JP2003272499A - Relay controller - Google Patents

Relay controller

Info

Publication number
JP2003272499A
JP2003272499A JP2002067878A JP2002067878A JP2003272499A JP 2003272499 A JP2003272499 A JP 2003272499A JP 2002067878 A JP2002067878 A JP 2002067878A JP 2002067878 A JP2002067878 A JP 2002067878A JP 2003272499 A JP2003272499 A JP 2003272499A
Authority
JP
Japan
Prior art keywords
motor
current
movable contact
relay
fixed contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002067878A
Other languages
Japanese (ja)
Other versions
JP4126936B2 (en
Inventor
Yasushi Kojima
靖 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2002067878A priority Critical patent/JP4126936B2/en
Publication of JP2003272499A publication Critical patent/JP2003272499A/en
Application granted granted Critical
Publication of JP4126936B2 publication Critical patent/JP4126936B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)
  • Relay Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve a problem that arc generated between a fixed contact and a movable contact of a relay is shorted by action of a permanent magnet by change of direction of current depending on whether a motor is in a power running condition or in a regenerative condition. <P>SOLUTION: When the motor is in the power running condition and forward current which is direction of current in the power running condition flows, SMR30 in which arcs generated between the fixed contact and the movable contact when forward current flows are stretched in the direction in which they are separated from each other by the action of the permanent magnet is turned off before turning off SMR32 (S30). When the motor is in the regenerative condition and reverse current which is direction of current in the regenerative condition flows, the SMR32 in which arcs generated between the fixed contact and the movable contact when reverse current flows are stretched in the direction in which they are separated from each other by the action of the permanent magnet is turned off before turning off the SMR30 (S50). <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、リレー制御装置に
関する。特に本発明は、モータの動力源となるバッテリ
の正極および負極にそれぞれ接続され、2個の固定接点
および可動接点を有し、固定接点および可動接点の近傍
に永久磁石が配置されたリレーを制御する制御装置に関
する。 【0002】 【従来の技術】従来より、モータの駆動により走行する
電気自動車が知られている。電力を蓄える電池を備え、
モータと電池との間には、電池からの電力供給を制御す
るための制御リレーであるシステムメインリレー(以
下、SMRという)が電池の正極側と負極側に設けられ
ている。 【0003】図3は、従来より電気自動車に用いられて
いるモータ用電源装置12の回路構成図である。バッテ
リ20は、多数の電池セルからなる組電池であり約30
0Vの出力電圧を有する。バッテリ20の正極は、SM
R30を介して、インバータ40の一端と接続されてい
る。また、バッテリ20の負極は、SMR32を介し
て、インバータ40の他端と接続されている。このイン
バータ40には、3相交流モータ50が負荷として接続
されている。従って、SMR30およびSMR32をオ
ンすることにより、インバータ40に電力が供給され、
インバータ40のスイッチング制御により三相交流が発
生する。この3相交流によって3相交流モータ50が駆
動し、車両が走行する。 【0004】具体的には、ドライバーが車両に乗り込
み、運転開始のためにキー操作を行うと、電源制御装置
(図示せず)によりSMRのオン/オフが制御され、バ
ッテリ20の正極と負極とが負荷側の回路に接続され
る。また、ドライバーが運転停止のためのキー操作を行
なうと、電源制御装置によりSMRのオン/オフが制御
され、バッテリ20の正極と負極とが負荷側の回路から
遮断される。 【0005】SMRに関しては、固定接点から可動接点
を引き離すときに生じるアークをフレミングの左手の法
則に基づいて排除するために永久磁石を固定接点と可動
接点の近傍に配置する構成が知られている。 【0006】図4は、永久磁石を固定接点と可動接点の
近傍に配置したSMRの構成を示す図である。固定接触
子112、122は、それぞれ固定接点110、120
を備える。プランジャ140は、電磁石(図示せず)を
励磁または非励磁することにより、往復運動をする。プ
ランジャ140には、導電性を有する平板状の固定接触
子130が連結されている。固定接触子130は、固定
接点110、120にそれぞれ対応する可動接点11
4、124を備える。プランジャ140の往復運動を制
御することにより、固定接点と可動接点とのオンオフが
制御される。 【0007】固定接点110、120、および可動接点
114、124を間にはさんで、永久磁石150、16
0が対向する形で配置されている。永久磁石150、1
60のS極およびN極を図4のようにとり、電流の向き
を固定接点110から可動接点114の向きにとると、
電流遮断の際に固定接点110と可動接点114との間
に生じるアーク170と、固定接点120と可動接点1
24との間に生じるアーク180は、永久磁石から発生
する磁界の働きにより、互いに離れる方向に引き伸ばさ
れる。 【0008】 【発明が解決しようとする課題】ところで、電気自動車
は、アクセルの踏み込み量に応じてモータの出力トルク
を制御して走行する(力行状態)。一方、減速時には、
通常の機械ブレーキの他に回生制動が利用される。この
場合には、モータは発電機として作用し、負のトルク
(回生トルク)を発生する(回生状態)。モータによる
発電電力はバッテリの充電に用いられる。すなわち、力
行状態と回生状態とでは、モータ用電源回路に流れる電
流の向きは逆になる。したがってたとえば、図4のSM
Rの電流の向きを力行状態だとすると、回生状態では、
電流はこれと逆の向きになる。このため、回生状態で
は、アーク170とアーク180は互いに近づく方向に
引き伸ばされ、アーク同士が近づく結果、固定接点11
0と固定接点120とが短絡する可能性があり、短絡S
MRの電流遮断能力が抑制されていた。 【0009】そこで本発明は、上記の課題を解決するこ
とのできるリレー制御装置を提供することを目的とす
る。この目的は特許請求の範囲における独立項に記載の
特徴の組み合わせにより達成される。また従属項は本発
明の更なる有利な具体例を規定する。 【0010】 【課題を解決するための手段】即ち、本発明は、固定接
点をそれぞれ有する2個の固定接触子と、前記固定接点
にそれぞれ接離する2個の可動接点を有する可動接触子
と、前記可動接触子を駆動する駆動部と、前記固定接点
および前記可動接点の近傍に配置された永久磁石と、を
有し、バッテリの正極および負極にそれぞれ接続され、
バッテリとバッテリから供給される電力により駆動する
モータとの間の接続を開閉する第1制御リレーおよび第
2制御リレーを制御するリレー制御装置であって、前記
モータが力行状態にあって、力行状態時の電流の向きで
ある順電流が流れた場合には、前記第1制御リレーと前
記第2制御リレーのうち、順電流が流れたときに前記固
定接点と前記可動接点との間に生じるアークが互いに引
き離される方の制御リレーを他方の制御リレーより先に
閉状態にし、前記モータが回生状態にあって、回生状態
時の電流の向きである逆電流が流れた場合には、前記第
1制御リレーと前記第2制御リレーのうち、逆電流が流
れたときに前記固定接点と前記可動接点との間に生じる
アークが互いに引き離される方の制御リレーを他方の制
御リレーより先に閉状態にする。 【0011】なお上記の発明の概要は、本発明の必要な
特徴の全てを列挙したものではなく、これらの特徴群の
サブコンビネーションも又発明となりうる。 【0012】 【発明の実施の形態】以下、発明の実施の形態を通じて
本発明を説明するが、以下の実施形態はクレームにかか
る発明を限定するものではなく、又実施形態の中で説明
されている特徴の組み合わせの全てが発明の解決手段に
