereo earphone
US10506343B2 (en) 2012-06-29 2019-12-10 Finewell Co., Ltd. Earphone having vibration conductor which conducts vibration, and stereo earphone including the same
US9729971B2 (en) 2012-06-29 2017-08-08 Rohm Co., Ltd. Stereo earphone
JP2014158215A (en) * 2013-02-18 2014-08-28 Yuji Hosoi Stereo earphone
US10237382B2 (en) 2013-08-23 2019-03-19 Finewell Co., Ltd. Mobile telephone
US10075574B2 (en) 2013-08-23 2018-09-11 Rohm Co., Ltd. Mobile telephone
US10103766B2 (en) 2013-10-24 2018-10-16 Rohm Co., Ltd. Wristband-type handset and wristband-type alerting device
US10013862B2 (en) 2014-08-20 2018-07-03 Rohm Co., Ltd. Watching system, watching detection device, and watching notification device
US10380864B2 (en) 2014-08-20 2019-08-13 Finewell Co., Ltd. Watching system, watching detection device, and watching notification device
US10356231B2 (en) 2014-12-18 2019-07-16 Finewell Co., Ltd. Cartilage conduction hearing device using an electromagnetic vibration unit, and electromagnetic vibration unit
US10848607B2 (en) 2014-12-18 2020-11-24 Finewell Co., Ltd. Cycling hearing device and bicycle system
US11601538B2 (en) 2014-12-18 2023-03-07 Finewell Co., Ltd. Headset having right- and left-ear sound output units with through-holes formed therein
US10967521B2 (en) 2015-07-15 2021-04-06 Finewell Co., Ltd. Robot and robot system
US10795321B2 (en) 2015-09-16 2020-10-06 Finewell Co., Ltd. Wrist watch with hearing function
US10778824B2 (en) 2016-01-19 2020-09-15 Finewell Co., Ltd. Pen-type handset
CN109328464B (en) * 2016-06-14 2020-06-26 第一精工株式会社 Bone conduction device
WO2017217399A1 (en) * 2016-06-14 2017-12-21 第一精工株式会社 Bone conduction device
US20190327543A1 (en) * 2016-06-14 2019-10-24 Dai-Ichi Seiko Co., Ltd. Bone conduction device
US10951965B2 (en) 2016-06-14 2021-03-16 Dai-Ichi Seiko Co., Ltd. Bone conduction device
CN109328464A (en) * 2016-06-14 2019-02-12 第精工株式会社 Bone-conduction device
JPWO2018021075A1 (en) * 2016-07-29 2019-05-16 第一精工株式会社 Vibration device
US11284196B2 (en) 2016-07-29 2022-03-22 Dai-Ichi Seiko Co., Ltd. Vibration device
US11526033B2 (en) 2018-09-28 2022-12-13 Finewell Co., Ltd. Hearing device
RU2809949C1 (en) * 2020-12-31 2023-12-19 Шэньчжэнь Шокз Ко., Лтд. Sound transmission devices with bone conduction

Similar Documents

Publication Publication Date Title
JP2003274470A (en) Bone conduction voice vibration detecting element, manufacturing method of bone conduction voice vibration detecting element, and voice recognition system
JP2537785B2 (en) Unidirectional second order gradient microphone
US10425742B2 (en) Electrostatic graphene speaker
US8116508B2 (en) Dual-mode loudspeaker
KR0148085B1 (en) Headphone
JP2007251358A (en) Bone conduction speaker
WO2004006620A1 (en) Electroacoustic transducer
JP2007214883A (en) Receiving device
EP2658285B1 (en) Acoustic actuator and acoustic actuator system
JP2009260883A (en) Earphone for person with hearing loss
JP2008098988A (en) Headphones
KR101626274B1 (en) Speaker for supporting hearing-impaired people
JP2011527875A (en) Magnetostrictive auditory system
JP5731602B2 (en) Hearing impaired support speaker
KR20010069463A (en) Microphone and speaker made of polyvinylidene fluoride (pvdf) piezoelectric film having surface electrodes
US6492761B1 (en) Digital piezoelectric transducers and methods
JP2003345381A (en) Bone conduction voice oscillation detector and voice recognition system
CN114258688A (en) Pickup sensor and bone conduction speaker
JP5511458B2 (en) Secondary sound pressure gradient close-talking microphone
CN107211219A (en) Non-ignitable piezoelectric speaker
KR20160095601A (en) PZT ceramic speaker
US20070030995A1 (en) Loudspeaker with natural hair leather diaphragm
JP2009141793A (en) Electroacoustic transducer
JP4974731B2 (en) Ribbon microphone unit, ribbon microphone, and method of manufacturing ribbon microphone unit
JP4124154B2 (en) Acoustic transducer and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040506

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051101

A02 Decision of refusal

Effective date: 20060516

Free format text: JAPANESE INTERMEDIATE CODE: A02