JP2003268401A - Method for manufacturing sintered member - Google Patents

Method for manufacturing sintered member

Info

Publication number
JP2003268401A
JP2003268401A JP2002071055A JP2002071055A JP2003268401A JP 2003268401 A JP2003268401 A JP 2003268401A JP 2002071055 A JP2002071055 A JP 2002071055A JP 2002071055 A JP2002071055 A JP 2002071055A JP 2003268401 A JP2003268401 A JP 2003268401A
Authority
JP
Japan
Prior art keywords
powder
sintering
sintered
amount
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002071055A
Other languages
Japanese (ja)
Inventor
Hiroshi Okajima
博司 岡島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2002071055A priority Critical patent/JP2003268401A/en
Publication of JP2003268401A publication Critical patent/JP2003268401A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a sintered member, which causes little dimensional change of a sintered compact, and reduces dimensional variation among the sintered compacts due to difference among lots of a raw material powder. <P>SOLUTION: The method for manufacturing the sintered member has a raw material powder preparation step of blending a carbon powder which superfluously contains a amount corrected by calculation for an amount of at least oxygen contained in the raw iron powder, to the raw iron powder. The above preparation step can include blending the carbon powder which superfluously contains a amount corrected by calculation for an amount of oxygen and further carbon contained in the raw iron powder, to the raw iron powder. In addition, the method for manufacturing the sintered member is characterized by sintering the member to be sintered, at a calculated temperature according to a relational expression between the amount of oxygen contained in the raw iron powder and the sintering temperature of the sintered compact. Furthermore, the method for manufacturing the sintered member is characterized by sintering the member to be sintered, for a duration of time a relational expression between the amount of oxygen in the raw iron powder and the sintering time of the sintered compact. The method for manufacturing the sintered member can include a dimension correction step and a heat treatment step after the above sintering step, as needed. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、焼結部材の製造方
法に関し、詳しくは、高い寸法精度を有し、かつ原料鉄
粉のロットの違いによる寸法のロット間変動を低減する
焼結部材の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a sintered member, and more particularly, to a sintered member which has high dimensional accuracy and reduces fluctuations in dimensions between lots of raw iron powder. It relates to a manufacturing method.

【0002】[0002]

【従来の技術】焼結部材は、原料粉末を成形して粉末成
形体を形成し、この粉末成形体を溶融点以下の温度で焼
結させることで焼結体となし、必要に応じてこの焼結体
の寸法矯正や熱処理を施して製造されている。粉末成形
体を焼結した焼結体は、焼結時に生じた膨張あるいは収
縮により寸法が変化するために、予め寸法変化量を見込
んで金型寸法を補正することが一般的に行われている。
しかし、製造工程中の様々な要因によって焼結体の寸法
変化量はバラツクために、さらに寸法矯正工程あるいは
仕上げ加工が必要となり、コストアップの要因となって
いる。
2. Description of the Related Art A sintered member is made by forming raw material powder into a powder compact, and sintering the powder compact at a temperature below the melting point to form a sintered compact. It is manufactured by subjecting the sintered body to dimensional correction and heat treatment. Since the size of a sintered body obtained by sintering a powder compact changes due to expansion or contraction that occurs during sintering, it is generally performed in advance to allow for the amount of dimensional change to correct the die size. .
However, the dimensional change amount of the sintered body varies due to various factors during the manufacturing process, so that a dimensional correction process or finishing process is further required, which causes a cost increase.

【0003】工業生産における焼結体の寸法変動には、
ロット内変動とロット間変動とがある。ロット内変動は
比較的小さいが、ロット間での寸法変動はロット内変動
に比べて大きい場合が多いので、焼結部材の寸法精度を
大きく低下させることとなる。
The dimensional variation of the sintered body in industrial production is
There are intra-lot and intra-lot variations. Although the intra-lot variation is relatively small, the dimensional variation between lots is often greater than the intra-lot variation, which greatly reduces the dimensional accuracy of the sintered member.

【0004】焼結体の寸法変化におよぼす製造工程中の
変動要因としては、原料粉末の微粉量や組成(特に炭素
量)、成形密度、焼結温度あるいは焼結時間などを挙げ
ることができる。
Factors that affect the dimensional change of the sintered body during the manufacturing process include the amount of fine powder of the raw material powder, the composition (particularly the amount of carbon), the compacting density, the sintering temperature or the sintering time.

【0005】原料鉄粉中の微粉量が、焼結工程における
収縮量を変動させる要因の一つであることはよく知られ
ている。例えば、特開平4−210402号公報では、
原料鉄粉の粒度を調製することにより、焼結の際の寸法
変化を低減して焼結体の寸法精度を向上する焼結部材の
製造方法について開示している。すなわち、平均粒径4
0〜200μmの鉄粗紛と平均粒径20μm以下の鉄微
粉とを5〜30重量%混合した原料粉末を用いることと
している。
It is well known that the amount of fine powder in the raw iron powder is one of the factors that change the amount of shrinkage in the sintering process. For example, in Japanese Patent Laid-Open No. 4-210402,
Disclosed is a method for manufacturing a sintered member, which reduces the dimensional change during sintering and improves the dimensional accuracy of the sintered body by adjusting the particle size of the raw iron powder. That is, the average particle size 4
A raw material powder in which iron coarse powder of 0 to 200 μm and iron fine powder having an average particle diameter of 20 μm or less are mixed by 5 to 30% by weight is used.

【0006】ここでは、微粉量を原料鉄粉の製造ロット
に係わらずある一定の値の範囲に管理することが必要と
なる。このためには、得られた原料粉末を何らかの方法
で分級して配合し直さなければならない、そのため相当
量の在庫を保有することも必要となる、といった問題が
生じる。
[0006] Here, it is necessary to control the amount of fine powder within a certain value range regardless of the production lot of the raw iron powder. For this purpose, there arises a problem that the obtained raw material powder must be classified by some method and blended again, and it is also necessary to hold a considerable amount of inventory.

【0007】また、焼結時の寸法変化量は添加する炭素
の量によって変動する。通常、焼結部材の機械的性質を
向上するために、原料鉄粉に一定量の炭素を配合して原
料粉末としている。しかし、一方で原料の鉄粉中には不
純物として酸素が含まれており、この配合された炭素の
一部は、焼結の際に鉄粉を還元するために消費される。
従って、原料鉄粉に含まれる酸素量によって、焼結部材
中の炭素量がばらつき、結果的に焼結部材の寸法の変動
が生じる。原料鉄粉はその製造工程において酸素を取除
く工程が取られるが、製造ロットによる酸素量のバラツ
キは大きい。しかし、従来はこの原料鉄粉中の酸素量の
変動については、十分な配慮がなされていなかった。
The amount of dimensional change during sintering varies depending on the amount of carbon added. Usually, in order to improve the mechanical properties of the sintered member, a certain amount of carbon is mixed with the raw iron powder to obtain the raw powder. However, on the other hand, the raw material iron powder contains oxygen as an impurity, and a part of this blended carbon is consumed to reduce the iron powder during sintering.
Therefore, the amount of carbon in the sintered member varies depending on the amount of oxygen contained in the raw iron powder, and as a result, the size of the sintered member varies. The raw iron powder has a process of removing oxygen in its manufacturing process, but the amount of oxygen varies greatly depending on the manufacturing lot. However, heretofore, sufficient consideration has not been given to the fluctuation of the oxygen content in the raw iron powder.

【0008】[0008]

【発明が解決しようとする課題】本発明は、上記の問題
点に鑑みてなされたものであって、焼結部材の寸法変化
が小さく、かつ原料粉末のロットによる焼結部材の寸法
バラツキを低減する焼結部材の製造方法を提供しようと
するものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and the dimensional change of the sintered member is small, and the dimensional variation of the sintered member due to the lot of raw material powder is reduced. The present invention is intended to provide a method for manufacturing a sintered member.

【0009】[0009]

【課題を解決するための手段】本発明になる焼結部材の
製造方法は、少なくとも原料鉄粉および炭素粉末を配合
して原料粉末を調製する原料粉末調製工程と、この原料
粉末を成形して粉末成形体を形成する成形工程と、粉末
成形体を焼結して焼結体とする焼結工程と、を有する焼
結部材の製造方法において、前記原料粉末調製工程は、
原料鉄粉の含有する少なくとも酸素量から計算される炭
素粉末補正量を加えた炭素粉末を配合する工程であるこ
とを特徴とする。
A method for producing a sintered member according to the present invention comprises a raw material powder preparation step of blending at least raw material iron powder and carbon powder to prepare a raw material powder, and molding the raw material powder. In a method for manufacturing a sintered member, which comprises a forming step of forming a powder compact and a sintering step of sintering the powder compact to form a sintered body, the raw material powder preparing step comprises:
It is characterized in that it is a step of blending carbon powder to which a carbon powder correction amount calculated from at least the oxygen amount contained in the raw iron powder is added.

【0010】また、前記原料粉末調製工程は、原料鉄粉
の含有する酸素量および炭素量とから計算される炭素粉
末補正量を加えた炭素粉末を配合する工程である。
The raw material powder preparation step is a step of blending carbon powder to which a carbon powder correction amount calculated from the oxygen amount and carbon amount contained in the raw iron powder is added.

【0011】本発明になる焼結部材の製造方法は、少な
くとも原料鉄粉および炭素粉末を配合して原料粉末を調
製する原料粉末調製工程と、この原料粉末を成形して粉
末成形体を形成する成形工程と、粉末成形体を焼結して
焼結体とする焼結工程と、を有する焼結部材の製造方法
において、焼結工程は、原料鉄粉の含有する酸素量と焼
結部材の焼結温度との関係式から計算される補正温度で
調整した焼結温度で焼結する工程であることを特徴とす
る。
The method for producing a sintered member according to the present invention comprises a raw material powder preparation step of blending at least raw material iron powder and carbon powder to prepare a raw material powder, and molding the raw material powder to form a powder compact. In a method of manufacturing a sintered member, which comprises a forming step and a sintering step of sintering a powder formed body into a sintered body, the sintering step includes the amount of oxygen contained in the raw iron powder and the sintering member. It is characterized in that it is a step of sintering at a sintering temperature adjusted by a correction temperature calculated from a relational expression with the sintering temperature.

【0012】さらに、本発明になる焼結部材の製造方法
は、少なくとも原料鉄粉および炭素粉末を配合して原料
粉末を調製する原料粉末調製工程と、この原料粉末を成
形して粉末成形体を形成する成形工程と、粉末成形体を
焼結して焼結体とする焼結工程と、を有する焼結部材の
製造方法において、焼結工程は、原料鉄粉の含有する酸
素量と焼結部材の焼結時間との関係式から計算される補
正時間で調整された焼結時間で焼結する工程であること
を特徴とする。
Further, the method for producing a sintered member according to the present invention comprises a raw material powder preparation step of blending at least raw material iron powder and carbon powder to prepare a raw material powder, and molding the raw material powder to obtain a powder compact. In a method for manufacturing a sintered member, which comprises a forming step of forming and a sintering step of sintering a powder compact into a sintered body, the sintering step includes the amount of oxygen contained in the raw iron powder and the sintering. It is characterized in that it is a step of sintering for a sintering time adjusted by a correction time calculated from a relational expression with the sintering time of the member.

【0013】本発明になる焼結部材の製造方法では、必
要に応じて前記焼結工程の後に、寸法矯正工程や熱処理
工程等の後処理工程を設けることができる。
In the method for manufacturing a sintered member according to the present invention, a post-treatment process such as a dimension correcting process or a heat treatment process can be provided after the sintering process, if necessary.

【0014】[0014]

【発明の実施の形態】(添加炭素量による調整)本発明
になる焼結部材の製造方法は、原料鉄粉の含有する少な
くとも酸素量から計算される炭素粉末補正量を加えた炭
素粉末を原料鉄粉に配合する原料粉末調製工程を有する
ことを特徴とする。
BEST MODE FOR CARRYING OUT THE INVENTION (Adjustment by Amount of Added Carbon) The method for producing a sintered member according to the present invention is a method in which a carbon powder as a raw material is added with a carbon powder correction amount calculated from at least the oxygen amount contained in the raw iron powder. It is characterized by having a raw material powder preparation step of blending with iron powder.

【0015】また、前記原料粉末調製工程では、原料鉄
粉の酸素量と、さらに炭素量とから計算される炭素粉末
補正量を計算して原料鉄粉に配合することもできる。
Further, in the raw material powder preparing step, a carbon powder correction amount calculated from the oxygen amount of the raw iron powder and the carbon amount can be calculated and blended into the raw iron powder.

【0016】原料鉄粉は直接還元法やアトマイジング法
などの方法により製造することができる。鉄粉の粒度分
布は通常焼結体製造に用いられるものであれば特に限定
はないが、鉄粗粉は20〜200μm程度で、45μm
以下(325メッシュ)の鉄微粉を5〜20重量%含有
するものが望ましい。鉄粗分が200μm以上では焼結
体の高い密度が得られない。また、鉄微粉を20重量%
以上含んでいると密度は高くなるが焼結後の寸法変化が
大きいために適当ではない。
The raw iron powder can be produced by a method such as a direct reduction method or an atomizing method. The particle size distribution of the iron powder is not particularly limited as long as it is usually used for producing a sintered body, but the iron coarse powder is about 20 to 200 μm and 45 μm.
It is desirable to contain 5 to 20% by weight of the following (325 mesh) fine iron powder. When the iron coarse content is 200 μm or more, a high density of the sintered body cannot be obtained. In addition, 20% by weight of iron fine powder
If the above content is included, the density becomes high, but it is not suitable because the dimensional change after sintering is large.

【0017】原料鉄粉の酸素量は、「JPMAP05−
1992還元抽出法による金属粉の全酸素量定量方法」
により行うことが好ましい。得られた酸素量から炭素粉
末補正量を算出して原料鉄粉に配合し、混合して原料粉
末とする。
The oxygen content of the raw iron powder is "JPMAP05-
1992 Method for determination of total oxygen content of metal powder by reduction extraction method "
It is preferable to carry out. A carbon powder correction amount is calculated from the obtained oxygen amount, blended with the raw iron powder, and mixed to obtain a raw powder.

【0018】炭素量と寸法変化率との関係は使用する原
料鉄粉の合金成分、粒度分布、粉末形状などにより異な
る。従って、使用する原料鉄粉について、事前に炭素量
と寸法変化率との関係を実験によって求めておくことが
望ましい。
The relationship between the amount of carbon and the rate of dimensional change depends on the alloy composition, particle size distribution, powder shape, etc. of the raw iron powder used. Therefore, it is desirable to previously determine the relationship between the carbon content and the dimensional change rate of the raw iron powder to be used by experiments.

【0019】その一例を図1に示す。原料鉄粉は水アト
マイズ法で得られたFe−3%Cr−0.3%Mo−
0.3%V粉末である。図1では、焼結部材中の炭素量
は0.8、1.0、1.2%の3水準とした。図中のG
−D(◆)は成形金型に対する粉末成形体の寸法変化率
を示す。同様に、S−G(■)は粉末成形体に対する焼
結体の、S−D(△)は成形金型に対する焼結体の、H
−S(×)は焼結体に対する熱処理後の焼結体の、H−
D(*)は金型に対する熱処理後の焼結部材の寸法変化
率を示している。例えば、炭素量が0.8%の場合に
は、粉末成形体は金型に対して約0.26%膨張してお
り、焼結することにより焼結体は、粉末成形体に対して
0.09%収縮し、熱処理を施すことで焼結部材は、焼
結体より0.04%膨張している。成形金型を基準にす
ると熱処理後の焼結部材は、約0.2%膨張したことが
分る(焼結後に寸法矯正は行っていない)。また、この
寸法の変化率は炭素量の増加に比例して増加しているの
で、寸法のバラツキを抑えるためには焼結部材の炭素量
を一定にすることが必要となる。
An example thereof is shown in FIG. The raw iron powder was Fe-3% Cr-0.3% Mo- obtained by the water atomizing method.
0.3% V powder. In FIG. 1, the amount of carbon in the sintered member was set to three levels of 0.8, 1.0 and 1.2%. G in the figure
-D (◆) indicates the dimensional change rate of the powder compact with respect to the molding die. Similarly, SG (■) is a sintered body for the powder compact, SD (Δ) is a sintered body for the molding die, and H is H.
-S (x) is H- of the sintered body after heat treatment of the sintered body.
D (*) indicates the dimensional change rate of the sintered member after heat treatment with respect to the mold. For example, when the amount of carbon is 0.8%, the powder compact expands by about 0.26% with respect to the mold, and the sintered compact yields 0% of the powder compact. By contracting 0.09% and performing heat treatment, the sintered member is expanded 0.04% from the sintered body. It can be seen that, based on the molding die, the sintered member after the heat treatment expanded by about 0.2% (the dimension was not corrected after sintering). Further, since the rate of change in size increases in proportion to the increase in the amount of carbon, it is necessary to keep the amount of carbon in the sintered member constant in order to suppress the variation in size.

【0020】焼結部材中の炭素量は、原料鉄粉中の酸素
量によって左右されるので、原料粉末調整前に原料鉄粉
中の酸素量を把握して、焼結後の炭素量が一定となるよ
うに炭素量を補正して配合すればよい。
Since the amount of carbon in the sintered member depends on the amount of oxygen in the raw iron powder, the amount of oxygen in the raw iron powder can be grasped before adjusting the raw powder to keep the carbon amount after sintering constant. The carbon amount may be corrected so that

【0021】図1から、焼結部材中の炭素量と金型に対
する焼結部材の寸法変化率との関係は 寸法変化率%=0.306×炭素量%−0.319 (1) となった。すなわち、原料鉄粉の酸素量が0の場合には
1.042%の炭素を配合すれば焼結後の寸法変化率は
0となり、焼結部材の炭素量は1.042%となるわけ
である。しかし、現実には原料鉄粉は酸素を含有してい
るために、配合した炭素の一部は焼結中にC+O→CO
の還元反応によって消費され、その分だけ焼結部材中の
炭素量が変動して、(1)式で示される寸法変化率とな
るのである。
From FIG. 1, the relationship between the amount of carbon in the sintered member and the dimensional change rate of the sintered member with respect to the mold is as follows: dimensional change rate% = 0.306 × carbon amount% -0.319 (1) It was That is, when the oxygen content of the raw iron powder is 0, if 1.042% of carbon is blended, the dimensional change rate after sintering becomes 0, and the carbon content of the sintered member becomes 1.042%. is there. However, in reality, since the raw iron powder contains oxygen, a part of the blended carbon is C + O → CO during sintering.
The carbon content in the sintered member is changed by that amount, resulting in the dimensional change rate represented by the equation (1).

【0022】炭素と酸素の質量比率は3:4である。従
って、焼結部材の目標炭素量に対して3/4×(酸素量
%)分だけ炭素を増量すれば、原料鉄分中の酸素は増量
分の炭素で還元消費されるので、計算上では目標炭素量
の焼結体を得ることができ、原料鉄粉中の酸素量の変動
による焼結部材の寸法バラツキを無くすことができる。
The mass ratio of carbon to oxygen is 3: 4. Therefore, if the carbon content is increased by 3/4 × (oxygen content%) with respect to the target carbon content of the sintered member, the oxygen in the raw material iron will be reduced and consumed by the increased carbon content, and therefore the target value is calculated. It is possible to obtain a sintered body having a carbon amount, and it is possible to eliminate the dimensional variation of the sintered member due to the variation of the oxygen amount in the raw iron powder.

【0023】添加炭素量は大まかに次の(2)式によっ
て求めることができる。
The amount of added carbon can be roughly determined by the following equation (2).

【0024】 目標炭素量(%)=−3/4×酸素量(%)+添加炭素量(%) (2) 添加炭素は、通常用いられる天然黒鉛または人造黒鉛を
使用することができる。黒鉛の粒度は特に制限はない
が、平均で数μm〜数十μmのものが適当である。
Target carbon amount (%) = − 3/4 × oxygen amount (%) + added carbon amount (%) (2) As the added carbon, commonly used natural graphite or artificial graphite can be used. The particle size of graphite is not particularly limited, but an average particle size of several μm to several tens of μm is suitable.

【0025】原料鉄粉と添加炭素との混合は、通常の方
法で行えばよい。また、混合に際してステアリン酸亜
鉛、アミド系ワックスなどの潤滑剤を添加してもよい。
また、バインダ等により偏析防止処理を施してもよい。
なお、潤滑剤は原料粉末に配合しないで、金型に塗布し
てもよい。
The raw iron powder and the added carbon may be mixed by a usual method. A lubricant such as zinc stearate or amide wax may be added during mixing.
Further, segregation prevention treatment may be performed with a binder or the like.
The lubricant may be applied to the mold without being mixed with the raw material powder.

【0026】上記で得られた原料粉末を成形金型に充填
して圧縮成形する。成形条件は特に制約されないが、単
軸圧縮成形で構造用部材の場合、面圧400〜800M
Paで行うことが好ましい。面圧が400MPa以下で
は焼結体の十分な密度が得られず、800MPa以上で
は設備的な制約が生じる可能性がある。しかし、用途に
よりさらなる密度向上が必要な場合はこの限りではな
い。
The raw material powder obtained above is filled in a molding die and compression-molded. Molding conditions are not particularly limited, but in the case of a structural member by uniaxial compression molding, the surface pressure is 400 to 800M.
It is preferable to carry out at Pa. If the surface pressure is 400 MPa or less, a sufficient density of the sintered body cannot be obtained, and if it is 800 MPa or more, equipment restrictions may occur. However, this is not the case when the density needs to be further increased depending on the application.

【0027】焼結は真空雰囲気、保護雰囲気、あるいは
非浸炭性還元雰囲気で行われるのが望ましい。浸炭性雰
囲気の場合には、雰囲気のバラツキによって、焼結部材
の炭素量が変動するため、効果が損われる場合がある。
真空焼結の場合には、加熱前の真空度は10-3torr
以下とし、脱ロウ焼結工程においては必要に応じて不活
性ガスを導入してもよい。焼結温度は一般に1100〜
1300℃で、保持時間は10〜60分間である。焼結
温度が1100℃以下では、焼結粉末間のネックの成長
が遅く、強度が得られにくい。また、1300℃以上で
は焼結設備に制約が生じる。焼結保持時間については1
0分以下ではネックの生長が不足するため強度が得られ
難く、一方、60分以上では生産性が低下するため適当
ではない。また、焼結時の昇温速度には特に制約はない
が、鉄微粉の成分によっては、昇温速度が寸法変化に大
きく影響を及すことがあるので、条件を安定させること
が重要である。さらに、冷却条件は、20℃/分前後が
一般的であるが、生産性や組織制御の必要性に応じて自
由に選択できる。
Sintering is preferably carried out in a vacuum atmosphere, a protective atmosphere, or a non-carburizing reducing atmosphere. In the case of a carburizing atmosphere, the carbon content of the sintered member may fluctuate due to variations in the atmosphere, and the effect may be impaired.
In the case of vacuum sintering, the degree of vacuum before heating is 10 -3 torr.
In the following, an inert gas may be introduced as necessary in the dewaxing sintering process. Sintering temperature is generally 1100-
At 1300 ° C, the holding time is 10-60 minutes. When the sintering temperature is 1100 ° C. or lower, the growth of the neck between the sintered powders is slow and it is difficult to obtain strength. If the temperature is 1300 ° C. or higher, the sintering equipment will be restricted. Sintering retention time is 1
If the time is less than 0 minutes, the growth of the neck is insufficient, so that it is difficult to obtain the strength. Further, there is no particular restriction on the temperature rising rate at the time of sintering, but it is important to stabilize the conditions because the temperature rising rate may greatly affect the dimensional change depending on the component of the iron fine powder. . Further, the cooling condition is generally around 20 ° C./min, but it can be freely selected depending on the productivity and the need for structure control.

【0028】焼結時間のバラツキを抑制するためには、
バッチ式の真空焼結炉よりも、メッシュベルトなどによ
る連続炉を用いて段積みを避けることが望ましい。これ
は、焼結が行われる高温域では、伝熱は輻射が支配的で
あるために、段積みを行えば内部のワークへの昇温遅れ
が発生し、結果としてワークの積載位置により焼結時間
に差異が生じるためである。
In order to suppress variations in sintering time,
It is desirable to avoid stacking by using a continuous furnace such as a mesh belt rather than a batch type vacuum sintering furnace. This is because in the high temperature range where sintering is performed, radiation is dominant in heat transfer, so if stacking is performed, there will be a delay in temperature rise to the internal work, and as a result, sintering will occur depending on the work loading position. This is because there is a difference in time.

【0029】焼結後必要に応じて寸法矯正を行うことが
できる。寸法矯正は通常の方法により行うことができ特
に制約はない。
After sintering, dimensional correction can be performed if necessary. The dimensional correction can be performed by a usual method and there is no particular limitation.

【0030】また、必要に応じて焼結後に熱処理を施し
て機械的性質等の向上などを図ることができる。熱処理
の方法としては、高周波焼入れ焼戻し、浸炭焼入れ焼戻
し、光輝焼入れ焼戻し、あるいは窒化処理等の一般的な
硬化処理が可能であり、条件に特に制約はない。しかし
ながら、浸炭焼入れについては、カーボンポテンシャル
を安定させることが寸法精度を確保するうえで重要であ
る。
If desired, heat treatment may be performed after sintering to improve mechanical properties and the like. As a heat treatment method, general hardening treatment such as induction hardening tempering, carburizing quenching tempering, bright quenching tempering, or nitriding treatment can be used, and the conditions are not particularly limited. However, for carburizing and quenching, stabilizing the carbon potential is important for ensuring dimensional accuracy.

【0031】また、後処理としては、封孔、防錆などが
目的の水蒸気処理や残留応力付与目的のショットピーニ
ングなども適用することができる。
As the post-treatment, steam treatment for the purpose of sealing or rust prevention, shot peening for the purpose of applying residual stress, etc. can be applied.

【0032】原料鉄粉には、粉末の製造方法によって炭
素を含有する場合がある。特に一部の真空還元にて製造
されるアトマイズ粉の場合には、0.001〜0.1%
程度の炭素が含有されている。従って、このもともと原
料鉄粉中に含まれている炭素量についても配慮すること
が望ましい。すなわち、原料鉄粉のロットによる焼結部
材の寸法バラツキをより低減するためには、原料鉄粉の
ロット毎の酸素量と同時に、各ロットの炭素量をも分析
して、添加炭素量を調整することが望ましい。この場合
の添加炭素量は、大まかに(2)式を変形して 添加炭素量%=目標炭素量%+3/4酸素量%−分析炭
素量% とすることができる。ここで分析炭素量は原料鉄粉に含
まれる炭素量である。(焼結温度による調整)本発明に
なる焼結部材の製造方法は、焼結部材を、原料鉄粉の含
有する酸素量と焼結部材の焼結温度との関係式から計算
される焼結温度で焼結することを特徴とする。
The raw iron powder may contain carbon depending on the method of producing the powder. Particularly in the case of atomized powder produced by a part of vacuum reduction, 0.001 to 0.1%
It contains some carbon. Therefore, it is desirable to consider the amount of carbon originally contained in the raw iron powder. That is, in order to further reduce the dimensional variation of the sintered member depending on the lot of the raw iron powder, the amount of oxygen of each lot of the raw iron powder is analyzed at the same time as the amount of oxygen of each lot, and the amount of added carbon is adjusted. It is desirable to do. In this case, the added carbon amount can be roughly modified from the equation (2) to obtain the added carbon amount% = target carbon amount% + 3/4 oxygen amount% -analytical carbon amount%. Here, the amount of analyzed carbon is the amount of carbon contained in the raw iron powder. (Adjustment by Sintering Temperature) The method for manufacturing a sintered member according to the present invention is a method of sintering a sintered member from a relational expression between the amount of oxygen contained in the raw iron powder and the sintering temperature of the sintered member. Characterized by sintering at a temperature.

【0033】すなわち、原料鉄粉中の酸素によって消耗
される添加炭素量による焼結体の寸法バラツキを、添加
炭素量および焼結時間、すなわち生産性は一定として、
焼結温度を調整することによって抑制する方法である。
より具体的には、原料鉄粉の酸素量と焼結温度との関係
を知ることにより、酸素の変動による寸法変化量のズレ
を補正する焼結温度をロット毎に求めて焼結すること
で、焼結部材の寸法バラツキを低減しようとするもので
ある。
That is, the dimensional variation of the sintered body due to the amount of added carbon consumed by oxygen in the raw iron powder, the amount of added carbon and the sintering time, that is, the productivity is constant,
This is a method of suppressing it by adjusting the sintering temperature.
More specifically, by knowing the relationship between the oxygen content of the raw iron powder and the sintering temperature, it is possible to obtain the sintering temperature for each lot that corrects the deviation of the dimensional change due to the fluctuation of oxygen and perform the sintering. It is intended to reduce the dimensional variation of the sintered member.

【0034】焼結部材の寸法変化率と焼結温度との関係
の一例を図2に示す。図2は、図1と同様の原料鉄粉を
用いて、一定量の炭素を添加した原料粉末を粉末成形
し、さらに焼結、熱処理した際の、焼結温度と金型寸法
に対する焼結部材の寸法変化率との関係を示している。
An example of the relationship between the dimensional change rate of the sintered member and the sintering temperature is shown in FIG. FIG. 2 is a sintered member with respect to the sintering temperature and the mold size when the same raw iron powder as in FIG. 1 is used to powder-form a raw material powder to which a certain amount of carbon has been added, and further sintered and heat-treated. It shows the relationship with the dimensional change rate of.

【0035】焼結温度は1230〜1270℃まで10
℃刻みの5水準とした。焼結保持時間は全て30±0.
5分間であった。図2から分るように、焼結温度が12
30℃では寸法の変化率は−0.15%であり、127
0℃では−0.37%であった。すなわち、焼結温度の
上昇に比例して寸法の変化率はマイナス側に増加してい
る。この図2から 寸法変化率%=−0.0054×(焼結温度℃)+6.454 (3) の関係式が得られた。
The sintering temperature is 10 up to 1230 to 1270 ° C.
It was set to 5 levels in increments of ° C. Sintering retention time is all 30 ± 0.
It was 5 minutes. As can be seen from FIG. 2, the sintering temperature is 12
At 30 ° C, the dimensional change rate is -0.15%.
It was -0.37% at 0 degreeC. That is, the dimensional change rate increases to the negative side in proportion to the increase of the sintering temperature. From this FIG. 2, the relational expression of dimensional change rate = −0.0054 × (sintering temperature ° C.) + 6.454 (3) was obtained.

【0036】原料鉄粉には一定量の炭素が添加されるの
で、すでにのべたように、原料鉄粉中の酸素量による寸
法変化は以下のようになる。
Since a certain amount of carbon is added to the raw iron powder, as already mentioned, the dimensional change due to the amount of oxygen in the raw iron powder is as follows.

【0037】焼結後の炭素量C1(%)の焼結部材の寸
法変化率をX1(%)とすると、(1)式から、X1
0.306×C1−0.319となる。また、焼結後の
炭素量の中央値をC0(%)とすれば、寸法の変化率X0
(%)は、X0=0.306×C0−0.319と表すこ
とができる。
Assuming that the dimensional change rate of the sintered member having a carbon amount C 1 (%) after sintering is X 1 (%), from the equation (1), X 1 =
The 0.306 × C 1 -0.319. If the median amount of carbon after sintering is C 0 (%), the dimensional change rate X 0
(%) Can be expressed as X 0 = 0.306 × C 0 -0.319.

【0038】寸法変化率は、成形金型に対する寸法変化
率であるので、焼結体同士の寸法変化率、すなわちバラ
ツキは、中央値の炭素量を含む焼結部材の寸法変化率を
基準として、△X(%)=X1−X0と考えればよい。す
なわち、△X=0.306×(C1−C0)である。C1
−C0は(2)式より、C1−C0=−3/4×(O1−O
0)となる。ここで、O1は焼結部材の炭素量がC1のと
きの原料鉄粉中の酸素量である。同様にO0は、焼結部
材の炭素量がC0となったときの原料鉄粉中の酸素量で
ある。
Since the dimensional change rate is the dimensional change rate with respect to the molding die, the dimensional change rate between the sintered bodies, that is, the variation, is based on the dimensional change rate of the sintered member including the median carbon content. It may be considered that ΔX (%) = X 1 −X 0 . That is, ΔX = 0.306 × (C 1 −C 0 ). C 1
-C 0 can be calculated from the formula (2) as follows: C 1 -C 0 = −3 / 4 × (O 1 −O
0 ). Here, O 1 is the amount of oxygen in the raw iron powder when the carbon content of the sintered member is C 1 . Similarly, O 0 is the amount of oxygen in the raw iron powder when the carbon content of the sintered member reaches C 0 .

【0039】原料鉄粉のロットによる酸素量偏差△O
(%)を、△O=O1−O0とすると、原料鉄粉ロットの
酸素量偏差による寸法変化率△X(%)(バラツキ)
は、 △X=0.306×(−3/4×△O)で表すこ
とができる。
Oxygen amount deviation ΔO depending on the lot of raw iron powder
Assuming that (%) is ΔO = O 1 −O 0 , the dimensional change rate ΔX (%) (variation) due to the oxygen content deviation of the raw iron powder lot
Can be represented by ΔX = 0.306 × (−3 / 4 × ΔO).

【0040】一方、焼結温度による寸法変化率は、
(3)式で与えられるので、焼結温度がT1(℃)(原
料鉄粉中の酸素量がO1、すなわち焼結部材の炭素量が
1の場合の焼結温度)の時の寸法変化率Y1(%)は、
1=−0.0054×T1+6.454と表すことがで
き、焼結基準温度をT0(℃)(原料鉄粉中の酸素量が
0、すなわち焼結部材の炭素量がC0の場合の焼結基準
温度)とすれば、焼結基準温度での寸法変化率Y
0(%)は、Y0=−0.0054×T0+6.454と
表すことができる。
On the other hand, the dimensional change rate depending on the sintering temperature is
Since it is given by the formula (3), when the sintering temperature is T 1 (° C.) (the oxygen amount in the raw iron powder is O 1 , that is, the sintering temperature when the carbon amount of the sintered member is C 1 ) The dimensional change rate Y 1 (%) is
Y 1 = −0.0054 × T 1 +6.454, and the sintering reference temperature is T 0 (° C.) (the amount of oxygen in the raw iron powder is O 0 , that is, the amount of carbon in the sintered member is C). If the sintering reference temperature is 0 ), the dimensional change rate Y at the sintering reference temperature Y
0 (%) can be expressed as Y 0 = −0.0054 × T 0 +6.454.

【0041】従って、焼結基準温度からの温度偏差△T
(℃)による寸法変化率を△Y(%)とすれば、△Y=
0−Y1=−0.0054×(T0−T1)=−0.00
54×△Tとなる。
Therefore, the temperature deviation from the sintering reference temperature ΔT
If the rate of dimensional change due to (℃) is ΔY (%), then ΔY =
Y 0 −Y 1 = −0.0054 × (T 0 −T 1 ) = − 0.00
54 × ΔT.

【0042】焼結部材の寸法バラツキを減少させるため
には、原料鉄粉中の酸素量の変動による焼結部材の寸法
変化率の偏差△Xを、焼結温度の調整による寸法変化率
の偏差△Yで打消して△X+△Y=0とすればよい。す
なわち、 0.306×(−3/4×△O)+(−0.0054×△T)=0 (4 ) である。
In order to reduce the dimensional variation of the sintered member, the deviation ΔX of the dimensional change rate of the sintered member due to the fluctuation of the oxygen content in the raw iron powder is defined as the deviation of the dimensional change rate due to the adjustment of the sintering temperature. It may be canceled by ΔY and ΔX + ΔY = 0. That is, 0.306 × (−3 / 4 × ΔO) + (− 0.0054 × ΔT) = 0 (4).

【0043】酸素量の偏差△O(%)は、原料鉄粉の各
酸素分析値から得られるので、(4)式から焼結基準温
度に対する温度偏差(補正温度)△T(℃)を求めるこ
とができる。
Since the deviation ΔO (%) of the oxygen amount is obtained from each oxygen analysis value of the raw iron powder, the temperature deviation (correction temperature) ΔT (° C.) from the sintering reference temperature is obtained from the equation (4). be able to.

【0044】以上のようにして、原料鉄粉のロット毎の
焼結温度を決定し、原則としてこのロット単位で焼結温
度を一定として焼結することにより、焼結部材のロット
間の寸法変動を低減することができる。 (焼結時間による調整)本発明になる焼結部材の製造方
法は、焼結部材を、原料鉄粉の含有する酸素量と焼結部
材の焼結時間との関係式から計算される焼結時間で焼結
することを特徴とする。
As described above, the sintering temperature of the raw material iron powder is determined for each lot, and in principle, the sintering temperature is kept constant for each lot, so that the dimensional variation between the lots of the sintered member is determined. Can be reduced. (Adjustment by Sintering Time) In the method for manufacturing a sintered member according to the present invention, the sintered member is sintered by a relational expression between the oxygen content of the raw iron powder and the sintering time of the sintered member. It is characterized by being sintered in time.

【0045】すなわち、原料鉄粉中の酸素によって消耗
される添加炭素量による焼結部材の寸法バラツキを、添
加炭素量及び焼結温度は一定として、焼結時間を調整す
ることによって抑制する方法である。より具体的には、
原料鉄粉の酸素量と焼結時間との関係を知ることによ
り、焼結部材の寸法変化率の変動を0とする焼結時間を
ロット毎に求めて焼結することで、焼結部材の寸法のバ
ラツキを低減しようとするものである。
That is, the dimensional variation of the sintered member due to the added carbon amount consumed by oxygen in the raw iron powder is suppressed by adjusting the sintering time while keeping the added carbon amount and the sintering temperature constant. is there. More specifically,
By knowing the relationship between the oxygen content of the raw iron powder and the sintering time, the sintering time for which the variation of the dimensional change rate of the sintered member is set to 0 is obtained for each lot, and the sintering is performed. It is intended to reduce the dimensional variation.

【0046】焼結部材の寸法変化率と焼結時間との関係
の一例を図3に示す。図3は、図1と同様の原料鉄粉を
用いて一定量の炭素を添加して原料粉末として粉末成形
し、この粉末成形体を焼結、熱処理した際の、焼結時間
と、金型に対する焼結部材の寸法変化率との関係であ
る。焼結時間は20、30、40分の3水準とした。焼
結温度は全て1250±2℃であった。
An example of the relationship between the dimensional change rate of the sintered member and the sintering time is shown in FIG. 3 is a raw material powder similar to that shown in FIG. 1, to which a certain amount of carbon is added and powder-molded as a raw material powder, and the powder compact is sintered and heat-treated. With respect to the dimensional change rate of the sintered member. The sintering time was set to three levels of 20, 30, and 40/40. The sintering temperatures were all 1250 ± 2 ° C.

【0047】図3から分るように、焼結温度20分では
寸法の変化率は−0.14%であり、40分では−0.
26%であった。すなわち、焼結時間の延長に比例して
寸法の変化率はマイナス側に増加している。図3から 寸法変化率%=−0.0060×(焼結時間min)−0.023 (5) の関係式が得られた。
As can be seen from FIG. 3, at a sintering temperature of 20 minutes, the dimensional change rate is −0.14%, and at 40 minutes, it is −0.
It was 26%. That is, the rate of dimensional change increases to the negative side in proportion to the extension of the sintering time. From FIG. 3, the relational expression of dimensional change rate% = − 0.0060 × (sintering time min) −0.023 (5) was obtained.

【0048】焼結温度の場合と同様の考え方から、式
(1)、(2)および(5)を用いて(6)式を導出す
ることができる。
From the same idea as in the case of the sintering temperature, the equation (6) can be derived by using the equations (1), (2) and (5).

【0049】 0.306×(−3/4×△O)+(−0.0060×△t)=0 (6) 酸素量の偏差△O(%)は、原料鉄粉の各酸素分析値か
ら得られるので、(6)式から焼結基準時間に対する時
間偏差(補正時間)△t(min)を求めることができ
る。ここで、時間偏差△t(min)=t0−t1であ
り、t0は原料鉄粉中の酸素量がO0、すなわち焼結部材
の炭素量がC0の場合の焼結基準時間、t1は、原料鉄粉
中の酸素量がO1、すなわち焼結部材の炭素量がC1の場
合の焼結時間である。
0.306 × (−3 / 4 × ΔO) + (− 0.0060 × Δt) = 0 (6) The deviation ΔO (%) of the oxygen amount is each oxygen analysis value of the raw iron powder. Therefore, the time deviation (correction time) Δt (min) from the sintering reference time can be obtained from the equation (6). Here, the time deviation Δt (min) = t 0 −t 1 , where t 0 is the sintering reference time when the oxygen content in the raw iron powder is O 0 , that is, when the carbon content of the sintered member is C 0. , T 1 are the sintering times when the amount of oxygen in the raw iron powder is O 1 , that is, the amount of carbon in the sintered member is C 1 .

【0050】以上のようにして、原料鉄粉のロット毎の
焼結時間を決定して、原則としてこのロット単位で焼結
時間を一定として焼結することにより、焼結部材のロッ
ト間の寸法バラツキを低減することができる。
As described above, the sintering time for each lot of the raw material iron powder is determined, and in principle, the sintering time is set to be constant for each lot, so that the dimension of the sintered member between the lots is determined. Variations can be reduced.

【0051】なお、以上の添加炭素量による調整、焼結
温度による調整および焼結時間による調整の方法は、工
程上、制約の少ない方法を選択あるいは組合わせて用い
るとよい。本発明は、原料粉末の酸素含有量の変動に起
因する焼結部材の寸法変動の低減に効果を奏するが、焼
結部材製造工程においては、例えば原料粉末の粒度分布
の変動など、他にも様々な寸法変動の要因が知られてい
る。本発明と同様にこれらの変動要因を相殺するような
手段を複合して用いた場合には、さらに焼結部材の寸法
バラツキを低減することが期待できる。
It should be noted that, as the above-mentioned method of adjusting by the amount of added carbon, adjusting by the sintering temperature, and adjusting by the sintering time, it is advisable to select or combine methods having less restrictions in the process. INDUSTRIAL APPLICABILITY The present invention is effective in reducing the dimensional fluctuation of the sintered member due to the fluctuation of the oxygen content of the raw material powder. Various factors of dimensional variation are known. When a combination of means for canceling out these fluctuation factors is used in the same manner as in the present invention, it is expected that the dimensional variation of the sintered member is further reduced.

【0052】[0052]

【実施例】以下、実施例を用いて本発明をより具体的に
説明する。 (実施例1)原料粉末としてFe−3.0%Cr−0.
3%Mo−0.3%V(川崎製鉄製)、鉄粗粉の粒度が
45〜250μm、粒度が45μm(325メッシュ)
以下の鉄微粉を9.8〜19.3重量%含有している原
料鉄粉を20ロット準備した。
EXAMPLES The present invention will be described in more detail below with reference to examples. (Example 1) Fe-3.0% Cr-0.
3% Mo-0.3% V (made by Kawasaki Steel), iron coarse powder particle size 45 to 250 μm, particle size 45 μm (325 mesh)
20 lots of raw material iron powder containing 9.8 to 19.3% by weight of the following iron fine powder were prepared.

【0053】まず、各ロットの酸素含有量を「JPMA
P05−1992還元抽出法による金属粉の全酸素量定
量方法」により分析した。全20ロットの酸素含有量の
平均値(中央値と同じ値であった)は0.165%であ
った。焼結部材の炭素量は、(2)式で得られるので、
原料鉄粉に1.0%の黒鉛を添加するとすれば、この2
0ロットの焼結後の平均炭素量は0.87%となる。従
って、ここでは焼結後の目標炭素量が0.87%となる
ように、原料鉄粉のロット毎の酸素量に応じて添加炭素
量を補正して添加することとした。すなわち、 添加炭素量(X)%=0.87+3/4(酸素量%) (7) となる。
First, the oxygen content of each lot is calculated as "JPMA
P05-1992 reduction extraction method for determination of total oxygen content of metal powder ”. The average value (the same value as the median value) of the oxygen content of all 20 lots was 0.165%. Since the carbon content of the sintered member is obtained by the equation (2),
If 1.0% graphite is added to the raw iron powder, this 2
The average carbon content after sintering of 0 lot is 0.87%. Therefore, here, the carbon content to be added is corrected and added in accordance with the oxygen content of each lot of the raw iron powder so that the target carbon content after sintering will be 0.87%. That is, the added carbon amount (X)% = 0.87 + 3/4 (oxygen amount%) (7).

【0054】原料鉄粉20ロットの内で、最も酸素含有
量の少ないロット番号1の酸素量は0.09であった。
これを上記の添加炭素量と酸素量との関係式(7)に代
入すると、X=0.94%となる。
Out of the 20 lots of raw iron powder, the oxygen amount of Lot No. 1 having the smallest oxygen content was 0.09.
Substituting this into the above relational expression (7) between the amount of added carbon and the amount of oxygen gives X = 0.94%.

【0055】得られた添加炭素量を、平均粒径約5μm
の天然黒鉛(日本黒鉛製)を秤量して原料鉄粉に配合
し、V型ミキサーで30分間混合し原料粉末とした。こ
の原料粉末から任意に約22gのサンプルを10個採取
して、超硬合金製の金型(内径:25.2305mm、
厚さ:45mm)に充填し、面圧:900MPaで加圧
成形した。この時、ステアリン酸亜鉛をエチルアルコー
ルに懸濁させたものを金型内面に塗布し自然乾燥さて潤
滑剤とした。
The obtained amount of added carbon was adjusted to an average particle size of about 5 μm.
Natural graphite (manufactured by Nippon Graphite Co., Ltd.) was weighed and blended with the raw iron powder, and mixed with a V-type mixer for 30 minutes to obtain raw powder. Ten samples of about 22 g were arbitrarily sampled from this raw material powder, and made of a cemented carbide mold (inner diameter: 25.2305 mm,
(Thickness: 45 mm), and pressure molding was performed at a surface pressure of 900 MPa. At this time, a suspension of zinc stearate in ethyl alcohol was applied to the inner surface of the mold and naturally dried to obtain a lubricant.

【0056】加圧成形後の粉末成形体は、6±0.1m
mの厚さであった。
The powder compact after pressure molding has a size of 6 ± 0.1 m
It was m thick.

【0057】原料鉄粉20ロットの内で、最も酸素含有
量の多いロット番号2の酸素量は0.25%であった。
上記と同様に計算すると添加炭素量は1.0575%と
なるので、当量の黒鉛を秤量して原料鉄粉に添加した。
その後、上記と同様の方法で混合、加圧成形して10個
の粉末成形体を得た。さらに、残りの原料鉄粉18ロッ
トについても同様に行い全部で200個の粉末成形体を
得た。
Among the 20 lots of the raw iron powder, the lot number 2 with the highest oxygen content had an oxygen content of 0.25%.
When calculated in the same manner as above, the amount of added carbon is 1.0575%, so an equivalent amount of graphite was weighed and added to the raw iron powder.
Then, mixing and pressure molding were carried out in the same manner as above to obtain 10 powder compacts. Further, the remaining 18 raw iron powder lots were similarly processed to obtain a total of 200 powder compacts.

【0058】次に、上記で得られた200個の粉末成形
体を室温で真空度10-3torr以下(10-4torr
台)の真空焼結炉で、1250±1℃、30±0.5分
間の焼結を行った。なお、昇温速度は20℃/minで
あった。焼結保持後、1250℃〜300℃までは、窒
素ガスファン制御で平均30℃/minの冷却速度で冷
却した。その後空気中で放冷して200個の焼結体を得
た。
Next, the 200 powder compacts obtained above were vacuumed at room temperature to a degree of vacuum of 10 -3 torr or less (10 -4 torr).
In a vacuum sintering furnace at a temperature of 1250 ± 1 ° C. for 30 ± 0.5 minutes. The heating rate was 20 ° C./min. After sintering and holding, the temperature was cooled from 1250 ° C. to 300 ° C. at an average cooling rate of 30 ° C./min by controlling a nitrogen gas fan. Then, it was cooled in air to obtain 200 sintered bodies.

【0059】得られた焼結体を、さらに、真空焼入れ炉
で、850℃、30分の均熱処理を行い80℃の焼入れ
油中に投入して焼入れ処理を施した。この時、常温から
均熱温度までの昇温速度は15℃/minとした。引続
いて、大気炉中で180℃、60分の焼戻し処理を行っ
て焼結部材を得た。
The obtained sintered body was further subjected to soaking treatment at 850 ° C. for 30 minutes in a vacuum quenching furnace and put into quenching oil at 80 ° C. for quenching treatment. At this time, the rate of temperature increase from room temperature to soaking temperature was 15 ° C./min. Subsequently, tempering treatment was performed at 180 ° C. for 60 minutes in an atmospheric furnace to obtain a sintered member.

【0060】このようにして得られた200個の焼結部
材の直径を、20±0.5℃の恒温室内でレーザースキ
ャンマイクロメータを用いて1個につき2点測定しその
平均値を求めた。
The diameter of each of the 200 sintered members thus obtained was measured at 2 points using a laser scanning micrometer in a thermostatic chamber at 20 ± 0.5 ° C., and the average value was calculated. .

【0061】これらの焼結部材の寸法バラツキは、得ら
れた200個の焼結部材の最大値と最小値とから、レン
ジで17.8μmであった。なお、200個の焼結体の
炭素量は、0.85〜0.88%であった。 (比較例1)実施例1と同一の20ロットの原料鉄粉か
ら、実施例1と同様の最少酸素量のロット番号1及び最
多酸素量のロット番号2とを使用し、いずれのロットに
も1.0%の黒鉛を添加した。すなわち、原料鉄粉の酸
素量による添加炭素量の補正を行わない場合である。粉
末成形方法および焼結、熱処理は、実施例1と同様の方
法で行って20個の焼結部材を得た。
The dimensional variation of these sintered members was 17.8 μm in the range from the maximum value and the minimum value of the obtained 200 sintered members. The carbon content of the 200 sintered bodies was 0.85 to 0.88%. (Comparative Example 1) From the same 20 lots of raw material iron powder as in Example 1, lot number 1 with the minimum oxygen content and lot number 2 with the same oxygen content as in Example 1 were used. 1.0% graphite was added. That is, this is a case where the correction of the added carbon amount based on the oxygen amount of the raw iron powder is not performed. The powder molding method, sintering, and heat treatment were performed in the same manner as in Example 1 to obtain 20 sintered members.

【0062】焼結部材の直径寸法を実施例1と同様にレ
ーザマイクロメータで測定した。20個のデータから最
大値と最小値を求めたところ、焼結部材の寸法バラツキ
は、24.3μmであった。なお、20個の焼結体の炭
素量は、0.81〜0.93%であった。 (実施例2)実施例1と同様の20ロットの原料鉄粉か
ら、実施例1と同様の最少酸素量のロット番号1、およ
び最多酸素量のロット番号2とを使用し、各々のロット
に1.0%の黒鉛を添加して原料粉末を調整した。混
合、粉末成形は実施例1と同様に行って各ロットで10
個ずつの粉末成形体を得た。
The diameter dimension of the sintered member was measured with a laser micrometer as in Example 1. When the maximum value and the minimum value were obtained from the data of 20 pieces, the dimensional variation of the sintered member was 24.3 μm. The carbon content of the 20 sintered bodies was 0.81 to 0.93%. (Example 2) From lots of raw iron powder of 20 lots similar to Example 1, lot number 1 of minimum oxygen amount and lot number 2 of maximum oxygen amount similar to those of Example 1 were used. A raw material powder was prepared by adding 1.0% graphite. Mixing and powder molding were performed in the same manner as in Example 1 and 10
Individual powder compacts were obtained.

【0063】各ロットの酸素量から(4)式を用いて焼
結温度偏差(補正温度)を求め、各ロット毎の焼結温度
を決定した。なお、焼結時間はいずれも30±0.5分
間であった。
The sintering temperature deviation (correction temperature) was obtained from the oxygen content of each lot using the equation (4), and the sintering temperature for each lot was determined. The sintering time was 30 ± 0.5 minutes in all cases.

【0064】本実施例20ロットにおける酸素量の中央
値は0.165%であった。また、焼結基準温度T0
1250℃とした。
The median oxygen amount in the lot of Example 20 was 0.165%. The sintering reference temperature T 0 was 1250 ° C.

【0065】ロット番号1の酸素偏差△Oは、0.09
%−0.165%=−0.075%となる。従って、
(4)式から、このロット番号1の補正温度(温度偏差
値)△Tは、1250−T1=+3.2℃と計算される
ので、ロット番号1の焼結温度T1は、1247℃とす
ればよい。また、ロット番号2では、酸素偏差は+0.
075%であるから、同様に計算して1253℃で焼結
すればよいこととなる。
The oxygen deviation ΔO of lot number 1 is 0.09.
% -0.165% =-0.075%. Therefore,
Since the corrected temperature (temperature deviation value) ΔT of lot number 1 is calculated as 1250−T 1 = + 3.2 ° C. from the equation (4), the sintering temperature T 1 of lot number 1 is 1247 ° C. And it is sufficient. Further, in lot number 2, the oxygen deviation is +0.
Since it is 075%, it is sufficient to perform the same calculation and sinter at 1253 ° C.

【0066】このようにして、実施例1と同様にロット
番号1で10個、ロット番号2で10個の焼結体を得
た。得られた焼結体に実施例1と同様の熱処理を施して
焼結部材となした。
In this way, 10 sintered bodies were obtained in lot number 1 and 10 sintered bodies in lot number 2 as in Example 1. The obtained sintered body was subjected to the same heat treatment as in Example 1 to obtain a sintered member.

【0067】これらの焼結部材の寸法バラツキは、得ら
れた20個の焼結部材の最大値および最小値から、1
8.2μmであった。 (実施例3)実施例1と同様の20ロットの原料鉄粉か
ら、実施例1と同様の全てのロットに対して、各々のロ
ットに1.0%の黒鉛を添加して原料粉末を調整した。
混合、粉末成形は実施例1と同様に行って各ロットで1
0個ずつの粉末成形体を得た。
The dimensional variation of these sintered members is 1 from the maximum value and the minimum value of the obtained 20 sintered members.
It was 8.2 μm. (Example 3) From 20 lots of raw iron powder similar to that of Example 1, 1.0% graphite was added to each lot for all lots similar to Example 1 to adjust the raw material powder. did.
Mixing and powder molding were performed in the same manner as in Example 1 and 1 for each lot.
Zero powder compacts were obtained.

【0068】各ロットの酸素量から(5)式を用いて焼
結時間偏差(補正時間)を求め、ロット毎の焼結時間を
決定した。なお、焼結温度はいずれも1250±1℃で
あった。
The sintering time deviation (correction time) was determined from the oxygen content of each lot using the equation (5), and the sintering time for each lot was determined. The sintering temperature was 1250 ± 1 ° C in all cases.

【0069】本実施例の原料鉄粉20ロットにおける酸
素量の中央値は0.165%であった。また、焼結基準
時間t0は30分とした。
The median amount of oxygen in 20 lots of the raw material iron powder of this example was 0.165%. The sintering reference time t 0 was set to 30 minutes.

【0070】ロット番号1の酸素偏差は、0.09%−
0.165%=−0.075%となる。従って、(6)
式からこのロットの補正時間(時間偏差値)△tは、3
0−t1=+2.9分となり、焼結時間は27.1分と
すればよい。また、ロット番号2では、酸素偏差は+
0.075%であるから、同様に計算して32.9分で
焼結すればよいこととなる。
The oxygen deviation of lot number 1 is 0.09%-
It becomes 0.165% =-0.075%. Therefore, (6)
From the formula, the correction time (time deviation value) Δt of this lot is 3
0-t 1 = + 2.9 minutes, and the sintering time may be 27.1 minutes. Also, with lot number 2, the oxygen deviation is +
Since it is 0.075%, it is sufficient to perform the same calculation and sinter in 32.9 minutes.

【0071】このようにして、実施例1と同様にロット
番号1で10個、ロット番号2で10個の焼結体を得
た。得られた焼結体に実施例1と同様の熱処理を施して
焼結部材となした。
In this way, as in Example 1, 10 sintered bodies were obtained from lot number 1 and 10 sintered bodies from lot number 2. The obtained sintered body was subjected to the same heat treatment as in Example 1 to obtain a sintered member.

【0072】これらの焼結部材の寸法バラツキは、得ら
れた20個の焼結部材の最大値および最小値から、1
8.5μmであった。
The dimensional variation of these sintered members is 1 from the maximum value and the minimum value of the obtained 20 sintered members.
It was 8.5 μm.

【0073】以上をまとめると、本発明による焼結部材
の製造方法では、20ロットの原料鉄粉に対して、 イ)添加炭素量、焼結温度および焼結時間を一定とした
場合(比較例1)には、焼結部材の寸法バラツキは、2
4.3μmであった。 ロ)原料鉄粉の酸素量に応じて添加炭素量を調整して、
焼結温度および焼結時間を一定とした場合(実施例1)
には、焼結部材の寸法バラツキは、17.8μmであっ
た。 ハ)添加炭素量と焼結時間を一定として、焼結温度を調
整した場合(実施例2)には、焼結部材の寸法バラツキ
は、18.2μmであった。 ニ)添加炭素量と焼結温度を一定として、焼結時間を調
整した場合(実施例3)には、焼結部材の寸法バラツキ
は、18.5μmであった。 の結果となり、焼結部材の寸法バラツキの低減に本発明
の方法が極めて有効であることが分った。
In summary, in the method for manufacturing a sintered member according to the present invention, in the case of 20 lots of the raw material iron powder, a) the amount of added carbon, the sintering temperature and the sintering time were constant (comparative example). In 1), the dimensional variation of the sintered member is 2
It was 4.3 μm. B) Adjust the amount of added carbon according to the amount of oxygen in the raw iron powder,
When the sintering temperature and the sintering time are constant (Example 1)
In addition, the dimensional variation of the sintered member was 17.8 μm. C) When the sintering temperature was adjusted with the amount of added carbon and the sintering time being constant (Example 2), the dimensional variation of the sintered member was 18.2 μm. D) When the amount of added carbon and the sintering temperature were kept constant and the sintering time was adjusted (Example 3), the dimensional variation of the sintered member was 18.5 μm. As a result, it was found that the method of the present invention is extremely effective in reducing the dimensional variation of the sintered member.

【0074】[0074]

【発明の効果】本発明の焼結部材の製造方法によれば、
原料鉄分の酸素量を知ることにより、焼結部材の寸法変
化率を予測することができる。したがて、ロット毎の酸
素量によって添加炭素量を調整したり、あるいは、添加
炭素量は一定として、焼結温度や焼結時間を調整するこ
とで、焼結部材寸法の原料鉄粉によるロット間バラツキ
を低減することができる。
According to the method of manufacturing a sintered member of the present invention,
By knowing the oxygen content of the raw iron, the dimensional change rate of the sintered member can be predicted. Therefore, by adjusting the amount of added carbon according to the amount of oxygen in each lot, or by adjusting the sintering temperature and sintering time while keeping the amount of added carbon constant, the lot of raw material iron powder of the sintered member size can be adjusted. The variation can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】焼結部材の炭素量と、各工程間の寸法変化率と
の関係を示す図である。
FIG. 1 is a diagram showing a relationship between a carbon content of a sintered member and a dimensional change rate between respective steps.

【図2】焼結温度と、焼結体の金型に対する寸法変化率
との関係を示す図である。
FIG. 2 is a diagram showing a relationship between a sintering temperature and a dimensional change rate of a sintered body with respect to a mold.

【図3】焼結時間と、焼結体の金型に対する寸法変化率
との関係を示す図である。
FIG. 3 is a diagram showing a relationship between a sintering time and a dimensional change rate of a sintered body with respect to a mold.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】少なくとも原料鉄粉および炭素粉末を配合
して原料粉末を調製する原料粉末調製工程と、該原料粉
末を成形して粉末成形体を形成する成形工程と、該粉末
成形体を焼結させて焼結体とする焼結工程と、を有する
焼結部材の製造方法において、 前記原料粉末調製工程は、前記原料鉄粉の含有する少な
くとも酸素量から計算される炭素粉末補正量を加えた炭
素粉末を配合する工程であることを特徴とする焼結部材
の製造方法。
1. A raw material powder preparation step of blending at least raw iron powder and carbon powder to prepare a raw material powder, a molding step of compacting the raw material powder to form a powder compact, and baking the powder compact. In the method for manufacturing a sintered member, which comprises a sintering step of binding the material into a sintered body, the raw material powder preparing step includes adding a carbon powder correction amount calculated from at least an oxygen amount contained in the raw iron powder. A method for manufacturing a sintered member, characterized in that it is a step of mixing carbon powder.
【請求項2】前記原料粉末調製工程は、前記原料鉄粉の
含有する酸素量および炭素量とから計算される炭素粉末
補正量を加えた炭素粉末を配合する工程である請求項1
記載の焼結部材の製造方法。
2. The raw material powder preparation step is a step of blending carbon powder to which a carbon powder correction amount calculated from an oxygen amount and a carbon amount contained in the raw iron powder is added.
A method for manufacturing a sintered member according to claim 1.
【請求項3】少なくとも原料鉄粉および炭素粉末を配合
して原料粉末を調製する原料粉末調製工程と、該原料粉
末を成形して粉末成形体を形成する成形工程と、該粉末
成形体を焼結させて焼結体とする焼結工程と、を有する
焼結部材の製造方法において、 前記焼結工程は、前記原料鉄粉の含有する酸素量と前記
焼結部材の焼結温度との関係式から計算される補正温度
で調整した焼結温度で焼結する工程であることを特徴と
する焼結部材の製造方法。
3. A raw material powder preparation step of blending at least raw iron powder and carbon powder to prepare a raw material powder, a molding step of compacting the raw material powder to form a powder compact, and baking the powder compact. In a method of manufacturing a sintered member, which comprises a sintering step of binding to form a sintered body, the sintering step includes a relationship between an oxygen amount contained in the raw iron powder and a sintering temperature of the sintered member. A method of manufacturing a sintered member, comprising a step of sintering at a sintering temperature adjusted by a correction temperature calculated from a formula.
【請求項4】少なくとも原料鉄粉および炭素粉末を配合
して原料粉末を調製する原料粉末調製工程と、該原料粉
末を成形して粉末成形体を形成する成形工程と、該粉末
成形体を焼結させて焼結体とする焼結工程と、を有する
焼結部材の製造方法において、 前記焼結工程は、前記原料鉄粉の含有する酸素量と前記
焼結部材の焼結時間との関係式から計算される補正時間
で調整された焼結時間で焼結する工程であることを特徴
とする焼結部材の製造方法。
4. A raw material powder preparation step of blending at least raw iron powder and carbon powder to prepare a raw material powder, a molding step of compacting the raw material powder to form a powder compact, and burning the powder compact. In a method for manufacturing a sintered member, which comprises a sintering step of binding to form a sintered body, the sintering step includes a relationship between an oxygen amount contained in the raw iron powder and a sintering time of the sintered member. A method of manufacturing a sintered member, comprising a step of sintering for a sintering time adjusted by a correction time calculated from a formula.
【請求項5】前記焼結工程の後に寸法矯正工程を有する
請求項1ないし請求項4のいずれかに記載の焼結部材の
製造方法。
5. The method for manufacturing a sintered member according to claim 1, further comprising a dimension correcting step after the sintering step.
【請求項6】前記焼結工程の後に熱処理工程を有する請
求項1ないし請求項5のいずれかに記載の焼結部材の製
造方法。
6. The method for producing a sintered member according to claim 1, further comprising a heat treatment step after the sintering step.
JP2002071055A 2002-03-14 2002-03-14 Method for manufacturing sintered member Pending JP2003268401A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002071055A JP2003268401A (en) 2002-03-14 2002-03-14 Method for manufacturing sintered member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002071055A JP2003268401A (en) 2002-03-14 2002-03-14 Method for manufacturing sintered member

Publications (1)

Publication Number Publication Date
JP2003268401A true JP2003268401A (en) 2003-09-25

Family

ID=29201425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002071055A Pending JP2003268401A (en) 2002-03-14 2002-03-14 Method for manufacturing sintered member

Country Status (1)

Country Link
JP (1) JP2003268401A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010035853A1 (en) * 2008-09-24 2010-04-01 Jfeスチール株式会社 Process for production of sintered compact by powder metallurgy

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010035853A1 (en) * 2008-09-24 2010-04-01 Jfeスチール株式会社 Process for production of sintered compact by powder metallurgy
KR101382304B1 (en) 2008-09-24 2014-04-08 제이에프이 스틸 가부시키가이샤 Process for production of sintered compact by powder metallurgy

Similar Documents

Publication Publication Date Title
CA2823267C (en) Iron based powders for powder injection molding
EP1027467B1 (en) Method for manufacturing high carbon sintered powder metal steel parts of high density
JPH0689365B2 (en) Atomized prealloyed steel powder for powder metallurgy
EP3156155A1 (en) Iron based powders for powder injection molding
US20170321303A1 (en) A method of fabricating three-dimensional parts out of an alloy of aluminum and titanium
JP2010538156A (en) Manufacturing method of sintered hardened parts
MXPA00007460A (en) Iron-graphite composite powders and sintered articles produced therefrom.
JP2003268401A (en) Method for manufacturing sintered member
JP2003268409A (en) Method for manufacturing sintered member
AU2017249647B2 (en) Method for the powder-metallurgical production of components from titanium or titanium alloys
JP2004115868A (en) Method for manufacturing sintered member
JP2003268408A (en) Method for manufacturing sintered member
KR101574862B1 (en) Method of manufacturing sintered product through powder metallurgy
US20220074036A1 (en) Method for hardening a sintered component
JPH04176802A (en) Production of high density sintered body
RU2252838C2 (en) Powder refractory metal hot pressing method
JPH06306513A (en) Production of high fatigue strength sintered titanium alloy
JP2945115B2 (en) Method for producing large sintered body made of iron-based metal powder
SU1734946A1 (en) Method to obtain iron-based magnetically soft materials
JPH079004B2 (en) Sintering method for iron-based powder compacts
US20100190024A1 (en) Sintered copper-based material having increased grain size and method of making the same
JP6228733B2 (en) Induction hardening method of iron-based sintered body
JP2012508321A (en) Method for manufacturing a cutting tool
JPH03281701A (en) Method for preparing mechanical strength in titanium powder and titanium alloy powder sintered body
JPS60159116A (en) Manufacture of steel parts having high hardenability and toughness

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061013

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070306