JP2003270137A - Optical detection method of wood preservative - Google Patents

Optical detection method of wood preservative

Info

Publication number
JP2003270137A
JP2003270137A JP2002067805A JP2002067805A JP2003270137A JP 2003270137 A JP2003270137 A JP 2003270137A JP 2002067805 A JP2002067805 A JP 2002067805A JP 2002067805 A JP2002067805 A JP 2002067805A JP 2003270137 A JP2003270137 A JP 2003270137A
Authority
JP
Japan
Prior art keywords
wood
cca
light
preservative
fluorescence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002067805A
Other languages
Japanese (ja)
Other versions
JP3739086B2 (en
Inventor
Norio Ando
則男 安藤
Masao Kobayashi
正男 小林
Toshiyuki Sato
敏幸 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
R TEC KK
SO SEKKEI KK
Yamagata Prefecture
Original Assignee
R TEC KK
SO SEKKEI KK
Yamagata Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by R TEC KK, SO SEKKEI KK, Yamagata Prefecture filed Critical R TEC KK
Priority to JP2002067805A priority Critical patent/JP3739086B2/en
Publication of JP2003270137A publication Critical patent/JP2003270137A/en
Application granted granted Critical
Publication of JP3739086B2 publication Critical patent/JP3739086B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To discriminate and separate wood in which is applied and impregnated with a poisonous CCA preservative from a large quantity of waste wood using an optical detection method. <P>SOLUTION: We found that differences in characteristics of refraction and fluorescence of near infrared light between normal wood and that of wood applied and impregnated with a preservative such that the differences in the characteristics of absorption of a CCA compound between the wavelengths of infrared light from 600 to 1050 nm and those of from 1200 to 1600 nm exist, the differences in the fluorescence intensity at the wavelengths of visible light from 500 to 700 nm exist due to CCA compound venenosity when excited fluorescence is examined by irradiating ultraviolet light having a wavelength of 365 nm, and the differences in the fluorescence intensity at the wavelengths of red light from 580 to 700 nm exist when excited fluorescence is examined by irradiating visible light (blue) having an average wavelength of 470 nm. We also found that X-ray fluorescence of copper at the wavelengths of X-ray can be used to detect CCA. By utilizing the characteristics of light, existence of CCA preservative applied and impregnated to timbers can be detected nondestructively. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、木材に含浸または塗布
されている有毒な金属化合物を非接触かつ非破壊で検出
する防腐処理木材検出方法とその装置に関するもので、
産業廃棄物処理場や建築解体現場等での多数の廃木材中
から防腐処理木材を効率よく発見し、廃木材をクリーン
な資源とそうでないものに分別して再利用時の安全性を
確保することに役立てようとするものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a preservative-treated wood detecting method and apparatus for nontoxic and nondestructive detection of toxic metal compounds impregnated or applied to wood.
Efficiently discover antiseptic wood from a large number of waste wood at industrial waste treatment plants, construction demolition sites, etc., and separate waste wood into clean resources and those that are not, to ensure safety during reuse. It is intended to be useful for.

【0002】[0002]

【従来の技術】1996年の廃棄物統計によると、我が
国での廃木材の発生は年間約4700万mであり、9
0%以上が再利用されずに、焼却ないしは埋め立てによ
り処分されている。発生原因の多くは、家屋の解体や建
設時に発生する木材で、廃棄物全体の約74%を占めて
いる。この中で、特に家屋の解体に伴う廃木材は、防腐
・防蟻のため木材に木材防腐剤を含浸または塗布したも
のが多い。
2. Description of the Related Art According to 1996 waste statistics, the amount of waste wood generated in Japan is about 47 million m 3 per year.
0% or more is not reused but is incinerated or disposed of by landfill. Most of the causes are timber generated during the dismantling and construction of houses, accounting for about 74% of all waste. Among them, in particular, the waste wood resulting from the dismantling of a house is often the wood impregnated with or applied with a wood preservative for the purpose of preserving and controlling ants.

【0003】日本工業規格JIS K 1570に登録
されている木材防腐剤の種類としては、水溶性防腐剤と
してクロム・銅・ヒ素系化合物(CCA)、フェーノー
ル類・無機ふっ化物系化合物(FCAP)、アルキルア
ンモニウム系化合物(AAC)、クロム・銅・亜鉛系化
合物(CFKZ)、銅・アルキルアンモニウム系化合物
(ACQ)、銅・ほう素・アゾール系化合物(CUA
Z)、ほう素・アルキルアンモニウム系化合物(BAA
C)、また、乳化性防腐剤として脂肪酸金属塩系化合物
(NCU{ナフテン酸銅化合物}・NZN{ナフテン酸
亜鉛化合物}・VZN{バーサチック酸亜鉛化合
物})、アゾール系化合物(AZP)、その他油性木材
防腐剤としてクレオソート油木材防腐剤がある。
Types of wood preservatives registered in Japanese Industrial Standard JIS K 1570 include water-soluble preservatives such as chromium / copper / arsenic compounds (CCA), phenols / inorganic fluoride compounds (FCAP), Alkylammonium compounds (AAC), chromium / copper / zinc compounds (CFKZ), copper / alkylammonium compounds (ACQ), copper / boron / azole compounds (CUA)
Z), boron-alkyl ammonium compounds (BAA
C), a fatty acid metal salt-based compound (NCU {copper naphthenate compound}, NZN {zinc naphthenate compound}, VZN {zinc versatic acid compound}), an azole-based compound (AZP), and other oily agents as emulsifying preservatives There is a creosote oil wood preservative as a wood preservative.

【0004】なかでもCCA防腐剤(クロム・銅・ヒ素
系化合物系木材防腐剤)を注入した防腐処理木材(以下
「CCA処理木材」という)は、有毒な重金属化合物を
含浸・塗布された防腐処理木材の代表で、過去の使用量
が圧倒的に多く廃木材のリサイクルをすすめる上で大き
な障害となっている。
Among them, preservative-treated wood (hereinafter referred to as "CCA-treated wood") injected with CCA preservative (chromium / copper / arsenic compound-based wood preservative) is preservative-treated by impregnating and applying toxic heavy metal compounds. It is a representative of wood, and the amount used in the past is overwhelmingly large, which is a major obstacle to promoting the recycling of waste wood.

【0005】CCA処理木材は、産業廃棄物処理場等に
おいて焼却減容化を行う場合にヒ素を含む有毒ガスが発
生するほか、焼却灰に有害物である六価クロム及びヒ素
が含まれることとなる。また、炭化処理しても木炭製品
に高濃度の銅、クロム及びヒ素が含まれる。さらに、埋
め立て地からはヒ素やクロム、銅が流出するなど、環境
問題を引き起こす恐れがある。
CCA-treated wood produces toxic gas containing arsenic when it is incinerated and reduced in volume at an industrial waste treatment plant, and incinerated ash contains hexavalent chromium and arsenic which are harmful substances. Become. Further, even if carbonized, the charcoal product contains high concentrations of copper, chromium and arsenic. In addition, arsenic, chromium, and copper may leak from the landfill, causing environmental problems.

【0006】含有重金属の挙動については、木材学会
誌、Vol.46、No.6、(2000p587−5
95)に示される様にCCA処理木材の燃焼時における
銅、クロム、ヒ素の挙動は、木材に含有するクロムは燃
焼温度に依存せず100%に近い残留率で焼却灰に残
る。銅、ヒ素は燃焼温度の上昇とともに低下する傾向が
みられ40%〜80%の残留率であり、特に銅、クロ
ム、ヒ素の含有率の高いサンプルほど低下する。このヒ
素の残留率の低下は熱的な蒸発によるもので、ヒ素ガス
として大気中に放散されているものと考えられる。ま
た、CCA処理木材を炭化した場合は、銅、クロムの蒸
発は生じにくく高濃度で木炭内に残留し、ヒ素が蒸発す
ることが確認された。以上のことからCCA処理木材を
原料としたリサイクルや木炭を製造する場合には、含有
する重金属の対策を行なう必要がある。
The behavior of contained heavy metals is described in Mokuzai Gakkaishi, Vol. 46, No. 6, (2000p587-5
As shown in 95), the behavior of copper, chromium, and arsenic at the time of burning CCA-treated wood is such that chromium contained in wood remains in the incineration ash with a residual rate close to 100%, regardless of the combustion temperature. Copper and arsenic tend to decrease as the combustion temperature rises, and the residual rate is 40% to 80%. Especially, the higher the content of copper, chromium, and arsenic, the lower. This decrease in the residual rate of arsenic is due to thermal evaporation, and it is considered that arsenic gas is released into the atmosphere. It was also confirmed that when carbonized with CCA-treated wood, copper and chromium were less likely to evaporate and remained in charcoal at a high concentration, resulting in evaporation of arsenic. From the above, when recycling CCA-treated wood as a raw material or producing charcoal, it is necessary to take measures against the contained heavy metals.

