JP2003270134A - Spectroscopic analyzer - Google Patents

Spectroscopic analyzer

Info

Publication number
JP2003270134A
JP2003270134A JP2002078152A JP2002078152A JP2003270134A JP 2003270134 A JP2003270134 A JP 2003270134A JP 2002078152 A JP2002078152 A JP 2002078152A JP 2002078152 A JP2002078152 A JP 2002078152A JP 2003270134 A JP2003270134 A JP 2003270134A
Authority
JP
Japan
Prior art keywords
light
measured
measurement target
irradiation range
shield
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002078152A
Other languages
Japanese (ja)
Other versions
JP3821734B2 (en
Inventor
Kenichi Iwami
憲一 石見
Shinichi Kawabata
河端  真一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2002078152A priority Critical patent/JP3821734B2/en
Publication of JP2003270134A publication Critical patent/JP2003270134A/en
Application granted granted Critical
Publication of JP3821734B2 publication Critical patent/JP3821734B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a spectroscopic analyzer which can accurately analyze internal qualities of a measuring object regardless of the size of the measuring object. <P>SOLUTION: The spectroscopic analyzer comprises a projection means 10 projecting light on a measuring object M which is located at a measuring object position T, a light receiving means 11 for spectrally diffracting reflected light from the measuring object M, and receiving spectrally diffracted light, and a control means 3 for controlling the operation of each part, and is constituted so that the control means 3 analyzes the internal quality of the measuring based on the information of the light receiving means 11. The spectroscopic analyzer also comprises a irradiation range changing means 21 to change and adjust the irradiation range of the light irradiating to the measuring object position T from the projection means 5. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、計測対象箇所に位
置する被計測物に光を照射する投光手段と、前記被計測
物からの透過光を受光して分光し、その分光された光を
計測する受光手段と、各部の動作を制御する制御手段と
が設けられ、前記制御手段が、前記受光手段の計測情報
に基づいて、前記被計測物の内部品質を解析するように
構成されている分光分析装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a projecting means for irradiating an object to be measured located at a position to be measured with light, and a transmitted light from the object to be measured to receive and disperse the dispersed light. Is provided, and a control means for controlling the operation of each part is provided, and the control means is configured to analyze the internal quality of the measured object based on the measurement information of the light receiving means. Existing spectroscopic analyzer.

【0002】[0002]

【従来の技術】上記のような分光分析装置は、例えば、
青果物等を被計測物として、その被計測物の糖度や酸度
等の内部品質を解析するために用いられる。そして、そ
の被計測物となる青果物等には、その大きさが品種等に
よって異なるものがあり、様々な大きさの被計測物の内
部品質を解析するようになっている。そして、従来の分
光分析装置は、投光手段から計測対象箇所へ向けて照射
される光の照射範囲が、大小異なる大きさの被計測物が
あるうちの、小さい被計測物に対応させて一定の大きさ
に構成されている。すなわち、投光手段から計測対象箇
所へ向けて照射される光の照射範囲を、小さい被計測物
に対応させて、被計測物を透過する光が被計測物に対し
て広い範囲となるようにしながらも、投光手段から計測
対象箇所へ向けて照射される光が、被計測物を通過せず
に被計測物を回り込んでくることを抑制できるように設
定することによって、被計測物が大きいときにも、投光
手段から計測対象箇所へ向けて照射される光が、被計測
物を通過せずに被計測物を回り込んでくることを抑制で
きるようにして、被計測物の大きさに係わらず、投光手
段から計測対象箇所へ向けて照射される光が、被計測物
を通過せずに被計測物を回り込んでくることを抑制する
ものとなっている。ちなみに、被計測物を通過せずに被
計測物を回り込んでくる光は、被計測物を透過してくる
光と比べて、光量が多く、このような光を受光手段が受
光すると、受光量が検出可能な適正範囲を逸脱してしま
い、被計測物の内部品質を解析することができなくなる
ので、上述したように、投光手段から計測対象箇所へ向
けて照射される光が、被計測物を通過せずに被計測物を
回り込んでくることを抑制する必要がある。
2. Description of the Related Art The above-mentioned spectroscopic analyzer is, for example,
Used as an object to be measured such as fruits and vegetables to analyze internal qualities such as sugar content and acidity of the object. The size of the fruits and vegetables to be measured is different depending on the variety and the like, and the internal quality of the measured objects of various sizes is analyzed. In the conventional spectroscopic analysis device, the irradiation range of the light emitted from the light projecting means toward the measurement target location is constant corresponding to the small measurement object among the measurement objects of different sizes. It is configured to the size of. That is, the irradiation range of the light emitted from the light projecting unit toward the measurement target location is made to correspond to a small object to be measured so that the light transmitted through the object to be measured becomes a wide range with respect to the object to be measured. However, by setting so that the light emitted from the light projecting means toward the measurement target portion can be prevented from going around the measurement target object without passing through the measurement target object, Even when it is large, it is possible to prevent the light emitted from the light projecting means toward the measurement target portion from going around the measurement target object without passing through the measurement target object. Regardless of this, the light emitted from the light projecting means toward the measurement target portion is prevented from wrapping around the object to be measured without passing through the object to be measured. By the way, the light that goes around the object to be measured without passing through the object to be measured has a larger amount of light than the light that passes through the object to be measured. Since the quantity deviates from the proper detectable range and the internal quality of the measured object cannot be analyzed, as described above, the light emitted from the light projecting means toward the measurement target portion is It is necessary to prevent the object to be measured from going around without passing through the object to be measured.

【0003】[0003]

【発明が解決しようとする課題】従来の分光分析装置
は、被計測物の大きさに係わらず、投光手段から計測対
象箇所へ向けて照射される光が、被計測物を通過せずに
被計測物を回り込んでくることを抑制することができる
ものであるが、投光手段から計測対象箇所へ向けて照射
される光の照射範囲が、小さな被計測物に対応させて設
定されているので、被計測物が大きいときには、投光手
段から計測対象箇所へ向けて照射される光が被計測物を
透過する範囲が、被計測物に対して狭いものとなり、被
計測物の狭い範囲に対する計測情報を用いて内部品質を
解析するものとなり、計測精度が向上しにくいものであ
ることから、この点で改善が望まれていた。
In the conventional spectroscopic analysis device, the light emitted from the light projecting means toward the measurement target portion does not pass through the measurement object regardless of the size of the measurement object. Although it is possible to prevent the measurement object from wrapping around, the irradiation range of the light emitted from the light projecting means toward the measurement target location is set to correspond to a small measurement object. Therefore, when the object to be measured is large, the range in which the light emitted from the light projecting unit to the measurement target site passes through the object to be measured becomes narrow relative to the object to be measured, and the narrow range of the object to be measured. Since the internal quality is analyzed by using the measurement information for, and the measurement accuracy is difficult to improve, improvement has been desired in this respect.

【0004】ところで、本出願人は、特願平12−29
8655号にて、図12に示すように、上記課題を解決
するために、計測対象箇所Tに、投光手段61から照射
された光のうち被計測物Mを透過することなく受光手段
62に入射しようとする回り込み光を遮蔽する遮光体6
3が備えられている分光分析装置を提案した。この分光
分析装置では、被計測物Mが搬送コンベア66により一
列で縦列状に載置搬送される構成となっており、計測対
象箇所Tを順次、通過していくように構成され、遮光体
63は、枠部材64と遮蔽部材65とを備えて構成され
ている。詳述すると、前記枠部材64が、光開口67
a、67bを左右両側部に夫々備えて、搬送方向と交差
する方向に投光手段61から被計測物Mに照射される光
を受光手段62に向けて通過させることができるように
構成され、前記遮蔽部材65が、前記枠部材64の搬送
方向上手側の側面及び搬送方向下手側の側面に夫々設け
られて構成されている。そして、前記各遮蔽部材65に
は、被計測物Mが滑らかに搬送されて通過すること許容
するために搬送用開口68a、68bが形成されてお
り、夫々の搬送用開口68a、68bにおける口縁部に
は、上下方向に複数の舌片Zが互いに切り裂かれたよう
に互いの隙間が少ない状態で形成されており、各舌片Z
は夫々各別に被計測物Mの外表面に沿いながら屈曲変形
して被計測物Mの通過を許容するように退避自在に構成
されている。このような構成を備えることによって、被
計測物を透過することなく受光手段に入射しようとする
回り込み光を抑制することはできるものの、遮蔽部材と
被計測物とが摺接することとなって、被計測物の表面に
傷が付く虞があり、また、遮蔽部材も傷つき易いものと
なり、実用し難いものであった。
By the way, the present applicant has filed Japanese Patent Application No. 12-29.
No. 8655, as shown in FIG. 12, in order to solve the above-mentioned problems, the measurement target portion T is transmitted to the light receiving means 62 without passing through the measured object M in the light emitted from the light projecting means 61. Light-blocking body 6 for blocking the wraparound light that is about to enter
3 has been proposed. In this spectroscopic analyzer, the measured objects M are placed and conveyed in a single column in a column by the conveyor 66, and are configured so as to sequentially pass through the measurement target points T, and the light shield 63 is provided. Includes a frame member 64 and a shielding member 65. More specifically, the frame member 64 includes the light opening 67.
a and 67b are provided on both left and right sides, respectively, so that the light emitted from the light projecting means 61 to the object to be measured M can be passed toward the light receiving means 62 in a direction intersecting the transport direction. The shielding member 65 is provided on each of a side surface of the frame member 64 on the upstream side in the transport direction and a side surface on the downstream side in the transport direction. Then, each of the shielding members 65 is formed with transfer openings 68a and 68b for allowing the object M to be measured to be smoothly transferred and passed, and the edges of the respective transfer openings 68a and 68b are formed. A plurality of tongues Z are formed in the portion in the vertical direction so that there is little gap between them as if they were cut apart from each other.
Are configured to be retractable along the outer surface of the object to be measured M so as to be bent and deformed to allow passage of the object to be measured M. By providing such a configuration, it is possible to suppress the wraparound light that is about to enter the light receiving means without passing through the object to be measured, but the shielding member and the object to be measured are in sliding contact with each other. There is a risk that the surface of the measured object will be scratched, and the shielding member will also be easily scratched, making it difficult to put into practical use.

【0005】本発明は、かかる点に着目してなされたも
のであり、その目的は、被計測物の大きさに係わらず、
被計測物の内部品質を精度よく解析することができる分
光分析装置を提供する点にある。
The present invention has been made paying attention to such a point, and an object thereof is, regardless of the size of an object to be measured,
It is a point to provide a spectroscopic analyzer capable of accurately analyzing the internal quality of an object to be measured.

【0006】[0006]

【課題を解決するための手段】請求項1に記載の発明
は、計測対象箇所に位置する被計測物に光を照射する投
光手段と、前記被計測物からの透過光を受光し、その受
光した光を分光して、その分光された光を計測する受光
手段と、各部の動作を制御する制御手段とが設けられ、
前記制御手段が、前記受光手段にて受光した光により、
前記被計測物の内部品質を解析するように構成されてい
る分光分析装置であって、前記投光手段から前記計測対
象箇所へ向けて照射される光の照射範囲を変更調節する
照射範囲変更手段が設けられている点を特徴とする。
According to a first aspect of the present invention, a light projecting means for irradiating an object to be measured located at a measurement target location with light, and a transmitted light from the object to be measured are received. A light receiving means for separating the received light and measuring the separated light, and a control means for controlling the operation of each part are provided,
The control means, by the light received by the light receiving means,
A spectroscopic analyzer configured to analyze the internal quality of the object to be measured, the irradiation range changing unit changing and adjusting an irradiation range of light emitted from the light projecting unit toward the measurement target location. Is provided.

【0007】すなわち、計測対象箇所に位置する被計測
物の大きさが、被計測物の品種等によって変わるときに
も、その被計測物の大きさに応じて、照射範囲変更手段
によって照射範囲を変更調節することによって、投光手
段から計測対象箇所へ向けて照射される光を、被計測物
に対して広い範囲で透過させるようにすることができな
がらも、被計測物を通過せずに被計測物を回り込んで受
光手段へ入射する光を抑制することができる。このよう
に、投光手段から計測対象箇所へ向けて照射される光の
照射範囲を、被計測物の大きさに応じた適正な大きさに
変更調節することができるようになるから、大きさの異
なる被計測物の夫々について内部品質を精度良く解析で
きる。
That is, even when the size of the object to be measured located at the measurement target portion changes depending on the type of the object to be measured, the irradiation range changing means changes the irradiation range according to the size of the object to be measured. By changing and adjusting the light, the light emitted from the light projecting means toward the measurement target portion can be transmitted in a wide range with respect to the measured object, but without passing through the measured object. It is possible to suppress light that goes around the object to be measured and is incident on the light receiving means. In this way, the irradiation range of the light emitted from the light projecting means toward the measurement target portion can be changed and adjusted to an appropriate size according to the size of the object to be measured. It is possible to accurately analyze the internal quality of each of the different measured objects.

【0008】従って、被計測物の大きさに係わらず、内
部品質を精度良く解析できる分光分析装置を得るに至っ
た。
Therefore, it has become possible to obtain a spectroscopic analyzer capable of accurately analyzing the internal quality regardless of the size of the object to be measured.

【0009】請求項2に記載の発明は、前記照射範囲変
更手段が、開口面積が異なる複数種の光通過用開口を選
択使用自在に備えて構成されている点を特徴とする。
The invention according to a second aspect is characterized in that the irradiation range changing means is configured to selectively use a plurality of types of light passage openings having different opening areas.

【0010】すなわち、開口面積が異なる複数種の光通
過用開口を備えて、その複数種の光通過用開口のうちの
いずれか1個を選択して使用することによって、計測対
象箇所へ照射される光の照射範囲を変更調節できる。こ
のように、複数種の光通過用開口を選択使用する構成
は、カメラ等に備えられている可変絞りの構成に較べ
て、簡素な構成である。ちなみに、光通過用開口の大き
さの変化により、開口面積が大きい方が光量が多くなる
ように光量変化を生じるものであるが、被計測物は大き
な物ほど透過率が低くなるものが多いため、このような
傾向を持つ被計測物を対象として、照射範囲を変更調節
すると、光量を適正に維持しながら計測が行えるものと
なる。
That is, a plurality of types of light passage openings having different aperture areas are provided, and one of the plurality of types of light passage openings is selected and used to irradiate the measurement target location. You can change and adjust the light irradiation range. As described above, the configuration of selectively using a plurality of types of light passage openings is simpler than the configuration of the variable diaphragm provided in the camera or the like. By the way, due to the change in the size of the light passage opening, the light quantity changes so that the larger the opening area is, the larger the light quantity becomes. When the irradiation range is changed and adjusted for the object to be measured having such a tendency, the measurement can be performed while maintaining the light amount appropriately.

【0011】従って、簡素な構成によって照射範囲の変
更調節ができる分光分析装置が得られる。
Therefore, it is possible to obtain a spectroscopic analyzer capable of changing and adjusting the irradiation range with a simple structure.

【0012】請求項3に記載の発明は、前記照射範囲変
更手段が、前記複数種の光通過用開口のうちの最も大き
な開口を備え且つ定位置に設置される開口形成部材と、
前記複数種の光通過用開口のうちの最も大きな開口以外
の光通過用開口を備えて、その光通過用開口を通して前
記投光手段からの光が前記計測対象箇所に照射されるよ
うにする開口照射位置、及び、前記投光手段からの光の
前記計測対象箇所に対する照射範囲に制限を与えない照
射許容位置に位置変更自在な遮蔽体とを備えて、その遮
蔽体の位置変更により照射範囲を変更調節するように構
成されている点を特徴とする。
According to a third aspect of the present invention, the irradiation range changing means is provided with an aperture forming member having the largest aperture of the plurality of types of light passage apertures and installed at a fixed position.
An opening provided with a light passage opening other than the largest of the plurality of types of light passage openings, and the light from the light projecting means is irradiated to the measurement target portion through the light passage opening. An irradiation position and a shield whose position is freely changeable to an irradiation allowable position that does not limit the irradiation range of the light from the light projecting unit with respect to the measurement target portion are provided, and the irradiation range is changed by changing the position of the shield. It is characterized in that it is configured to change and adjust.

【0013】すなわち、遮蔽体を照射許容位置に位置さ
せることによって、投光手段から計測対象箇所に照射さ
れる光の照射範囲が、開口形成部材に備えられた最も大
きな光通過用開口によって制限される状態となる。ま
た、遮蔽体を開口照射位置に位置させることによって、
投光手段から計測対象箇所に照射される光の照射範囲
が、遮蔽体に備えられた開口面積が最も大きな開口以外
の光通過用開口によって制限される状態となる。そし
て、照射範囲変更手段として、複数種の光通過用開口の
全てを中心から略等距離の位置で周方向に間隔を隔てる
状態で設けた遮蔽体を回転作動させることによって、照
射範囲を変更するように構成されたものや、複数種の光
通過用開口の全てをスライド移動方向に間隔を隔てる状
態で設けた遮蔽体をスライド移動させることによって、
照射範囲を変更調節するように構成されたもののよう
に、複数種の光通過用開口の全てを遮蔽体に備えさせる
構成に比べ、最も大きな開口を遮蔽体に備えさせないで
済むため、位置変更される遮蔽体の小型化を図ることが
でき、結果的に装置全体の小型化を図るのに有利とな
る。
That is, by arranging the shield at the irradiation allowable position, the irradiation range of the light emitted from the light projecting means to the measurement target portion is limited by the largest light passage opening provided in the opening forming member. It will be in a state of being. Also, by placing the shield at the aperture irradiation position,
The irradiation range of the light emitted from the light projecting unit to the measurement target position is limited by the light passage opening other than the opening having the largest opening area provided in the shield. Then, as the irradiation range changing means, the irradiation range is changed by rotatably operating a shield provided in a state in which all of the plurality of types of light passage openings are circumferentially spaced at substantially equidistant positions from the center. By sliding the shield configured such that all of the plurality of types of light passage openings are spaced in the sliding movement direction,
Compared to the configuration in which the shield is provided with all of the plurality of types of light passage openings, such as the one configured to change and adjust the irradiation range, the position is changed because the shield does not have to have the largest opening. It is possible to reduce the size of the shield, and as a result, it is advantageous to reduce the size of the entire device.

【0014】従って、光通過用開口を備えた遮蔽体を位
置変更させて、照射範囲を変更調節する構成を用いるに
あたり、遮蔽体の小型化によって、装置全体のコンパク
ト化を図ることが可能となる分光分析装置が得られる。
Therefore, when the position of the shield having the light passage opening is changed to change and adjust the irradiation range, the size of the shield can be reduced to make the entire apparatus compact. A spectroscopic analyzer is obtained.

【0015】請求項4に記載の発明は、前記遮蔽体が、
前記投光手段から光が前記計測対象箇所に照射されるの
を遮蔽する遮蔽位置にも位置変更自在に構成されている
点を特徴とする。
According to a fourth aspect of the present invention, the shield is
It is characterized in that the position is freely changeable even at a shielding position that shields the light projecting unit from irradiating the measurement target portion with light.

【0016】すなわち、照射範囲変更手段を構成するた
めに備えられている遮蔽体に、投光手段から計測対象箇
所へ向けて照射される光を遮蔽することができる遮蔽部
分を備えさせて、その遮蔽部分が投光手段から光が計測
対象箇所に照射されるのを遮蔽する遮蔽位置に遮蔽体を
操作することによって、計測対象箇所へ向けて光が照射
されない状態とすることができる。つまり、このような
分光分析装置おいて、例えば被計測物を搬送コンベヤに
よって搬送する形態にすると、搬送コンベヤの故障によ
って、分析作業中に被計測物が搬送されるのが中断さ
れ、投光手段からの光が被計測物に所定時間以上照射さ
れ続けて、被計測物が焦げる等の損傷を被る虞がある。
このような事態を避けるために、搬送手段による搬送が
中断されると、遮蔽体を遮蔽位置に位置変更させること
により、投光手段から光が計測対象箇所に照射されるの
を遮蔽することができるようになる。
That is, the shield provided for constituting the irradiation range changing means is provided with a shielding portion capable of shielding the light emitted from the light projecting means toward the measurement target portion, and By operating the shield at a shield position where the shield portion shields the light projecting unit from irradiating the measurement target location with light, it is possible to set the state in which the light is not irradiated toward the measurement target location. That is, in such a spectroscopic analysis device, for example, when the object to be measured is conveyed by a conveyor, the object to be measured is interrupted from being conveyed during the analysis work due to a failure of the conveyor, and the light projecting means is used. There is a risk that the object to be measured will continue to be irradiated with the light for a predetermined time or longer and the object to be measured will be burnt or damaged.
In order to avoid such a situation, when the transportation by the transportation means is interrupted, it is possible to block the irradiation of light from the light projecting means to the measurement target position by changing the position of the shielding body to the shielding position. become able to.

【0017】ちなみに、このような事態を避けるため
に、投光手段に備えさせる光源の電源をOFF操作する
ことによって対応することも可能であるが、この場合、
再び電源をON操作したときに光源から発せられる光の
量が不安定となり易いものであるため、被計測物が焦げ
る等の損傷を被ることは防止できるものの、被計測物の
内部品質の解析精度が低下する虞があり、実用的な対策
としては好ましいものではない。これに対して、上述し
たように、投光手段から計測対象箇所へ向けて照射され
る光を、投光手段と計測対象箇所との間で遮蔽して、投
光手段からの光が被計測物へ照射されるのを遮る形態
は、光源の光の量が不安定となることを抑制できるか
ら、被計測物の内部品質の解析精度が低下するのを回避
できるものとなる。
Incidentally, in order to avoid such a situation, it is possible to deal with it by turning off the power source of the light source provided in the light projecting means, but in this case,
When the power is turned on again, the amount of light emitted from the light source tends to become unstable, so it is possible to prevent the measured object from being damaged, such as being scorched, but the accuracy of analysis of the internal quality of the measured object. May decrease, which is not preferable as a practical measure. On the other hand, as described above, the light emitted from the light projecting unit toward the measurement target site is blocked between the light projecting unit and the measurement target site, and the light from the light projecting unit is measured. The form in which the irradiation of the object is blocked can prevent the amount of light from the light source from becoming unstable, so that the accuracy of analysis of the internal quality of the object to be measured can be prevented from deteriorating.

【0018】従って、照射範囲変更手段の構成を利用し
た簡素な構成にて、計測対象箇所へ向けて照射される光
を遮蔽して、被計測物が焦げる等の損傷を被ることを防
止することができる分光分析装置が得られる。
Therefore, with a simple structure utilizing the structure of the irradiation range changing means, it is possible to prevent the light irradiated toward the measurement target portion from being damaged, such as burning the object to be measured. A spectroscopic analyzer capable of performing

【0019】請求項5に記載の発明は、前記投光手段の
複数個が、前記計測対象箇所に異なる方向から光を照射
するように設けられ、各投光手段の夫々に対応させて、
前記開口形成部材及び前記遮蔽体が設けられ、1個の駆
動手段が、複数個の遮蔽体を位置変更操作するように設
けられている点を特徴とする。
According to a fifth aspect of the present invention, a plurality of the light projecting means are provided so as to irradiate the measurement target portion with light from different directions.
The opening forming member and the shield are provided, and one driving means is provided so as to perform a position changing operation for a plurality of shields.

【0020】すなわち、複数個の投光手段にて計測対象
箇所を照射するようにするから、計測対象箇所に向けて
照射される光の量が増加されることによって、受光手段
で受光する被計測物を透過した光の量が増加されて、被
計測物の内部品質を良好に解析することが可能となる。
また、各投光手段の夫々に対応させて、開口形成部材及
び遮蔽体を設けて、簡素な構成にて照射範囲を変更でき
るようにするのであり、さらには、各投光手段の夫々に
対応させて設けた遮蔽体を1個の駆動手段にて位置変更
操作する構成とするから、遮蔽体を位置変更操作するた
めの駆動手段を、複数個の投光手段の夫々に設けて、複
数個の駆動手段を備えて構成されたものと比べて、遮蔽
体を位置変更操作する構成を簡素なものにできる。
That is, since the plurality of light projecting means irradiate the measurement target location, the amount of light irradiated toward the measurement target location is increased, so that the light receiving means receives light to be measured. Since the amount of light transmitted through the object is increased, the internal quality of the measured object can be analyzed well.
Further, an opening forming member and a shield are provided in correspondence with each of the light projecting means so that the irradiation range can be changed with a simple structure. Since the shield provided so as to be operated to change the position by one drive means, a drive means for changing the position of the shield is provided in each of the plurality of light projecting means, and a plurality of drive means are provided. The structure for changing the position of the shield can be simplified as compared with the structure including the driving means.

【0021】従って、計測対象箇所に照射される光量を
増加させて、良好な解析を行えるようにしながらも、計
測対象箇所に照射される光の照射範囲を変更調整して、
被計測物の大きさに係らず、内部品質を精度良く解析で
き、そして、そのための構成の簡素化を図ることができ
る分光分析装置が得られる。
Therefore, while increasing the amount of light radiated to the measurement target portion to perform a good analysis, the irradiation range of the light radiated to the measurement target portion is changed and adjusted,
It is possible to obtain a spectroscopic analyzer that can accurately analyze the internal quality regardless of the size of the object to be measured and that can simplify the configuration for that purpose.

【0022】[0022]

【発明の実施の形態】以下、本発明に係る分光分析装置
の実施の形態を図面に基づいて説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of a spectroscopic analysis device according to the present invention will be described below with reference to the drawings.

【0023】先ず、この分光分析装置の構成について説
明する。図1及び図10に示すように、この分光分析装
置は、被計測物M(ミカン)に光を照射する投光部1
と、被計測物Mからの透過光を受光して分光し、その分
光された光を計測する受光部2と、各部の動作を制御す
る動作制御処理や、前記受光部2の計測情報に基づいて
被計測物Mの内部品質を解析する演算処理等を実行する
制御手段としての制御部3等を備えて構成され、被計測
物Mは、搬送手段としての搬送コンベア6により設定速
度で一列で縦列状に載置搬送されて計測対象箇所Tを順
次、通過していくように構成されている。そして、計測
対象箇所Tに位置する被計測物Mに対して、投光部1か
ら投射した光が被計測物Mを透過した後に受光部2にて
受光される状態で、投光部1と受光部2とが、計測対象
箇所Tの左右両側箇所に振り分けて配置されている。
First, the structure of this spectroscopic analyzer will be described. As shown in FIG. 1 and FIG. 10, this spectroscopic analysis apparatus includes a light projecting unit 1 for irradiating a measured object M (mandarin orange) with light.
Based on the measurement information of the light receiving unit 2 that receives and disperses the transmitted light from the measured object M and measures the dispersed light, the operation control process that controls the operation of each unit, and the measurement information of the light receiving unit 2. It is configured by including a control unit 3 or the like as a control unit that executes arithmetic processing or the like for analyzing the internal quality of the object to be measured M, and the objects to be measured M are arranged in a line at a set speed by a conveyor 6 as a conveyor. It is configured to be placed and conveyed in a column shape and sequentially pass through the measurement target points T. Then, with respect to the measured object M located at the measurement target location T, the light projected from the light projecting unit 1 is received by the light receiving unit 2 after passing through the measured object M and the light projecting unit 1 and The light receiving unit 2 is arranged separately on the left and right sides of the measurement target location T.

【0024】次に、各部の構成について説明する。前記
投光部1は、図2に示すように、2個の投光手段10を
備えて構成され、この2個の投光手段10は、被計測物
Mの搬送方向に沿う方向に並べて配置されている。
Next, the structure of each part will be described. As shown in FIG. 2, the light projecting unit 1 is configured to include two light projecting means 10, and the two light projecting means 10 are arranged side by side in a direction along the conveyance direction of the measured object M. Has been done.

【0025】前記各投光手段10は、ハロゲンランプ1
2とこのハロゲンランプ12からの光を一方へ向けて反
射させる凹面形状の反射板13とを備えて構成された光
源14と、光源14から発せられる光を平行光とするた
めのコリメートレンズ15と、このコリメートレンズ1
5を通過した平行光を計測対象箇所Tに位置する被計測
物Mに向けて、つまり、計測対象箇所Tに向けて照射す
るように反射させる投光用反射鏡16と、投光用反射鏡
16にて反射した平行光を計測対象箇所Tにて集光する
投光用集光レンズ17とを備えて構成されている。そし
て、各投光手段10において、光源14とコリメートレ
ンズ15との間には、照射範囲変更手段21が夫々設け
られ、各投光手段10から計測対象箇所Tへ向けて照射
される夫々の光の照射範囲を変更調節できるように構成
されている。また、一対の投光手段10は、計測対象箇
所Tにことなる方向から光りを照射するように構成され
るものであって、具体的には、各投光手段10の光軸
は、平面視において、被計測物Mの搬送方向と直交する
方向の中心軸に対して対象となる形態で、且つ、その中
心軸との交差角が15度となるように設定されている。
Each of the light projecting means 10 is a halogen lamp 1.
2 and a concave reflection plate 13 for reflecting the light from the halogen lamp 12 toward one side, and a collimator lens 15 for collimating the light emitted from the light source 14. , This collimating lens 1
A projection mirror 16 for reflecting parallel light having passed through 5 so as to irradiate the measured object M located at the measurement target location T, that is, toward the measurement target location T, and a projection mirror for projection. The light condensing lens 17 condenses the parallel light reflected by 16 at the measurement target point T. Then, in each light projecting means 10, an irradiation range changing means 21 is provided between the light source 14 and the collimating lens 15, respectively, and each light emitted from each light projecting means 10 toward the measurement target location T. It is configured so that the irradiation range of can be changed and adjusted. Further, the pair of light projecting means 10 is configured to irradiate the measurement target portion T with light from different directions. Specifically, the optical axis of each light projecting means 10 is a plan view. In the above, in the configuration in which it is symmetrical with respect to the central axis in the direction orthogonal to the conveyance direction of the measured object M, and the intersection angle with the central axis is set to 15 degrees.

【0026】前記各照射範囲変更手段21は、図3に示
すように、開口形成部材22と遮蔽体23を備えて構成
されている。前記開口形成部材22は、2種の光通過用
開口22a、23aのうちの大きい方の開口22aを備
えて、その光通過用開口22aが投光手段10から照射
される光の光軸上に一致するように固定されている。前
記遮蔽体23は、搬送方向に沿った方向を軸心23cと
して往復回転自在に構成され、前記軸心23cを中心と
した周方向に沿って、開口形成部材22に設けられた光
通過用開口22aを通過する光をさらに制限できるよう
な小さい方の開口23aと、開口形成部材22に設けら
れた光通過用開口22aを通過する光を遮蔽する遮蔽部
23bとを備えて構成されている。そして、この遮蔽体
23を回転させて、図3(イ)に示すように、遮蔽体2
3を照射許容位置G2に位置させることによって、投光
手段10からの光は、2種の光通過用開口22a、23
aのうちの大きい方の開口22aを通過して、計測対象
箇所Tへ向けて照射されることとなり、遮蔽体23を回
転させて、図3(ロ)に示すように、開口照射位置G1
に位置させることによって、投光手段10からの光は、
2種の光通過用開口22a、23aのうちの小さい方の
光通過用開口23aを通過して、計測対象箇所Tへ向け
て照射されることとなり、その結果、投光手段10から
計測対象箇所Tへ向けて照射される光の照射範囲を2段
階に変更調節でき、さらに、遮蔽体23を回転させて、
図3(ハ)に示すように、遮蔽位置G3に位置させるこ
とによって、投光手段10からの光は、遮蔽部23bに
よって計測対象箇所Tへ光が照射されるのを遮蔽できる
ようになる。
As shown in FIG. 3, each of the irradiation range changing means 21 comprises an opening forming member 22 and a shield 23. The opening forming member 22 includes a larger opening 22a of the two kinds of light passage openings 22a and 23a, and the light passage opening 22a is on the optical axis of the light emitted from the light projecting means 10. It has been fixed to match. The shield 23 is configured to be reciprocally rotatable about an axis 23c in a direction along the transport direction, and a light passage opening provided in the opening forming member 22 along a circumferential direction about the axis 23c. The aperture 23a has a smaller opening that can further limit the light passing through the opening 22a, and a shield 23b that shields the light passing through the light passage opening 22a provided in the opening forming member 22. Then, by rotating the shield 23, as shown in FIG.
By arranging 3 at the irradiation allowable position G2, the light from the light projecting means 10 can emit two kinds of light passage openings 22a and 23.
After passing through the larger opening 22a of a, the irradiation is performed toward the measurement target point T, and the shield 23 is rotated to open the opening irradiation position G1 as shown in FIG.
The light from the light projecting means 10 is
It passes through the smaller light passage opening 23a of the two kinds of light passage openings 22a and 23a, and is irradiated toward the measurement target location T, and as a result, the light projecting means 10 measures the measurement target location. The irradiation range of the light irradiated toward T can be adjusted in two steps, and further, by rotating the shield 23,
As shown in FIG. 3C, by arranging the light at the shielding position G3, it is possible to shield the light from the light projecting unit 10 from being irradiated to the measurement target location T by the shielding portion 23b.

【0027】また、図2に示すように、減速機構が付加
された電動式の遮蔽体駆動モータ24が駆動手段として
1個備えられ、その遮蔽体駆動モータ24の回転駆動力
を各遮蔽体23に伝達するための連結軸25が備えられ
て、制御部3によって遮蔽体駆動モータ24が制御作動
されることによって、連結軸25によって連結された各
遮蔽体23を一体的に回転させるように構成されてい
る。
Further, as shown in FIG. 2, one electric shield drive motor 24 to which a reduction mechanism is added is provided as a drive means, and the rotational drive force of the shield drive motor 24 is applied to each shield 23. Is provided with a connecting shaft 25 for transmitting to each other, and the shield drive motor 24 is controlled by the control unit 3 to integrally rotate the respective shields 23 connected by the connecting shaft 25. Has been done.

【0028】前記受光部2には、図1に示すように、受
光手段11として、被計測物Mを透過した計測対象光を
集光する受光用集光レンズ31、受光用集光レンズを通
過した光のうち後述するような計測対象の波長領域(6
00nm〜1000nm)の範囲の光だけを上向きに反
射し、それ以外の波長の光をそのまま通過させるバンド
パスミラー32、このバンドパスミラー32により上向
きに反射された計測対象光をそのまま通過させる開放状
態と、前記計測対象光の通過を阻止する遮蔽状態とに切
り換え自在なシャッター機構33、開放状態のシャッタ
ー機構33を通過した光が入射されると、その光を分光
して前記分光スペクトルデータを計測する分光器34、
バンドパスミラー32をそのまま直進状態で通過した光
の光量を検出する光量検出センサ35等が備えて構成さ
れている。
As shown in FIG. 1, the light receiving section 2 includes, as light receiving means 11, a light receiving condensing lens 31 for condensing the light to be measured which has passed through the object M to be measured, and a light receiving condensing lens. In the wavelength range (6
Band pass mirror 32 that reflects only light in the range of (00 nm to 1000 nm) upward and allows light of other wavelengths to pass through as it is, an open state that allows the measurement target light reflected upward by this band pass mirror 32 to pass through as it is When the light that has passed through the shutter mechanism 33 and the shutter mechanism 33 that can be switched to a blocking state that blocks the passage of the measurement target light and the shutter mechanism 33 in the open state is incident, the light is dispersed to measure the spectral spectrum data. Spectroscope 34,
A light amount detection sensor 35 for detecting the light amount of light that has passed straight through the bandpass mirror 32 as it is is provided.

【0029】前記分光器34は、図4に示すように、入
光口から入射した計測対象光を反射する分光用反射鏡3
7と、反射された計測対象光を複数の波長の光に分光す
る凹面回析格子38と、凹面回析格子38によって分光
された計測対象光における各波長毎の光強度を検出する
ことにより分光スペクトルデータを計測する受光センサ
39とが、外部からの光を遮光する遮光性材料からなる
暗箱40内に配置される構成となっている。前記受光セ
ンサ39は、凹面回折格子38にて分光反射された光を
同時に各波長毎に受光するとともに波長毎の信号に変換
して出力する、1024ビットのMOS型ラインセンサ
にて構成されている。このラインセンサは、詳述はしな
いが、各単位画素毎にフォトダイオード等の光電変換素
子と、その光電変換素子にて得られた電荷を蓄積するコ
ンデンサ、及び、その蓄積電荷を外部に出力させるため
の駆動回路等を内装して構成されている。尚、コンデン
サによる電荷蓄積時間は、外部から駆動回路を介して変
更させることができるようになっている。
The spectroscope 34 is, as shown in FIG. 4, a spectroscopic reflection mirror 3 for reflecting the measurement object light incident from the light entrance.
7, a concave diffraction grating 38 for splitting the reflected measurement target light into light having a plurality of wavelengths, and a light intensity for each wavelength in the measurement target light split by the concave diffraction grating 38 A light receiving sensor 39 for measuring spectrum data is arranged in a dark box 40 made of a light blocking material that blocks light from the outside. The light receiving sensor 39 is composed of a 1024-bit MOS type line sensor that simultaneously receives the light spectrally reflected by the concave diffraction grating 38 for each wavelength and converts it into a signal for each wavelength for output. . Although not described in detail, this line sensor outputs a photoelectric conversion element such as a photodiode for each unit pixel, a capacitor for accumulating the charge obtained by the photoelectric conversion element, and the accumulated charge to the outside. It is configured by incorporating a drive circuit for the like. The charge storage time by the capacitor can be changed externally via a drive circuit.

【0030】前記シャッター機構33は、図5に示すよ
うに、放射状に複数のスリット41が形成された円板4
2を、パルスモータ43によって縦軸芯周りで回転操作
される状態で備えて構成され、前記暗箱40の入光口3
6には前記各スリット41が上下に重なると光を通過さ
せる開放状態となり、スリット41の位置がずれると光
を遮蔽する遮蔽状態となるように、スリット41とほぼ
同じ形状の透過孔44が形成されており、光の漏洩がな
いように暗箱の入光口36に対して円板42を密接状態
で摺動する状態で配備して構成されている。すなわち、
このシャッター機構33は凹面回析格子38に対する入
光口36に近接する状態で設けられている。
As shown in FIG. 5, the shutter mechanism 33 has a disk 4 having a plurality of slits 41 formed in a radial pattern.
2 in a state in which the pulse motor 43 is rotated around the axis of the vertical axis, and the light entrance 3 of the dark box 40 is provided.
A transmission hole 44 having substantially the same shape as that of the slit 41 is formed in 6 so that when the slits 41 are vertically overlapped with each other, the slit 41 is in an open state that allows light to pass therethrough, and when the position of the slit 41 is displaced, the slit 41 has a shielded state in which light is blocked. In order to prevent light leakage, the disk 42 is arranged in a state of sliding in close contact with the light entrance 36 of the dark box. That is,
The shutter mechanism 33 is provided in a state of being close to the light entrance 36 for the concave diffraction grating 38.

【0031】前記投光手段10及び受光手段11は、被
計測物Mが通過する計測対象箇所Tの上方側を迂回する
ように設けられた枠体45によって一体的に支持される
状態で設けられ、この枠体45は、上下調節機構46に
よって搬送コンベア6に対してその全体の上下方向の位
置を変更調節することができるようになっている。上下
調節機構46については、詳述はしないが、固定部47
に対して位置固定状態で設置され、枠体移動モータ48
にて駆動されるネジ送り機構49によって上下に移動さ
せることができるようになっている。そして、前記搬送
コンベア6における被計測物Mの通過箇所の上方側に位
置させて、前記固定部47にて位置固定される状態で基
準体の一例であるリファレンスフィルター50が設けら
れている。このリファレンスフィルター50は、所定の
吸光度特性を有する光学フィルターで構成され、具体的
には、オパールガラスを用いて構成されている。
The light projecting means 10 and the light receiving means 11 are provided in a state of being integrally supported by a frame body 45 provided so as to bypass the upper side of the measurement target point T through which the object to be measured M passes. The frame 45 can be adjusted by the vertical adjustment mechanism 46 so that the overall vertical position of the frame 45 can be adjusted with respect to the conveyor 6. The vertical adjustment mechanism 46 will not be described in detail, but the fixed portion 47
Is installed in a fixed position with respect to the frame moving motor 48
It can be moved up and down by a screw feed mechanism 49 driven by. Then, a reference filter 50, which is an example of a reference body, is provided in a state of being positioned above the passage position of the measurement object M on the transport conveyor 6 and being fixed by the fixing portion 47. The reference filter 50 is composed of an optical filter having a predetermined absorbance characteristic, and is specifically composed of opal glass.

【0032】そして、前記枠体45の全体を上下方向に
位置調節することによって、図6(イ)に示すように、
投光手段10からの光が搬送コンベア6に載置される被
計測物Mを透過した後に受光手段11にて受光される通
常計測状態と、図6(ロ)に示すように、投光手段10
からの光が前記リファレンスフィルター50を透過した
後に受光手段11にて受光されるリファレンス計測状態
とに切り換えることができるように構成されている。
Then, by adjusting the position of the entire frame body 45 in the vertical direction, as shown in FIG.
The normal measurement state in which the light from the light projecting means 10 is received by the light receiving means 11 after passing through the object to be measured M placed on the conveyor 6, and the light projecting means as shown in FIG. 10
It is configured so that it can be switched to the reference measurement state in which the light from is transmitted through the reference filter 50 and then received by the light receiving means 11.

【0033】さらに、通常計測状態では、制御部3は、
予め入力される被計測物Mの大きさ情報に基づいて、被
計測物Mの中央部分を中心として投光手段10にて被計
測物Mに光を照射すべく、投光手段10と受光手段11
の上下方向の位置を調整させるとともに、被計測物Mの
大きさが大きいほど投光手段10による照射光の照射範
囲が大きくなるように、照射光による照射範囲を変更調
節するように遮蔽体駆動モータ24を制御作動させるよ
うに構成されている。
Furthermore, in the normal measurement state, the control unit 3
Based on the size information of the object to be measured M input in advance, the light projecting means 10 and the light receiving means so as to irradiate the object to be measured M with the light projecting means 10 centering on the central portion of the object to be measured M. 11
The shield driving is performed such that the vertical position of the irradiation light is adjusted and the irradiation range of the irradiation light by the light projecting means 10 is increased as the size of the object M to be measured is changed. It is configured to controllably operate the motor 24.

【0034】すなわち、被計測物Mの大きさが小さい場
合には、図7(イ)に示すように、上下調節機構46お
よび遮蔽体駆動モータ24を操作して、被計測物Mの中
央部分を中心として被計測物Mの全体にわたって均一に
照射光が照射されるように、投光手段10と受光手段1
1との上下方向の位置および照射光の照射範囲を変更調
節するようにしている。そして、被計測物Mの大きさが
大きい場合には、図7(ロ)に示すように、上下調節機
構46および遮蔽体駆動モータ24を操作して、被計測
物Mの大きさが小さいときよりも、上下調節機構46に
て投光手段10と受光手段11とを上方側に移動させる
とともに、遮蔽体駆動モータ24を操作して、被計測物
Mの中央部分を中心として被計測物Mの全体にわたって
均一に照射光が照射されるように、照射光の照射範囲を
変更調節するようにしている。
That is, when the size of the object to be measured M is small, as shown in FIG. 7A, the vertical adjustment mechanism 46 and the shield drive motor 24 are operated to move the central part of the object to be measured M. The light projecting means 10 and the light receiving means 1 are arranged so that the irradiation light is evenly applied to the entire measured object M centering around
The vertical position with respect to 1 and the irradiation range of the irradiation light are changed and adjusted. Then, when the size of the measured object M is large, when the size of the measured object M is small by operating the vertical adjustment mechanism 46 and the shield drive motor 24 as shown in FIG. More than that, the up-down adjustment mechanism 46 moves the light projecting means 10 and the light receiving means 11 to the upper side, and operates the shield drive motor 24 to center the central portion of the measured object M and measure the measured object M. The irradiation range of the irradiation light is changed and adjusted so that the irradiation light is uniformly irradiated over the entire area.

【0035】つまり、投光手段10からの光が、被計測
物Mを回り込むことを的確に防止するとともに、被計測
物Mの中央部分を中心としながら、被計測物Mの全体に
わたって均一に照射させるべく、投光手段10と受光手
段11との上下方向の位置および照射光の照射範囲を変
更調節するように構成されている。
That is, the light from the light projecting means 10 is accurately prevented from going around the object M to be measured, and the object M to be measured is uniformly irradiated while being centered on the central portion of the object M to be measured. In order to do so, the vertical position of the light projecting means 10 and the light receiving means 11 and the irradiation range of the irradiation light are changed and adjusted.

【0036】そして、前記搬送コンベア6は無端回動チ
ェーン6aに設定間隔をあけて被計測物載置用のバケッ
ト6bを取付けて回動駆動する構成となっており、図8
に示すように、搬送コンベア6による前記計測対象箇所
Tの搬送方向上手側箇所には、前記バケット6bの中心
位置が通過する毎に検出信号を出力する光学式の通過セ
ンサ51が備えられている。すなわち、この通過センサ
51は、被計測物Mが計測対象箇所Tを通過する周期を
検出する搬送周期検出手段として機能することになる。
Then, the conveyor 6 is constructed so that a bucket 6b for placing an object to be measured is attached to an endless rotating chain 6a at a set interval and is driven to rotate.
As shown in FIG. 5, an optical passage sensor 51 that outputs a detection signal each time the central position of the bucket 6b passes is provided at a position on the upper side in the conveyance direction of the measurement target point T by the conveyance conveyor 6. . That is, the passage sensor 51 functions as a conveyance cycle detection unit that detects the cycle in which the measured object M passes through the measurement target location T.

【0037】前記制御部3は、マイクロコンピュータを
利用して構成してあり、図10に示すように、受光手段
11によって得られる分光スペクトルデータに基づいて
被計測物Mの内部品質を解析する演算手段100や、各
部の動作を制御する動作制御手段101が夫々制御プロ
グラム形式で備えられる構成となっている。つまり、後
述するような公知技術である分光分析手法を用いて被計
測物Mの内部品質を解析する演算処理を実行するととも
に、遮蔽体駆動モータ24の回転動作、シャッター機構
33の開閉動作、上下調節機構46の動作、及び、受光
センサ39の動作の管理等の各部の動作を制御する構成
となっている。
The control section 3 is constructed by using a microcomputer, and as shown in FIG. 10, a calculation for analyzing the internal quality of the object to be measured M based on the spectral spectrum data obtained by the light receiving means 11. Means 100 and operation control means 101 for controlling the operation of each part are provided in the form of control programs. That is, a calculation process for analyzing the internal quality of the object M to be measured is executed by using a well-known technique such as a spectroscopic analysis method described later, and the rotation operation of the shield drive motor 24, the opening / closing operation of the shutter mechanism 33, and the vertical movement are performed. It is configured to control the operation of each part such as the operation of the adjustment mechanism 46 and the management of the operation of the light receiving sensor 39.

【0038】次に、動作制御手段101による制御動作
について説明する。動作制御手段101は、被計測物M
に対する通常の計測に先立って、投光手段10からの光
を被計測物Mに代えて前記リファレンスフィルター50
に照射して、そのリファレンスフィルター50からの透
過光を、受光手段11にて分光してその分光した光を受
光して得られた分光スペクトルデータを基準分光スペク
トルデータとして求める基準データ計測モードと、搬送
コンベア6により搬送される被計測物Mに対して、投光
手段10から光を照射して計測分光スペクトルデータを
得て、この計測分光スペクトルデータと前記基準分光ス
ペクトルデータとに基づいて、被計測物Mの内部品質を
解析する通常データ計測モードとに切り換え自在に構成
されている。
Next, the control operation by the operation control means 101 will be described. The operation control means 101 is an object to be measured M
Prior to the normal measurement for the reference filter 50, the light from the light projecting means 10 is replaced by the object M to be measured.
A reference data measurement mode in which the transmitted light from the reference filter 50 is dispersed by the light receiving means 11 and the spectrum light obtained by receiving the separated light is obtained as the reference spectrum data. Light is emitted from the light projecting means 10 to the measured object M conveyed by the conveyor 6 to obtain measured spectral spectrum data, and based on this measured spectral spectrum data and the reference spectral spectrum data, It is configured to be switchable to a normal data measurement mode for analyzing the internal quality of the measurement object M.

【0039】詳述すると、前記基準データ計測モードに
おいては、搬送コンベア6による被計測物Mの搬送を停
止させている状態で、上下調節機構46を操作して前記
枠体45を前記リファレンス計測状態に切り換える。そ
して、前記シャッター機構33を開放状態に切り換え
て、投光手段10からの光を被計測物Mに代えて前記リ
ファレンスフィルター50に照射して、そのリファレン
スフィルター50からの透過光を、受光手段11にて分
光してその分光した光を受光して得られた分光スペクト
ルデータを基準分光スペクトルデータとして計測する。
More specifically, in the reference data measurement mode, the vertical adjustment mechanism 46 is operated while the conveyance of the object M to be measured by the conveyor 6 is stopped to move the frame 45 to the reference measurement state. Switch to. Then, the shutter mechanism 33 is switched to the open state, the light from the light projecting means 10 is irradiated to the reference filter 50 in place of the object M to be measured, and the transmitted light from the reference filter 50 is received by the light receiving means 11. The spectral spectrum data obtained by spectrally separating the light is received, and the spectral spectrum data obtained by receiving the dispersed light is measured as the reference spectral spectrum data.

【0040】そして、前記基準データ計測モードにおい
ては、受光手段11への光が遮蔽された無光状態での受
光センサ39の検出値(暗電流データ)も計測される。
すなわち、前記受光手段11のシャッター機構33を遮
蔽状態に切り換えて、そのときの受光センサ39の単位
画素毎における検出値を暗電流データとして求めるよう
にしている。
Then, in the reference data measuring mode, the detection value (dark current data) of the light receiving sensor 39 in a non-lighted state in which the light to the light receiving means 11 is shielded is also measured.
That is, the shutter mechanism 33 of the light receiving means 11 is switched to the closed state, and the detection value in each unit pixel of the light receiving sensor 39 at that time is obtained as dark current data.

【0041】次に、通常データ計測モードにおける制御
動作について説明する。この通常データ計測モードにお
いては、上下調節機構46を操作して枠体45を通常計
測状態に切り換えて、搬送コンベア6による被計測物M
の搬送を行う。そして、前記通過センサ51による検出
情報に基づいて、被計測物Mが前記計測対象箇所Tを通
過する周期を検出し、その周期に同期させる状態で、分
光した光を受光して電荷蓄積動作を設定時間実行する電
荷蓄積処理と、蓄積した電荷を送り出す送出処理とを設
定周期で繰り返すように、受光センサ39の動作を制御
する。つまり、図9に示すように、各被計測物Mが計測
対象箇所Tを通過すると予測される時間帯において、受
光センサ39が設定時間T1だけ電荷蓄積処理を実行
し、被計測物Mが計測対象箇所Tに存在しないと予測さ
れる各被計測物M同士の中間位置付近が計測対象箇所T
に位置するようなタイミングで、設定時間T2だけ、蓄
積した電荷を送り出す送出処理を実行するように、受光
センサ39の動作を制御する。従って、この計測装置で
は、受光センサ39による電荷蓄積時間は常に一定で動
作する構成となっている。尚、1秒間に7個づつ被計測
物Mが通過するような処理能力とした場合には、電荷蓄
積処理を実行する設定時間T1は、約140msec程
度になる。
Next, the control operation in the normal data measurement mode will be described. In this normal data measurement mode, the vertical adjustment mechanism 46 is operated to switch the frame body 45 to the normal measurement state, and the measured object M by the conveyor 6 is measured.
Carry out. Then, based on the information detected by the passage sensor 51, the cycle in which the measured object M passes through the measurement target location T is detected, and in the state synchronized with the cycle, the dispersed light is received and the charge accumulation operation is performed. The operation of the light receiving sensor 39 is controlled so that the charge accumulation process executed for the set time and the sending process for sending out the accumulated charges are repeated at the set cycle. That is, as shown in FIG. 9, in the time zone in which each measured object M is predicted to pass the measurement target point T, the light receiving sensor 39 executes the charge accumulation process for the set time T1, and the measured object M is measured. The measurement target point T is near the intermediate position between the measured objects M that are predicted not to exist at the target point T.
The operation of the light receiving sensor 39 is controlled so as to execute the sending process of sending out the accumulated charges for the set time T2 at the timing of being located at. Therefore, in this measuring device, the charge accumulation time by the light receiving sensor 39 is always constant. When the processing capacity is such that seven objects to be measured M pass through in one second, the set time T1 for executing the charge accumulation process is about 140 msec.

【0042】そして、動作制御手段101は、受光セン
サ39が前記電荷蓄積処理を行う状態において、受光セ
ンサ39が電荷蓄積処理を行う状態において、遮蔽状態
から開放状態に切り換えてその開放状態を開放維持時間
Txが経過する間維持した後に遮蔽状態に戻すように、
シャッター機構33の動作を制御するよう構成され、変
更指令情報に基づいて、前記開放維持時間Txを変更調
整するように構成されている。この開放維持時間Tx
は、被計測物Mの品種の違いに応じて変更させる構成と
なっている。説明を加えると、例えば、温州ミカンであ
れは光が比較的透過しやすいので比較的短い時間(10
msec程度)に設定し、伊予柑であれば光が透過し難
いので長めの時間(30msec程度)に設定する。こ
のような品種の違いによる動作条件の設定は、作業員が
人為的に行う構成となっている。つまり、図10に示す
ように、品種の違いに応じて設定位置を人為的に切り換
える人為操作式の切換操作具52が設けられ、この切換
操作具52の設定情報が制御部3に入力され、制御部3
はその設定情報に従って開放維持時間Txを変更調整す
る構成となっている。
Then, the operation control means 101 switches from the shielded state to the open state and maintains the open state in the state where the light receiving sensor 39 is performing the charge accumulation processing and the light receiving sensor 39 is performing the charge accumulation processing. To keep it for a period of time Tx and then return it to the shielded state,
It is configured to control the operation of the shutter mechanism 33, and is configured to change and adjust the opening maintaining time Tx based on the change command information. This opening maintenance time Tx
Is configured to be changed according to the type of the measured object M. To add a further explanation, for example, if the mandarin orange of Wenshu is relatively easy to transmit light, it takes a relatively short time (10
It is difficult to transmit light in Iyokan, so it is set to a long time (about 30 msec). The operator manually sets the operating conditions depending on the type of product. That is, as shown in FIG. 10, an artificial operation type switching operation tool 52 that artificially switches the setting position according to the difference in product type is provided, and the setting information of the switching operation tool 52 is input to the control unit 3. Control unit 3
Is configured to change and adjust the opening maintenance time Tx according to the setting information.

【0043】また、動作制御手段101は、前記光量検
出センサ35にて検出される受光量、すなわち、被計測
物Mの光透過量の実測値の変化に基づいて、被計測物M
が計測対象箇所Tに到達したか否かを検出するようにな
っており、被計測物Mが到達したことを検出するとシャ
ッター機構33を開放状態に切り換え、前記開放維持時
間Txだけ開放状態を維持した後に、シャッター機構3
3を遮蔽状態に切り換えて計測処理を終了する構成とな
っている。具体的に説明すると、図11に前記光量検出
センサ35の検出値の時間経過に伴う変化状態を示して
いる。被計測物Mが到達するまでは投光手段10から投
射される光によってほぼ最大値が出力されているが、被
計測物Mが計測対象箇所Tに至ると計測用光が遮られて
光量検出センサの検出値(受光量)が減少し始めて検出
値が予め設定した設定値以下にまで減少したとき(t
1)に、被計測物Mが計測対象箇所Tに到達したものと
判断して、その時点から設定時間が経過したとき(t
2)に、シャッター機構33を開放状態に切り換える。
そして、前記開放維持時間Txだけ開放状態を維持した
後に、シャッター機構33を遮蔽状態に切り換えるので
ある。
Further, the operation control means 101, on the basis of the amount of received light detected by the light amount detecting sensor 35, that is, the change in the measured value of the amount of light transmission of the measured object M, the measured object M.
Detects whether or not the object to be measured T has been reached, and when detecting that the object to be measured M has reached, the shutter mechanism 33 is switched to the open state, and the open state is maintained for the open maintenance time Tx. After doing the shutter mechanism 3
3 is switched to the shielded state and the measurement process is ended. Specifically, FIG. 11 shows a change state of the detection value of the light amount detection sensor 35 with the passage of time. The maximum value is output by the light projected from the light projecting means 10 until the measured object M arrives, but when the measured object M reaches the measurement target location T, the measuring light is blocked and the light amount is detected. When the detection value (light reception amount) of the sensor starts to decrease and the detection value decreases to a preset value or less (t
In 1), it is determined that the measured object M has reached the measurement target point T, and when the set time has elapsed from that point (t
In 2), the shutter mechanism 33 is switched to the open state.
Then, after maintaining the open state for the open maintaining time Tx, the shutter mechanism 33 is switched to the closed state.

【0044】そして、前記演算手段100は、このよう
にして得られた各種データに基づいて公知技術である分
光分析手法を用いて被計測物Mの内部品質を解析する演
算処理を実行するように構成されている。つまり、上記
したようにして得られた計測分光スペクトルデータを、
前記基準データ計測モードにて求められた基準分光スペ
クトルデータ、及び、暗電流データを用いた正規化し
て、分光された各波長毎の吸光度スペクトルデータを得
るとともに、その吸光度スペクトルデータの二次微分値
を求める。そして、その二次微分値により被計測物Mに
含まれる糖度に対応する成分量や酸度に対応する成分量
を算出する解析演算処理を実行するように構成されてい
る。吸光度スペクトルデータdは、基準分光スペクトル
データをRd、計測分光スペクトルデータをSdとし、
暗電流データをDaとすると、
Then, the arithmetic means 100 executes an arithmetic process for analyzing the internal quality of the object M to be measured by using a spectral analysis method which is a well-known technique based on various data thus obtained. It is configured. That is, the measured spectrum data obtained as described above is
Reference spectral spectrum data obtained in the reference data measurement mode, and normalization using dark current data, to obtain the absorbance spectrum data for each spectral wavelength is dispersed, the second derivative of the absorbance spectrum data Ask for. Then, it is configured to execute an analytical calculation process for calculating the component amount corresponding to the sugar content and the component amount corresponding to the acidity contained in the measured object M by the second derivative. For the absorbance spectrum data d, the reference spectrum data is Rd, the measurement spectrum data is Sd,
If the dark current data is Da,

【0045】[0045]

【数1】 d=log{(Rd−Da)/(Sd−Da)}[Equation 1] d = log {(Rd-Da) / (Sd-Da)}

【0046】という演算式にて求められる。そして、制
御部3は、このようにして得られた吸光度スペクトルデ
ータdを二次微分した値のうち特定波長の値と、下記の
数2に示される検量式とを用いて、被計測物Mに含まれ
る成分量を算出するのである。
It is calculated by the following equation. Then, the control unit 3 uses the value of the specific wavelength among the values obtained by second-order differentiation of the absorbance spectrum data d thus obtained and the calibration formula shown in the following Expression 2 to measure the object M to be measured. The amount of components contained in is calculated.

【0047】[0047]

【数2】 Y=K0+K1・A(λ1)+K2・A(λ2)[Equation 2] Y = K0 + K1 · A (λ1) + K2 · A (λ2)

【0048】但し、 Y ;成分量 K0,K1,K2 ;係数 A(λ1 ),A(λ2 ) ;特定波長λにおける吸光度
スペクトルの二次微分値
However, Y: component amount K0, K1, K2; coefficient A (λ1), A (λ2); second derivative of the absorbance spectrum at a specific wavelength λ

【0049】尚、成分量を算出する成分毎に、特定の成
分量算出式、特定の係数K0,K1,K2、及び、波長
λ1,λ2等が予め設定されて記憶されており、演算手
段100は、この成分毎に特定の検量式を用いて、各成
分の成分量を算出する構成となっている。
A specific component amount calculation formula, specific coefficients K0, K1 and K2, wavelengths λ1 and λ2, etc. are preset and stored for each component for calculating the component amount, and the arithmetic means 100 is stored. Is configured to calculate the component amount of each component using a specific calibration formula for each component.

【0050】〔別実施形態〕(1)上記実施形態では、
光源として、ハロゲンランプと、ハロゲンランプからの
光を一方へ向けて反射させる凹面形状の投光用反射板と
を備えて構成されたものを用いたが、例えば、ハロゲン
ランプに代えて、水銀灯やNe放電管などを備えて構成
されたものでもよい。また、ビーム光を照射し、その照
射範囲を変更自在なビーム光源を用いてもよい。
[Other Embodiment] (1) In the above embodiment,
As the light source, a halogen lamp and a concave light-projecting reflection plate that reflects light from the halogen lamp toward one direction are used, but, for example, instead of the halogen lamp, a mercury lamp or It may be configured to include a Ne discharge tube or the like. Further, a beam light source that irradiates the beam light and can change the irradiation range may be used.

【0051】(2)上記実施形態では、照射範囲変更手
段を、光源とコリメートレンズとの間に設けるような構
成としたが、これに限定されるものではない。例えば、
投光用反射鏡と投光用集光レンズとの間に設けるように
してもよく、また、投光用集光レンズと計測対象箇所と
の間に設けるようにしてもよい。
(2) In the above embodiment, the irradiation range changing means is provided between the light source and the collimating lens, but the present invention is not limited to this. For example,
It may be provided between the projection mirror and the projection condenser lens, or may be provided between the projection condenser lens and the measurement target portion.

【0052】(3)上記実施形態では、照射範囲変更手
段として、開口面積が異なる複数種の光通過用開口を選
択することによって、照射範囲を変更調節するような構
成としたが、これに限定されるものではない。例えば、
上記実施形態の構成において、光源と計測対象箇所との
間に、1個の光通過用開口を設けた開口形成部材を設
け、この開口形成部材を照射光の通過方向に沿って移動
させることによって、照射範囲を変更調節するような構
成としてもよい。また、照射範囲変更手段として、カメ
ラの絞りのような構成のものを設けるような構成として
もよい。
(3) In the above embodiment, the irradiation range is changed and adjusted by selecting a plurality of types of light passage openings having different opening areas as the irradiation range changing means. However, the present invention is not limited to this. It is not something that will be done. For example,
In the configuration of the above embodiment, an aperture forming member having one light passage opening is provided between the light source and the measurement target portion, and the aperture forming member is moved along the passage direction of the irradiation light. The irradiation range may be changed and adjusted. Further, the irradiation range changing means may have a structure such as a diaphragm of a camera.

【0053】(4)上記実施形態では、投光手段からの
光が、計測対象箇所へ向けて集光するような構成とした
が、これに限定されるものではない。例えば、上記実施
形態の投光手段において、投光用集光レンズを設けない
構成のものを用いて、投光手段から計測対象箇所へ照射
される光が平行光となって、照射されるようにしてもよ
い。また、投光用集光レンズを拡散レンズに置き換え
て、投光手段から計測対象箇所へ照射される光が拡散光
となって、照射されるようにしてもよい。
(4) In the above embodiment, the light from the light projecting means is focused toward the measurement target location, but the invention is not limited to this. For example, in the light projecting means of the above-described embodiment, a light projecting condensing lens is not provided so that the light projected from the light projecting means to the measurement target area becomes parallel light and is projected. You may Further, the light projecting condenser lens may be replaced with a diffusing lens so that the light emitted from the light projecting means to the measurement target portion becomes diffused light and is emitted.

【0054】(5)上記実施形態では、照射範囲変更手
段における遮蔽体を、回転作動させて照射範囲及び減光
量を変更する例を示したが、この構成に代えて、複数種
の光通過用開口をスライド移動体のスライド移動方向に
間隔を隔てる状態で設け、そのスライド移動体をスライ
ド移動させることによって、照射範囲を変更するように
構成して実施することも可能である。また、複数種の光
通過用開口の数は、上記実施形態の如く、2つに限られ
るものではなく、計測条件などに応じて、3つ以上に適
宜変更して実施することも可能である。
(5) In the above embodiment, an example in which the shield in the irradiation range changing means is rotationally operated to change the irradiation range and the amount of light reduction has been described. It is also possible to implement by arranging the openings so as to be spaced from each other in the slide movement direction of the slide moving body and sliding the slide moving body to change the irradiation range. Further, the number of the plurality of types of light passage openings is not limited to two as in the above embodiment, and may be appropriately changed to three or more according to the measurement conditions and the like. .

【0055】(6)上記実施形態では、基準体としてオ
パールガラスによるフィルターを用いたが、これに限ら
ず、例えば、スリガラスなどの拡散板の他、所定の吸光
度特性を有するものであればよく、材質は限定されな
い。また、受光手段もMOS型ラインセンサに限らず、
CCD型ラインセンサなどの他の検出手段を用いるよう
にしてもよい。
(6) In the above embodiment, the filter made of opal glass is used as the reference body, but the present invention is not limited to this, and any other diffuser plate such as frosted glass may be used as long as it has a predetermined absorbance characteristic. The material is not limited. Further, the light receiving means is not limited to the MOS type line sensor,
Other detection means such as a CCD type line sensor may be used.

【0056】(7)上記実施形態では、被計測物からの
透過光に基づいて分光スペクトルを計測するように構成
したが、この構成に代えて、被計測物からの反射光に基
づいて分光スペクトルを計測するように構成して実施す
ることも可能である。
(7) In the above embodiment, the spectral spectrum is measured based on the transmitted light from the measured object, but instead of this configuration, the spectral spectrum is measured based on the reflected light from the measured object. It is also possible to configure and implement to measure.

【0057】(8)上記実施形態では、被計測物の内部
品質として、糖度や酸度を例示したが、これに限らず、
食味の情報など、それ以外の内部品質を計測してもよ
い。
(8) In the above embodiment, sugar content and acidity are exemplified as the internal quality of the object to be measured, but the internal quality is not limited to this.
Other internal qualities such as taste information may be measured.

【図面の簡単な説明】[Brief description of drawings]

【図1】分光分析装置の概略構成図FIG. 1 is a schematic configuration diagram of a spectroscopic analyzer.

【図2】投光手段の平面図FIG. 2 is a plan view of a light projecting unit.

【図3】遮蔽体の位置変更状態を示す図FIG. 3 is a diagram showing a state in which the position of the shield is changed.

【図4】分光器の構成図FIG. 4 is a block diagram of a spectroscope.

【図5】シャッター機構を示す図FIG. 5 is a diagram showing a shutter mechanism.

【図6】上下位置変更状態を示す図FIG. 6 is a diagram showing a vertical position change state.

【図7】投光手段による照射範囲を示す図FIG. 7 is a diagram showing an irradiation range by a light projecting unit.

【図8】通過センサの設置状態を示す平面図FIG. 8 is a plan view showing an installation state of a passage sensor.

【図9】計測作動のタイミングチャートFIG. 9 is a timing chart of measurement operation.

【図10】制御ブロック図FIG. 10 is a control block diagram.

【図11】受光量の変化と計測タイミングを示す図FIG. 11 is a diagram showing changes in received light amount and measurement timing.

【図12】従来技術を示す斜視図FIG. 12 is a perspective view showing a conventional technique.

【符号の説明】[Explanation of symbols]

3 制御手段 10 投光手段 11 受光手段 21 照射範囲変更手段 22 開口形成部材 23 遮蔽体 22a、23a 光通過用開口 24 駆動手段 G1 開口照射位置 G2 照射許容位置 G3 遮蔽位置 M 被計測物 T 計測対象箇所 3 control means 10 Projection means 11 Light receiving means 21 Irradiation range changing means 22 Aperture forming member 23 Shield 22a, 23a Light passing aperture 24 Driving means G1 aperture irradiation position G2 irradiation allowable position G3 shield position M object to be measured T measurement target point

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2G059 AA01 BB11 DD12 EE01 HH01 HH02 JJ05 JJ11 JJ13 JJ21 JJ23 KK04 LL04 MM01 MM10   ─────────────────────────────────────────────────── ─── Continued front page    F term (reference) 2G059 AA01 BB11 DD12 EE01 HH01                       HH02 JJ05 JJ11 JJ13 JJ21                       JJ23 KK04 LL04 MM01 MM10

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 計測対象箇所に位置する被計測物に光を
照射する投光手段と、前記被計測物からの透過光を受光
して分光し、その分光された光を計測する受光手段と、
各部の動作を制御する制御手段とが設けられ、 前記制御手段が、前記受光手段の計測情報に基づいて、
前記被計測物の内部品質を解析するように構成されてい
る分光分析装置であって、 前記投光手段から前記計測対象箇所へ向けて照射される
光の照射範囲を変更調節する照射範囲変更手段が設けら
れている分光分析装置。
1. A light projecting means for irradiating an object to be measured located at a measurement target position with light, and a light receiving means for receiving and splitting transmitted light from the object to be measured and measuring the dispersed light. ,
Control means for controlling the operation of each part is provided, the control means, based on the measurement information of the light receiving means,
A spectroscopic analysis device configured to analyze the internal quality of the object to be measured, the irradiation range changing unit changing and adjusting an irradiation range of light emitted from the light projecting unit toward the measurement target location. A spectroscopic analyzer provided with.
【請求項2】 前記照射範囲変更手段が、開口面積が異
なる複数種の光通過用開口を選択使用自在に備えて構成
されている請求項1記載の分光分析装置。
2. The spectroscopic analyzer according to claim 1, wherein the irradiation range changing means is provided with a plurality of types of light passage openings having different opening areas so as to be selectively used.
【請求項3】 前記照射範囲変更手段が、 前記複数種の光通過用開口のうちの最も大きな開口を備
え且つ定位置に設置される開口形成部材と、 前記複数種の光通過用開口のうちの最も大きな開口以外
の光通過用開口を備えて、その光通過用開口を通して前
記投光手段からの光が前記計測対象箇所に照射されるよ
うにする開口照射位置、及び、前記投光手段からの光の
前記計測対象箇所に対する照射範囲に制限を与えない照
射許容位置に位置変更自在な遮蔽体とを備えて、その遮
蔽体の位置変更により照射範囲を変更調節するように構
成されている請求項2記載の分光分析装置。
3. The opening forming member, wherein the irradiation range changing means comprises the largest opening of the plurality of types of light passage openings and is installed at a fixed position, and the plurality of types of light passage openings. The opening for irradiation of light other than the largest opening for allowing the light from the light projecting means to be irradiated to the measurement target portion through the light passing opening, and from the light projecting means. Is provided with a shield that is positionally changeable to an irradiation allowable position that does not limit the irradiation range of the light to the measurement target location, and is configured to change and adjust the irradiation range by changing the position of the shield. Item 2. The spectroscopic analyzer according to item 2.
【請求項4】 前記遮蔽体が、前記投光手段から光が前
記計測対象箇所に照射されるのを遮蔽する遮蔽位置にも
位置変更自在に構成されている請求項3記載の分光分析
装置。
4. The spectroscopic analysis apparatus according to claim 3, wherein the shield is configured to be repositionable also at a shield position that shields the measurement target portion from being irradiated with light from the light projecting unit.
【請求項5】 前記投光手段の複数個が、前記計測対象
箇所に異なる方向から光を照射するように設けられ、各
投光手段の夫々に対応させて、前記開口形成部材及び前
記遮蔽体が設けられ、1個の駆動手段が、複数個の遮蔽
体を位置変更操作するように設けられている請求項3又
は4に記載の分光分析装置。
5. A plurality of the light projecting means are provided so as to irradiate the measurement target portion with light from different directions, and the opening forming member and the shield are provided corresponding to the respective light projecting means. The spectroscopic analyzer according to claim 3 or 4, wherein one driving means is provided so as to change the positions of the plurality of shields.
JP2002078152A 2002-03-20 2002-03-20 Spectroscopic analyzer Expired - Fee Related JP3821734B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002078152A JP3821734B2 (en) 2002-03-20 2002-03-20 Spectroscopic analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002078152A JP3821734B2 (en) 2002-03-20 2002-03-20 Spectroscopic analyzer

Publications (2)

Publication Number Publication Date
JP2003270134A true JP2003270134A (en) 2003-09-25
JP3821734B2 JP3821734B2 (en) 2006-09-13

Family

ID=29205958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002078152A Expired - Fee Related JP3821734B2 (en) 2002-03-20 2002-03-20 Spectroscopic analyzer

Country Status (1)

Country Link
JP (1) JP3821734B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008002902A (en) * 2006-06-21 2008-01-10 Mitsui Mining & Smelting Co Ltd Quality inspection device of vegetables and fruits and quality inspection method of vegetables and fruits
JP2008128821A (en) * 2006-11-21 2008-06-05 Mitsui Mining & Smelting Co Ltd Method and device for inspecting internal quality of vegetables and fruits
JP2014202633A (en) * 2013-04-05 2014-10-27 シンフォニアテクノロジー株式会社 Internal quality measuring apparatus for greengrocery, and greengrocery sorter
CN108663327A (en) * 2018-08-22 2018-10-16 江西绿萌分选设备有限公司 A kind of beam condensing unit for the detection of fruits and vegetables inside quality

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008002902A (en) * 2006-06-21 2008-01-10 Mitsui Mining & Smelting Co Ltd Quality inspection device of vegetables and fruits and quality inspection method of vegetables and fruits
JP2008128821A (en) * 2006-11-21 2008-06-05 Mitsui Mining & Smelting Co Ltd Method and device for inspecting internal quality of vegetables and fruits
JP2014202633A (en) * 2013-04-05 2014-10-27 シンフォニアテクノロジー株式会社 Internal quality measuring apparatus for greengrocery, and greengrocery sorter
CN108663327A (en) * 2018-08-22 2018-10-16 江西绿萌分选设备有限公司 A kind of beam condensing unit for the detection of fruits and vegetables inside quality
KR20210019525A (en) * 2018-08-22 2021-02-22 지앙시 리문 테크놀러지 홀딩스 컴퍼니 리미티드 A system including a condensing device and a condensing device for quality inspection of fruits and vegetables, and a method of using the same
JP2021529958A (en) * 2018-08-22 2021-11-04 江西緑萌科技控股有限公司 Concentrator for internal quality inspection of fruits and vegetables, system with concentrator and how to use it
AU2019326499B2 (en) * 2018-08-22 2022-09-29 Reemoon Technology Co., Ltd. Light condensing device for inspecting quality inside fruits and vegetables, system comprising same, and use method thereof
JP7145245B2 (en) 2018-08-22 2022-09-30 江西緑萌科技控股有限公司 COLLECTOR FOR INTERNAL QUALITY INSPECTION OF VEGETABLES AND FRUITS, SYSTEM HAVING COLLECTOR AND USAGE THEREOF
KR102452036B1 (en) * 2018-08-22 2022-10-07 지앙시 리문 테크놀러지 홀딩스 컴퍼니 리미티드 A light collecting device for quality inspection inside fruits and vegetables, a system comprising the light collecting device, and a method of using the same

Also Published As

Publication number Publication date
JP3821734B2 (en) 2006-09-13

Similar Documents

Publication Publication Date Title
JP2002174592A (en) Evaluation apparatus
JP2003270134A (en) Spectroscopic analyzer
JP2002098636A (en) Spectroscopic analyzer
JP3923011B2 (en) Fruit and vegetable quality evaluation equipment
JP3847197B2 (en) Spectroscopic analyzer
JP2000206037A (en) Spectroscopic analytical method
JP3847285B2 (en) Spectroscopic analyzer
JP2002168772A (en) Spectroscope
JP3821727B2 (en) Spectroscopic analyzer
JP3611519B2 (en) Agricultural product internal quality evaluation system
JP3919491B2 (en) Agricultural product quality measuring device
JP3576105B2 (en) Internal quality measurement device
JP2003279483A (en) Spectroscopic analysis device
JP5391734B2 (en) Quality measuring device
JP2005037294A (en) Quality evaluation apparatus of fruit vegetables
JP3611512B2 (en) Spectroscopic analyzer
JP3308326B2 (en) Spectroscope
JP4378240B2 (en) Equipment for evaluating internal quality of fruits and vegetables
JP2002098632A (en) Spectroscopic analyzer
JP2002107294A (en) Spectral analyzer
JP4326426B2 (en) Spectroscopic analysis apparatus evaluation method and evaluation apparatus
JP4362423B2 (en) Spectroscopic analyzer
JP3576158B2 (en) Agricultural product internal quality evaluation device
JP2004219375A (en) Apparatus for evaluating quality of fruits and vegetables
JP2006047214A (en) Method of measuring internal quality for produce

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040514

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060608

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060620

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090630

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100630

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110630

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120630

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees