JP2003270113A - Hydrogen storage device, and method of detecting residual amount of hydrogen - Google Patents

Hydrogen storage device, and method of detecting residual amount of hydrogen

Info

Publication number
JP2003270113A
JP2003270113A JP2002068318A JP2002068318A JP2003270113A JP 2003270113 A JP2003270113 A JP 2003270113A JP 2002068318 A JP2002068318 A JP 2002068318A JP 2002068318 A JP2002068318 A JP 2002068318A JP 2003270113 A JP2003270113 A JP 2003270113A
Authority
JP
Japan
Prior art keywords
hydrogen
detecting
hydrogen gas
adsorption film
remaining amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002068318A
Other languages
Japanese (ja)
Inventor
Hitoshi Ito
仁 伊藤
Mikio Kawai
幹夫 川合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2002068318A priority Critical patent/JP2003270113A/en
Publication of JP2003270113A publication Critical patent/JP2003270113A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To accurately grasp a hydrogen residual amount in a storage tank over the whole range of 0-100%. <P>SOLUTION: This device is provided with the storage tank 3 packed with hydrogen storage alloy MH to store hydrogen supplied from a hydrogen cylinder 2, a quartz oscillator 20 provided in the storage tank 3 and formed with a hydrogen adsorption film 25 by surface treatment, a detecting circuit 13 for measuring a characteristic frequency of the quartz oscillator 20 varied in response to a hydrogen gas amount adsorbed to the hydrogen adsorption film 25, and a computing circuit 14 for computing the residual amount of the hydrogen in the storage tank 3, based on the characteristic frequency of the quartz oscillator 20 measured by the detecting circuit 13. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、水素吸蔵合金を充
填した貯蔵タンクに水素ガスを貯蔵する水素貯蔵装置、
例えば、定置型の水素貯蔵装置や、自動車などの輸送用
機器にエネルギ貯蔵用として搭載される移動型の水素貯
蔵装置に係わり、とくに、貯蔵タンク内の水素残量を0
〜100%の全域にわたって正確に把握し得る水素貯蔵
装置および水素残量検出方法に関するものである。
TECHNICAL FIELD The present invention relates to a hydrogen storage device for storing hydrogen gas in a storage tank filled with a hydrogen storage alloy,
For example, the present invention relates to a stationary hydrogen storage device or a mobile hydrogen storage device mounted on a transportation device such as an automobile for energy storage.
The present invention relates to a hydrogen storage device and a hydrogen remaining amount detection method that can be accurately grasped over the entire range of 100%.

【0002】[0002]

【従来の技術】上記した水素貯蔵装置において、貯蔵タ
ンクに充填される水素吸蔵合金には、図4のP−C−T
曲線(水素圧力−組成等温線)に示すように、少ない圧
力変化で水素吸蔵量が大きく変化するプラトー領域と呼
ばれる領域が存在するが、このプラトー領域には、水素
吸着時と水素脱着時とで圧力に対して水素吸蔵量が異な
るヒステリシスが存在するため、この領域で圧力を計測
したとしても、水素の吸蔵量を正確に予測すること、す
なわち、タンク内の水素残量を検出することは困難であ
る。
2. Description of the Related Art In the hydrogen storage device described above, the hydrogen storage alloy filled in the storage tank has a PCT shown in FIG.
As shown in the curve (hydrogen pressure-composition isotherm), there is a region called the plateau region where the hydrogen storage amount changes greatly with a small pressure change, but in this plateau region there is a difference between hydrogen adsorption and hydrogen desorption. Since there is a hysteresis in which the amount of stored hydrogen differs depending on the pressure, it is difficult to accurately predict the amount of stored hydrogen, that is, to detect the amount of hydrogen remaining in the tank, even if the pressure is measured in this region. Is.

【0003】従来において、上記したような水素吸蔵装
置のタンク内の水素残量を検出する方法としては、例え
ば、水素タンク内の温度を検出する方法(特開昭63−
246459号)や、水素吸蔵合金が水素を吸蔵するの
に伴って結晶格子が膨張して体積が増加する性質を利用
して、水素吸蔵合金の体積(嵩)をタンク内に設置した
レベルセンサで検出して水素残量を推定する方法(特開
平5−223012号)や、プラトー性を確保するため
の均質化熱処理を施すのに続いて、さらなる再熱処理を
施してP−C−T曲線が傾きを有するようにして、圧力
による残量検出を可能とする方法(特開平10−245
663号)がある。
Conventionally, as a method of detecting the amount of hydrogen remaining in the tank of the above hydrogen storage device, for example, a method of detecting the temperature in the hydrogen tank (Japanese Patent Laid-Open No. 63-
No. 246459) or a level sensor in which the volume (bulk) of the hydrogen storage alloy is installed in the tank by utilizing the property that the crystal lattice expands and the volume increases as the hydrogen storage alloy stores hydrogen. A method for detecting and estimating the residual hydrogen amount (Japanese Patent Laid-Open No. 5-223012) or a homogenizing heat treatment for ensuring a plateau property, followed by a further reheat treatment to obtain a P-C-T curve A method of making it possible to detect the remaining amount by pressure by providing an inclination (Japanese Patent Laid-Open No. 10-245).
663).

【0004】[0004]

【発明が解決しようとする課題】ところが、上記した水
素タンク内の温度を検出する方法において、冷間始動時
のようにタンクの温度が低い条件下では、残量を検出す
ることが事実上不可能であり、加えて、残量が多いうち
は低温であって残量が少なくなると急激に温度が上昇す
ることから、水素がなくなる寸前までその事態を認識す
ることができないという問題があった。
However, in the above-described method for detecting the temperature in the hydrogen tank, it is practically impossible to detect the remaining amount under conditions where the temperature of the tank is low such as during cold start. This is possible, and in addition, the temperature is low while the remaining amount is high, and the temperature rises rapidly when the remaining amount decreases, so there is a problem that the situation cannot be recognized until just before the hydrogen runs out.

【0005】また、タンク内に設置したレベルセンサで
水素吸蔵合金の体積(嵩)を検出して水素残量を推定す
る方法において、水素吸蔵合金が劣化していない初期の
段階は水素残量を比較的正確に検出することができるも
のの、吸脱着の繰り返しにより水素吸蔵合金が微粉化し
て体積が変動したり、輸送用機器のエネルギ貯蔵として
使用する場合のように振動などの影響を受けたりする
と、液体燃料とは異なって正確に水素吸蔵合金の体積を
測定することが困難であるという問題を有していた。
Further, in the method of estimating the hydrogen remaining amount by detecting the volume (bulk) of the hydrogen absorbing alloy with the level sensor installed in the tank, the hydrogen remaining amount is measured at the initial stage when the hydrogen absorbing alloy is not deteriorated. Although it can be detected relatively accurately, if the hydrogen storage alloy is pulverized and the volume changes due to repeated adsorption and desorption, or if it is affected by vibration such as when it is used as energy storage for transportation equipment. However, unlike the liquid fuel, it is difficult to measure the volume of the hydrogen storage alloy accurately.

【0006】さらに、圧力による残量検出を可能とする
方法では、2回の熱処理工程を必要とする分だけコスト
高となるうえ、熱処理によるP−C−T曲線の傾きの微
妙な制御が困難であり、加えて、P−C−T曲線に傾き
を施すことは、合金の単位重量あたりの水素吸蔵量の低
下を招く可能性がある。さらにまた、上記したヒステリ
シスが存在するプラトー領域において水素の吸放出を逆
転させると(水素を消費している途中で水素の充填を開
始すると)、圧力に対する水素吸蔵量の変化が極めて複
雑な挙動を示すことから、水素の残量予測が一層困難に
なるという問題を有しており、これらの問題を解決する
ことが従来の課題となっていた。
Further, the method capable of detecting the remaining amount by the pressure increases the cost because two heat treatment steps are required, and it is difficult to delicately control the slope of the PCT curve by the heat treatment. In addition, inclining the P-C-T curve may lead to a decrease in the hydrogen storage amount per unit weight of the alloy. Furthermore, when the hydrogen absorption / desorption is reversed in the plateau region in which the above-mentioned hysteresis exists (when hydrogen filling is started while hydrogen is being consumed), the change in the hydrogen storage amount with respect to the pressure causes an extremely complicated behavior. Therefore, there is a problem that it becomes more difficult to predict the remaining amount of hydrogen, and it has been a conventional problem to solve these problems.

【0007】[0007]

【発明の目的】本発明は、上記した従来の課題に着目し
てなされたもので、水素吸蔵合金の単位重量あたりの吸
蔵量を低下させることなく、貯蔵タンク内の水素残量を
0〜100%の全域にわたって正確に把握することが可
能である水素貯蔵装置および水素残量検出方法を提供す
ることを目的としている。
SUMMARY OF THE INVENTION The present invention has been made by paying attention to the above-mentioned conventional problems. The hydrogen storage alloy has a hydrogen storage capacity of 0 to 100 without lowering the storage capacity per unit weight of the storage alloy. It is an object of the present invention to provide a hydrogen storage device and a hydrogen remaining amount detection method capable of accurately grasping the entire range of%.

【0008】[0008]

【課題を解決するための手段】本発明に係わる水素貯蔵
装置は、請求項1として、水素吸蔵合金を充填して水素
供給源から供給される水素ガスを貯蔵する貯蔵タンク
と、この貯蔵タンクに設けられて表面処理による水素ガ
ス吸着膜が形成された水晶振動子と、水素ガス吸着膜に
吸着される水素ガスの量に応じて変化する水晶振動子の
固有振動数を測定する測定手段と、この測定手段によっ
て測定された水晶振動子の固有振動数に基づいて貯蔵タ
ンク内の水素残量を割出す演算手段を設けた構成とした
ことを特徴としており、この水素貯蔵装置の構成を前述
した従来の課題を解決するための手段としている。
According to a first aspect of the present invention, there is provided a hydrogen storage device, comprising: a storage tank filled with a hydrogen storage alloy for storing hydrogen gas supplied from a hydrogen supply source; A quartz oscillator provided with a hydrogen gas adsorption film formed by surface treatment, and a measuring means for measuring the natural frequency of the quartz oscillator that changes according to the amount of hydrogen gas adsorbed to the hydrogen gas adsorption film, The hydrogen storage device is characterized in that it has an arithmetic means for calculating the remaining amount of hydrogen in the storage tank based on the natural frequency of the crystal unit measured by the measuring means. This is a means for solving the conventional problems.

【0009】[0009]

【発明の実施の形態】本発明に係わる水素貯蔵装置およ
び水素残量検出方法において、水晶振動子上に表面処理
によって形成した水素ガス吸着膜が水素ガスを吸着する
と、吸着した水素ガスの分だけ水晶振動子の重量が変化
する。これに伴って、水晶振動子の固有振動数が変化す
るので、この固有振動数の変化量をモニタすれば、水素
ガス吸着量を計算により求めることが可能となる。
BEST MODE FOR CARRYING OUT THE INVENTION In the hydrogen storage device and the remaining hydrogen detection method according to the present invention, when a hydrogen gas adsorption film formed by surface treatment on a quartz oscillator adsorbs hydrogen gas, only the adsorbed hydrogen gas is absorbed. The weight of the crystal unit changes. Along with this, the natural frequency of the crystal unit changes, so by monitoring the amount of change in the natural frequency, the hydrogen gas adsorption amount can be calculated.

【0010】つまり、表面処理により形成された水素ガ
ス吸着膜が水素ガスを吸着していない状態における水晶
振動子の固有振動数をF0、水素ガスを吸着させた状態
における水晶振動子の固有振動数をFa、水素ガスの吸
着量の変化に伴う水晶振動子の固有振動数の変化分をΔ
Fa、水素ガス吸着膜の単位面積当たりの水素ガス吸着
量をAとした場合において、式1の関係が成り立つ。
That is, the natural frequency of the crystal resonator when the hydrogen gas adsorption film formed by the surface treatment does not adsorb hydrogen gas is F0, and the natural frequency of the crystal resonator when hydrogen gas is adsorbed. Is Fa, and the change in the natural frequency of the crystal unit due to the change in the adsorption amount of hydrogen gas is Δ
When the amount of adsorbed hydrogen gas per unit area of Fa and the adsorbed hydrogen gas film is A, the relation of Expression 1 is established.

【0011】[0011]

【式1】 ΔFa=Fa−F0=−K・A[Formula 1] ΔFa = Fa−F0 = −K · A

【0012】上記の関係式において、Kは定数であっ
て、水素ガス吸着膜と水素ガスとの関係をあらかじめ実
験的に求めることができ、前もってこの定数を算出して
おけば、水晶振動子の固有振動数の変化分ΔFaを求め
て逆算することで水素吸着量Aを求め得ることとなる。
したがって、あらかじめ水素吸蔵量と残量との関係を明
らかにしておけば、水素吸蔵合金を用いた水素貯蔵装置
のタンク内における水素残量の検出が可能となる。
In the above relational expression, K is a constant, and the relationship between the hydrogen gas adsorption film and hydrogen gas can be experimentally obtained in advance. If this constant is calculated in advance, the crystal oscillator The amount of adsorbed hydrogen A can be obtained by calculating the amount of change ΔFa in the natural frequency and performing back calculation.
Therefore, if the relationship between the hydrogen storage amount and the remaining amount is clarified in advance, the hydrogen remaining amount in the tank of the hydrogen storage device using the hydrogen storage alloy can be detected.

【0013】また、本発明に係わる水素貯蔵装置および
水素残量検出方法において、共振周波数の変化を測定す
る水晶振動子の仕様としては、請求項3および12に記
載したように、ずり振動モードを検知するY板水晶振動
子が適しているが、温度特性などを考慮して、カット角
をY板から僅かにずらしたものも含むものとする。
Further, in the hydrogen storage device and the hydrogen remaining amount detecting method according to the present invention, as a specification of the crystal unit for measuring the change of the resonance frequency, the shear vibration mode is set as described in claims 3 and 12. A Y-plate crystal oscillator for detection is suitable, but a device in which the cutting angle is slightly shifted from the Y-plate is also included in consideration of temperature characteristics and the like.

【0014】この水晶振動子は、水晶板の両面に金属電
極を備えた構成をなしており、表面処理による水素ガス
吸着膜は、その金属電極の少なくとも片面(両面でも
可)に対して形成される。この際、水素ガス吸着膜の厚
みは、共振抵抗を抑制可能な0.01〜10μmの間で
形成することが望ましい。
This quartz oscillator has a structure in which metal electrodes are provided on both sides of a quartz plate, and a hydrogen gas adsorption film by surface treatment is formed on at least one side (both sides are acceptable) of the metal electrode. It At this time, it is desirable that the hydrogen gas adsorption film is formed to have a thickness of 0.01 to 10 μm capable of suppressing resonance resistance.

【0015】さらに、本発明に係わる水素貯蔵装置およ
び水素残量検出方法において、水素ガス吸着膜に用い得
る材料としては、上記したような様々な種類の材料があ
るが、設計の自由度が高く、しかも水素に対する吸着能
を制御することが可能な炭素系材料を採用することが最
も好ましい。水素ガス吸着膜に炭素系材料を用いると、
水素吸蔵合金を採用した場合の繰り返し利用時に生じる
微粉化といった問題が起こり難く、取り扱いが容易なも
のとなる。
Further, in the hydrogen storage device and the hydrogen remaining amount detecting method according to the present invention, there are various kinds of materials as described above as materials that can be used for the hydrogen gas adsorption film, but the degree of freedom in design is high. Moreover, it is most preferable to employ a carbon-based material capable of controlling the adsorption capacity for hydrogen. If a carbon-based material is used for the hydrogen gas adsorption film,
When a hydrogen storage alloy is used, problems such as pulverization that occur during repeated use are unlikely to occur, and handling becomes easy.

【0016】炭素系材料として非晶質炭素を採用した場
合、単位重量当たりの水素吸蔵能が大きいカーボンナノ
チューブやフラーレン(活性炭,グラファイト,黒鉛層
間化合物,カーボンナノファイバを用いることも可能)
などを混合すると、検出感度および精度が向上する。
When amorphous carbon is used as the carbonaceous material, carbon nanotubes and fullerenes having a large hydrogen storage capacity per unit weight (activated carbon, graphite, graphite intercalation compounds, carbon nanofibers can also be used)
The detection sensitivity and accuracy are improved by mixing such substances.

【0017】さらにまた、本発明に係わる水素貯蔵装置
および水素残量検出方法において、水素ガス吸着膜に炭
素系材料を用いた場合、水晶振動子上に炭素系材料から
なる水素ガス吸着膜を形成するための表面処理方法とし
ては、請求項7および16に記載したように、不活性ガ
ス中における炭素系材料の焼成により形成する方法が代
表的である。また、請求項8および17に記載したよう
に、炭素系材料およびバインダ樹脂を含む溶液を水晶振
動子上に配した状態でなす溶媒除去用の乾燥工程を経て
形成する表面処理方法を採用することも可能である。
Furthermore, in the hydrogen storage device and the hydrogen remaining amount detecting method according to the present invention, when a carbon-based material is used for the hydrogen gas adsorption film, the hydrogen-gas adsorption film made of the carbon-based material is formed on the quartz oscillator. As a surface treatment method for achieving this, as described in claims 7 and 16, a method of forming by firing a carbon-based material in an inert gas is typical. Further, as described in claims 8 and 17, a surface treatment method is adopted in which a solution containing a carbon-based material and a binder resin is formed on a quartz oscillator through a drying step for removing a solvent. Is also possible.

【0018】さらにまた、本発明に係わる水素貯蔵装置
および水素残量検出方法において、貯蔵タンクに充填す
る水素吸蔵合金と、表面処理によって水晶振動子上に形
成する水素ガス吸着膜に用いる材料との組み合わせは、
特に限定されることはないが、請求項9および18に記
載したように、両者に同じ材料でかつ同じ性状の材料を
統一して用いれば、同様なP−C−T曲線を示すことと
なるので望ましい。なお、貯蔵タンクに充填する水素吸
蔵合金とは異なる材料を水素ガス吸着膜に用いる場合に
は、あらかじめ各々の材料に関するP−C−T曲線の関
係を明らかにすれば採用することができる。
Furthermore, in the hydrogen storage device and the hydrogen remaining amount detecting method according to the present invention, the hydrogen storage alloy filled in the storage tank and the material used for the hydrogen gas adsorption film formed on the quartz resonator by the surface treatment are used. The combination is
Although not particularly limited, as described in claims 9 and 18, if the same material and material having the same property are used in common for both, a similar P-C-T curve is exhibited. So desirable. When a material different from the hydrogen storage alloy to be filled in the storage tank is used for the hydrogen gas adsorption film, it can be adopted if the relationship of the P-C-T curve for each material is clarified in advance.

【0019】[0019]

【発明の効果】本発明によれば、上記した構成としてい
ることから、タンクの内部圧力をモニタして演算処理す
るだけでは残量の検出が困難な水素吸蔵合金が有するプ
ラトー領域も含めて、0〜100%の全域にわたって、
貯蔵タンク内の水素の残量を多少にかかわらず簡単かつ
正確にリアルタイムで検出することが可能であるという
非常に優れた効果がもたらされる。
EFFECTS OF THE INVENTION According to the present invention, because of the above-mentioned configuration, the plateau region of the hydrogen storage alloy, in which it is difficult to detect the remaining amount by simply monitoring the internal pressure of the tank and performing arithmetic processing, Over the entire range of 0-100%,
This has an extremely excellent effect that the remaining amount of hydrogen in the storage tank can be easily and accurately detected in real time in any amount.

【0020】とくに、請求項2,3および11,12に
記載した発明では、上記した構成としたから、貯蔵タン
ク内の水素の残量をより一層正確に検出することが可能
であるという非常に優れた効果がもたらされる。
In particular, in the inventions set forth in claims 2, 3 and 11, 12, because of the above-mentioned structure, it is possible to detect the remaining amount of hydrogen in the storage tank more accurately. Excellent effect is brought about.

【0021】[0021]

【実施例】以下、本発明を図面に基づいて説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the drawings.

【0022】図1〜3は、本発明に係わる水素貯蔵装置
の一実施例を示している。
1 to 3 show an embodiment of the hydrogen storage device according to the present invention.

【0023】図1に示すように、この水素貯蔵装置1
は、水素吸蔵合金MHを充填して水素ボンベ(水素供給
源)2から供給される水素を貯蔵する貯蔵タンク3を備
えており、水素ボンベ2に接続する水素供給路4には、
水素ボンベ用レギュレータ5,ストップバルブ6および
クイックコネクタ7が設けてある。
As shown in FIG. 1, this hydrogen storage device 1
Is equipped with a storage tank 3 for storing hydrogen supplied from a hydrogen cylinder (hydrogen supply source) 2 filled with a hydrogen storage alloy MH, and a hydrogen supply path 4 connected to the hydrogen cylinder 2 is
A hydrogen cylinder regulator 5, a stop valve 6 and a quick connector 7 are provided.

【0024】貯蔵タンク3は、貯蔵側水素取り出し流路
8を介して動力源と連通しており、この流路8には、水
素取り出し用レギュレータ9および水素流量コントロー
ラ10がそれぞれ設けてあって、貯蔵タンク3内の水素
ガスは、貯蔵側水素取り出し流路8を通って動力源に供
給されるようになっている。
The storage tank 3 communicates with a power source through a storage-side hydrogen take-out passage 8, and a hydrogen take-out regulator 9 and a hydrogen flow rate controller 10 are provided in the flow passage 8, respectively. The hydrogen gas in the storage tank 3 is supplied to the power source through the storage-side hydrogen extraction passage 8.

【0025】また、貯蔵タンク3には、内部の状態をモ
ニタするための水晶振動子20,圧力検出手段としての
圧力計11および温度検出手段としての温度計12が設
けてある。
Further, the storage tank 3 is provided with a crystal oscillator 20 for monitoring the internal condition, a pressure gauge 11 as pressure detection means, and a thermometer 12 as temperature detection means.

【0026】この実施例において、水晶振動子20は、
図2(a),(b)に示すように、直径25mm、厚さ
0.35mmの水晶板(ATカット,基本周波数:6M
Hz)21の表面および裏面に、表面側電極22および
裏面側電極23をそれぞれ形成した構成をなしており、
各電極22,23にはリード線24がそれぞれ接続して
ある。
In this embodiment, the crystal unit 20 is
As shown in FIGS. 2A and 2B, a crystal plate having a diameter of 25 mm and a thickness of 0.35 mm (AT cut, fundamental frequency: 6 M)
Hz) 21 and a front surface side electrode 22 and a back surface side electrode 23 are formed on the front surface and the back surface, respectively,
A lead wire 24 is connected to each of the electrodes 22 and 23.

【0027】水晶板21の表面の中心部には、図2
(c),(d)に示すように、水素ガス吸着膜25が形
成してある。この水素ガス吸着膜25は、適当な溶媒に
対して炭素系材料を溶解または分散させた溶液を水晶板
21の表面上に配した後、不活性ガス中において焼成す
ることによって形成してあり、この際、水素ガス吸着膜
25を水晶板21の表面側における電極22の中心部だ
けに形成するようになすために、水晶板21の表面上に
あらかじめマスキング処理を行った。なお、溶解または
分散させるべき炭素系材料は、不活性ガス中での焼成後
に難黒鉛性炭素を生成する高分子化合物を採用すること
としてもよい。
The center of the surface of the crystal plate 21 is shown in FIG.
As shown in (c) and (d), a hydrogen gas adsorption film 25 is formed. The hydrogen gas adsorption film 25 is formed by arranging a solution in which a carbon-based material is dissolved or dispersed in an appropriate solvent on the surface of the quartz plate 21 and then firing it in an inert gas. At this time, in order to form the hydrogen gas adsorption film 25 only on the central portion of the electrode 22 on the surface side of the crystal plate 21, a masking process was performed on the surface of the crystal plate 21 in advance. The carbonaceous material to be dissolved or dispersed may be a polymer compound that produces non-graphitizable carbon after firing in an inert gas.

【0028】この水素ガス吸着膜25を有する水晶振動
子20は、検出回路(測定手段)13を介して演算回路
(演算手段)14に接続してあり、演算回路14では、
検出回路13において測定した水晶振動子20の固有振
動数、すなわち、水素ガス吸着膜25に吸着される水素
ガスの量に応じて変化する水晶振動子20の固有振動数
に基づいて貯蔵タンク3内の水素残量を割出し、演算処
理結果を水素残量計15で表示するようになっている。
The crystal oscillator 20 having the hydrogen gas adsorption film 25 is connected to the arithmetic circuit (arithmetic means) 14 via the detection circuit (measuring means) 13, and in the arithmetic circuit 14,
In the storage tank 3, based on the natural frequency of the crystal unit 20 measured in the detection circuit 13, that is, the natural frequency of the crystal unit 20 that changes according to the amount of hydrogen gas adsorbed on the hydrogen gas adsorption film 25. The remaining hydrogen amount is calculated and the calculation result is displayed on the remaining hydrogen meter 15.

【0029】圧力計11および温度計12も検出回路1
3を介して演算回路14にそれぞれ接続してあり、圧力
計11および温度計12からの各データを演算回路14
における水素残量の割出し演算に補正用として用いるよ
うにしている。
The pressure gauge 11 and the thermometer 12 are also the detection circuit 1
3 are connected to the arithmetic circuit 14 respectively, and each data from the pressure gauge 11 and the thermometer 12 is connected to the arithmetic circuit 14
It is used as a correction for the calculation of the remaining hydrogen amount in.

【0030】さらに、貯蔵タンク3には、循環媒体ライ
ン16が配置してあり、この循環媒体ライン16に多数
のフィンを設けて熱交換器の機能を持たせることによっ
て、水素吸脱着を効率的かつ迅速に行うことができるよ
うにしている、すなわち、貯蔵タンク3に水素を充填す
るときは、発生する吸着熱を取り除くために循環媒体ラ
イン16を冷却器として機能させ、一方、貯蔵タンク3
から水素を取り出すときは、循環媒体ライン16を加熱
器として機能させて水素の脱離を促進するようにしてい
る。
Further, a circulating medium line 16 is arranged in the storage tank 3, and a large number of fins are provided in the circulating medium line 16 so as to have a function of a heat exchanger, so that hydrogen adsorption / desorption can be performed efficiently. In addition, when the storage tank 3 is filled with hydrogen, the circulating medium line 16 functions as a cooler to remove the heat of adsorption generated, while the storage tank 3 is filled with hydrogen.
When hydrogen is taken out from the tank, the circulating medium line 16 is made to function as a heater to promote desorption of hydrogen.

【0031】なお、水素供給路4および貯蔵側水素取り
出し流路8には必要に応じて逆流防止弁を設置すること
が可能である。
A backflow prevention valve can be installed in the hydrogen supply passage 4 and the storage-side hydrogen extraction passage 8 if necessary.

【0032】そこで、25℃の環境下において、上記水
素貯蔵装置1の貯蔵タンク3に対する水素ガスの充填・
取出を繰り返し行った際の水素ガス充填量および周波数
の挙動を調べたところ、図3に示す結果を得た。
Therefore, in an environment of 25 ° C., the storage tank 3 of the hydrogen storage device 1 is filled with hydrogen gas.
When the behavior of the hydrogen gas filling amount and the frequency when the extraction was repeated was examined, the results shown in FIG. 3 were obtained.

【0033】水晶振動子20に採用した水晶板21の基
本周波数(水素ガス吸着膜25を形成する前の周波数)
は6MHzであったが、水素ガス吸着膜25を形成する
処理を施した後の基本周波数(水素吸蔵量が0wt%の
時の周波数)は5.926370〜5.926380MHzの範囲であっ
た。図3に示すように、水素吸蔵量が増えるにつれて周
波数は低減し、2wt%で約5.925000MHz、4wt%
で約5.923500MHz、6wt%で約5.922000MHzであ
った。
Basic frequency of the crystal plate 21 adopted for the crystal unit 20 (frequency before forming the hydrogen gas adsorption film 25)
Was 6 MHz, but the fundamental frequency (frequency when the hydrogen storage amount was 0 wt%) after the treatment for forming the hydrogen gas adsorption film 25 was in the range of 5.926370 to 5.926380 MHz. As shown in Fig. 3, the frequency decreases as the hydrogen storage amount increases, and at 2 wt% it is approximately 5.925000 MHz, 4 wt%
Was about 5.923500 MHz, and 6 wt% was about 5.922000 MHz.

【0034】つまり、貯蔵タンク3への水素ガスの充填
を開始すると、水晶振動子20に採用した水晶板21に
おける水素ガス吸着膜25にも水素ガスが貯蔵されて質
量が増加するので、共振周波数は低下する。逆に、貯蔵
タンク3から水素ガスを取り出すと、水晶振動子20に
採用した水晶板21における水素ガス吸着膜25からも
水素ガスが放出されて質量が減少するので、再び共振周
波数が上昇して水素ガス充填前の周波数に戻る。
That is, when the filling of the storage tank 3 with hydrogen gas is started, the hydrogen gas is also stored in the hydrogen gas adsorption film 25 of the crystal plate 21 adopted in the crystal resonator 20, and the mass increases, so that the resonance frequency is increased. Will fall. On the contrary, when the hydrogen gas is taken out from the storage tank 3, the hydrogen gas is also released from the hydrogen gas adsorption film 25 on the crystal plate 21 adopted for the crystal resonator 20 and the mass is reduced, so that the resonance frequency is increased again. Return to the frequency before filling with hydrogen gas.

【0035】上記充填・取出の際には、圧力に対するヒ
ステリシスが存在しているが、この実施例における水晶
振動子20による測定では、水素ガスの吸着量を直接測
定することになるので、圧力に対するヒステリシスとは
無関係である。また、図3にプロットした水素ガス吸着
量と周波数変化の関係は、測定領域においてほぼ直線に
近い。このため、貯蔵タンク3内の水素ガス残量を従来
の手法よりも正確に予測することが可能であることが立
証できた。
Although there is a hysteresis with respect to the pressure at the time of filling / extracting, the amount of hydrogen gas adsorbed is directly measured in the measurement by the crystal unit 20 in this embodiment, and therefore the hysteresis with respect to the pressure is measured. It has nothing to do with hysteresis. Further, the relationship between the hydrogen gas adsorption amount and the frequency change plotted in FIG. 3 is almost linear in the measurement region. Therefore, it has been proved that the remaining amount of hydrogen gas in the storage tank 3 can be predicted more accurately than the conventional method.

【0036】上記した実施例では、水晶振動子20の水
晶板21に水素ガス吸着膜25を形成するに際して、適
当な溶媒に対して炭素系材料を溶解または分散させた溶
液を水晶板21の表面上に配した後、不活性ガス中にお
いて焼成することによって形成するようにしているが、
これに限定されるものではなく、水素ガス吸着膜25を
水晶板21に形成する別の方法として、表面処理する炭
素系材料および微粉末である炭素系材料を結合するため
のバインダ樹脂を溶媒に溶かし、水晶板21上に炭素材
料およびバインダ樹脂を含む溶液を配した後、溶媒除去
するための乾燥工程を経て形成する方法を採用すること
も可能である。
In the above-described embodiment, when the hydrogen gas adsorption film 25 is formed on the crystal plate 21 of the crystal unit 20, a solution in which a carbonaceous material is dissolved or dispersed in an appropriate solvent is applied to the surface of the crystal plate 21. After being placed on top, it is formed by firing in an inert gas,
The method is not limited to this, and as another method of forming the hydrogen gas adsorption film 25 on the quartz plate 21, a binder resin for binding the carbon-based material to be surface-treated and the carbon-based material that is fine powder is used as a solvent. It is also possible to adopt a method in which a solution containing a carbon material and a binder resin is melted, and a solution containing a carbon material and a binder resin is placed on the crystal plate 21, followed by a drying step for removing the solvent.

【0037】この際、必要に応じて水素吸蔵能の大きい
カーボンナノチューブやフラーレン(活性炭,グラファ
イト,黒鉛層間化合物,カーボンナノファイバを用いて
もよい)などを混合して、検出精度を向上させることも
可能である。
At this time, if necessary, carbon nanotubes or fullerenes having a large hydrogen storage capacity (activated carbon, graphite, graphite intercalation compounds, carbon nanofibers may be used) or the like may be mixed to improve the detection accuracy. It is possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係わる水素貯蔵装置の一実施例を示す
全体構成説明図である。
FIG. 1 is an overall configuration diagram showing an embodiment of a hydrogen storage device according to the present invention.

【図2】図1における水素貯蔵装置の水晶振動子を示す
水素ガス吸着膜を形成する前の表面側斜視説明図
(a),裏面側斜視説明図(b),水素ガス吸着膜を形
成した後の表面側斜視説明図(c)および水素ガス吸着
膜を形成した後の断面説明図(d)である。
2A and 2B are front side perspective explanatory views (a), back side perspective explanatory views (b), and a hydrogen gas adsorption film are formed before forming a hydrogen gas adsorption film showing the crystal oscillator of the hydrogen storage device in FIG. It is a front side perspective explanatory view (c) and a sectional explanatory view (d) after forming a hydrogen gas adsorption film.

【図3】図1における水素貯蔵装置の貯蔵タンクに対す
る水素ガスの充填・取出を繰り返し行った際の水素ガス
充填量および周波数の挙動を示すグラフである。
3 is a graph showing the behavior of the hydrogen gas filling amount and the frequency when the hydrogen gas is repeatedly filled and taken out from the storage tank of the hydrogen storage device in FIG.

【図4】貯蔵タンクに充填する水素吸蔵合金のP-C-T
曲線を示すグラフである。
FIG. 4 P-C-T of hydrogen storage alloy filled in storage tank
It is a graph which shows a curve.

【符号の説明】[Explanation of symbols]

1 水素貯蔵装置 2 水素ボンベ(水素供給源) 3 貯蔵タンク 11 圧力計(圧力測定手段) 12 温度計(温度検出手段) 13 検出回路(測定手段) 14 演算回路(演算手段) 20 水晶振動子 25 水素ガス吸着膜 MH 水素吸蔵合金 1 Hydrogen storage device 2 Hydrogen cylinder (hydrogen supply source) 3 storage tanks 11 Pressure gauge (pressure measuring means) 12 Thermometer (temperature detection means) 13 Detection circuit (measuring means) 14 Arithmetic circuit (arithmetic means) 20 crystal unit 25 Hydrogen gas adsorption film MH hydrogen storage alloy

Claims (18)

【特許請求の範囲】[Claims] 【請求項1】 水素吸蔵合金を充填して水素供給源から
供給される水素ガスを貯蔵する貯蔵タンクと、この貯蔵
タンクに設けられて表面処理による水素ガス吸着膜が形
成された水晶振動子と、水素ガス吸着膜に吸着される水
素ガスの量に応じて変化する水晶振動子の固有振動数を
測定する測定手段と、この測定手段によって測定された
水晶振動子の固有振動数に基づいて貯蔵タンク内の水素
残量を割出す演算手段を設けたことを特徴とする水素貯
蔵装置。
1. A storage tank for storing hydrogen gas supplied from a hydrogen supply source filled with a hydrogen storage alloy, and a quartz resonator provided in the storage tank and having a hydrogen gas adsorption film formed by surface treatment. A measuring means for measuring the natural frequency of the crystal unit, which changes according to the amount of hydrogen gas adsorbed on the hydrogen gas adsorption film, and the storage based on the natural frequency of the crystal unit measured by the measuring unit. A hydrogen storage device comprising a calculation means for calculating the remaining amount of hydrogen in the tank.
【請求項2】 貯蔵タンクに、タンク内圧力を検出する
圧力検出手段およびタンク内温度を検出する温度検出手
段を設けた請求項1に記載の水素貯蔵装置。
2. The hydrogen storage device according to claim 1, wherein the storage tank is provided with a pressure detecting means for detecting a pressure inside the tank and a temperature detecting means for detecting a temperature inside the tank.
【請求項3】 ずり振動モードを検知可能なY板水晶振
動子を水晶振動子とした請求項1または2に記載の水素
貯蔵装置。
3. The hydrogen storage device according to claim 1, wherein the Y-plate crystal oscillator capable of detecting the shear vibration mode is a crystal oscillator.
【請求項4】 水素ガス吸着膜は、水素吸蔵合金,炭素
系材料,ゼオライト,アルミナ,シリカ,チタニアおよ
びこれらの任意の組み合わせによる混合物あるいは異元
素の置換物などの化学的あるいは物理的に水素を吸着可
能な材料からなっている請求項1ないし3のいずれかに
記載の水素貯蔵装置。
4. The hydrogen gas adsorbing film contains hydrogen chemically or physically such as a hydrogen storage alloy, a carbonaceous material, zeolite, alumina, silica, titania, a mixture of any combination thereof, or a substitute of a different element. The hydrogen storage device according to any one of claims 1 to 3, which is made of an adsorbable material.
【請求項5】 水素ガス吸着膜として用いる炭素系材料
は、非晶質炭素,カーボンナノチューブ,フラーレンお
よびこれらの任意の組み合わせによる混合物のいずれか
の材料からなる請求項4に記載の水素貯蔵装置。
5. The hydrogen storage device according to claim 4, wherein the carbon-based material used as the hydrogen gas adsorption film is any one of amorphous carbon, carbon nanotube, fullerene, and a mixture of any combination thereof.
【請求項6】 非晶質炭素は、活性炭,グラファイト,
黒鉛層間化合物,カーボンナノファイバおよびこれらの
任意の組み合わせによる混合物のいずれかの材料からな
る請求項5に記載の水素貯蔵装置。
6. Amorphous carbon is activated carbon, graphite,
The hydrogen storage device according to claim 5, wherein the hydrogen storage device is made of any one of a graphite intercalation compound, carbon nanofibers, and a mixture of any combination thereof.
【請求項7】 水素ガス吸着膜は、不活性ガス中におけ
る炭素系材料の焼成により形成されている請求項5また
は6に記載の水素貯蔵装置。
7. The hydrogen storage device according to claim 5, wherein the hydrogen gas adsorption film is formed by firing a carbon-based material in an inert gas.
【請求項8】 水素ガス吸着膜は、炭素系材料およびバ
インダ樹脂を含む溶液を水晶振動子上に配した状態でな
される溶媒除去用の乾燥工程を経て形成されている請求
項5または6に記載の水素貯蔵装置。
8. The hydrogen gas adsorption film according to claim 5, wherein the hydrogen gas adsorption film is formed through a drying step for removing a solvent, which is performed in a state in which a solution containing a carbon-based material and a binder resin is placed on a quartz oscillator. The hydrogen storage device described.
【請求項9】 水素ガス吸着膜を貯蔵タンク内の水素吸
蔵合金と同じP−C−T曲線を示す水素吸蔵合金から形
成した請求項1ないし4のいずれかに記載の水素貯蔵装
置。
9. The hydrogen storage device according to claim 1, wherein the hydrogen gas adsorption film is formed of a hydrogen storage alloy exhibiting the same P-C-T curve as the hydrogen storage alloy in the storage tank.
【請求項10】 水素吸蔵合金を充填した貯蔵タンクを
備えた水素貯蔵装置の貯蔵タンク内の水素残量を検出す
るに際して、表面処理による水素ガス吸着膜が形成され
た水晶振動子を貯蔵タンクに設け、水素ガス吸着膜に吸
着される水素ガスの量に応じて変化する水晶振動子の固
有振動数を測定すると共に、測定した水晶振動子の固有
振動数に基づく演算を行って貯蔵タンク内の水素残量を
推定することを特徴とする水素残量検出方法。
10. A crystal resonator having a hydrogen gas adsorption film formed by surface treatment is used as a storage tank when detecting the remaining amount of hydrogen in the storage tank of a hydrogen storage device having a storage tank filled with a hydrogen storage alloy. In addition to measuring the natural frequency of the crystal unit, which changes according to the amount of hydrogen gas adsorbed on the hydrogen gas adsorption film, and performing an operation based on the measured natural frequency of the crystal unit, A method for detecting the remaining amount of hydrogen, which comprises estimating the remaining amount of hydrogen.
【請求項11】 貯蔵タンク内の圧力および温度を検出
して水素残量を割出す演算に用いる請求項10に記載の
水素残量検出方法。
11. The method for detecting the remaining amount of hydrogen according to claim 10, wherein the method is used to calculate the remaining amount of hydrogen by detecting the pressure and temperature in the storage tank.
【請求項12】 水晶振動子として、ずり振動モードを
検知可能なY板水晶振動子を用いる請求項10または1
1に記載の水素残量検出方法。
12. The crystal oscillator used is a Y-plate crystal oscillator capable of detecting a shear vibration mode.
1. The method for detecting the remaining amount of hydrogen according to 1.
【請求項13】 水素ガス吸着膜として、水素吸蔵合
金,炭素系材料,ゼオライト,アルミナ,シリカ,チタ
ニアおよびこれらの任意の組み合わせによる混合物ある
いは異元素の置換物などの化学的あるいは物理的に水素
を吸着可能な材料を用いる請求項10ないし12のいず
れかに記載の水素残量検出方法。
13. A hydrogen gas adsorbing film comprising hydrogen or a hydrogen absorbing alloy, a carbonaceous material, zeolite, alumina, silica, titania, and a mixture of any combination thereof, or a substitute of a different element, such as hydrogen chemically or physically. 13. The method for detecting the remaining amount of hydrogen according to claim 10, wherein an adsorbable material is used.
【請求項14】 炭素系材料として、非晶質炭素,カー
ボンナノチューブ,フラーレンおよびこれらの任意の組
み合わせによる混合物のいずれかの材料を用いる請求項
13に記載の水素残量検出方法。
14. The method for detecting the remaining amount of hydrogen according to claim 13, wherein any one of amorphous carbon, carbon nanotube, fullerene and a mixture of any combination thereof is used as the carbon-based material.
【請求項15】 非晶質炭素として、活性炭,グラファ
イト,黒鉛層間化合物,カーボンナノファイバおよびこ
れらの任意の組み合わせによる混合物のいずれかの材料
を用いる請求項14に記載の水素残量検出方法。
15. The method for detecting the remaining amount of hydrogen according to claim 14, wherein any material of activated carbon, graphite, a graphite intercalation compound, carbon nanofibers, and a mixture of any combination thereof is used as the amorphous carbon.
【請求項16】 不活性ガス中における炭素系材料の焼
成により形成したものを水素ガス吸着膜として用いる請
求項14または15に記載の水素残量検出方法。
16. The method for detecting the remaining amount of hydrogen according to claim 14, wherein a hydrogen gas adsorption film formed by firing a carbon-based material in an inert gas is used.
【請求項17】 炭素系材料およびバインダ樹脂を含む
溶液を水晶振動子上に配した状態でなされる溶媒除去用
の乾燥工程を経て形成したものを水素ガス吸着膜として
用いる請求項14または15に記載の水素残量検出方
法。
17. The hydrogen gas adsorption film according to claim 14 or 15, wherein the hydrogen gas adsorption film is formed through a drying process for removing a solvent, which is performed while a solution containing a carbonaceous material and a binder resin is placed on a quartz oscillator. The method for detecting the remaining amount of hydrogen described.
【請求項18】 水素ガス吸着膜として、貯蔵タンク内
の水素吸蔵合金と同じP−C−T曲線を示す水素吸蔵合
金を用いた請求項10ないし13のいずれかに記載の水
素残量検出方法。
18. The method for detecting the remaining amount of hydrogen according to claim 10, wherein a hydrogen storage alloy that exhibits the same P-C-T curve as the hydrogen storage alloy in the storage tank is used as the hydrogen gas adsorption film. .
JP2002068318A 2002-03-13 2002-03-13 Hydrogen storage device, and method of detecting residual amount of hydrogen Pending JP2003270113A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002068318A JP2003270113A (en) 2002-03-13 2002-03-13 Hydrogen storage device, and method of detecting residual amount of hydrogen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002068318A JP2003270113A (en) 2002-03-13 2002-03-13 Hydrogen storage device, and method of detecting residual amount of hydrogen

Publications (1)

Publication Number Publication Date
JP2003270113A true JP2003270113A (en) 2003-09-25

Family

ID=29199441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002068318A Pending JP2003270113A (en) 2002-03-13 2002-03-13 Hydrogen storage device, and method of detecting residual amount of hydrogen

Country Status (1)

Country Link
JP (1) JP2003270113A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004040895A1 (en) * 2004-08-24 2006-03-02 Bayerische Motoren Werke Ag Fuel-operated internal combustion engine and operating method therefor
JP2009509172A (en) * 2005-09-22 2009-03-05 アプライド・ナノテック・ホールディングス・インコーポレーテッド Hydrogen sensor
JP2017133708A (en) * 2016-01-25 2017-08-03 株式会社豊田中央研究所 Thermal storage device
CN107702759A (en) * 2017-09-29 2018-02-16 吉林科领科技有限公司 A kind of metal hydride hydrogen storage unit and its hydrogen content measuring method
JP2020159998A (en) * 2019-03-28 2020-10-01 株式会社豊田中央研究所 Hydrogen amount sensor, hydrogen amount measurement device, and hydrogen storage and release system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004040895A1 (en) * 2004-08-24 2006-03-02 Bayerische Motoren Werke Ag Fuel-operated internal combustion engine and operating method therefor
JP2009509172A (en) * 2005-09-22 2009-03-05 アプライド・ナノテック・ホールディングス・インコーポレーテッド Hydrogen sensor
JP2017133708A (en) * 2016-01-25 2017-08-03 株式会社豊田中央研究所 Thermal storage device
US10174728B2 (en) 2016-01-25 2019-01-08 Kabushiki Kaisha Toyota Chuo Kenkyusho Heat storage device
CN107702759A (en) * 2017-09-29 2018-02-16 吉林科领科技有限公司 A kind of metal hydride hydrogen storage unit and its hydrogen content measuring method
JP2020159998A (en) * 2019-03-28 2020-10-01 株式会社豊田中央研究所 Hydrogen amount sensor, hydrogen amount measurement device, and hydrogen storage and release system

Similar Documents

Publication Publication Date Title
CN101365650B (en) Bulk assembly of oriented carbon nanotube
Pinkerton et al. Thermogravimetric measurement of hydrogen absorption in alkali-modified carbon materials
Wang et al. Thermal conductivity and permeability of consolidated expanded natural graphite treated with sulphuric acid
Bénard et al. Comparison of hydrogen adsorption on nanoporous materials
Cabria et al. Density functional calculations of hydrogen adsorption on boron nanotubes and boron sheets
Rzepka et al. Hydrogen storage capacity of catalytically grown carbon nanofibers
Nechaev The nature, kinetics, and ultimate storage capacity of hydrogen sorption by carbon nanostructures
JP2003270113A (en) Hydrogen storage device, and method of detecting residual amount of hydrogen
Wei et al. Gases adsorption on single-walled carbon nanotubes measured by piezoelectric quartz crystal microbalance
Morosin et al. Ne intercalated C 60: Diffusion kinetics
JP2006343313A (en) Portable measuring instrument using hydrogen flame
Howard et al. A study of the density of carbon
JP2009250959A (en) Filter monitoring system
CA2435965C (en) Multilayered hydrogen absorbing body
JP2003139298A (en) Hydrogen storage device and method for detecting remaining amount of hydrogen
Byl et al. Characterization of single wall carbon nanotubes by nonane preadsorption
WO1998012548A1 (en) Gas sensor
JP5004070B2 (en) Lithium ion storage body and lithium ion storage method
Khantimerov et al. Effect of electrochemical treatment on structural properties of conical carbon nanotubes
Zajac Calorimetry at the Solid–Liquid Interface
JP7211205B2 (en) Device for detecting deterioration of hydrogen storage alloy, method for detecting deterioration thereof, and hydrogen absorption and desorption system
JP2010019860A (en) Transportable measuring apparatus utilizing hydrogen flame and method for operating same
JP2020159998A (en) Hydrogen amount sensor, hydrogen amount measurement device, and hydrogen storage and release system
Ostrovskii et al. An adsorption and calorimetric study of the interaction of hydrogen with chromium oxide
Pawela-Crew et al. Lateral interactions in the desorption kinetics of weakly adsorbed species: unexpected differences in the desorption of C4 alkenes and alkanes from Ag (110) due to oriented π-bonding of the alkenes