必須であるとは限らない。 【0013】図1は、実施形態に係るリレー制御装置7
0が適用されるモータ用電源装置10の概略構成図であ
る。尚、図3の従来例と同一箇所は同一符号を使用して
異なる部分を説明する。 【0014】SMR30およびSMR32は、図4のS
MRと同様な構成であり、SMR30の固定接触子11
2はバッテリの正極側と接続され、SMR32の固定接
触子122は、バッテリの負極側と接続されている。こ
こで、電流の向きに関しては、力行状態の電流の向きを
順電流とし、回生状態の電流の向きを逆電流と呼ぶ。 【0015】インバータ40には、インバータ制御装置
60が接続されており、このインバータ制御装置60が
インバータ40の動作を制御する。3相交流モータ50
には、そのロータ位置を検出する位置センサ52が取り
付けられている。位置センサ52はホール素子などで構
成されている。また、インバータ40から3相交流モー
タ50への電流経路には電流センサ54が取り付けられ
ている。そして、位置センサ52及び電流センサ54の
検出値がインバータ制御装置60に供給されている。 【0016】インバータ制御装置60には、アクセル、
ブレーキの操作状況についての信号が供給されており、
インバータ制御装置60はこれら信号から3相交流モー
タ50の出力トルク指令を決定する。そして、3相交流
モータ50の出力トルクが、決定された出力トルク指令
に一致するように、インバータ40を制御して3相交流
モータ50への駆動電流を制御する。なお、位置センサ
52の検出値に応じてモータ駆動電流の位相を制御し、
電流センサ54の検出値によりモータ駆動電流をフィー
ドバック制御している。インバータ制御装置60は、3
相交流モータ50が力行状態であるか回生状態であるか
を表す信号をリレー制御装置70に送信する。 【0017】リレー制御装置70は、ドライバーが運転
停止のためのキー操作を行なった場合に、インバータ制
御装置60から送信された信号に応じて、SMR30ま
たは32のうち、順電流が流れている場合には、SMR
30をSMR32よりも先にオフ状態にし、逆電流が流
れている場合には、SMR32をSMR30よりも先に
オフ状態にする。 【0018】図2は、リレー制御装置70によるSRM
のオン/オフの制御を示すフローチャートである。ま
ず、ドライバーのキー操作により運転停止が指令される
(S10)。インバータ制御装置60から送信された信
号に基づいて、3相交流モータ50が力行状態であるか
否かが判断され(S20)、3相交流モータ50が力行
状態にあり、順電流が流れている場合には、永久磁石に
よってアークが互いに引き離される状態にあるSMR3
0をSMR32よりも先にオフ状態にし(S30)、所
定時間経過後にSMR32をオフ状態にする(S4
0)。 【0019】一方、3相交流モータ50が力行状態でな
い場合(回生状態の場合)には、力行状態のときとは逆
に、SMR32のアークが互いに引き離される状態にあ
る。そこで、モータが回生状態にあって、逆電流が流れ
ている場合には、SMR32をSMR30よりも先にオ
フ状態にし(S50)、所定時間経過後にSMR30を
オフ状態にする(S60)。する。 【0020】このように、モータが力行状態にあるか、
回生状態にあるかに応じて、アークが互いに引き離され
る状態にあるSMRを他方のSMRよりも先にオフ状態
にすることによって、電流遮断時に接点間に生じるアー
クが短絡することが回避できるので、SMRの遮断能力
を向上させることができる。 【0021】なお、上記実施形態においては、モータが
力行状態にあるか回生状態にあるかの判断は、インバー
タ制御装置60からの信号に基づいてなされているが、
この他、SMR30およびSMR32に流れる電流を検
出する電流センサ(図示せず)を設け、この電流センサ
の検出結果に基づいて電流方向の判断を行なってもよ
い。 【0022】以上、本発明を実施の形態を用いて説明し
たが、本発明の技術的範囲は上記実施の形態に記載の範
囲には限定されない。上記実施の形態に、多様な変更又
は改良を加えることができる。その様な変更又は改良を
加えた形態も本発明の技術的範囲に含まれ得ることが、
特許請求の範囲の記載から明らかである。 【0023】 【発明の効果】上記説明から明らかなように、本発明に
よれば、永久磁石から磁界によって2組の固定接点と可
動接点との間に生じるアークが接近することにより、固
定接点間が短絡することを防ぐことにより、リレー遮断
能力を向上させることができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a relay control device. In particular, the present invention controls a relay having two fixed contacts and a movable contact, respectively connected to a positive electrode and a negative electrode of a battery serving as a power source of a motor, and having a permanent magnet disposed near the fixed contact and the movable contact. To a control device. 2. Description of the Related Art Conventionally, there has been known an electric vehicle running by driving a motor. Equipped with a battery that stores power,
Between the motor and the battery, a system main relay (hereinafter, referred to as SMR), which is a control relay for controlling power supply from the battery, is provided on the positive electrode side and the negative electrode side of the battery. FIG. 3 is a circuit diagram of a motor power supply device 12 conventionally used in electric vehicles. The battery 20 is an assembled battery composed of a large number of battery cells,
It has an output voltage of 0V. The positive electrode of the battery 20 is
It is connected to one end of the inverter 40 via R30. The negative electrode of the battery 20 is connected to the other end of the inverter 40 via the SMR 32. A three-phase AC motor 50 is connected to the inverter 40 as a load. Therefore, by turning on the SMR 30 and the SMR 32, power is supplied to the inverter 40,
The three-phase alternating current is generated by the switching control of the inverter 40. The three-phase AC drives the three-phase AC motor 50, and the vehicle runs. [0004] Specifically, when a driver gets into a vehicle and performs key operations for starting driving, on / off of the SMR is controlled by a power supply control device (not shown), and the positive and negative electrodes of the battery 20 are connected to each other. Is connected to the circuit on the load side. When the driver performs a key operation for stopping the operation, the power supply control device controls ON / OFF of the SMR and cuts off the positive electrode and the negative electrode of the battery 20 from the circuit on the load side. Regarding the SMR, a configuration is known in which a permanent magnet is disposed near the fixed contact and the movable contact in order to eliminate an arc generated when the movable contact is separated from the fixed contact based on Fleming's left-hand rule. . FIG. 4 is a diagram showing a configuration of an SMR in which permanent magnets are arranged near fixed contacts and movable contacts. The fixed contacts 112 and 122 are fixed contacts 110 and 120, respectively.
Is provided. The plunger 140 reciprocates by energizing or de-energizing an electromagnet (not shown). To the plunger 140, a flat fixed contact 130 having conductivity is connected. The fixed contact 130 has movable contacts 11 corresponding to the fixed contacts 110 and 120, respectively.
4, 124. By controlling the reciprocating motion of the plunger 140, on / off of the fixed contact and the movable contact is controlled. The permanent magnets 150, 16 are sandwiched between the fixed contacts 110, 120 and the movable contacts 114, 124.
0 are arranged facing each other. Permanent magnet 150, 1
When the S and N poles of 60 are taken as shown in FIG. 4 and the direction of the current is taken from the fixed contact 110 to the movable contact 114,
The arc 170 generated between the fixed contact 110 and the movable contact 114 at the time of current interruption, the fixed contact 120 and the movable contact 1
The arc 180 generated between the arc and the other is elongated in a direction away from each other by the action of the magnetic field generated from the permanent magnet. [0008] By the way, the electric vehicle travels while controlling the output torque of the motor in accordance with the depression amount of the accelerator (powered state). On the other hand, during deceleration,
Regenerative braking is used in addition to normal mechanical braking. In this case, the motor acts as a generator and generates a negative torque (regeneration torque) (regeneration state). The electric power generated by the motor is used for charging the battery. That is, in the powering state and the regenerative state, the direction of the current flowing in the motor power supply circuit is reversed. Thus, for example, SM in FIG.
Assuming that the direction of the R current is the powering state, in the regenerative state,
The current flows in the opposite direction. For this reason, in the regenerative state, the arc 170 and the arc 180 are extended in a direction approaching each other, and as a result, the arcs approach each other.
0 and the fixed contact 120 may be short-circuited.
The current interrupting ability of the MR was suppressed. Accordingly, an object of the present invention is to provide a relay control device that can solve the above-mentioned problems. This object is achieved by a combination of features described in the independent claims. The dependent claims define further advantageous embodiments of the present invention. That is, the present invention relates to a movable contact having two fixed contacts each having a fixed contact, and a movable contact having two movable contacts which respectively come into contact with and separate from the fixed contact. A driving unit that drives the movable contact, and a permanent magnet disposed near the fixed contact and the movable contact, and are connected to a positive electrode and a negative electrode of a battery, respectively.
A relay control device for controlling a first control relay and a second control relay for opening and closing a connection between a battery and a motor driven by electric power supplied from the battery, wherein the motor is in a power running state, When a forward current, which is the direction of current at the time, flows, an arc generated between the fixed contact and the movable contact when the forward current flows among the first control relay and the second control relay. If the control relays that are separated from each other are closed before the other control relay, and the motor is in a regenerative state and a reverse current that is the direction of the current in the regenerative state flows, the first Among the control relay and the second control relay, a control relay in which an arc generated between the fixed contact and the movable contact when a reverse current flows is separated from each other before the other control relay. To state. The above summary of the present invention does not list all of the necessary features of the present invention, and a sub-combination of these features may also be an invention. DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to embodiments of the present invention. However, the following embodiments do not limit the claimed invention and are described in the embodiments. Not all combinations of features are essential to the solution of the invention. FIG. 1 shows a relay control device 7 according to an embodiment.
FIG. 1 is a schematic configuration diagram of a motor power supply device 10 to which 0 is applied. Note that the same parts as those in the conventional example of FIG. The SMR 30 and the SMR 32 correspond to the SMR of FIG.
The configuration is the same as that of the MR,
2 is connected to the positive electrode side of the battery, and the fixed contact 122 of the SMR 32 is connected to the negative electrode side of the battery. Here, regarding the direction of the current, the direction of the current in the powering state is referred to as a forward current, and the direction of the current in the regeneration state is referred to as a reverse current. An inverter control unit 60 is connected to the inverter 40, and controls the operation of the inverter 40. Three-phase AC motor 50
Is provided with a position sensor 52 for detecting the rotor position. The position sensor 52 is configured by a Hall element or the like. A current sensor 54 is attached to a current path from the inverter 40 to the three-phase AC motor 50. Then, the detection values of the position sensor 52 and the current sensor 54 are supplied to the inverter control device 60. The inverter control device 60 includes an accelerator,
A signal about the operation status of the brake is supplied,
Inverter control device 60 determines an output torque command of three-phase AC motor 50 from these signals. Then, the inverter 40 is controlled to control the drive current to the three-phase AC motor 50 such that the output torque of the three-phase AC motor 50 matches the determined output torque command. The phase of the motor drive current is controlled according to the detection value of the position sensor 52,
The motor drive current is feedback controlled based on the detection value of the current sensor 54. The inverter control device 60
A signal indicating whether the phase AC motor 50 is in the power running state or the regenerative state is transmitted to the relay control device 70. When a driver performs a key operation for stopping the operation, the relay control device 70 operates according to a signal transmitted from the inverter control device 60 when a forward current flows through the SMR 30 or 32. Has an SMR
The SMR 30 is turned off before the SMR 32, and if a reverse current is flowing, the SMR 32 is turned off before the SMR 30. FIG. 2 shows the SRM by the relay control device 70.
6 is a flowchart showing on / off control of the power supply. First, an operation stop command is issued by a key operation of the driver (S10). It is determined whether or not the three-phase AC motor 50 is in the power running state based on the signal transmitted from the inverter control device 60 (S20), and the three-phase AC motor 50 is in the power running state, and a forward current is flowing. In some cases, the SMR3 is in a state where the arcs are separated from each other by the permanent magnet
0 is turned off before the SMR 32 (S30), and the SMR 32 is turned off after a lapse of a predetermined time (S4).
0). On the other hand, when the three-phase AC motor 50 is not in the power running state (in the case of the regenerative state), the arcs of the SMR 32 are separated from each other, contrary to the power running state. Therefore, when the motor is in the regenerative state and a reverse current is flowing, the SMR 32 is turned off before the SMR 30 (S50), and the SMR 30 is turned off after a predetermined time has elapsed (S60). I do. Thus, whether the motor is in a power running state,
By turning off the SMR in a state in which the arcs are separated from each other before the other SMR in accordance with the regenerative state, it is possible to prevent the arc generated between the contacts at the time of current interruption from being short-circuited. The blocking ability of the SMR can be improved. In the above embodiment, whether the motor is in the power running state or the regenerative state is determined based on a signal from the inverter control device 60.
In addition, a current sensor (not shown) for detecting the current flowing through the SMR 30 and the SMR 32 may be provided, and the determination of the current direction may be performed based on the detection result of the current sensor. Although the present invention has been described with reference to the embodiment, the technical scope of the present invention is not limited to the scope described in the above embodiment. Various changes or improvements can be added to the above embodiment. It is possible that a form with such a change or improvement may be included in the technical scope of the present invention.
It is clear from the description of the claims. As is clear from the above description, according to the present invention, the arc generated between the two sets of fixed contacts and the movable contacts by the magnetic field from the permanent magnet approaches each other, and the fixed contacts By preventing short circuiting of the relays, the relay breaking ability can be improved.

【図面の簡単な説明】 【図1】 実施形態に係るリレー制御装置70が適用さ
れるモータ用電源装置10の概略構成図である。 【図2】 リレー制御装置70によるSRMのオン/オ
フの制御を示すフローチャートである。 【図3】 従来より電気自動車に用いられているモータ
用電源装置12の回路構成図である。 【図4】 永久磁石を固定接点と可動接点の近傍に配置
したSMRの構成を示す図である。 【符号の説明】 10 モータ用電源装置、20 バッテリ、40 イン
バータ、50 3相交流モータ、52 位置センサ、5
4 電流センサ、60 インバータ制御装置、70 リ
レー制御装置、110,120 固定接点、112,12
2 固定接触子、114,124 可動接点、130
可動接触子、140 プランジャ、150,160 永
久磁石、170,180 アーク。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic configuration diagram of a motor power supply device 10 to which a relay control device 70 according to an embodiment is applied. FIG. 2 is a flowchart showing ON / OFF control of an SRM by a relay control device 70; FIG. 3 is a circuit configuration diagram of a motor power supply device 12 conventionally used in an electric vehicle. FIG. 4 is a diagram showing a configuration of an SMR in which a permanent magnet is arranged near a fixed contact and a movable contact. [Description of Signs] 10 Power supply device for motor, 20 battery, 40 inverter, 50 3-phase AC motor, 52 position sensor, 5
4 current sensor, 60 inverter control device, 70 relay control device, 110, 120 fixed contacts, 112, 12
2 Fixed contact, 114, 124 Movable contact, 130
Movable contact, 140 plunger, 150, 160 permanent magnet, 170, 180 arc.

Claims (1)

【特許請求の範囲】 【請求項1】 固定接点をそれぞれ有する2個の固定接
触子と、 前記固定接点にそれぞれ接離する2個の可動接点を有す
る可動接触子と、 前記可動接触子を駆動する駆動部と、 前記固定接点および前記可動接点の近傍に配置された永
久磁石と、 を有し、 バッテリの正極および負極にそれぞれ接続され、バッテ
リとバッテリから供給される電力により駆動するモータ
との間の接続を開閉する第1制御リレーおよび第2制御
リレーを制御するリレー制御装置であって、 前記モータが力行状態にあって、力行状態時の電流の向
きである順電流が流れた場合には、前記第1制御リレー
と前記第2制御リレーのうち、順電流が流れたときに前
記固定接点と前記可動接点との間に生じるアークが互い
に引き離される方の制御リレーを他方の制御リレーより
先に閉状態にし、 前記モータが回生状態にあって、回生状態時の電流の向
きである逆電流が流れた場合には、前記第1制御リレー
と前記第2制御リレーのうち、逆電流が流れたときに前
記固定接点と前記可動接点との間に生じるアークが互い
に引き離される方の制御リレーを他方の制御リレーより
先に閉状態にすることを特徴とするリレー制御装置。
1. A movable contact having two fixed contacts each having a fixed contact, a movable contact having two movable contacts respectively approaching / separating from the fixed contact, and driving the movable contact. And a permanent magnet disposed in the vicinity of the fixed contact and the movable contact, respectively, and connected to a positive electrode and a negative electrode of the battery, respectively, and a battery and a motor driven by power supplied from the battery. A relay control device that controls a first control relay and a second control relay that opens and closes a connection between the motor and the motor, wherein the motor is in a power running state, and a forward current that is a current direction in the power running state flows. Is a control relay of the first control relay and the second control relay, wherein an arc generated between the fixed contact and the movable contact when a forward current flows is separated from each other. When the motor is in a regenerative state and a reverse current that is the direction of the current in the regenerative state flows, the first control relay and the second control relay are closed. The relay control device, wherein an arc generated between the fixed contact and the movable contact when a reverse current flows is set to a closed state before a control relay from which the arc is separated from the other control relay. .
JP2002067878A 2002-03-13 2002-03-13 Relay control device Expired - Lifetime JP4126936B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002067878A JP4126936B2 (en) 2002-03-13 2002-03-13 Relay control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002067878A JP4126936B2 (en) 2002-03-13 2002-03-13 Relay control device

Publications (2)

Publication Number Publication Date
JP2003272499A true JP2003272499A (en) 2003-09-26
JP4126936B2 JP4126936B2 (en) 2008-07-30

Family

ID=29199118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002067878A Expired - Lifetime JP4126936B2 (en) 2002-03-13 2002-03-13 Relay control device

Country Status (1)

Country Link
JP (1) JP4126936B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006155915A (en) * 2004-11-25 2006-06-15 Nissan Motor Co Ltd Current supply device
JP2009032551A (en) * 2007-07-27 2009-02-12 Sanyo Electric Co Ltd Power supply device
JP2010073352A (en) * 2008-09-16 2010-04-02 Denso Corp Electromagnetic relay
WO2010122648A1 (en) * 2009-04-23 2010-10-28 トヨタ自動車株式会社 Power supply system of electric vehicle and control method thereof
JP2011228245A (en) * 2010-03-30 2011-11-10 Anden Electromagnetic relay
JP2012146634A (en) * 2011-01-13 2012-08-02 Gm Grobal Technology Operations Llc Dual bipolar magnetic field for linear high-voltage contactor in automotive lithium-ion battery systems
JP2012151090A (en) * 2011-01-14 2012-08-09 Gm Grobal Technology Operations Llc Double bipolar magnetic fields for rotary high voltage contactor in automotive lithium ion battery system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110739740B (en) * 2019-10-28 2021-04-09 河北电立方新能源科技有限公司 Short-circuit-resistant protection circuit

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001266726A (en) * 2000-03-24 2001-09-28 Matsushita Electric Ind Co Ltd Control method of load-switchgear
JP2003197053A (en) * 2001-12-25 2003-07-11 Mitsubishi Electric Corp Arc-extinguishing device and on-vehicle switch using the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001266726A (en) * 2000-03-24 2001-09-28 Matsushita Electric Ind Co Ltd Control method of load-switchgear
JP2003197053A (en) * 2001-12-25 2003-07-11 Mitsubishi Electric Corp Arc-extinguishing device and on-vehicle switch using the same

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4586510B2 (en) * 2004-11-25 2010-11-24 日産自動車株式会社 Current supply device
JP2006155915A (en) * 2004-11-25 2006-06-15 Nissan Motor Co Ltd Current supply device
JP2009032551A (en) * 2007-07-27 2009-02-12 Sanyo Electric Co Ltd Power supply device
JP2010073352A (en) * 2008-09-16 2010-04-02 Denso Corp Electromagnetic relay
WO2010122648A1 (en) * 2009-04-23 2010-10-28 トヨタ自動車株式会社 Power supply system of electric vehicle and control method thereof
CN102414043A (en) * 2009-04-23 2012-04-11 丰田自动车株式会社 Power supply system of electric vehicle and control method thereof
JP4985873B2 (en) * 2009-04-23 2012-07-25 トヨタ自動車株式会社 Electric vehicle power supply system and control method thereof
US8681457B2 (en) 2009-04-23 2014-03-25 Toyota Jidosha Kabushiki Kaisha Power source system for electric powered vehicle and control method therefor
JPWO2010122648A1 (en) * 2009-04-23 2012-10-22 トヨタ自動車株式会社 Electric vehicle power supply system and control method thereof
JP2011228245A (en) * 2010-03-30 2011-11-10 Anden Electromagnetic relay
KR101261244B1 (en) 2011-01-03 2013-05-07 지엠 글로벌 테크놀러지 오퍼레이션스 엘엘씨 Dual bipolar magnetic field for linear high-voltage contactor in automotive lithium-ion battery systems
JP2012146634A (en) * 2011-01-13 2012-08-02 Gm Grobal Technology Operations Llc Dual bipolar magnetic field for linear high-voltage contactor in automotive lithium-ion battery systems
US8653691B2 (en) 2011-01-13 2014-02-18 GM Global Technology Operations LLC Dual bipolar magnetic field for linear high-voltage contactor in automotive lithium-ion battery systems
US8514037B2 (en) 2011-01-14 2013-08-20 GM Global Technology Operations LLC Dual bipolar magnetic field for rotary high-voltage contactor in automotive lithium-ion battery systems
KR101342981B1 (en) 2011-01-14 2013-12-19 지엠 글로벌 테크놀러지 오퍼레이션스 엘엘씨 Switching assembly, vehicular propulsion system and method of operating switching assembly
JP2012151090A (en) * 2011-01-14 2012-08-09 Gm Grobal Technology Operations Llc Double bipolar magnetic fields for rotary high voltage contactor in automotive lithium ion battery system

Also Published As

Publication number Publication date
JP4126936B2 (en) 2008-07-30

Similar Documents

Publication Publication Date Title
JP2013110838A (en) Electric vehicle
JPH0213553B2 (en)
JP4126936B2 (en) Relay control device
JPH0787608A (en) High voltage circuit breaker for electric automobile
JP2004014242A (en) Power supply control system
KR0152301B1 (en) Brake revival control of an industrial car
JPH06276610A (en) Driver for motor
KR100911523B1 (en) Circuit breaking method from over counter electromotive force of driving moter for fuel cell vehicle
JP2006223074A (en) Electric braking device
JP3669049B2 (en) DC motor drive control device
JP2021035090A (en) Inverter control device
JPH08191503A (en) Control device for electric car
KR960013792A (en) Power Control Unit of Electric Vehicle
CN2446716Y (en) D.C motor steering controller
RU2066639C1 (en) Battery-powered vehicle with rheostatic brake
JPS6211123Y2 (en)
KR0183465B1 (en) A regenerating control method for an industrial motor car
KR100331951B1 (en) Regenerative braking apparatus and method in a electric car
JP3550226B2 (en) Electric car control device
JP3540923B2 (en) Electric vehicle regeneration control method and device
JPH11299013A (en) Contactor driver of electric vehicle, electric vehicle controller and electric fork lift
JPH10310398A (en) Regenerative braking device for battery vehicle
JPS6335104A (en) Travel limiting device in battery car
JP2607405Y2 (en) Regenerative control device for electric vehicle
CN110435438A (en) A kind of ABS system that electric vehicle uses

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080407

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080422

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080505

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4126936

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120523

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120523

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 5

EXPY Cancellation because of completion of term