【0007】また、廃棄物研究財団の行った廃木材の化
学物質に関する調査によると、CCA処理木材の重金属
含有量を測定した結果は下記の表1の通りであり、重金
属類の平均含有量はクロム1053mg/kg、銅42
5mg/kg、ヒ素460mg/kg、であった。ま
た、CCA処理木材から溶出試験を行なった結果、クロ
ム6.2〜19.2mg/L、銅3.8〜12.2mg
/L、ヒ素2.8〜14.6mg/Lの濃度で溶出が確
認された。また、CCA処理木材を埋め立て処分した場
合、溶出率としては粉体試料で銅、クロム、ヒ素は含有
量の5〜10%程度であるが重金属類が溶出する可能性
が確認された。法律で規定された環境庁告示13号法に
おける判定基準(表2)を上回る濃度で溶出したことか
ら廃木材の埋立て処分に関しても注意が指摘されるとこ
ろである。
In addition, according to a survey on chemical substances in waste wood conducted by the Waste Research Foundation, the results of measuring the heavy metal content of CCA-treated wood are shown in Table 1 below, and the average content of heavy metals is Chrome 1053mg / kg, Copper 42
It was 5 mg / kg and arsenic 460 mg / kg. In addition, as a result of performing an elution test from CCA-treated wood, chromium 6.2 to 19.2 mg / L, copper 3.8 to 12.2 mg
/ L, arsenic was confirmed to be eluted at a concentration of 2.8 to 14.6 mg / L. Further, when the CCA-treated wood was landfilled, the elution rate was 5 to 10% of the content of copper, chromium, and arsenic in the powder sample, but it was confirmed that heavy metals could elute. Attention is also paid to the landfill disposal of waste wood because it was eluted at a concentration higher than the judgment criteria (Table 2) in the Environmental Agency Notification No. 13 Act stipulated by law.

【0008】[0008]

【表1】 【table 1】

【0009】[0009]

【表2】 [Table 2]

【0010】今後、住宅の建替え工事や最近のガーデニ
ング材の普及を考慮すると防腐木材、とりわけCCA処
理された木材が増加し廃木材として大量に発生すること
は容易に予想されCCA防腐剤等が含浸・塗布されてい
る木材を非破壊、非接触で迅速な判別を可能とする防腐
処理木材検出技術の開発が求められている。
In the future, considering the rebuilding work of houses and the recent spread of gardening materials, it is easily expected that preservative wood, especially CCA-treated wood, will increase and a large amount will be generated as waste wood. There is a need for the development of an antiseptic wood detection technology that enables non-destructive, non-contact and rapid discrimination of impregnated and applied wood.

【0011】そのうえで、廃木材のリサイクルをすすめ
るには産業廃棄物処分場や建築解体現場においてはCC
A処理木材をはじめとする有害な金属化合物に汚染され
た木材とその他の廃木材に対して、有害物が注入されて
いる可能性がある部分を含めてこれをすべて分離・分別
し、区別して適正にリサイクルと廃棄処理を行う必要が
ある。従って、CCA木材等を非破壊、非接触で迅速に
判別・分離することが重要な課題であり、廃木材の受入
れ業、廃棄物処理業や建築解体現場で利用可能な自動
化、低コスト化につながる検出手法の開発が切望されて
いる。
[0011] In addition, in order to promote the recycling of waste wood, CC at industrial waste disposal sites and construction demolition sites.
A For wood that has been contaminated with harmful metal compounds, including treated wood, and other waste wood, including all parts that may be infused with harmful substances, separate and separate all of this, and distinguish Proper recycling and disposal is required. Therefore, it is an important issue to quickly identify and separate CCA wood, etc. in a non-destructive, non-contact manner. For automation of use in waste wood receiving business, waste disposal business and construction demolition site, and cost reduction. There is a strong demand for the development of connected detection methods.

【0012】現在、木材の成分や木材に含浸・塗布され
た有害な重金属化合物(CCA防腐剤)等を検出定量化
する方法には、原子吸光分析法、吸光光度法による元素
分析、また、滴定法による化合物の定量化などが主に用
いられている。CCA防腐剤の簡易な試薬塗布による呈
色反応としては、クロムの化合物はクロムにジフェニル
カルバジド液を作用させ赤紫色の錯体による呈色反応お
よび原子吸光法によって、銅は銅イオンがジエチルジチ
オカルバミン酸ナトリウムと反応して生成する黄褐色の
錯体を酢酸−N−ブチルで抽出し吸光度を測定する。ま
た、ヒ素は水素化ヒ素として発生させ、ジエチルジチオ
カルバミン酸銀のクロロホルム溶液に吸収させて、生成
する赤紫色の溶液の吸光度を測定する方法等がある。
At present, the methods for detecting and quantifying harmful heavy metal compounds (CCA preservatives) impregnated and applied to wood components and the like are elemental analysis by atomic absorption spectrometry, absorptiometry and titration. Quantification of compounds by the method is mainly used. As a color reaction by simple application of CCA preservative, a chromium compound is reacted with chromium by a diphenylcarbazide solution, and a color reaction by a reddish purple complex and an atomic absorption method are used to determine that copper ions are diethyldithiocarbamic acid. The yellowish brown complex formed by reacting with sodium is extracted with -N-butyl acetate and the absorbance is measured. Further, there is a method in which arsenic is generated as arsenic hydride and absorbed in a chloroform solution of silver diethyldithiocarbamate to measure the absorbance of the resulting reddish purple solution.

【0013】また、機器を用いて木材成分を定量分析す
る方法も検討されており、その方法としてNMR(核磁
気共鳴)分光法、FTIR(フーリエ変換赤外)分光
法、蛍光分光法などがある。
Further, a method for quantitatively analyzing a wood component using an instrument has also been studied, and examples of such methods include NMR (nuclear magnetic resonance) spectroscopy, FTIR (Fourier transform infrared) spectroscopy, and fluorescence spectroscopy. .

【0014】しかし、NMR分光法では試料管にサンプ
ルを採取する必要があり、分析時間が長くなる欠点をも
つ。又、指紋領域である650〜1600cm−1
(6,250〜15,300nm)の範囲を用いる通常の
FTIR分光法はサンプル調製の必要と、その際KBr
粉末を混ぜて成形しなければならないという煩わしさが
ある。
However, in NMR spectroscopy, it is necessary to collect a sample in a sample tube, which has the drawback of lengthening the analysis time. In addition, the fingerprint area 650 to 1600 cm-1
Conventional FTIR spectroscopy using the range (6,250-15,300 nm) requires sample preparation, with KBr
There is an annoyance that powders must be mixed and molded.

【0015】これに対して、NIR(近赤外)分光法
は、試料を直接測定できるため簡便である利点を備え、
木材成分のセルロース、リグニン、熱水加溶分やアルカ
リ加溶分等の定量に使われている例がある。しかし、こ
れまでNIR分光法は、多くの木材成分の吸収域と水の
吸収域が重複していることや、各吸収帯がブロードにな
るなど分析法としては問題が多く、木材の含有化合物や
木材防腐剤等の評価や判定に使われた例はない。またN
IRを含む分光分析では、試料の形状や表面状態に依存
しないようにするため、光の透過特性の変化を計測して
いる場合が殆どである。しかし、透過特性計測のために
は被検査木材を特定の形状に加工する必要が生じ、非破
壊・非接触計測をおこなうのは困難である。
On the other hand, NIR (near infrared) spectroscopy has the advantage of being simple because it can directly measure a sample,
There is an example of being used for quantification of wood components such as cellulose, lignin, hot water soluble matter and alkali soluble matter. However, until now, NIR spectroscopy has many problems as an analytical method, such as the absorption region of many wood components and the absorption region of water being overlapped, and the absorption bands being broad. There is no example used for evaluation and judgment of wood preservatives. Also N
In spectroscopic analysis including IR, in most cases, changes in light transmission characteristics are measured so as not to depend on the shape and surface state of the sample. However, in order to measure the transmission characteristics, it is necessary to process the inspected wood into a specific shape, and it is difficult to perform nondestructive and noncontact measurement.

【0016】さらに、従来のNIR分光分析は回折格子
やAOTF(音響光学チューナブルフィルタ)を用いて
検出光を分光し、得られた連続スペクトルを分析するこ
とで必要な情報を抽出している。しかしながら、これら
の分光システムは高価な部品を必要とし、且つ、精密な
光学系が必要となることから解体現場や廃木材受入れ現
場での使用に耐えるような小型、堅牢、安価な装置を製
作するのは困難であった。
Further, in the conventional NIR spectroscopic analysis, necessary information is extracted by dispersing the detection light using a diffraction grating or an AOTF (acoustic optical tunable filter) and analyzing the obtained continuous spectrum. However, since these spectroscopic systems require expensive parts and require precise optical systems, a small, robust, and inexpensive device that can be used at a demolition site or a waste wood receiving site is manufactured. It was difficult.

【0017】さらに、非破壊、非接触で試料の分析が可
能な方式として蛍光分光法が用いられている。この方式
では、試料に特定の励起光を照射することで発生する励
起光よりも長波長の光を検出するものである。紫外光や
可視光を励起光とする蛍光検出では分子レベルで特定の
構造をもつものが蛍光を発する。しかし紫外光や可視光
による蛍光は線幅が広い場合が多く、汎用分析器として
は問題があるため、生物、科学、医療など特定の分野で
蛍光特性の顕著な物質を用いた応用計測に主に利用され
ている。
Further, fluorescence spectroscopy is used as a method capable of nondestructive and noncontact analysis of a sample. In this method, light having a longer wavelength than the excitation light generated by irradiating the sample with the specific excitation light is detected. In fluorescence detection using ultraviolet light or visible light as excitation light, those having a specific structure at the molecular level emit fluorescence. However, since fluorescence due to ultraviolet light or visible light often has a wide line width and is problematic as a general-purpose analyzer, it is mainly used for applied measurement using substances with remarkable fluorescence characteristics in specific fields such as biology, science, and medicine. Is used for.

【0018】また、高いエネルギーを有するX線を励起
光として用いた蛍光X線法は物質内部の原子内殻の電子
を励起するため物質を構成する原子の同定が可能であ
る。しかし、一般の蛍光X線法では取り扱いに危険が伴
うX線管を必要とし、さらに分光のための回折格子や波
高分析器が必要となるため大掛かりな装置形態となって
いる。
Further, the fluorescent X-ray method using X-rays having high energy as excitation light excites the electrons of the atomic core inside the substance, so that the atoms constituting the substance can be identified. However, the general fluorescent X-ray method requires an X-ray tube which is dangerous to handle, and further requires a diffraction grating for spectral analysis and a wave height analyzer, resulting in a large-scale apparatus configuration.

【0019】建築物の解体は機械を用いることが多く、
木屑はすべてミンチ状(混合廃棄物)になっている場合
が多く、表面の汚れをはじめ、熱放射の影響や、空気、
水分の影響が大きい。そのような状態で防腐処理した木
材かどうかを見分けるのは大変困難である。すべて手作
業による解体の場合でも防腐処理してあるかどうかの判
断は難しい。従って、呈色などによる外観検査、大掛か
りな機器を用いた従来の分光法は、廃棄木材の処分場や
建築解体材等における有害廃木材の判別には、木材表面
の濡れ、汚れなど様々な問題に対応できないため実用可
能な判別手段とはなり得ていない。
Machines are often used to dismantle buildings,
Wood chips are often in the form of mince (mixed waste), such as surface dirt, the effects of heat radiation, air,
The influence of water is great. In such a state, it is very difficult to tell whether the wood has been preservative-treated. Even in the case of manual dismantling, it is difficult to judge whether or not it has been subjected to antiseptic treatment. Therefore, the visual inspection by coloration and the conventional spectroscopic method using large-scale equipment are difficult to identify the harmful waste wood in the disposal site of waste wood or the construction demolition materials, etc. Therefore, it cannot be a practical discriminating means.

【0020】[0020]

【発明が解決しようとする課題】本発明は、前述した従
来技術の問題点に鑑みてなされたもので、光学的な検出
手法をもちいることで大量の廃木材のなかから有毒な金
属化合物が含浸・塗布された木材、とりわけCCA防腐
剤等が含浸・塗布されている木材を非破壊で迅速な判別
・分離を可能とし、自動化、低コスト化を実現しようと
するものである。
DISCLOSURE OF THE INVENTION The present invention has been made in view of the above-mentioned problems of the prior art. By using an optical detection method, a toxic metal compound can be produced from a large amount of waste wood. It aims to realize non-destructive and rapid discrimination / separation of impregnated / applied wood, especially wood impregnated / applied with CCA preservative, and to realize automation and cost reduction.

【0021】すなわち家屋の解体に伴う廃木材は、リサ
イクル資源として、チップ化し、再生木質ボード(建設
発生木材を破砕したものを用いて製造した木質ボー
ド。)、再生木質マルチング材(雑草防止材及び植物の
生育を保護・促進する材料等として廃木材を再資源化し
たもの)、堆肥等や炭化して木質燃料や活性炭、環境浄
化剤、土壌改良剤等の原材料として有効利用することが
目論まれるところである。
That is, the waste wood resulting from the dismantling of the house is made into chips as recycled resources, and recycled wood boards (wood boards manufactured by crushing construction-generated wood) and recycled wood mulching materials (weed prevention materials and weed prevention materials). Recycled waste wood as a material to protect and promote the growth of plants), compost, carbonization, and the effective use as raw materials for wood fuel, activated carbon, environmental cleaners, soil conditioners, etc. This is where you get lost.

【0022】CCA防腐剤はクロム・銅・ヒ素の化合物
で,それぞれの混合配分によって1号、2号、3号があ
る。この場合の有効性分とはクロム化合物(CrO3と
して)、銅化合物(CuOとして)、ヒ素化合物(As
2O5として)、1号は20%以上でクロムの化合物が
多く、ヒ素が少ない配合物で、クロム、銅の塩類を用い
て製造する塩型と、酸化物を用いて製造する酸化物型が
ある。
The CCA preservative is a compound of chromium, copper and arsenic, and there are No. 1, No. 2 and No. 3 depending on their mixed distribution. Effectiveness in this case means chromium compound (as CrO3), copper compound (as CuO), arsenic compound (As
2O5) No. 1 is a compound containing 20% or more of chromium compounds and a small amount of arsenic, and there are a salt type produced using salts of chromium and copper and an oxide type produced using oxides. .

【0023】このCCA防腐剤は、国内においては昭和
38年頃から使われはじめ昭和45年頃から年間約10
万トン使用されており、平成4年をピークに安全性の面
が指摘され最近は減少傾向にある。しかし、CCA処理
木材は、電柱や枕木に使われてきたクレオソート油と違
い、水溶性で無色無臭のため、主に住宅用の土台や建築
用途に約30万m/年使われている。特に最近は、米
国やカナダから加工したCCA処理木材が輸入されるよ
うになり,住宅用やガーデニング用材、公園資材等で使
用されるCCA処理木材の使用量は増える傾向にある。
This CCA preservative has been used in Japan since about 1964, and about 10 years per year since 1945.
It has been used for 10,000 tons, and its safety has been pointed out since its peak in 1992, and it has been decreasing recently. However, unlike creosote oil that has been used for utility poles and sleepers, CCA-treated wood is water-soluble and colorless and odorless, so it is mainly used for the foundation of houses and construction applications at about 300,000 m 3 / year. . In particular, recently, processed CCA-treated wood has been imported from the United States and Canada, and the amount of CCA-treated wood used for housing, gardening materials, park materials, etc. tends to increase.

【0024】ここで言う有毒な金属化合物が含浸・塗布
された木材、とりわけCCA防腐剤等が含浸・塗布され
ている木材は、以下のような用途で主に使用されてい
る。木造建築物の土台、根太、床板、柱、筋交い、バル
コニー材、テラス材、 ぬれ縁、木製フェンス、木製電
柱、枕木、街路樹支柱、庭木の支柱、荷物輸送用コンテ
ナパネル、土木用基礎杭、木橋、木製丸太製品、公園用
遊貝、べンチ、園芸材料など。
The wood referred to herein, which is impregnated and coated with a toxic metal compound, particularly wood which is impregnated and coated with a CCA preservative or the like, is mainly used for the following purposes. Foundation of wooden structures, joists, floorboards, pillars, braces, balconies, terraces, wet edges, wooden fences, wooden utility poles, sleepers, street tree stanchions, garden tree stanchions, luggage transport container panels, civil engineering foundation piles, Wood bridges, wooden log products, park snails, vents, gardening materials, etc.

【0025】CCA処理木材に注入されるCCA防腐剤
は、木材に注入処理されたあと木材の中で水に溶け難い
化合物を生成し、有機金属化合物として木材に定着す
る。その反応式はCCA−1号で以下のようになる。 2CuSO4+4K2Cr2O7+5AS2O5・2H2
O→8CrAsO4+4CuHAsO4+2K2SO4+4
KOH+7H2O+12O↑ しかし、この化学反応は注入後の温度や樹種、乾燥の早
さや吸収量の関係から定着時間を3週間とされている
が、工場や時間管理によって変化するためその挙動はは
っきりしていない。
The CCA preservative that is injected into CCA-treated wood forms a compound that is sparingly soluble in water in the wood after it is injected into the wood, and is fixed to the wood as an organometallic compound. The reaction formula is as follows in CCA-1. 2CuSO4 + 4K2Cr2O7 + 5AS2O5 ・ 2H2
O → 8CrAsO4 + 4CuHAsO4 + 2K2SO4 + 4
KOH + 7H2O + 12O ↑ However, this chemical reaction has a fixing time of 3 weeks because of the relationship between the temperature after injection, the species of wood, the speed of drying, and the amount absorbed, but its behavior is unclear because it changes depending on the factory and time management. .

【0026】廃棄物研究財団の行なった廃木材からの化
学物質に関する実験によると、CCA処理木材の重金属
含有量を測定した結果(表1)、重金属類の平均含有量
はクロム1053mg/kg、銅425mg/kg、ヒ素460
mg/kgと報告されている。
According to an experiment on chemical substances from waste wood conducted by the Waste Research Foundation, the result of measuring the heavy metal content of CCA-treated wood (Table 1) showed that the average content of heavy metals was 1053 mg / kg of chromium and copper. 425 mg / kg, arsenic 460
Reported as mg / kg.

【0027】つまりCCA防腐剤は、木材の成分(セル
ロース、ヘミセルロース、リグニン、その他)と金属塩
の化合物であり、有機化合物が金属を含んでいる化学構
造である。これら液体状の有機金属化合物は、一般に多
量の重金属を含んでいる場合ほど安定した化合物となる
場合が多く、有機金属化合物は毒性が極めて強いことが
特長でメチル水銀、有機スズ化合物、CCA防腐剤、ジ
エチル亜鉛、などに代表される。その化学構造形態は、
以下の3種類に分けられる。 (1)イオン結合化合物:酸、アルコール類の金属塩 (2)共有結合性化合物:炭素原子と金属がΑ結合をし
ている化合物で、有機金属化合物。 (3)配位結合性化合物:分子または陰イオンが金属に
配位したかたちの錯体金属。 木材防腐剤として使用されているクロム・銅・ヒ素系化
合物(CCA)、フェーノール類・無機ふっ化物系化合
物(FCAP)、アルキルアンモニウム系化合物(AA
C)、クロム・銅・亜鉛系化合物(CFKZ)、銅・ア
ルキルアンモニウム系化合物(ACQ)、銅・ほう素・
アゾール系化合物(CUAZ)、ほう素・アルキルアン
モニウム系化合物(BAAC)、脂肪酸金属塩系化合物
(NCU{ナフテン酸銅化合物}・NZN{ナフテン酸
亜鉛化合物}・VZN{バーサチック酸亜鉛化合
物})、アゾール系化合物(AZP)、など水溶性防腐
剤は前述したイオン結合、共有結合、配位結合を複雑に
組合わせたもので、イオン結合化合物は水に溶けやすく
反応性が高く、共有結合・錯体金属は反応が低く安定し
ている。有機金属化合物は共有結合でアルキル基に代表
され、錯体金属は2重、3重結合の場合が多い。有機金
属化合物と錯体金属は、はっきり区別しにくい部分が多
い。
That is, the CCA preservative is a compound of a wood component (cellulose, hemicellulose, lignin, etc.) and a metal salt, and the organic compound has a chemical structure containing a metal. Generally, these liquid organometallic compounds are more stable compounds as they contain a large amount of heavy metals, and the organometallic compounds are extremely toxic and are characterized by methylmercury, organotin compounds and CCA preservatives. , Diethyl zinc, and the like. Its chemical structural form is
It can be divided into the following three types. (1) Ionic bond compound: metal salt of acid or alcohol (2) Covalent bond compound: a compound in which a carbon atom and a metal have an A bond, which is an organometallic compound. (3) Coordination-bonding compound: a complex metal in which a molecule or anion is coordinated with a metal. Chromium / copper / arsenic compounds (CCA), phenols / inorganic fluoride compounds (FCAP), alkyl ammonium compounds (AA) used as wood preservatives
C), chromium / copper / zinc compound (CFKZ), copper / alkylammonium compound (ACQ), copper / boron /
Azole compounds (CUAZ), boron-alkylammonium compounds (BAAC), fatty acid metal salt compounds (NCU {copper naphthenate compounds} NZN {zinc naphthenate compounds} VZN {zinc versatate compounds}), azoles Water-soluble preservatives such as compounds (AZP) are complex combinations of the ionic bond, covalent bond, and coordinate bond described above. The ionic bond compound is highly soluble in water and highly reactive. Has a low response and is stable. The organometallic compound is represented by an alkyl group by a covalent bond, and the complex metal is often a double or triple bond. In many cases, the organometallic compound and the complex metal are difficult to distinguish clearly.

【0028】通常、赤外吸収スペクトル(infrar
ed absorption spectrum;IR
と略称)は、光源から放射される赤外光を試料に照射し
て、試料によって吸収された赤外光を波長と吸光度によ
って描かれた曲線で表している。これらの赤外吸収スペ
クトルは、有機化合物の分子の化学構造の特長を示す特
有なものであり、分子構造、電子状態、官能基などにつ
いて各種情報がえられるため、構造の確認、定性、定量
などに利用される。
Usually, the infrared absorption spectrum (infrar)
ed absorption spectrum; IR
Is abbreviated), and the infrared light emitted from the light source is applied to the sample, and the infrared light absorbed by the sample is represented by a curve drawn by wavelength and absorbance. These infrared absorption spectra are peculiar to the features of the chemical structure of the molecule of the organic compound, and various information about the molecular structure, electronic state, functional groups, etc. can be obtained, so confirmation of the structure, qualitative analysis, quantitative analysis, etc. Used for.

【0029】しかしながら、CCA防腐剤等を含浸・塗
布されたCCA処理木材の赤外吸収スペクトルは、金属
化合物の複雑な化学反応による物質であり複雑で幅広く
重なるため、CCAが塗布・含浸されている木材のよう
な複数成分の混合物の分析には通常のIRは適さない。
さらに、赤外吸収スペクトルの指紋領域では、試料から
の熱放射の影響や、空気、水分の影響が大きく、非接触
での計測は極めて困難である。
However, since the infrared absorption spectrum of CCA-treated wood impregnated and coated with CCA preservative is a substance due to a complicated chemical reaction of a metal compound and overlaps in a complicated and wide range, CCA is coated and impregnated. Conventional IR is not suitable for the analysis of multi-component mixtures such as wood.
Furthermore, in the fingerprint region of the infrared absorption spectrum, the influence of heat radiation from the sample and the influence of air and moisture are large, and measurement without contact is extremely difficult.

【0030】これに対して近赤外光は、可視光と中赤外
光の間の光(波長で、800nm〜2500nm)で、
官能基の倍振動などに帰属される吸収ピークも観測さ
れ、吸収線幅が広く、いろいろな要因でスペクトルが変
化するなどの欠点を有するため、これまで化学構造の同
定には殆ど利用されていない光領域である。
On the other hand, near-infrared light is light between visible light and mid-infrared light (wavelength: 800 nm to 2500 nm),
Absorption peaks attributed to functional group overtones are also observed, and the absorption line width is wide and the spectrum changes due to various factors. Therefore, it has hardly been used to identify chemical structures. It is a light area.

【0031】しかしながら近赤外光は、可視光の性質に
近くなるので、可視光でのカメラ同様に離れた場所から
観測することが可能になり、さらに水分の吸収や熱によ
る放射の影響も少ないため、この帯域の有効活用が非破
壊・非接触計測の上で重要と考えられる。
However, since the near-infrared light has a property close to that of visible light, it can be observed from a distance as in a visible light camera, and the influence of moisture absorption and heat radiation is small. Therefore, effective use of this band is considered important for non-destructive and non-contact measurement.

【0032】蛍光法においては、被検査木材における防
腐処理の有無による蛍光特性の変化を検出するための最
適な励起光の確定が必要である。また蛍光特性の変化を
観測する波長帯の選別と、その定量化の手法、さらには
蛍光特性の変化を防腐剤の有無の判別に利用可能なレベ
ルに増幅する手法が必要となる。また、安価、安全、堅
牢な装置構成が可能な検出手法とすることも解決しなけ
ればならない重要な課題である。
In the fluorescence method, it is necessary to determine the optimum excitation light for detecting the change in the fluorescence characteristics depending on the presence or absence of the preservative treatment on the inspected wood. Further, it is necessary to select a wavelength band for observing a change in fluorescence property, to quantify the wavelength band, and further to amplify the change in fluorescence property to a level that can be used for determining the presence or absence of a preservative. Another important issue that must be solved is to use a detection method that is inexpensive, safe, and has a robust device configuration.

【0033】非破壊非接触計測のためには、反射光を用
いた分光分析方式、蛍光検出方式が有望な手段となる
が、反射光は試料の表面状態(表面あらさ、反射角度、
汚れ、水分など)に大きく依存するためこれらの影響を
受けない手法の開発が必要となる。
For non-destructive non-contact measurement, a spectroscopic analysis method using reflected light and a fluorescence detection method are promising means, but the reflected light is the surface condition of the sample (surface roughness, reflection angle,
Since it depends greatly on dirt, moisture, etc., it is necessary to develop a method that is not affected by these effects.

【0034】[0034]

【課題を解決するための手段】本発明は以上の防腐処理
木材、とりわけCCA処理木材に含有された防腐剤の有
無を判定する方法を技術課題として鋭意研究を重ねた結
果、木材防腐剤が含浸・塗布された木材が通常の木材と
の間に可視光、近赤外光の反射特性、蛍光特性に差異が
あることを見いだし、その特性を利用した木材防腐剤検
出手法に係るものである。
Means for Solving the Problems The present invention has been earnestly studied as a technical problem of a method for judging the presence or absence of a preservative contained in the above preservative-treated wood, especially CCA-treated wood, and as a result, the wood preservative has been impregnated. -It was found that the applied wood has a difference in visible light and near-infrared light reflection characteristics and fluorescence characteristics from ordinary wood, and it relates to a wood preservative detection method using the characteristics.

【0035】本発明に係る実験では、CCA処理木材に
複数の波長からなる可視光または赤外光を試料に照射
し、反射光を検出した結果、近赤外光の波長帯600〜
1050nmでCCA化合物の吸光特性が顕著化し、さ
らに1200〜1600nmにおいてはCCA化合物の
有無による吸収の差異が小さいことが判明した。近赤外
光は可視光に比べて波長が長いため透過特性が高くなり
被検査木材表面の汚れにも強いことも確認された。被検
査木材が濡れている場合は水分の吸収ピークがある14
50NM付近の吸収が増大し影響を受けることが懸念さ
れたが、逆にこの帯域を避けることで水分による影響を
小さくできることも確認された。
In the experiment according to the present invention, CCA-treated wood was irradiated with visible light or infrared light having a plurality of wavelengths on the sample, and the reflected light was detected.
It was found that the absorption characteristics of the CCA compound became remarkable at 1050 nm, and the difference in absorption due to the presence or absence of the CCA compound was small at 1200 to 1600 nm. It was also confirmed that near-infrared light has a longer wavelength than visible light and therefore has high transmission characteristics and is resistant to dirt on the surface of the inspected wood. If the inspected wood is wet, there is a water absorption peak 14
It was feared that absorption around 50 NM would increase and be affected, but conversely, it was also confirmed that the influence of water could be reduced by avoiding this band.

【0036】これらの特性は被検査木材の原材料となる
樹種に殆ど依存しないことも針葉樹、広葉樹を含んだ米
マツ、赤マツ、杉、スプルース、ツガ、ケヤキ、クル
ミ、ナラでの計測から明らかとなった。また芯材と辺材
では可視光の短波長域(青、緑)で差異があるものの、
近赤外域では殆ど差異がなく外乱要因とはならないこと
も確認されている。
These characteristics are almost independent of the tree species used as the raw material of the wood to be inspected, and it is clear from the measurement using coniferous and hardwood-containing rice pine, red pine, cedar, spruce, hemlock, zelkova, walnut, and oak. became. In addition, although there is a difference in the short wavelength range of visible light (blue, green) between the core material and the sapwood,
It has been confirmed that there is almost no difference in the near infrared region and that it does not cause a disturbance.

【0037】また、CCA処理木材に中心波長が365
nmの紫外光を照射し、励起された蛍光を検出した結
果、500〜700nmにおける可視光の蛍光強度にC
CA化合物の有無による差異が見いだされた。さらに中
心波長が470nmの可視光(青)を発光ダイオードか
ら照射し、励起された580〜700nm(赤)の蛍光
強度にも同様の差異が見いだされた。いづれの場合もC
CA化合物が存在すると蛍光強度が有意に低下してい
る。しかし、紫外光励起の場合、試料の表面の濡れや汚
れがあると蛍光強度変化が小さくなる欠点も確認されて
いる。
The center wavelength of the CCA-treated wood is 365
As a result of detecting excited fluorescence by irradiating ultraviolet light of nm, the fluorescence intensity of visible light at 500 to 700 nm is C
Differences were found with and without the CA compound. Further, a similar difference was found in the fluorescence intensity of 580 to 700 nm (red) excited by irradiating visible light (blue) having a center wavelength of 470 nm from the light emitting diode. C in either case
The presence of the CA compound significantly reduces the fluorescence intensity. However, in the case of ultraviolet light excitation, it has been confirmed that the change in fluorescence intensity decreases when the surface of the sample is wet or dirty.

【0038】さらにCCA処理木材に45kVの直流電
圧を印加したタングステンターゲットのX線管球からX
線を照射したところ、照射方向と約45゜方向に拡散と
蛍光によるX線が放射されていることが確認された。こ
のX線を分光した結果、1.54Åおよび0.6Å付近
に反射X線の波長ピークが検出された。さらにCCAが
含まれていない木材も同様に計測したところ1.54Å
のピークが消失しておりこのピークがCCA特有のもの
であることが確認された。このピークは銅のKα線と同
定された。
Further, an X-ray tube of a tungsten target, to which a direct current voltage of 45 kV was applied, was applied to CCA-treated wood.
Upon irradiation with a ray, it was confirmed that X-rays due to diffusion and fluorescence were emitted in the direction of about 45 ° with respect to the irradiation direction. As a result of spectral analysis of this X-ray, wavelength peaks of reflected X-rays were detected near 1.54Å and 0.6Å. Furthermore, when wood that does not contain CCA was measured in the same manner, it was 1.54 Å
It disappeared, and it was confirmed that this peak was unique to CCA. This peak was identified as the copper Kα line.

【0039】CCA処理木材は銅、クロム、ヒ素を含有
することが予め判明しているため、これらの1つが無処
理木材よりも有意に多ければCCA処理剤と判定でき
る。従って、蛍光X線検出において、必ずしも蛍光とし
て得られたX線をスペクトルとして分光する必要はな
く、固定の回折格子を用いた帯域選別フィルタや比例計
数管から特定のエネルギー帯を選択する波高選択フィル
タを用いることで、波長帯を選択し、銅またはクロムま
たはヒ素の蛍光X線を検出すれば良い。
Since it has been known in advance that CCA-treated wood contains copper, chromium and arsenic, if one of them is significantly larger than that of untreated wood, it can be judged as a CCA-treating agent. Therefore, in the fluorescent X-ray detection, it is not always necessary to disperse the X-rays obtained as fluorescence as a spectrum, and a band selection filter using a fixed diffraction grating or a wave height selection filter for selecting a specific energy band from a proportional counter. The wavelength band can be selected by using, and the fluorescent X-ray of copper, chromium, or arsenic can be detected.

【0040】また、この方式ではX線管球から短い波長
のX線を放射するために高電圧を印加する必要がなく、
またX線発生部の径が大きくても良い。さらに被検査木
材を透過する必要がないためX線のパワーも大きくする
必要がない。このことはX線管球の負荷を大幅に低減
し、装置の長寿命化、冷却ユニットの不要化につなが
り、装置の小型、低価格、堅牢化に寄与することが期待
できる。さらに波長帯の蛍光強度は比例計数管を用いる
ことで連続して検出可能であるため、回折格子の回転な
どによる分光のためのデッドタイムが生じない。
Further, in this system, it is not necessary to apply a high voltage in order to emit X-rays of a short wavelength from the X-ray tube,
Further, the diameter of the X-ray generation part may be large. Further, since it is not necessary to transmit the inspected wood, it is not necessary to increase the X-ray power. This greatly reduces the load on the X-ray tube, prolongs the life of the device, eliminates the need for a cooling unit, and is expected to contribute to the downsizing, cost reduction, and robustness of the device. Further, since the fluorescence intensity in the wavelength band can be continuously detected by using the proportional counter, dead time for spectroscopy due to rotation of the diffraction grating does not occur.

【0041】さらに、これら光学的検出実験結果の信頼
性を裏付けるため、本発明では木材防腐剤の判別に赤外
吸収スペクトルや蛍光の強度比による判断と呈色反応、
核磁気共振、元素分析などの化学的手法を併用して判断
した。
Further, in order to support the reliability of the results of these optical detection experiments, in the present invention, the determination based on the infrared absorption spectrum and the intensity ratio of fluorescence and the color reaction are used for the determination of the wood preservative.
Judgment was made by using chemical methods such as nuclear magnetic resonance and elemental analysis.

【0042】これらの実験から、本発明手法によりCC
A防腐剤の有無を有意に判定可能であることが明らかに
なった。
From these experiments, according to the method of the present invention, CC
It became clear that the presence or absence of the A preservative can be significantly determined.

【0043】また、木材の内部のみに木材防腐剤が浸透
している場合は、光線による表面からの判別では不可能
となることが懸念されるが、CCA処理木材をはじめと
する防腐処理木材は木材を使用状態に加工してから木材
表面からの圧力注入や塗布による処理加工となるため、
注入された木材防腐剤が木材の表面を中心に木目にそっ
て化合物を生成し定着しており、表面のみ防腐剤が欠落
しているサンプルは見出せなかった。
When the wood preservative penetrates only into the wood, it may be impossible to distinguish it from the surface by light rays. However, preservative-treated wood such as CCA-treated wood is not possible. After processing the wood into the used state, it will be processed by pressure injection and application from the wood surface,
The injected wood preservative formed compounds along the wood grain centering on the surface of the wood and settled, and no sample was found where the preservative was missing only on the surface.

【0044】本発明は上記のごとく、木材防腐剤が含浸
・塗布された木材が通常の木材との間に可視光、近赤外
光の特定の波長帯で反射特性、蛍光に差異があることを
見いだし、その特性を有効に利用したものである。
According to the present invention, as described above, the wood impregnated and coated with the wood preservative has a difference in reflection characteristics and fluorescence in a specific wavelength band of visible light and near-infrared light from that of ordinary wood. It was found that the characteristics were effectively utilized.

【0045】本発明は、この光の性質を利用して、特定
の波長帯の反射光あるいは蛍光の特性から、木材に含浸
・塗布された木材防腐剤(CCA化合物等)の有無を非
破壊で測定する木材防腐剤検出手法である。
The present invention utilizes this property of light to determine the presence or absence of a wood preservative (CCA compound or the like) impregnated in or applied to wood from the characteristics of reflected light or fluorescence in a specific wavelength band. This is a method for detecting wood preservatives.

【0046】[0046]

【発明の実施の態様】以下において、本発明の利用方法
について具体的に説明するが、本発明の範囲は以下に記
載する例に限定されるものではない。本発明で提供され
る木材防腐剤検出法における装置構成を図1を用いて説
明する。本検出法は被検査木材4に照明装置1を用いて
複数の波長帯を含む光を照射し、被検査木材からの反射
光を異なる特性のフィルタ3、3’を装備した複数の光
センサ2、2’で捉え、それぞれの波長帯での反射光強
度を計測して、それらの値を演算装置5で演算して、そ
の結果を防腐剤の有無に対応するように予め設定した閾
値と比較し、判定結果を出力装置6に出力するものであ
る。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, a method of using the present invention will be specifically described, but the scope of the present invention is not limited to the examples described below. An apparatus configuration in the wood preservative detection method provided by the present invention will be described with reference to FIG. This detection method irradiates the inspected wood 4 with light including a plurality of wavelength bands by using the illuminating device 1, and reflects light from the inspected wood 4 with a plurality of optical sensors 2 equipped with filters 3 and 3'having different characteristics. 2 ′, measure the reflected light intensity in each wavelength band, calculate those values by the calculation device 5, and compare the result with a preset threshold value corresponding to the presence or absence of a preservative. Then, the determination result is output to the output device 6.

【0047】照明装置1はいかなるものを用いても良い
が、白熱ランプが近赤外光を含む広い帯域の光を照射可
能で、かつ安価であるため適しているといえる。中でも
ハロゲンランプは長寿命であり好適に利用可能である。
この他にもキセノンランプ、メタルハライドランプなど
のアーク放電管や最近の技術革新が著しい発光ダイオー
ドなども適宜利用可能である。また蛍光励起のための紫
外光の照明装置としては冷陰極放電管が、青色照明とし
てはLEDが好適である。これらの光源は、検出する蛍光
の波長帯の光を照射しないようにするため長波長カット
フィルタを装着することで良い結果が得られる。
Any illuminating device 1 may be used, but it can be said that the incandescent lamp is suitable because it can emit light in a wide band including near infrared light and is inexpensive. Among them, halogen lamps have a long life and can be suitably used.
In addition to this, arc discharge tubes such as xenon lamps and metal halide lamps, and light-emitting diodes that have undergone remarkable technological innovation can also be used as appropriate. Further, a cold cathode discharge tube is suitable as an ultraviolet light illuminating device for exciting fluorescence, and an LED is suitable for blue illumination. Good results can be obtained by attaching a long-wavelength cut filter to these light sources so that they do not emit light in the fluorescence wavelength band to be detected.

【0048】またX線光源としてはX線管球が好適であ
る。X線管球はターゲット材を選択することで特定の波
長帯に強い放射を得ることが可能である。本発明におい
ては比較的長波長のX線で励起可能であり印加電圧はあ
まり上げる必要がない。また試料に広い範囲でX線を照
射するだけで良いためマイクロフォーカス特性やコリメ
ータは必要としない。
An X-ray tube is suitable as the X-ray light source. The X-ray tube can obtain strong radiation in a specific wavelength band by selecting a target material. In the present invention, it is possible to excite with an X-ray having a relatively long wavelength, and it is not necessary to raise the applied voltage so much. Further, since it is sufficient to irradiate the sample with X-rays over a wide range, the microfocus characteristic and the collimator are not required.

【0049】光センサ2は、可視光および近赤外の短波
長側ではシリコンを用いた素子が好適である。近赤外域
ではInGaAsやGeを用いた素子が利用可能である
が、これらの材質はいづれも当業者に公知であり適宜選
択可能である。これらの素子を1次元配列すると、検査
物の1方向の位置を割り出すことが可能となる。また、
前記素子を2次元状に配置した素子(カメラ)では2次
元の位置情報が特定され、さらにこの情報から得られる
形状の情報からは試料の面積、傾きなど多くの有効な情
報が得られる。この他に2次元情報を得られるセンサと
して撮像管が挙げられ、特に近赤外域においては赤外ビ
ジコンが好適に利用される。
The optical sensor 2 is preferably an element using silicon on the short wavelength side of visible light and near infrared. In the near infrared region, an element using InGaAs or Ge can be used, and any of these materials is known to those skilled in the art and can be appropriately selected. By arranging these elements one-dimensionally, it is possible to determine the position of the inspection object in one direction. Also,
In a device (camera) in which the devices are arranged in a two-dimensional manner, two-dimensional position information is specified, and from the shape information obtained from this information, a lot of effective information such as the area and inclination of the sample can be obtained. In addition to this, an image pickup tube is given as a sensor that can obtain two-dimensional information, and an infrared vidicon is preferably used particularly in the near infrared region.

【0050】さらにX線検出では半導体検出器(SSD)、
シンチレーションカウンタ、比例計数管などが利用可能
である。特に比例検出管は波高分析器とともに用いるこ
とでX線強度と波長を同時に計測できるだけでなく、冷
却する必要がないため本発明の実施に好適である。
Further, in X-ray detection, a semiconductor detector (SSD),
A scintillation counter, a proportional counter, etc. can be used. In particular, the proportional detection tube is suitable for carrying out the present invention because it can measure X-ray intensity and wavelength at the same time by using it together with a wave height analyzer and does not require cooling.

【0051】フィルタ3は物質の特定の波長帯吸収特性
を利用したフィルタ(色ガラスフィルタ)や干渉を用い
た金属干渉フィルタ、誘電体干渉フィルタなどがある。
干渉フィルタにおいては、光線の入射角による特性変化
の欠点があるものの、様々な波長透過特性を実現でき
る。特に誘電体干渉フィルタは挿入損失が小さく、可視
光、近赤外光域で設計の自由度が高く、本発明の実施に
好適である。また光路の変更と波長帯の選択を同時に行
うフィルタ付きのミラーを用いると光学系全体の設計を
コンパクトにまとめられることが期待できる。またX線
にあってはグラファイト結晶の(002)面などの回折
を用いたフィルタ、特定波長を強く吸収する金属箔フィ
ルタ、波高分析器による波長帯選択が可能である。
Examples of the filter 3 include a filter (colored glass filter) that uses a specific wavelength band absorption characteristic of a substance, a metal interference filter that uses interference, and a dielectric interference filter.
The interference filter can realize various wavelength transmission characteristics, though it has a drawback that the characteristics change depending on the incident angle of a light beam. In particular, the dielectric interference filter has a small insertion loss and has a high degree of freedom in design in the visible light and near-infrared light regions, and is suitable for implementing the present invention. In addition, it is expected that the design of the entire optical system can be made compact by using a mirror with a filter that simultaneously changes the optical path and selects the wavelength band. For X-rays, it is possible to select a wavelength band using a filter that uses diffraction such as the (002) plane of graphite crystal, a metal foil filter that strongly absorbs a specific wavelength, and a wave height analyzer.

【0052】計算装置5は複数の光センサから得られた
各波長帯の反射光強度を演算し閾値と比較する機能を有
するもので、マイクロコンピュータ、デジタル演算器、
アナログ演算器などが適宜利用可能である。
The calculation device 5 has a function of calculating the reflected light intensity of each wavelength band obtained from a plurality of photosensors and comparing it with a threshold value.
An analog calculator or the like can be appropriately used.

【0053】出力装置6は計算装置で得られた木材防腐
剤の有無の情報を人間または後段の防腐処理木材除去機
械に通知するもので、ディスプレイモニタ、ランプ、ブ
ザー、リレー接点出力などが適宜利用可能である。
The output device 6 notifies the information on the presence or absence of the wood preservative obtained by the calculation device to a human or a subsequent antiseptic wood removing machine, and a display monitor, a lamp, a buzzer, a relay contact output, etc. are appropriately used. It is possible.

【0054】照明装置として500Wの白熱ランプ(東
芝フォトリフレクタ)を用い900nmから1200n
mの波長帯を豊富に含む光をCCA処理木材と未処理木
材を並べた試料に照射し、可視光〜近赤外光(400〜
1800nm)に感度をもつカメラ(浜松ホトニクス株
式会社、C2741−03)に860〜940nmの波
長帯を透過するフィルタと1143〜1253NMを透
過する2種類のフィルタ(日本真空光学株式会社、DI
F−BPF−3)を装着して反射画像を撮影した。得ら
れた2つの反射画像の860〜940nm帯の各画素の
濃度Aijと1143〜1253nm帯の各画素の強度
Bijについて次式で演算を行った。 Rij = Th ― Aij / Bij (1) ここでThはCCA処理材と未処理材を分別できるように
標準試料を用いて決定した閾値である。演算はパーソナ
ルコンピュータを用い、カメラが出力するNTSC規格のア
ナログビデオ信号をPICバスに接続された画像取り込み
/処理ボード(日立米沢電子株式会社、VP810)を
用いデジタル画像に変換し各画素におけるRIJを求め
た。
An incandescent lamp of 500 W (Toshiba photo reflector) is used as an illuminating device, and 900 nm to 1200 n
A sample containing CCA-treated wood and untreated wood is irradiated with light containing abundant wavelength band of m, and visible light to near infrared light (400 to
A camera (Hamamatsu Photonics Co., Ltd., C2741-03) having a sensitivity to 1800 nm has a filter that transmits a wavelength band of 860 to 940 nm and two types of filters that transmit 1143 to 1253 NM (Nippon Vacuum Optical Co., Ltd., DI
F-BPF-3) was attached and a reflection image was taken. The density Aij of each pixel in the 860 to 940 nm band and the intensity Bij of each pixel in the 1143 to 1253 nm band of the two obtained reflection images were calculated by the following equation. Rij = Th-Aij / Bij (1) Here, Th is a threshold value determined using a standard sample so that the CCA-treated material and the untreated material can be separated. A personal computer is used for the calculation, and the NTSC standard analog video signal output from the camera is converted into a digital image using an image capture / processing board (Hitachi Yonezawa Electronics Co., Ltd., VP810) connected to the PIC bus, and RIJ at each pixel is calculated. I asked.

【0055】演算結果Rijが正の場合は白、負の場合
は黒を各画素に割り当てる処理を施したところ、CCA
が存在する部分のみを選択的に画像として捉えることが
できた。また、照明装置として紫外光ランプ(東芝ライ
テック株式会社、ネオボール5)を用いて蛍光を励起し
たところCCA処理木材においては未処理木材に比べ蛍
光強度が5〜20%低下することが観察された。さらに
反射特性を計測可能なスペクトロメータ(相馬光学株式
会社、S−2600およびS−2700)を用いて可視
光〜近赤外域の様々な樹種およびCCA処理材を観察し
た結果、CCA処理木材において600〜1050nm
において5〜15%の反射率の低下が観測され、実施例
の結果を裏付けるデータを得ている。
When the calculation result Rij is positive, white is assigned, and when it is negative, black is assigned to each pixel.
It was possible to selectively capture only the part where there was. When fluorescence was excited using an ultraviolet lamp (Toshiba Lightec Co., Ltd., Neoball 5) as a lighting device, it was observed that the fluorescence intensity of CCA-treated wood was reduced by 5 to 20% as compared with untreated wood. Furthermore, as a result of observing various tree species in the visible light to near-infrared region and CCA-treated materials using a spectrometer (Soma Optical Co., Ltd., S-2600 and S-2700) capable of measuring reflection characteristics, 600 in CCA-treated wood. ~ 1050nm
A decrease in reflectance of 5 to 15% was observed in Table 1, and data supporting the results of the Examples are obtained.

【0056】蛍光X線においては金属膜厚計(セイコー
電子株式会社、SFT7200)を用い、CCA処理木
材に45kVの直流電圧を印加したタングステンターゲ
ットのX線管球からX線を照射した。さらにX線照射方
向から約45゜の方向に設置された比例計数管から得ら
れた検出信号から波高分析器により1.54Å付近の波
長帯を選択的に検出した。この結果CCAの処理木材か
ら有意な強度で1.54Åの銅による蛍光X線発生を見
いだし、未処理木材との判別が可能であった。
For fluorescent X-rays, a metal film thickness meter (Seiko Denshi Co., Ltd., SFT7200) was used, and CCA-treated wood was irradiated with X-rays from an X-ray tube of a tungsten target to which a direct current voltage of 45 kV was applied. Furthermore, the waveband around 1.54Å was selectively detected by the wave height analyzer from the detection signal obtained from the proportional counter installed at about 45 ° from the X-ray irradiation direction. As a result, fluorescent X-ray generation from 1.54Å copper was found to be significant in the CCA-treated wood, and it was possible to distinguish it from untreated wood.

【0057】このことから、本発明を用いるとCCAの
存在の特定が可能であり、センサを1次元または2次元
に配列することで、その位置や大きさ等の情報も取得可
能であることは明らかである。
From this, it is possible to identify the presence of CCA by using the present invention, and it is possible to obtain information such as the position and size of the CCA by arranging the sensors in one or two dimensions. it is obvious.

【0058】本発明で提供される木材防腐剤検出法は図
2のフローチャートに示すプロセスによって達成され
る。
The wood preservative detection method provided by the present invention is achieved by the process shown in the flow chart of FIG.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明検出方法の装置構成図。FIG. 1 is a device configuration diagram of a detection method of the present invention.

【図2】本発明のフローチャート。FIG. 2 is a flowchart of the present invention.

【符号の説明】[Explanation of symbols]

1 照明装置 2、2’センサ 3、3’フィルタ 4 被検査木材 5 演算装置 6 出力装置 1 Lighting device 2, 2'sensor 3,3 'filter 4 Inspected wood 5 arithmetic unit 6 Output device

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G06T 7/60 150 G06T 7/60 150B 150P 150S (72)発明者 安藤 則男 山形市元木3丁目11番37号 (72)発明者 小林 正男 山形県西村山郡河北町大字吉田106番地 (72)発明者 佐藤 敏幸 山形県山形市城西町三丁目13番65号 Fターム(参考) 2G001 AA01 BA04 CA01 DA01 DA02 EA03 GA01 GA13 KA01 LA20 2G043 AA03 BA01 BA05 BA14 CA05 EA01 FA01 FA07 GA25 GB28 HA02 JA02 JA03 KA02 KA03 KA05 LA03 NA01 NA05 2G059 AA05 BB08 EE02 EE07 EE12 FF08 GG10 HH01 HH02 HH03 HH06 JJ02 JJ13 KK03 KK04 MM01 MM05 MM09 PP04 5B057 AA01 BA02 CA12 CA16 DA06 DB02 DC08 DC09 5L096 BA03 CA02 FA15 FA67 FA69 JA11 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) G06T 7/60 150 G06T 7/60 150B 150P 150S (72) Inventor Norio Ando Yamagata Ichimoto 3-chome 11 No. 37 (72) Masao Kobayashi 106, Yoshida, Kakita-cho, Nishimurayama-gun, Yamagata Prefecture (72) Inventor Toshiyuki Sato No. 13-65, Josaimachi, Yamagata City, Yamagata Prefecture F-term (reference) 2G001 AA01 BA04 CA01 DA01 DA02 EA03 GA01 GA13 KA01 LA20 2G043 AA03 BA01 BA05 BA14 CA05 EA01 FA01 FA07 GA25 GB28 HA02 JA02 JA03 KA02 KA03 KA05 LA03 NA01 NA05 2G059 AA05 BB08 EE02 EE07 EE12 PF08 BB08 BB08A01 BB08 BB01 BB08 BB01 BB08 BB01 BB08 BB08 BB01 DB02 DC08 DC09 5L096 BA03 CA02 FA15 FA67 FA69 JA11

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 複数の波長帯からなる光(可視光または
近赤外光)を照射できる照明装置からの光を被検査木材
に照射し、その反射光を異なる波長帯を透過する光学フ
ィルタを装備した複数の光センサまたは1次元光センサ
アレイまたは2次元光センサアレイ(カメラ)で捉え
て、複数の波長帯における反射光強度を計測し、それら
の強度を計算装置で演算し、閾値と比較することで被検
査木材への銅、クロム、ヒ素を含んだ有毒木材防腐剤
(CCA)の含浸または塗布の有無を判定自在とした光学
式木材防腐剤検出方法。
1. An optical filter for irradiating light to be inspected with light from a lighting device capable of irradiating light (visible light or near-infrared light) having a plurality of wavelength bands and transmitting reflected light in different wavelength bands. Captured with multiple photosensors, one-dimensional photosensor array or two-dimensional photosensor array (camera) equipped, measure the reflected light intensity in multiple wavelength bands, calculate those intensities with a calculation device, and compare with the threshold value. An optical wood preservative detection method that makes it possible to determine the presence or absence of impregnation or application of a toxic wood preservative (CCA) containing copper, chromium, and arsenic on the inspected wood.
【請求項2】 被検査木材に照明装置により複数の波長
帯からなる光(X線または紫外光または可視光)を照射
し、励起された蛍光と反射光から複数のフィルタによっ
て蛍光と反射光を選択し、複数のセンサまたは1次元セ
ンサアレイまたは2次元センサアレイ(カメラ)によ
り、蛍光と反射光強度をそれぞれ計測し、それらの強度
を計算装置で演算し、閾値と比較することで被検査木材
への銅、クロム、ヒ素を含んだ有毒木材防腐剤(CCA)
の含浸または塗布の有無を判定自在とした木材防腐剤検
出方法。
2. The inspected wood is irradiated with light (X-rays, ultraviolet light or visible light) having a plurality of wavelength bands by an illumination device, and the fluorescence and the reflected light are excited from the excited fluorescence and the reflected light by a plurality of filters. Select and measure fluorescence and reflected light intensities with multiple sensors or one-dimensional sensor array or two-dimensional sensor array (camera) respectively, calculate those intensities with a calculation device, and compare with the threshold value. Toxic wood preservative (CCA) containing copper, chromium and arsenic
A method for detecting wood preservatives, which can judge the presence or absence of impregnation or application of wood.
【請求項3】 木材に白熱電灯を用いて可視光、近赤外
光を含む白色光を照射し、複数の光学的なバンドパスフ
ィルタによって反射光の波長帯を選択し、光センサ、1
次元光センサアレイまたはカメラにより、各波長帯にお
ける反射光強度を計測し、それらの強度比をコンピュー
タを用いて計算し、強度比を閾値と比較することで、被
検査木材への銅、クロム、ヒ素を含んだ有毒木材防腐剤
(CCA)の含浸または塗布の有無を非破壊・非接触で判
定し、判定結果を画面表示または警告音またはリレー接
点出力できるようにした請求項1の光学式木材防腐剤検
出装置。
3. An incandescent lamp is used to irradiate wood with white light including visible light and near-infrared light, and a plurality of optical bandpass filters are used to select a wavelength band of reflected light.
Dimensional optical sensor array or camera, measure the reflected light intensity in each wavelength band, calculate the intensity ratio of them using a computer, by comparing the intensity ratio with a threshold, copper, chromium to the inspected wood, The optical wood according to claim 1, wherein presence / absence of impregnation or application of toxic wood preservative (CCA) containing arsenic is determined non-destructively / non-contact, and the determination result can be displayed on a screen or output a warning sound or relay contact output. Preservative detection device.
【請求項4】 CCAの吸収が大きい波長600〜1050n
mまでの波長帯とCCAの吸収が小さい1200〜1600nm
の波長帯間の反射光強度の差分または比率を閾値と比較
することで含浸・塗布されたCCAの有無を判定自在と
した請求項1または3記載の光学式木材防腐剤検出方
法。
4. A wavelength range from 600 to 1050n, which has a large absorption of CCA.
Wavelength up to m and absorption of CCA is small 1200 ~ 1600nm
The optical wood preservative detection method according to claim 1 or 3, wherein the presence or absence of the impregnated / coated CCA can be determined by comparing the difference or ratio of the reflected light intensities between the wavelength bands of 1) with a threshold value.
【請求項5】 複数の波長帯画像を撮影するために異な
る透過帯特性を有する光学フィルタを装着した複数のカ
メラから各波長帯の画像を取得し、画像演算により、木
材防腐剤の分布を画像化して、防腐処理木材の位置、形
状、傾き、大きさ、表面状態の情報を抽出自在とした請
求項1乃至4記載の光学式木材防腐剤検出方法。
5. The image of each wavelength band is acquired from a plurality of cameras equipped with optical filters having different transmission band characteristics for capturing a plurality of wavelength band images, and the image of the distribution of the wood preservative is obtained by image calculation. The optical wood preservative detection method according to claim 1, wherein the information on the position, shape, inclination, size, and surface state of the preservative-treated wood can be extracted and converted.
JP2002067805A 2002-03-13 2002-03-13 Optical wood preservative detection method Expired - Fee Related JP3739086B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002067805A JP3739086B2 (en) 2002-03-13 2002-03-13 Optical wood preservative detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002067805A JP3739086B2 (en) 2002-03-13 2002-03-13 Optical wood preservative detection method

Publications (2)

Publication Number Publication Date
JP2003270137A true JP2003270137A (en) 2003-09-25
JP3739086B2 JP3739086B2 (en) 2006-01-25

Family

ID=29199061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002067805A Expired - Fee Related JP3739086B2 (en) 2002-03-13 2002-03-13 Optical wood preservative detection method

Country Status (1)

Country Link
JP (1) JP3739086B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008508526A (en) * 2004-07-29 2008-03-21 イーストマン ケミカル カンパニー Detection of microorganisms using fluorescence-based devices
JP2009134383A (en) * 2007-11-29 2009-06-18 Sony Corp Image processing device, method, and program
JP2012118037A (en) * 2010-12-03 2012-06-21 Placeram Co Ltd Functional porous body, method for manufacturing the same, and method for evaluating functional porous body
JP2012518180A (en) * 2009-02-18 2012-08-09 エフ.ホフマン−ラ ロシュ アーゲー Inspection method and inspection instrument for analyzing body fluid
RU2473969C2 (en) * 2009-09-28 2013-01-27 Мейнан Машинери Уоркс, Инк. Method of detecting chuck core and device for its implementation
CN105486660A (en) * 2015-11-24 2016-04-13 东北林业大学 Apparatus and method for online detection of performances of wood plate by using near infrared spectroscopy

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101422909B1 (en) * 2012-04-04 2014-07-24 서울대학교산학협력단 Method of measuring moisture content of wood using near infrared reflectance spectroscopy and method of carbonization control using the near infrared reflectance spectroscopy
KR102508426B1 (en) 2016-01-29 2023-03-09 삼성전자주식회사 Sensor capable of detecting stiffness, mobile apparatus having the same, and 3D printer using the same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008508526A (en) * 2004-07-29 2008-03-21 イーストマン ケミカル カンパニー Detection of microorganisms using fluorescence-based devices
US8535937B2 (en) 2004-07-29 2013-09-17 Neogen Corporation Detection of microorganisms with a fluorescence-based device
US9207180B2 (en) 2004-07-29 2015-12-08 Neogen Corporation Detection of microorganisms with a fluorescence-based device
JP2009134383A (en) * 2007-11-29 2009-06-18 Sony Corp Image processing device, method, and program
US8238652B2 (en) 2007-11-29 2012-08-07 Sony Corporation Image processing apparatus and method, and program
JP2012518180A (en) * 2009-02-18 2012-08-09 エフ.ホフマン−ラ ロシュ アーゲー Inspection method and inspection instrument for analyzing body fluid
US9439587B2 (en) 2009-02-18 2016-09-13 Roche Diabetes Care, Inc. Test method and test device for analysing a body fluid
US10244970B2 (en) 2009-02-18 2019-04-02 Roche Diabetes Care, Inc. Test method and test device for analysing a body fluid
US10694984B2 (en) 2009-02-18 2020-06-30 Roche Diabetes Care, Inc. Test method and test drive for analysing a body fluid
RU2473969C2 (en) * 2009-09-28 2013-01-27 Мейнан Машинери Уоркс, Инк. Method of detecting chuck core and device for its implementation
JP2012118037A (en) * 2010-12-03 2012-06-21 Placeram Co Ltd Functional porous body, method for manufacturing the same, and method for evaluating functional porous body
CN105486660A (en) * 2015-11-24 2016-04-13 东北林业大学 Apparatus and method for online detection of performances of wood plate by using near infrared spectroscopy

Also Published As

Publication number Publication date
JP3739086B2 (en) 2006-01-25

Similar Documents

Publication Publication Date Title
Curran et al. Exploring the relationship between reflectance red edge and chlorophyll content in slash pine
US6633037B2 (en) Methods of tracing water from the liquid to the vapor state in structures of all types and sizes
CN1046031C (en) Simultaneous monitoring of multiple water treatment performance indicators
EP2185921B1 (en) Differentiation of lead in surface layers and in bulk samples by x-ray fluorescence
Oda et al. Determination of ultratrace cadmium by laser-induced photoacoustic absorption spectrometry
Rathore et al. Standardization of micro-FTIR methods and applicability for the detection and identification of microplastics in environmental matrices
JP3739086B2 (en) Optical wood preservative detection method
CA2418871A1 (en) Method and apparatus for detecting chemical contamination
Block et al. Use of handheld X-ray fluorescence spectrometry units for identification of arsenic in treated wood
Burakov et al. Development of a laser-induced breakdown spectroscopy method for soil and ecological analysis
Blassino et al. Pilot scale evaluation of sorting technologies for CCA treated wood waste
Narewski et al. Application of laser ablation inductively coupled mass spectrometry (LA-ICP-MS) for the determination of major, minor, and trace elements in bark samples
Tsuchikawa et al. Nondestructive measurement of the subsurface structure of biological material having cellular structure by using near-infrared spectroscopy
Kusumo The rapid measurement of soil carbon stock using near-infrared technology
JP2005127932A (en) Optical method and instrument for detecting wood preservative
Eremin et al. Photochemical-fluorimetric method for the determination of total chlorophenoxyacid herbicides
Koumbi-Mounanga et al. Prediction and evaluation of borate distribution in Eastern black spruce (Picea mariana var. mariana) wood products
JP7169643B2 (en) Nitrate ion concentration nondestructive measuring method, nitrate ion concentration nondestructive measuring device, and nitrate ion concentration nondestructive measuring program
JPH11201918A (en) Qualitative and quantitative analysis of chemical element, compound, and mixture
Bonifazi et al. Hyperspectral imaging applied to the identification and classification of asbestos fibers
Antikainen et al. Heartwood detection for Scotch pine by fluorescence image analysis
Mounier et al. Front-face fluorescence spectroscopy of tryptophan and fluorescein using laser induced fluorescence and excitation emission matrix fluorescence
CN1598537A (en) Field optical investigating device and detecting method for multiple organic pollutant in sea water
CN112577941A (en) Method for detecting organic pollutants in soil
Marhaba et al. Rapid prediction of disinfection by-product formation potential by fluorescence

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040924

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050927

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051031

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111111

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121111

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131111

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees