JP2003268366A - Treating method of fluorescent substance - Google Patents

Treating method of fluorescent substance

Info

Publication number
JP2003268366A
JP2003268366A JP2002078450A JP2002078450A JP2003268366A JP 2003268366 A JP2003268366 A JP 2003268366A JP 2002078450 A JP2002078450 A JP 2002078450A JP 2002078450 A JP2002078450 A JP 2002078450A JP 2003268366 A JP2003268366 A JP 2003268366A
Authority
JP
Japan
Prior art keywords
phosphor
mol
bamgal
liquid nitrogen
fluorescent substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002078450A
Other languages
Japanese (ja)
Inventor
Kiyotaka Arai
清隆 荒井
Tetsuya Sadamoto
哲也 貞本
Yoshinori Murazaki
嘉典 村崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Chemical Industries Ltd
Original Assignee
Nichia Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Chemical Industries Ltd filed Critical Nichia Chemical Industries Ltd
Priority to JP2002078450A priority Critical patent/JP2003268366A/en
Publication of JP2003268366A publication Critical patent/JP2003268366A/en
Pending legal-status Critical Current

Links

Landscapes

  • Luminescent Compositions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a treating method for a fluorescent substance which can efficiently improved its dispersibility and luminous characteristics. <P>SOLUTION: The dispersibility and luminous characteristics are efficiently improved by baking a mixture of raw materials, then dispersing the baked product in liquid nitrogen or liquid helium and classifying, particularly with regard to a fluorescent substance having low water resistance, such as BaMgAl<SB>10</SB>O<SB>17</SB>:Eu; BaMgAl<SB>10</SB>O<SB>17</SB>:Eu, Mn:BaAl<SB>12</SB>O<SB>19</SB>:Mn; CaAl<SB>2</SB>O<SB>4</SB>:Eu; SrAl<SB>2</SB>O<SB>4</SB>:Eu; BaAl<SB>2</SB>O<SB>4</SB>: Eu; LiAlO<SB>2</SB>:Eu; NaKAl<SB>2</SB>O<SB>4</SB>:Eu; La<SB>2</SB>O<SB>2</SB>S:Eu; MgS:Eu; and CaS:Eu. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、水銀ランプ、Xe励起
ランプ、各種ディスプレイ、蓄光材などに用いられる蛍
光体の処理方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for treating phosphors used in mercury lamps, Xe excitation lamps, various displays, phosphorescent materials and the like.

【0002】[0002]

【従来の技術】水銀ランプ等に用いられる蛍光体は、従
来、原料混合物を焼成して得られる焼成品を乾式で分散
処理するか、或いは溶媒を用いて分散処理した後、分級
して製造している。乾式で分散処理した後、乾式フルイ
を通して分級すると、非常にフルイしにくく作業効率が
悪いため、一般には、水で分散処理した後、湿式フルイ
を通して分級し、固液分離後、乾燥して蛍光体を得てい
る。しかしながら、分離、乾燥の際に蛍光体が再凝集し
て蛍光体の分散性が低下し、乾燥時の加熱により蛍光体
が酸化されて発光特性が低下するという問題があった。
さらに、BaMgAl1017:Eu、BaMgAl
1017:Eu,Mn、BaAl12 19:Mn、
CaAl:Eu、SrAl:Eu、BaA
:Eu、LiAlO:Fe、NaKAl
:Eu、LaS:Eu、MgS:Eu、Ca
S:Eu、SrS:Eu、BaS:Eu、(Ca,S
r,Ba)Ga:Eu、(Ca,Sr,Ba)I
:Eu等の耐水性の低い蛍光体の場合は、蛍光
体表面が水で加水分解又は溶解して組成が変化し、発光
特性が著しく低下するという問題があった。これに対
し、水の代わりにメタノール、エタノール、IPAなど
の有機溶媒を用いると、上記問題はある程度改善される
ものの、これらの有機溶媒は引火点が低く、人体に有害
であるため、作業性が非常に悪いという問題があった。
また、水分を吸収しやすいために、繰り返し使用すると
蛍光体の発光特性が徐々に低下するという問題があっ
た。
PRIOR ART Phosphors used in mercury lamps, etc.
Hereafter, a fired product obtained by firing a raw material mixture is dispersed by a dry method.
Classification after treatment or dispersion treatment with solvent
Is being manufactured. After dry dispersion treatment, dry
If you classify through the
Since it is bad, it is generally wet dispersion after dispersion treatment with water.
To obtain a phosphor after solid-liquid separation and drying.
It However, the phosphors re-aggregate during separation and drying.
As a result, the dispersibility of the phosphor decreases, and the phosphor is heated by heating during drying.
However, there is a problem in that the luminescent properties are deteriorated due to the oxidation of the.
Furthermore, BaMgAl10O17: Eu, BaMgAl
10O17: Eu, Mn, BaAl12O 19: Mn,
CaAlTwoOFour: Eu, SrAlTwoOFour: Eu, BaA
lTwoOFour: Eu, LiAlOTwo: Fe, NaKAlTwoO
Four: Eu, LaTwoOTwoS: Eu, MgS: Eu, Ca
S: Eu, SrS: Eu, BaS: Eu, (Ca, S
r, Ba) GaTwoSFour: Eu, (Ca, Sr, Ba) I
nTwoSFour: Fluorescent substance with low water resistance such as Eu
The body surface hydrolyzes or dissolves in water, and the composition changes
There is a problem that the characteristics are significantly deteriorated. Against this
However, instead of water, methanol, ethanol, IPA, etc.
The above problems are alleviated to a certain extent by using the organic solvent of
However, these organic solvents have low flash points and are harmful to humans.
Therefore, there was a problem that the workability was very poor.
Also, since it easily absorbs moisture, it can be used repeatedly.
There is a problem that the emission characteristics of the phosphor gradually deteriorate.
It was

【0003】[0003]

【発明が解決しようとする課題】従って、本発明は上述
した問題を解決することを目的とし、効率良く蛍光体の
分散性及び発光特性を改善できる蛍光体の処理方法を提
供することを目的としている。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to solve the above-mentioned problems, and an object thereof is to provide a method for treating a phosphor, which can efficiently improve the dispersibility and emission characteristics of the phosphor. There is.

【0004】[0004]

【発明を解決するための手段】本発明者等は上述した問
題を解決するために鋭意検討した結果、蛍光体焼成品を
液体窒素中又は液体ヘリウム中で分散処理し、分級する
ことにより、効率良く蛍光体の分散性及び発光特性を改
善できることを新たに見いだし本発明を完成させるに至
った。
The inventors of the present invention have made extensive studies to solve the above-mentioned problems, and as a result, the phosphor-calcined product is dispersed in liquid nitrogen or liquid helium, and classification is performed to improve efficiency. The inventors have newly found that the dispersibility and emission characteristics of the phosphor can be improved, and have completed the present invention.

【0005】すなわち、本発明の蛍光体の処理方法は、
原料混合物を焼成した後、焼成品を液体窒素中又は液体
ヘリウム中で分散処理し、分級することを特徴とし、前
記蛍光体がBaMgAl1017:Eu、BaMgA
1017:Eu,Mn、BaAl1219:M
n、CaAl:Eu、SrAl:Eu、B
aAl:Eu、LiAlO:Fe、NaKAl
:Eu、La S:Eu、MgS:Eu、C
aS:Eu、SrS:Eu、BaS:Eu、(Ca,S
r,Ba)Ga:Eu、(Ca,Sr,Ba)I
:Eu等の耐水性の低い蛍光体の場合に特に有
効である。
That is, the method for treating a phosphor of the present invention is
After firing the raw material mixture, place the fired product in liquid nitrogen or in liquid
Characterized by dispersion treatment in helium and classification
The phosphor is BaMgAl10O17: Eu, BaMgA
l10O17: Eu, Mn, BaAl12O19: M
n, CaAlTwoOFour: Eu, SrAlTwoOFour: Eu, B
aAlTwoOFour: Eu, LiAlOTwo: Fe, NaKAl
TwoOFour: Eu, LaTwoO TwoS: Eu, MgS: Eu, C
aS: Eu, SrS: Eu, BaS: Eu, (Ca, S
r, Ba) GaTwoSFour: Eu, (Ca, Sr, Ba) I
nTwoSFour: Especially for phosphors with low water resistance such as Eu
It is effective.

【0006】[0006]

【発明の実施の形態】次に、本発明の蛍光体の処理方法
について詳細に説明する。例えば、耐水性の低いBaM
gAl1017:Eu蛍光体の場合、原料としてバリ
ウム化合物、マグネシウム化合物、アルミニウム化合
物、ユーロピウム化合物及びフラックスを混合した後、
原料混合物を坩堝に詰めて空気中で焼成し、さらに還元
性雰囲気中で焼成する。焼成品を液体窒素中若しくは液
体ヘリウム中で撹拌或いはボールミルすることにより、
又は液体窒素若しくは液体ヘリウムを入れた容器中でア
ルミナビーズ等とともに撹拌することにより、分散処理
を行い、篩を通した後、自然乾燥してBaMgAl10
17:Eu蛍光体を得る。このようにして得られたB
aMgAl1017:Eu蛍光体は、水で分散処理し
た蛍光体に比べ、分散性及び発光特性が向上する。
BEST MODE FOR CARRYING OUT THE INVENTION Next, the method for treating a phosphor of the present invention will be described in detail. For example, BaM with low water resistance
In the case of gAl 10 O 17 : Eu phosphor, after mixing barium compound, magnesium compound, aluminum compound, europium compound and flux as raw materials,
The raw material mixture is packed in a crucible, fired in air, and fired in a reducing atmosphere. By stirring or ball milling the baked product in liquid nitrogen or liquid helium,
Alternatively, the dispersion treatment is performed by stirring with alumina beads or the like in a container containing liquid nitrogen or liquid helium, and after passing through a sieve, naturally dried to form BaMgAl 10
O 17 : Eu phosphor is obtained. B thus obtained
The aMgAl 10 O 17 : Eu phosphor has improved dispersibility and light emission characteristics as compared with a phosphor dispersed in water.

【0007】本発明の場合、液体窒素及び液体ヘリウム
は、水に比べて極性がはるかに小さく、流動性が高いた
め、フルイが非常におりやすく、短時間に効率良く分級
でき、蛍光体の分散性が良くなる結果、フルイ残量が減
少し、収率も高くなる。また、自然乾燥のため、加熱す
る必要がないことから、蛍光体が酸化されて発光特性が
低下するというような問題もなく、水で分散処理した場
合のように、分離、乾燥の際に蛍光体が再凝集して蛍光
体の分散性が低下するというような問題もない。さら
に、液体窒素、液体ヘリウムは化学的に不活性なため、
耐水性の低い蛍光体でも、水で分散処理した場合のよう
に、水で蛍光体表面の組成が変化して発光特性が低下す
るというような問題もない。また、液体窒素、液体ヘリ
ウムは大気圧下でそれぞれ−196℃、−269℃と極
低温であり、焼成品の表面に吸着した水分は凝固するた
め、分散処理時に水分の影響を受けることがなく、発光
特性の優れた蛍光体を得ることができる。
In the case of the present invention, liquid nitrogen and liquid helium have a much smaller polarity than water and have high fluidity, so that the sieve is very easy to be classified, efficient classification can be achieved in a short time, and dispersion of the phosphor can be achieved. As a result, the remaining amount of the sieve is reduced and the yield is increased. In addition, since it does not need to be heated because it is naturally dried, there is no problem that the phosphors are oxidized and the emission characteristics are reduced. There is no problem that the body re-aggregates and the dispersibility of the phosphor decreases. Furthermore, since liquid nitrogen and liquid helium are chemically inert,
Even with a phosphor having low water resistance, there is no problem that the composition of the phosphor surface is changed by water and the light emission characteristics are deteriorated, as in the case of dispersion treatment with water. Liquid nitrogen and liquid helium are at extremely low temperatures of −196 ° C. and −269 ° C., respectively, under atmospheric pressure, and the water adsorbed on the surface of the fired product solidifies, so there is no effect of water during dispersion processing. Thus, it is possible to obtain a phosphor having excellent light emitting characteristics.

【0008】[0008]

【実施例】[実施例1]BaMgAl1017:Eu
蛍光体を次のようにして作製する。先ず、原料として下
記のものを秤量し、 BaCO ・・・・・・・・・・・・・・・・ 0.90モル 3MgCO・Mg(OH)・3HO・・・・ 0.25モル γ−Al ・・・・・・・・・・・・・・・ 5.00モル Eu ・・・・・・・・・・・・・・・・・ 0.05モル これらの全量100重量部に対し、1.0重量部のAl
を添加し、磁性ポット中でボールミル混合する。得
られた原料混合物を蓋付きアルミナ坩堝に充填し、空気
中、1500℃で8時間焼成する。冷却後さらにN
の還元性雰囲気中、1500℃で8時間焼成する。
焼成品、液体窒素、アルミナビーズを重量で1:2:2
の割合で処理容器に入れ、1時間撹拌して分散処理を行
い、300メッシュの篩を通して粗大粒子や凝集粒子を
除いた後、自然乾燥してBaMgAl1017:Eu
蛍光体を得る。得られた蛍光体の平均粒径は2.5μ
m、中央粒径は5.2μmであり、分散度は0.48で
ある。ここで、平均粒径は空気透過法によるフィッシャ
ー・サブ・シーブ・サイザー(F.S.S.S)を用いて
測定した値であり、中央粒径は電気抵抗法のコールター
マルチサイザーII(コールター社製)を用いて測定し、積
算分布の50%値を示す。また、分散度は平均粒径を中
央粒径で除した値であり、これを分散度と定義する。こ
の値が大きいほど蛍光体の分散性が良いと評価できる。
また、篩にかかる時間は3分であり、収率は97%であ
る。ここで、収率は篩前に対する篩後の蛍光体重量の割
合を示す。
EXAMPLES Example 1 BaMgAl 10 O 17 : Eu
The phosphor is manufactured as follows. First, the following raw materials were weighed, and BaCO 3 ... 0.90 mol 3MgCO 3 .Mg (OH) 2 .3H 2 O ... 0.25 mol γ-Al 2 O 3・ ・ ・ ・ ・ ・ ・ ・ ・ ・ 5.00 mol Eu 2 O 3・ ・ ・ 0 0.05 mol 1.0 part by weight of Al based on 100 parts by weight of the total amount.
It was added F 3, mixed ball mill in the magnetic pot. The obtained raw material mixture is filled in an alumina crucible with a lid and fired in air at 1500 ° C. for 8 hours. After cooling, N 2
Baking is performed at 1500 ° C. for 8 hours in a reducing atmosphere of H 2 .
1: 2: 2 by weight of baked product, liquid nitrogen, and alumina beads
The mixture was placed in a treatment container at a ratio of 1 hour, stirred for 1 hour to perform a dispersion treatment, passed through a 300-mesh sieve to remove coarse particles and agglomerated particles, and then naturally dried to obtain BaMgAl 10 O 17 : Eu.
Obtain a phosphor. The average particle size of the obtained phosphor is 2.5μ.
m, the median particle size is 5.2 μm, and the dispersity is 0.48. Here, the average particle size is a value measured using a Fisher sub-sieve sizer (FSSS) by the air permeation method, and the median particle size is the Coulter Multisizer II (Coulter) of the electrical resistance method. (Manufactured by K.K.) and shows the 50% value of the cumulative distribution. The dispersity is a value obtained by dividing the average particle size by the median particle size, and this is defined as the dispersity. It can be evaluated that the larger this value is, the better the dispersibility of the phosphor is.
The time required for sieving was 3 minutes, and the yield was 97%. Here, the yield represents the ratio of the weight of the phosphor after sieving to that before sieving.

【0009】[比較例1]実施例1と同様にして得られ
る焼成品を、重量で2倍量の純水中で1時間撹拌して、
分散処理を行い、300メッシュの篩を通した後、10
0℃で15時間乾燥してBaMgAl1017:Eu
蛍光体を得る。得られた蛍光体の平均粒径は2.6μ
m、中央粒径は6.2μmであり、分散度は0.42で
ある。また、篩にかかる時間は10分であり、収率は9
0%である。
[Comparative Example 1] A baked product obtained in the same manner as in Example 1 was stirred for 1 hour in pure water in an amount twice the weight,
Dispersion treatment is performed, and after passing through a 300 mesh sieve, 10
BaMgAl 10 O 17 : Eu after drying at 0 ° C. for 15 hours
Obtain a phosphor. The average particle size of the obtained phosphor is 2.6μ.
m, the median particle size is 6.2 μm, and the dispersity is 0.42. The time required for sieving was 10 minutes, and the yield was 9
It is 0%.

【0010】[実施例2]原料としてBaCO0.9
5モル、3MgCO・Mg(OH)・3HO0.
24モル、γ−Al 5モル、Eu0.0
25モル、MnCO0.04モルを使用する以外は実
施例1と同様に行い、BaMgAl10 17:Eu,
Mn蛍光体を得る。
[Example 2] BaCO as a raw materialThree0.9
5 mol, 3MgCOThree・ Mg (OH)Two・ 3HTwoO0.
24 mol, γ-AlTwoOThree 5 mol, EuTwoOThree0.0
25 mol, MnCOThreeExcept using 0.04 mol
The same procedure as in Example 1 is performed and BaMgAl10O 17: Eu,
Obtain the Mn phosphor.

【0011】[実施例3]BaCO0.9モル、γ−
Al6モル、MnCO0.1モルを混合し実施
例1と同様に焼成、処理して、BaAl1219:M
n蛍光体を得る。
[Example 3] 0.9 mol of BaCO 3 and γ-
6 mol of Al 2 O 3 and 0.1 mol of MnCO 3 were mixed, baked and treated in the same manner as in Example 1, and BaAl 12 O 19 : M.
Obtain n phosphor.

【0012】[実施例4]CaCO0.9モル、γ−
Al1モル、Eu0.05モルを混合し実
施例1と同様に焼成、処理して、CaAl:Eu
蛍光体を得る。
Example 4 0.9 mol of CaCO 3 , γ-
1 mol of Al 2 O 3 and 0.05 mol of Eu 2 O 3 are mixed and baked and treated in the same manner as in Example 1 to obtain CaAl 2 O 4 : Eu.
Obtain a phosphor.

【0013】[実施例5〜6]CaCOの代わりにS
rCO、BaCOをそれぞれ使用する以外は実施例
4と同様に行い、SrAl:Eu蛍光体、BaA
:Eu蛍光体を得る。
[Examples 5 to 6] S in place of CaCO 3
Example 4 was repeated except that rCO 3 and BaCO 3 were respectively used, and SrAl 2 O 4 : Eu phosphor and BaA were used.
An l 2 O 4 : Eu phosphor is obtained.

【0014】[実施例7]Al(OH)、LiCO
、Fe(NO・9HOを湿式混合し、乾燥さ
せた混合物を1250℃で2時間焼成した後、焼成品、
液体窒素、アルミナボールを重量で1:2:2の割合で
ボールミルに投入して分散処理を行い、300メッシュ
の篩を通した後、自然乾燥してLiAlO:Fe蛍光
体を得る。
[Example 7] Al (OH) 3 , Li 2 CO
3, Fe (NO 3) 3 · 9H 2 O were wet-mixed, the mixture was dried and calcined for 2 hours at 1250 ° C., calcined product,
Liquid nitrogen and alumina balls were put into a ball mill at a ratio of 1: 2: 2 by weight to carry out a dispersion treatment, and after passing through a 300-mesh sieve, naturally dried to obtain a LiAlO 2 : Fe phosphor.

【0015】[実施例8]NaCO0.5モル、K
CO0.5モル、γ−Al1モル、Eu
0.025モルを混合した混合物を実施例7と同様に
焼成、処理して、NaKAl:Eu蛍光体を得
る。
[Example 8] Na 2 CO 3 0.5 mol, K
2 CO 3 0.5 mol, γ-Al 2 O 3 1 mol, Eu 2 O
The mixture obtained by mixing 0.025 mol of 3 is baked and treated in the same manner as in Example 7 to obtain a NaKAl 2 O 4 : Eu phosphor.

【0016】[実施例9]La0.96モル、E
0.04モルを硝酸に溶解し、蓚酸溶液を加え
て蓚酸塩を得た後、これを850℃で3時間焼成して酸
化物を得る。この酸化物をHS雰囲気中、1100℃
で1時間焼成して得られる焼成品を、実施例1と同様に
処理して、LaS:Eu蛍光体を得る。
Example 9 La 2 O 3 0.96 mol, E
After dissolving 0.04 mol of u 2 O 3 in nitric acid and adding an oxalic acid solution to obtain an oxalate, the oxalate is calcined at 850 ° C. for 3 hours to obtain an oxide. This oxide was placed in an H 2 S atmosphere at 1100 °
The fired product obtained by firing for 1 hour is treated in the same manner as in Example 1 to obtain a La 2 O 2 S: Eu phosphor.

【0017】[実施例10]MgCO1モル、Eu
0.00075モルを混合し、1300℃で2時間
焼成した後、さらにHS雰囲気中、1200℃で2時
間焼成して得られる焼成品を、実施例1と同様に処理し
て、MgS:Eu蛍光体を得る。
[Example 10] 1 mol of MgCO 3 and Eu 2
A mixture obtained by mixing 0.00075 mol of O 3 and calcining at 1300 ° C. for 2 hours and further calcining at 1200 ° C. for 2 hours in a H 2 S atmosphere was treated in the same manner as in Example 1, Obtain the MgS: Eu phosphor.

【0018】[実施例11〜13]MgCOの代わり
にCaCO、SrCO、BaCOをそれぞれ使用
する以外は実施例10と同様に行い、CaS:Eu蛍光
体、SrS:Eu蛍光体、BaS:Eu蛍光体を得る。
[0018] but using CaCO 3, SrCO 3, BaCO 3 in place of Example 11 to 13] MgCO 3 respectively the same manner as in Example 10, CaS: Eu phosphor, SrS: Eu phosphor, BaS : Get Eu phosphor.

【0019】[実施例14]Eu0.00075
モルの代わりにMnO0.0015モルを使用する以外
は実施例10と同様に行い、MgS:Mn蛍光体を得
る。
Example 14 Eu 2 O 3 0.00075
A MgS: Mn phosphor is obtained in the same manner as in Example 10 except that 0.0015 mol of MnO is used instead of mol.

【0020】[実施例15〜17]MgCOの代わり
にCaCO、SrCO、BaCOをそれぞれ使用
する以外は実施例14と同様に行い、CaS:Mn蛍光
体、SrS:Mn蛍光体、BaS:Mn蛍光体を得る。
[0020] [Examples 15 to 17 except that use CaCO 3 instead of MgCO 3, SrCO 3, BaCO 3, respectively the same manner as in Example 14, CaS: Mn phosphor, SrS: Mn phosphor, BaS : Mn phosphor is obtained.

【0021】[実施例18]CaCO0.1モル、S
rCO0.76モル、BaCO0.1モル、Ga
1モル、Eu0.02モルを混合し、H
雰囲気中、900℃で4時間焼成して得られる焼成品
を、実施例1と同様に処理して、(Ca,Sr,Ba)
Ga:Eu蛍光体を得る。
Example 18 CaCO 3 0.1 mol, S
rCO 3 0.76 mol, BaCO 3 0.1 mol, Ga 2
O 3 1 mol of a mixture of Eu 2 O 3 0.02 mole, H 2 S
The calcined product obtained by calcining at 900 ° C. for 4 hours in the atmosphere was treated in the same manner as in Example 1 to obtain (Ca, Sr, Ba).
A Ga 2 S 4 : Eu phosphor is obtained.

【0022】[実施例19]Gaの代わりにIn
を使用する以外は実施例18と同様に行い、(C
a,Sr,Ba)In:Eu蛍光体を得る。
Example 19 In Instead of Ga 2 O 3
Example 18 was repeated except that 2 O 3 was used.
a, Sr, Ba) In 2 S 4 : Eu phosphor is obtained.

【0023】[実施例20]液体窒素の代わりに液体ヘ
リウムを使用する以外は実施例1と同様に行い、BaM
gAl1017:Eu蛍光体を得る。
Example 20 The same procedure as in Example 1 was carried out except that liquid helium was used instead of liquid nitrogen, and BaM was used.
A gAl 10 O 17 : Eu phosphor is obtained.

【0024】[比較例2〜19]実施例2〜19と同様
にして得られる焼成品を、それぞれ比較例1と同様に処
理して蛍光体を得る。
[Comparative Examples 2 to 19] The fired products obtained in the same manner as in Examples 2 to 19 are treated in the same manner as in Comparative Example 1 to obtain phosphors.

【0025】表1に、実施例1〜20及び比較例1〜1
9で得られた蛍光体の維持率、平均粒径、中央粒径、分
散度、篩時間、収率をまとめて比較する。ここで、維持
率は、分散処理前後の蛍光体を254nm紫外線で励起
して発光強度を測定し、次式より求めた値であり、これ
を維持率と定義する。 維持率=(分散処理後の発光強度/分散処理前の発光強
度)×100 表1に示した比較例1〜19の維持率より、これらの蛍
光体はいずれも水で分散処理したときの維持率が95%
以下であり、耐水性の低い蛍光体であることがわかる。
この表から明らかなように、本発明の実施例の蛍光体は
比較例の蛍光体に比べ分散度が高く、維持率も高くなっ
ており、液体窒素又は液体ヘリウムで分散処理すること
によって、水で分散処理した場合に比べ、分散性が良
く、発光特性の優れた蛍光体を得ることができる。ま
た、本発明の実施例の場合、比較例に比べ篩にかかる時
間も短く、効率良く分級でき、収率も高くなる。
Table 1 shows Examples 1 to 20 and Comparative Examples 1 to 1.
The maintenance rate, average particle size, median particle size, dispersity, sieving time, and yield of the phosphor obtained in Example 9 are collectively compared. Here, the maintenance ratio is a value obtained by exciting the phosphor before and after the dispersion treatment with 254 nm ultraviolet rays to measure the emission intensity and obtaining it by the following formula, and this is defined as the maintenance ratio. Maintenance rate = (emission intensity after dispersion treatment / emission intensity before dispersion treatment) × 100 From the retention rates of Comparative Examples 1 to 19 shown in Table 1, all of these phosphors were maintained when dispersed with water. The rate is 95%
It is shown below that the phosphor has low water resistance.
As is clear from this table, the phosphor of the example of the present invention has a higher degree of dispersion than that of the phosphor of the comparative example, and has a high maintenance rate, and by performing a dispersion treatment with liquid nitrogen or liquid helium, water It is possible to obtain a phosphor having good dispersibility and excellent emission characteristics as compared with the case where the dispersion treatment is carried out. Further, in the case of the example of the present invention, the time required for sieving is shorter than that of the comparative example, the classification can be efficiently performed, and the yield is high.

【0026】[0026]

【表1】 [Table 1]

【0027】[0027]

【発明の効果】以上に述べたように、原料混合物を焼成
して得られる焼成品を液体窒素中又は液体ヘリウム中で
分散処理し、分級することにより、分散性が良く、発光
特性の優れた蛍光体が得られ、篩時間が短縮され、作業
効率が良く、収率も高くなる。特に、耐水性の低い蛍光
体において効果が大きい。
As described above, the fired product obtained by firing the raw material mixture is subjected to dispersion treatment in liquid nitrogen or liquid helium and then classified to obtain good dispersibility and excellent emission characteristics. The phosphor is obtained, the sieving time is shortened, the working efficiency is good, and the yield is high. In particular, the effect is great for phosphors having low water resistance.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4H001 CA06 CA07 CF02 XA03 XA08 XA11 XA12 XA13 XA16 XA19 XA20 XA31 XA38 XA49 XA56 XA57 YA25 YA26 YA63    ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 4H001 CA06 CA07 CF02 XA03 XA08                       XA11 XA12 XA13 XA16 XA19                       XA20 XA31 XA38 XA49 XA56                       XA57 YA25 YA26 YA63

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 原料混合物を焼成した後、焼成品を液体
窒素中又は液体ヘリウム中で分散処理し、分級すること
を特徴とする蛍光体の処理方法。
1. A method for treating a phosphor, comprising firing a raw material mixture and then subjecting the fired product to dispersion treatment in liquid nitrogen or liquid helium for classification.
【請求項2】 前記蛍光体は耐水性の低い蛍光体である
ことを特徴とする請求項1に記載の蛍光体の処理方法。
2. The method for treating a phosphor according to claim 1, wherein the phosphor is a phosphor having low water resistance.
【請求項3】 前記蛍光体はBaMgAl1017
Eu、BaMgAl 1017:Eu,Mn、BaAl
1219:Mn、CaAl:Eu、SrAl
:Eu、BaAl:Eu、LiAlO:F
e、NaKAl:Eu、LaS:Eu、M
gS:Eu、CaS:Eu、SrS:Eu、BaS:E
u、(Ca,Sr,Ba)Ga:Eu、(Ca,
Sr,Ba)In:Euからなる群より選ばれた
少なくとも1種の蛍光体であることを特徴とする請求項
2に記載の蛍光体の処理方法。
3. The phosphor is BaMgAl10O17:
Eu, BaMgAl 10O17: Eu, Mn, BaAl
12O19: Mn, CaAlTwoOFour: Eu, SrAlTwo
OFour: Eu, BaAlTwoOFour: Eu, LiAlOTwo: F
e, NaKAlTwoOFour: Eu, LaTwoOTwoS: Eu, M
gS: Eu, CaS: Eu, SrS: Eu, BaS: E
u, (Ca, Sr, Ba) GaTwoSFour: Eu, (Ca,
Sr, Ba) InTwoSFour: Selected from the group consisting of Eu
At least one kind of phosphor is used.
2. The method for treating the phosphor according to 2.
JP2002078450A 2002-03-20 2002-03-20 Treating method of fluorescent substance Pending JP2003268366A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002078450A JP2003268366A (en) 2002-03-20 2002-03-20 Treating method of fluorescent substance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002078450A JP2003268366A (en) 2002-03-20 2002-03-20 Treating method of fluorescent substance

Publications (1)

Publication Number Publication Date
JP2003268366A true JP2003268366A (en) 2003-09-25

Family

ID=29206046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002078450A Pending JP2003268366A (en) 2002-03-20 2002-03-20 Treating method of fluorescent substance

Country Status (1)

Country Link
JP (1) JP2003268366A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011190386A (en) * 2010-03-16 2011-09-29 Tohoku Univ Oxide crystal for neutron scintillator and neutron detector
WO2019216083A1 (en) * 2018-05-09 2019-11-14 株式会社日立ハイテクノロジーズ Fluorescent body, light source, and biochemical analyzer
WO2020100473A1 (en) * 2018-11-15 2020-05-22 株式会社日立ハイテク Wide-band light source device, and biochemical analysis device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011190386A (en) * 2010-03-16 2011-09-29 Tohoku Univ Oxide crystal for neutron scintillator and neutron detector
WO2019216083A1 (en) * 2018-05-09 2019-11-14 株式会社日立ハイテクノロジーズ Fluorescent body, light source, and biochemical analyzer
JP2019196441A (en) * 2018-05-09 2019-11-14 株式会社日立ハイテクノロジーズ Fluophor, light source and biochemical analyzer
CN112041412A (en) * 2018-05-09 2020-12-04 株式会社日立高新技术 Phosphor, light source, and biochemical analyzer
EP3792333A4 (en) * 2018-05-09 2022-02-23 Hitachi High-Tech Corporation Fluorescent body, light source, and biochemical analyzer
WO2020100473A1 (en) * 2018-11-15 2020-05-22 株式会社日立ハイテク Wide-band light source device, and biochemical analysis device
JP2020087974A (en) * 2018-11-15 2020-06-04 株式会社日立ハイテク Broadband light source device and biochemical analyzer
JP7102321B2 (en) 2018-11-15 2022-07-19 株式会社日立ハイテク Broadband light source device and biochemical analyzer
US11754493B2 (en) 2018-11-15 2023-09-12 Hitachi High-Tech Corporation Broadband light source device and biochemical analyzing device

Similar Documents

Publication Publication Date Title
JP5578739B2 (en) Alkaline earth metal silicate phosphor and method for producing the same
JP2015042753A (en) Method of producing aluminate luminophore, bam, yag and cat by alum method
JP2006321921A (en) alpha-TYPE SIALON PHOSPHOR AND LIGHTING EQUIPMENT USING THE SAME
JPS63132991A (en) Europium activated strontium tetraborate uv phosphor and its production
JP2010265448A (en) Red phosphor and method for producing the same
JP2010520334A (en) Method for producing red luminescent borate phosphor
TW200424287A (en) Method for producing phosphor having a high brightness
TW200301299A (en) Method for producing silicate phosphor
JP2003268366A (en) Treating method of fluorescent substance
JP2002047010A (en) Method of manufacturing barium complex metallic oxide powder
JP7037082B2 (en) Rare earth aluminate phosphor manufacturing method, rare earth aluminate phosphor and light emitting device
JP6099002B2 (en) Method for producing silicate blue phosphor
JP2008174690A (en) Europium-activated yttrium oxide fluorophor material and production method thereof
JPWO2007040063A1 (en) Nano-sized phosphor
JPWO2016111200A1 (en) Phosphor, light emitting device, and method of manufacturing phosphor
JP4343267B1 (en) Green phosphor
JP5248008B2 (en) Alkaline earth metal hydrogen phosphate, method for producing the same, and phosphor using the alkaline earth metal hydrogen phosphate
JP4023222B2 (en) Method for producing silicate phosphor
JP2004018679A (en) Phosphor particle and its manufacturing method
RU2236434C2 (en) Light-accumulating luminophor and a method for preparation thereof
JP2007002085A (en) Method for producing electron beam-excited red phosphor
JP2007002086A (en) Method for producing electron beam-excited red phosphor
KR100447936B1 (en) Green emitting phosphor by VUV excitiation and its preparation method
JPH10251637A (en) Aluminate fluorescent substance and its production
JP6763387B2 (en) Fluorescent material, its manufacturing method, and light emitting device