JP2003267939A - Method for producing aminocarboxylic acid (salt) - Google Patents

Method for producing aminocarboxylic acid (salt)

Info

Publication number
JP2003267939A
JP2003267939A JP2002073942A JP2002073942A JP2003267939A JP 2003267939 A JP2003267939 A JP 2003267939A JP 2002073942 A JP2002073942 A JP 2002073942A JP 2002073942 A JP2002073942 A JP 2002073942A JP 2003267939 A JP2003267939 A JP 2003267939A
Authority
JP
Japan
Prior art keywords
catalyst
salt
aminocarboxylic acid
gold
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002073942A
Other languages
Japanese (ja)
Other versions
JP4115724B2 (en
Inventor
Katsuya Ueno
克弥 上野
Masakatsu Takahashi
正勝 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2002073942A priority Critical patent/JP4115724B2/en
Publication of JP2003267939A publication Critical patent/JP2003267939A/en
Application granted granted Critical
Publication of JP4115724B2 publication Critical patent/JP4115724B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing an aminocarboxylic acid or its salt, more improved in reactivity of amino-alcohol used as a raw material than ever, and improved in a yield of the aminocarboxylic acid or its salt, by using a catalyst having good moldability so as not to be restricted in reaction patterns. <P>SOLUTION: This method for producing the aminocarboxylic acid or its salt comprises oxidizing the amino-alcohol with oxygen-containing gas, wherein a gold catalyst which contains at least one kind of metal oxide selected from cobalt oxide, zirconium oxide, and zinc oxide is used as a catalyst for producing the aminocarboxylic acid or its salt. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、アミノアルコール
を原料としてアミノカルボン酸又はその塩を製造する方
法に関する。
TECHNICAL FIELD The present invention relates to a method for producing an aminocarboxylic acid or a salt thereof from an aminoalcohol as a raw material.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】従来よ
り、アミノアルコールを原料としてアミノカルボン酸を
製造する方法に関しては数多くの報告例がある。古くは
USP2,384,817、USP3,842,08
1、特公平1−53863、特公平1−53864等に
記載されているように、カドミウム、銅等を触媒とする
酸化が行われていた。これらは水素の発生を伴うアルカ
リ酸化であり、排気設備の防爆対策等が必要となる。ま
た、50%前後の高濃度苛性アルカリを150〜350
℃程度の高温で反応させるため反応器の腐食が激しく、
実用的であるとは言えない。この問題を解決すべく、特
公昭56−2548、特公昭59−45666ではPt
/C又はPd/C触媒を用い、反応系中に空気などの含
酸素ガスを供給しながら反応を行うことで、100℃以
下の穏和な条件下でも反応が進行することが報告されて
いる。この反応では、原料から引き抜かれた水素原子は
酸素によって水へと酸化されるため、水素ガスは発生せ
ず、爆発の恐れはない。また、アルカリは酸化剤として
ではなく生成するカルボン酸を中和してpHをアルカリ
側に保つ目的で添加されるため、生成カルボン酸に対し
て当量加えればよい。上述のようにPt/C又はPd/
C触媒、及び含酸素ガスを用いることで、水素の発生、
及び容器の腐食の問題は解決されたが、原料であるアミ
ノアルコールの種類によっては得られるアミノカルボン
酸の収率が70%程度と低い場合がある。
2. Description of the Related Art Heretofore, there have been many reports on a method for producing an aminocarboxylic acid from amino alcohol as a raw material. In the old days, USP2,384,817, USP3,842,08
As described in No. 1, Japanese Patent Publication No. 1-53863, Japanese Patent Publication No. 1-53864, etc., oxidation was carried out using cadmium, copper, etc. as a catalyst. These are alkaline oxidations that generate hydrogen, and it is necessary to take explosion-proof measures for exhaust equipment. In addition, about 50% high concentration caustic 150-350
Corrosion of the reactor is severe because the reaction is performed at a high temperature of about ℃,
Not practical. To solve this problem, Japanese Patent Publication No. 56-2548 and Japanese Patent Publication No. 59-45666 disclose Pt.
It has been reported that the reaction proceeds even under mild conditions of 100 ° C. or lower by using / C or Pd / C catalyst and supplying oxygen-containing gas such as air into the reaction system. In this reaction, hydrogen atoms extracted from the raw material are oxidized by oxygen into water, so that hydrogen gas is not generated and there is no danger of explosion. Further, the alkali is added not as an oxidizing agent but for the purpose of neutralizing the generated carboxylic acid and keeping the pH on the alkaline side, and therefore, it may be added in an equivalent amount to the generated carboxylic acid. As described above, Pt / C or Pd /
Generation of hydrogen by using C catalyst and oxygen-containing gas,
Although the problem of container corrosion has been solved, the yield of the obtained aminocarboxylic acid may be as low as about 70% depending on the type of amino alcohol as a raw material.

【0003】これに対して、特開2000−63338
には金を担体上に担持した触媒を用いることで収率を向
上させる方法が開示されている。この方法では金触媒を
用いることで目的とするアミノカルボン酸の収率は向上
するものの、なお改善の余地があるレベルである。ま
た、この公報記載の実施例では触媒の担体に活性炭が用
いられているが、活性炭は他の一般的な触媒担体、例え
ば金属酸化物等と比較して触媒の成形性が悪く、任意の
形状に成形することが困難である。従って粉末の状態で
攪拌層方式、懸濁床方式等の反応器で使用するには支障
ないが、ペレットとして固定床反応で使用することは難
しく、反応様式の制限を受ける。
On the other hand, Japanese Unexamined Patent Publication No. 2000-63338.
Discloses a method of improving the yield by using a catalyst in which gold is supported on a carrier. In this method, the target aminocarboxylic acid yield is improved by using a gold catalyst, but there is still room for improvement. Further, in the examples described in this publication, activated carbon is used as a catalyst carrier, but activated carbon has poor moldability of the catalyst as compared with other general catalyst carriers such as metal oxides, and has an arbitrary shape. Difficult to mold. Therefore, although there is no problem in using the powder state in a reactor such as a stirring bed system or a suspension bed system, it is difficult to use it as a pellet in a fixed bed reaction, and the reaction mode is limited.

【0004】本発明の課題は、アミノアルコールの更な
る反応性の向上、及びアミノカルボン酸又はその塩の収
率の向上、また反応様式の制限を受けない、すなわち成
形性の良好な触媒を用いるアミノカルボン酸又はその塩
を提供することにある。
The object of the present invention is to further improve the reactivity of amino alcohol and the yield of aminocarboxylic acid or its salt, and to use a catalyst which is not restricted in the reaction mode, that is, has good moldability. It is to provide an aminocarboxylic acid or a salt thereof.

【0005】[0005]

【課題を解決するための手段】本発明は、アミノアルコ
ールを含酸素ガスにより酸化してアミノカルボン酸又は
その塩を製造する方法であって、触媒として酸化コバル
ト、酸化ジルコニウム及び酸化亜鉛から選ばれる少なく
とも1種の金属酸化物を含有する金触媒を用いるアミノ
カルボン酸又はその塩の製造法である。
The present invention is a method for producing an aminocarboxylic acid or a salt thereof by oxidizing an aminoalcohol with an oxygen-containing gas, wherein the catalyst is selected from cobalt oxide, zirconium oxide and zinc oxide. A method for producing an aminocarboxylic acid or a salt thereof using a gold catalyst containing at least one metal oxide.

【0006】[0006]

【発明の実施の形態】本発明で使用される触媒は、酸化
コバルト、酸化ジルコニウム及び酸化亜鉛から選ばれる
少なくとも1種の金属酸化物を含有する金触媒であり、
酸化コバルト及び/又は酸化亜鉛を含有する金触媒が収
率の面から好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION The catalyst used in the present invention is a gold catalyst containing at least one metal oxide selected from cobalt oxide, zirconium oxide and zinc oxide,
A gold catalyst containing cobalt oxide and / or zinc oxide is preferable in terms of yield.

【0007】本発明の金触媒は、酸化コバルト、酸化
ジルコニウム及び/又は酸化亜鉛そのものを担体として
用い、これに金を担持した触媒であっても、金と、酸
化コバルト、酸化ジルコニウム及び/又は酸化亜鉛を適
当な担体に担持した触媒であってもよい。
The gold catalyst of the present invention uses cobalt oxide, zirconium oxide and / or zinc oxide itself as a carrier, and even a catalyst in which gold is supported on the carrier, gold, cobalt oxide, zirconium oxide and / or oxidation is used. It may be a catalyst in which zinc is supported on a suitable carrier.

【0008】酸化コバルト、酸化ジルコニウム及び/
又は酸化亜鉛そのものを担体として用い、これに金を担
持した触媒は、金触媒調製の常法、例えば析出沈殿法
(特許第2615432号)、共沈法(特開昭60−2
38148)等によって調製することができる。また、
適当な溶媒中で予め調製した金のコロイド粒子を酸化コ
バルト、酸化ジルコニウム及び/又は酸化亜鉛に担持さ
せる方法(以下、金コロイド担持法と呼ぶ、J.Catal. 1
999, 181, 223., Gold Bull., 1999, 32, 96.)や、水溶
性金化合物を含む水溶液に酸化コバルト、酸化ジルコニ
ウム及び/又は酸化亜鉛を投入し含浸させ、次いでギ酸
塩等の適当な還元剤を用いて金塩を還元する方法(特開
2000−63338)によっても調製することができ
る。上記調製法の内、共沈法では担体である酸化コバル
ト、酸化ジルコニウム及び/又は酸化亜鉛は触媒調製時
に金微粒子と共に生成するが、他の調製法では担体であ
る酸化コバルト、酸化ジルコニウム及び/又は酸化亜鉛
を別途準備しておけばよい。ここで使用する酸化コバル
ト、酸化ジルコニウム及び/又は酸化亜鉛は常法によ
り、例えば硝酸塩、塩化物などのコバルト塩、ジルコニ
ウム塩又は亜鉛塩の水溶液にアルカリを作用させて得ら
れる沈殿を水洗、焼成することによって調製することが
できる。また、上記酸化物は広く市販されており、それ
らをそのまま使用することもできる。担体の比表面積に
関しては特に制限されないが、金粒子を担体上に高分散
担持するためにはBET法で測定された比表面積が1m
2/g以上のものが好ましい。いずれの調製法による触
媒も本発明において使用することが可能であるが、金が
特に微細な粒子として担持された高活性な触媒を調製す
るためには、析出沈殿法、金コロイド担持法、共沈法が
好ましい。
Cobalt oxide, zirconium oxide and / or
Alternatively, a catalyst in which zinc oxide itself is used as a carrier and gold is supported on the carrier is a conventional method for preparing a gold catalyst, for example, a precipitation-precipitation method (Japanese Patent No. 2615432), a coprecipitation method (JP-A-60-2).
38148) and the like. Also,
A method of supporting gold colloid particles prepared in advance in a suitable solvent on cobalt oxide, zirconium oxide and / or zinc oxide (hereinafter referred to as a gold colloid supporting method, J. Catal.
999, 181, 223., Gold Bull., 1999, 32, 96.) or an aqueous solution containing a water-soluble gold compound and impregnated with cobalt oxide, zirconium oxide and / or zinc oxide, and then a suitable formate salt or the like. It can also be prepared by a method of reducing a gold salt using a different reducing agent (JP-A 2000-63338). Among the above-mentioned preparation methods, in the coprecipitation method, the carrier cobalt oxide, zirconium oxide and / or zinc oxide is produced together with the fine gold particles in the catalyst preparation, but in other preparation methods, the carrier cobalt oxide, zirconium oxide and / or It is only necessary to prepare zinc oxide separately. Cobalt oxide, zirconium oxide and / or zinc oxide used here are washed and calcined by a conventional method, for example, by precipitation of an aqueous solution of cobalt salt such as nitrate or chloride, zirconium salt or zinc salt with an alkali. Can be prepared by Further, the above oxides are widely commercially available, and they can be used as they are. The specific surface area of the carrier is not particularly limited, but the specific surface area measured by the BET method is 1 m in order to support the gold particles on the carrier in a highly dispersed manner.
It is preferably 2 / g or more. Although catalysts prepared by any of the preparation methods can be used in the present invention, in order to prepare a highly active catalyst in which gold is supported as particularly fine particles, precipitation precipitation method, gold colloid supporting method, The precipitation method is preferred.

【0009】金と、酸化コバルト、酸化ジルコニウム
及び/又は酸化亜鉛を適当な担体に担持した触媒は、任
意の担体、例えばチタニア、アルミナ、シリカ、ゼオラ
イト、カーボン等に、金と、酸化コバルト、酸化ジルコ
ニウム及び/又は酸化亜鉛を担持することによって調製
することができる。金と、酸化コバルト、酸化ジルコニ
ウム及び/又は酸化亜鉛を担体に担持する順序は特に制
限されず、担体に酸化コバルト、酸化ジルコニウム及び
/又は酸化亜鉛を担持した後、金を担持してもよいし、
金、酸化コバルト、酸化ジルコニウム及び/又は酸化亜
鉛を同時に担体上に担持させてもよい。
The catalyst in which gold and cobalt oxide, zirconium oxide and / or zinc oxide are supported on a suitable carrier can be used for any carrier such as titania, alumina, silica, zeolite, carbon, etc. It can be prepared by loading zirconium and / or zinc oxide. The order of supporting gold and cobalt oxide, zirconium oxide and / or zinc oxide on the carrier is not particularly limited, and gold may be supported after supporting cobalt oxide, zirconium oxide and / or zinc oxide on the carrier. ,
Gold, cobalt oxide, zirconium oxide and / or zinc oxide may be simultaneously supported on the carrier.

【0010】金と酸化コバルト、酸化ジルコニウム及び
/又は酸化亜鉛との存在比は、特に限定されないが、金
の分散性の観点から、これら酸化物(各々Co34、Z
rO 2、ZnOとして)に対する金が0.01〜30重
量%が好ましく、特に0.1〜10重量%が好ましい。
Gold and cobalt oxide, zirconium oxide and
And / or the abundance ratio with zinc oxide is not particularly limited, but gold
From the viewpoint of dispersibility of these oxides (each Co3OFour, Z
rO 2, As ZnO) 0.01 to 30 times gold
Amount% is preferable, and 0.1 to 10% by weight is particularly preferable.

【0011】本発明において使用される触媒の形態は特
に限定されず、粉末状、成形品等を反応器の形式に応じ
て使用すれば良い。反応器の形式としては、攪拌槽方
式、懸濁床方式、固定床方式等を用いることができる。
また、触媒量は装置に応じて任意に設定される。
The form of the catalyst used in the present invention is not particularly limited, and powders, molded products and the like may be used depending on the type of reactor. As a reactor type, a stirring tank system, a suspension bed system, a fixed bed system, or the like can be used.
Further, the catalyst amount is arbitrarily set according to the device.

【0012】本発明で用いる原料であるアミノアルコー
ルは、アミノ基とアルコール性水酸基とを有するもので
あり、例えば、2−アミノエタノール(モノエタノール
アミン)、2−メチルアミノエタノール、2−エチルア
ミノエタノール、2−フェニルアミノエタノール、2−
ジメチルアミノエタノール、2−ジエチルアミノエタノ
ール、1−(2−ヒドロキシエチル)ピロリジン等のモ
ノエタノールアミン誘導体、ジエタノールアミン、N−
メチルジエタノールアミン、N−エチルジエタノールア
ミン等のジエタノールアミン誘導体、およびトリエタノ
ールアミン等が挙げられ、モノエタノールアミン誘導体
が好ましく、特に2−ジメチルアミノエタノールが好ま
しい。
The amino alcohol which is a raw material used in the present invention has an amino group and an alcoholic hydroxyl group, and for example, 2-aminoethanol (monoethanolamine), 2-methylaminoethanol, 2-ethylaminoethanol. , 2-phenylaminoethanol, 2-
Monoethanolamine derivatives such as dimethylaminoethanol, 2-diethylaminoethanol, 1- (2-hydroxyethyl) pyrrolidine, diethanolamine, N-
Examples thereof include diethanolamine derivatives such as methyldiethanolamine and N-ethyldiethanolamine, and triethanolamine. Monoethanolamine derivatives are preferable, and 2-dimethylaminoethanol is particularly preferable.

【0013】また、本発明で上記原料より得られるアミ
ノカルボン酸又はその塩としては、例えば、グリシン、
ザルコシン、N,N−ジメチルグリシン、N,N−ジエ
チルグリシン、N−カルボキシメチルピロリジン、イミ
ノ二酢酸、ニトリロ三酢酸、又はそれらの塩等が挙げら
れ、アルキル置換グリシンが好ましく、N,N−ジメチ
ルグリシンが特に好ましい。
The aminocarboxylic acid or salt thereof obtained from the above raw materials in the present invention includes, for example, glycine,
Examples thereof include sarcosine, N, N-dimethylglycine, N, N-diethylglycine, N-carboxymethylpyrrolidine, iminodiacetic acid, nitrilotriacetic acid, or salts thereof, and alkyl-substituted glycine is preferable, and N, N-dimethyl is preferable. Glycine is particularly preferred.

【0014】本発明において、アミノアルコールの酸化
は、目的とするアミノカルボン酸又はその塩の状態に応
じて、アルカリの存在下又は非存在下で実施することが
できる。すなわち、目的とする化合物がアミノカルボン
酸塩である場合は生成するカルボン酸を中和するのに必
要な量のアルカリを添加して反応を行えばよいし、目的
とする化合物が遊離のアミノカルボン酸である場合はア
ルカリを添加せずに反応を行えばよい。また、生成する
カルボン酸又はその塩に対して添加するアルカリの量を
0〜1当量の範囲で任意に設定すれば、アミノカルボン
酸塩と遊離のアミノカルボン酸の混合物を得ることもで
きる。本発明で使用するアルカリとしては、例えば、水
酸化リチウム、水酸化ナトリウム、水酸化カリウム、水
酸化カルシウム、テトラメチルアンモニウムヒドロキシ
ド等の苛性アルカリ類、炭酸水素ナトリウム、炭酸ナト
リウム、炭酸カルシウム等の炭酸塩類や、アンモニア、
トリメチルアミン、トリエチルアミン等のアミン類が使
用され得るが、アルカリ金属の水酸化物が好ましく、入
手しやすさの点から水酸化ナトリウムがより好ましい。
In the present invention, the oxidation of amino alcohol can be carried out in the presence or absence of an alkali, depending on the state of the target aminocarboxylic acid or its salt. That is, when the target compound is an aminocarboxylic acid salt, the reaction may be carried out by adding an amount of alkali necessary for neutralizing the carboxylic acid formed, and the target compound is a free aminocarboxylic acid. When it is an acid, the reaction may be carried out without adding an alkali. Further, a mixture of an aminocarboxylic acid salt and a free aminocarboxylic acid can be obtained by arbitrarily setting the amount of alkali to be added to the carboxylic acid or its salt to be produced in the range of 0 to 1 equivalent. Examples of the alkali used in the present invention include caustic alkalis such as lithium hydroxide, sodium hydroxide, potassium hydroxide, calcium hydroxide and tetramethylammonium hydroxide, and carbonates such as sodium hydrogen carbonate, sodium carbonate and calcium carbonate. Salt, ammonia,
Although amines such as trimethylamine and triethylamine can be used, alkali metal hydroxides are preferable, and sodium hydroxide is more preferable from the viewpoint of availability.

【0015】本発明では、酸化剤として含酸素ガスが使
用される。含酸素ガスとしては、例えば、酸素、空気、
任意の組成の酸素と窒素等の不活性ガスとの混合ガス、
任意の組成の酸素と空気の混合ガス等が挙げられる。こ
れらの中では反応速度の点からは酸素ガスが好ましく、
一方、経済性の点からは空気が好ましく、目的に応じて
酸化剤を選択することができる。含酸素ガスの圧力は特
に限定されないが、装置の装備の面から常圧〜10MP
aで用いることが好ましい。
In the present invention, an oxygen-containing gas is used as the oxidizing agent. Examples of the oxygen-containing gas include oxygen, air,
A mixed gas of oxygen and an inert gas such as nitrogen having any composition,
A mixed gas of oxygen and air having an arbitrary composition may be used. Among these, oxygen gas is preferable from the viewpoint of reaction rate,
On the other hand, from the viewpoint of economy, air is preferable, and the oxidizer can be selected according to the purpose. The pressure of the oxygen-containing gas is not particularly limited, but it is normal pressure to 10MP from the viewpoint of equipment of the device.
It is preferable to use a.

【0016】本発明の酸化反応は、原料であるアミノア
ルコールを適当な溶媒に溶解させて行う。使用される溶
媒としては特に制限されないが、安全性、経済性の観点
から水が好ましい。アミノアルコールの濃度は任意に設
定することが出来るが、良好な反応速度及び目的とする
アミノカルボン酸の選択性を得る観点から、好ましくは
40重量%以下、より好ましくは20〜35重量%であ
る。
The oxidation reaction of the present invention is carried out by dissolving the starting material amino alcohol in a suitable solvent. The solvent used is not particularly limited, but water is preferable from the viewpoint of safety and economy. The concentration of the amino alcohol can be set arbitrarily, but from the viewpoint of obtaining a good reaction rate and the desired selectivity of the aminocarboxylic acid, it is preferably 40% by weight or less, more preferably 20 to 35% by weight. .

【0017】本発明において、反応温度は原料であるア
ミノアルコールの反応性に応じて任意に設定されるが、
反応速度を速め、また副生成物の量を抑えて目的物の選
択率を向上させる観点から、好ましくは0〜100℃、
より好ましくは10〜80℃である。
In the present invention, the reaction temperature is arbitrarily set according to the reactivity of the starting amino alcohol.
From the viewpoint of accelerating the reaction rate and suppressing the amount of by-products to improve the selectivity of the target product, preferably 0 to 100 ° C.,
More preferably, it is 10 to 80 ° C.

【0018】[0018]

【実施例】以下の各例における反応率(原料の転化
率)、収率及び選択率は、1H−NMR内部標準法(内
標:酢酸ナトリウム)による定量値を基に算出してお
り、モル%で表記されている。また、各触媒における金
微粒子の平均粒子径は透過型電子顕微鏡(TEM)、又
はX線回折(XRD)におけるAu[111]面のピーク
半値幅より算出している。
EXAMPLES The reaction rate (conversion rate of raw materials), yield and selectivity in each of the following examples are calculated based on quantitative values by 1 H-NMR internal standard method (internal standard: sodium acetate), It is expressed in mol%. Further, the average particle size of the gold fine particles in each catalyst is calculated from the peak half width of the Au [111] plane in a transmission electron microscope (TEM) or X-ray diffraction (XRD).

【0019】触媒調製例1 硝酸コバルト(II)6水和物400gにイオン交換水2
114.4gを加え、室温で攪拌しながら溶解した。こ
れに炭酸ナトリウム190.68gをイオン交換水21
45.46gに溶解した溶液を添加し、生じた沈殿をろ
過、水洗した。これを減圧下、50℃で乾燥後、空気
中、400℃で4時間焼成することによって、酸化コバ
ルト98.12gを得た。この酸化コバルトの比表面積
は70m2/gであった。
Catalyst Preparation Example 1 Ion-exchanged water 2 to 400 g of cobalt (II) nitrate hexahydrate
114.4 g was added and dissolved at room temperature with stirring. Sodium carbonate 190.68g is added to this with ion-exchanged water
A solution dissolved in 45.46 g was added, and the generated precipitate was filtered and washed with water. This was dried at 50 ° C. under reduced pressure and then calcined in air at 400 ° C. for 4 hours to obtain 98.12 g of cobalt oxide. The specific surface area of this cobalt oxide was 70 m 2 / g.

【0020】3Lセパラブルフラスコに塩化金酸4水和
物0.628g、蒸留水2400mLを仕込み、攪拌し
ながら70℃に昇温した。0.1N水酸化ナトリウム水
溶液を用いてpHを7.5に調整した後、上記のCo3
4 30gを添加し、70℃でさらに1時間攪拌を行
った。放冷後懸濁液をろ過し、得られた触媒を、洗液が
硝酸銀水溶液により白濁しなくなるまで水洗した。この
触媒を50℃で減圧乾燥した後、空気中、400℃で4
時間焼成することによってAu/Co34触媒を得た。
分析の結果、本触媒のAu含有量は0.84%、TEM
分析によるAu微粒子の平均粒子径は4nmであった。
A 3 L separable flask was charged with 0.628 g of chloroauric acid tetrahydrate and 2400 mL of distilled water, and the temperature was raised to 70 ° C. with stirring. After adjusting the pH to 7.5 with a 0.1N aqueous sodium hydroxide solution, the above Co 3
30 g of O 4 was added, and the mixture was stirred at 70 ° C. for 1 hour. After allowing to cool, the suspension was filtered, and the obtained catalyst was washed with water until the washing liquid became cloudless with the silver nitrate aqueous solution. The catalyst was dried under reduced pressure at 50 ° C and then dried in air at 400 ° C for 4 hours.
An Au / Co 3 O 4 catalyst was obtained by calcining for a time.
As a result of the analysis, the Au content of the catalyst was 0.84%, TEM
The average particle size of the Au fine particles as analyzed was 4 nm.

【0021】触媒調製例2 2Lビーカーに0.2N水酸化ナトリウム水溶液44.
22g、蒸留水1370gを仕込み、室温で攪拌しなが
ら1%テトラキス(ヒドロキシメチル)ホスホニウムク
ロリド水溶液29.06gを添加した。加水分解を2分
間行った後、蒸留水34.83gに塩化金酸4水和物
0.628gを溶解した水溶液を添加し、室温で1時間
還元を行った。得られた金コロイド溶液に1%硫酸を加
えてpHを6に調整し、ZnO(堺化学製、比表面積9
2/g)30gを添加して室温で一晩金微粒子の固定
化処理を行った。得られた懸濁液を触媒調製例1と同様
に処理することよってAu/ZnO触媒を得た。分析の
結果、本触媒のAu含有量は0.97%、TEM分析に
よるAu微粒子の平均粒子径は5nmであった。
Catalyst Preparation Example 2 A 2L beaker was charged with a 0.2N aqueous sodium hydroxide solution 44.
22 g and 1370 g of distilled water were charged, and 29.06 g of a 1% tetrakis (hydroxymethyl) phosphonium chloride aqueous solution was added with stirring at room temperature. After hydrolysis for 2 minutes, an aqueous solution in which 0.628 g of chloroauric acid tetrahydrate was dissolved in 34.83 g of distilled water was added, and reduction was carried out at room temperature for 1 hour. 1% sulfuric acid was added to the obtained gold colloid solution to adjust the pH to 6, and ZnO (manufactured by Sakai Chemical Co., Ltd., specific surface area 9
m 2 / g) (30 g) was added and the gold fine particles were immobilized overnight at room temperature. The obtained suspension was treated in the same manner as in Catalyst Preparation Example 1 to obtain an Au / ZnO catalyst. As a result of the analysis, the Au content of this catalyst was 0.97%, and the average particle size of the Au fine particles by TEM analysis was 5 nm.

【0022】触媒調製例3 ZnOの代わりに、ZrO2(第一稀元素化学工業製、
比表面積88m2/g)を30g用い、金コロイド溶液
のpHを2に調整する以外は、触媒調製例2と同様の方
法で、Au/ZrO2触媒を得た。分析の結果、本触媒
のAu含有量は0.88%、TEM分析によるAu微粒
子の平均粒子径は5nmであった。
Catalyst Preparation Example 3 Instead of ZnO, ZrO 2 (manufactured by Daiichi Rare Element Chemical Industry,
An Au / ZrO 2 catalyst was obtained in the same manner as in Catalyst Preparation Example 2 except that 30 g of a specific surface area of 88 m 2 / g) was used and the pH of the gold colloid solution was adjusted to 2. As a result of the analysis, the Au content of this catalyst was 0.88%, and the average particle size of the Au fine particles by TEM analysis was 5 nm.

【0023】比較触媒調製例1 20Lポリバケツに塩化金酸4水和物3.00g、蒸留
水12.38kgを仕込み、室温で攪拌しながら2%ポ
リビニルアルコール水溶液44.48gを添加した。3
0分後、0.1M NaBH4水溶液292.09gを
添加し、室温で3時間還元を行った。還元後、活性炭
(武田薬品製、比表面積879m2/g)142.04
gを添加し、室温で一晩攪拌した。得られた懸濁液を触
媒調製例1と同様に処理することよってAu/C触媒を
得た。分析の結果、本触媒のAu含有量は0.94%、
XRD分析によるAu微粒子の平均粒子径は6nmであ
った。
Comparative Catalyst Preparation Example 1 A 20 L poly bucket was charged with 3.00 g of chloroauric acid tetrahydrate and 12.38 kg of distilled water, and 44.48 g of a 2% aqueous polyvinyl alcohol solution was added with stirring at room temperature. Three
After 0 minutes, 292.09 g of 0.1 M NaBH 4 aqueous solution was added, and reduction was performed at room temperature for 3 hours. After reduction, activated carbon (manufactured by Takeda Yakuhin, specific surface area 879 m 2 / g) 142.04
g and stirred at room temperature overnight. The obtained suspension was treated in the same manner as in Catalyst Preparation Example 1 to obtain an Au / C catalyst. As a result of the analysis, the Au content of this catalyst was 0.94%,
The average particle size of the Au fine particles as determined by XRD analysis was 6 nm.

【0024】比較触媒調製例2 担体としてTiO2(日本アエロジル製、比表面積49
2/g)を用いる以外は、触媒調製例1の方法で触媒
調製を行うことにより、Au/TiO2触媒を得た。分
析の結果、本触媒のAu含有量は0.93%、TEM分
析によるAu微粒子の平均粒子径は8nmであった。
Comparative Catalyst Preparation Example 2 TiO 2 (manufactured by Nippon Aerosil, specific surface area 49
except using m 2 / g), by performing the catalyst preparation by the method of Catalyst Preparation Example 1 to obtain the Au / TiO 2 catalyst. As a result of the analysis, the Au content of this catalyst was 0.93%, and the average particle size of the Au fine particles by TEM analysis was 8 nm.

【0025】実施例1 1Lの5つ口フラスコに2−ジメチルアミノエタノール
25g、触媒調製例1で調製した1%Au/Co34
媒5g、水酸化ナトリウム12.34g、及び蒸留水4
75gを仕込んで攪拌しながら30℃に昇温した。その
後、スパジャーにより酸素を209mL/min(2−
ジメチルアミノエタノールに対して1時間当たり2当
量)の流量で吹き込み、反応を行った。10時間後に反
応を終了し、ろ過により触媒の除去を行ってN,N−ジ
メチルグリシンナトリウム塩の水溶液を得た。得られた
N,N−ジメチルグリシンナトリウム塩の水溶液を分析
した結果を表1に示す。
Example 1 25 g of 2-dimethylaminoethanol, 5 g of 1% Au / Co 3 O 4 catalyst prepared in Catalyst Preparation Example 1, 12.34 g of sodium hydroxide, and 4 parts of distilled water were placed in a 1 L 5-necked flask.
75 g was charged and the temperature was raised to 30 ° C. with stirring. Then, use a sparger to add oxygen at 209 mL / min (2-
The reaction was performed by blowing at a flow rate of 2 equivalents per hour with respect to dimethylaminoethanol. The reaction was terminated after 10 hours, and the catalyst was removed by filtration to obtain an aqueous solution of N, N-dimethylglycine sodium salt. Table 1 shows the results of analysis of the obtained aqueous solution of N, N-dimethylglycine sodium salt.

【0026】実施例2 触媒として触媒調製例2で調製した1%Au/ZnOを
用い、反応時間を7時間とした以外は実施例1の方法に
従って反応を行った。得られたN,N−ジメチルグリシ
ンナトリウム塩の水溶液を分析した結果を表1に示す。
Example 2 The reaction was carried out according to the method of Example 1 except that 1% Au / ZnO prepared in Catalyst Preparation Example 2 was used as the catalyst and the reaction time was 7 hours. Table 1 shows the results of analysis of the obtained aqueous solution of N, N-dimethylglycine sodium salt.

【0027】実施例3 触媒として触媒調製例3で調製した1%Au/ZrO2
を用い、反応時間を10時間とした以外は実施例1の方
法に従って反応を行った。得られたN,N−ジメチルグ
リシンナトリウム塩の水溶液を分析した結果を表1に示
す。
Example 3 1% Au / ZrO 2 prepared in Catalyst Preparation Example 3 as a catalyst
Was used and the reaction was carried out according to the method of Example 1 except that the reaction time was 10 hours. Table 1 shows the results of analysis of the obtained aqueous solution of N, N-dimethylglycine sodium salt.

【0028】比較例1〜2 触媒として、比較触媒調製例1、2で調製した、1%A
u/C触媒又は1%Au/TiO2触媒を用い、反応時
間をそれぞれ表1に示したように変更した以外は、実施
例1の方法に従って反応を行った。結果を表1に示す。
Comparative Examples 1-2 As catalysts, 1% A prepared in Comparative Catalyst Preparation Examples 1 and 2
The reaction was carried out according to the method of Example 1 except that u / C catalyst or 1% Au / TiO 2 catalyst was used and the reaction time was changed as shown in Table 1. The results are shown in Table 1.

【0029】[0029]

【表1】 [Table 1]

【0030】[0030]

【発明の効果】本発明の方法により、活性炭担持金触媒
(比較例1)等を使用した場合と比較し、反応速度が高
く、中でも酸化コバルト又は酸化亜鉛を有する金属触媒
は特に高収率で目的とするアミノカルボン酸又はその塩
を得ることができる。
According to the method of the present invention, the reaction rate is higher than that in the case of using the activated carbon-supported gold catalyst (Comparative Example 1) and the like, and the metal catalyst containing cobalt oxide or zinc oxide is particularly high in yield. The target aminocarboxylic acid or salt thereof can be obtained.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4H006 AA02 AC46 AC52 BA02 BA07 BA10 BA18 BA29 BA30 BA55 BA69 BE30 4H039 CA65 CC30    ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 4H006 AA02 AC46 AC52 BA02 BA07                       BA10 BA18 BA29 BA30 BA55                       BA69 BE30                 4H039 CA65 CC30

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 アミノアルコールを含酸素ガスにより酸
化してアミノカルボン酸又はその塩を製造する方法であ
って、触媒として酸化コバルト、酸化ジルコニウム及び
酸化亜鉛から選ばれる少なくとも1種の金属酸化物を含
有する金触媒を用いるアミノカルボン酸又はその塩の製
造法。
1. A method for producing an aminocarboxylic acid or a salt thereof by oxidizing an amino alcohol with an oxygen-containing gas, wherein at least one metal oxide selected from cobalt oxide, zirconium oxide and zinc oxide is used as a catalyst. A method for producing an aminocarboxylic acid or a salt thereof using a gold catalyst contained therein.
【請求項2】 アミノアルコールの酸化をアルカリの存
在下にて行う請求項1記載の製造法。
2. The production method according to claim 1, wherein the oxidation of amino alcohol is carried out in the presence of an alkali.
【請求項3】 アミノアルコールが2−ジメチルアミノ
エタノールであり、アミノカルボン酸がN,N−ジメチ
ルグリシンである請求項1又は2記載の製造法。
3. The method according to claim 1, wherein the amino alcohol is 2-dimethylaminoethanol and the aminocarboxylic acid is N, N-dimethylglycine.
JP2002073942A 2002-03-18 2002-03-18 Method for producing aminocarboxylic acid (salt) Expired - Fee Related JP4115724B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002073942A JP4115724B2 (en) 2002-03-18 2002-03-18 Method for producing aminocarboxylic acid (salt)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002073942A JP4115724B2 (en) 2002-03-18 2002-03-18 Method for producing aminocarboxylic acid (salt)

Publications (2)

Publication Number Publication Date
JP2003267939A true JP2003267939A (en) 2003-09-25
JP4115724B2 JP4115724B2 (en) 2008-07-09

Family

ID=29203474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002073942A Expired - Fee Related JP4115724B2 (en) 2002-03-18 2002-03-18 Method for producing aminocarboxylic acid (salt)

Country Status (1)

Country Link
JP (1) JP4115724B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012141915A1 (en) 2011-04-13 2012-10-18 Rennovia, Inc. Production of caprolactam from carbohydrate-containing materials

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012141915A1 (en) 2011-04-13 2012-10-18 Rennovia, Inc. Production of caprolactam from carbohydrate-containing materials
US9181194B2 (en) 2011-04-13 2015-11-10 Rennovia Inc. Production of caprolactam from carbohydrate-containing materials

Also Published As

Publication number Publication date
JP4115724B2 (en) 2008-07-09

Similar Documents

Publication Publication Date Title
JP4062647B2 (en) Catalyst for steam reforming of methanol
WO2013108424A1 (en) Exhaust gas purifying catalyst and method for producing same
CN107899575B (en) Nano-gold catalyst for generating ester by one-step oxidation esterification of aldehyde and alcohol and preparation method and application thereof
KR101359990B1 (en) Catalyst for Reforming of Methane with the Enhanced Stability for Sulfur components, Preparing Method Thereof and Methane Reforming Method Using The Catalyst
JPH0336571B2 (en)
JP2007083197A (en) Method for producing copper-zinc-aluminum based catalyst
US4386017A (en) Preparation of improved catalyst composition
AU714351B2 (en) Catalysts for dhydrogenation of amino alcohols to amino alcohols to amino carbosylic acids or of ethylene glycol (derivatives) to oxycarboxylic acids, method for their production and their use
WO2018215943A1 (en) Copper-zinc-zirconium-based catalyst for direct hydrogenation of co2 to methanol
WO2018069759A1 (en) Copper/zinc/aluminium catalyst for the methanol synthesis prepared from a binary zinc-aluminium precursor solution
JP2000512261A (en) Method for producing methanol and catalyst therefor
CN108126761B (en) Cobalt-based composite particle load, preparation and synthesis of carboxylic ester
CN1355783A (en) Process for preparation of carboxylic acid salts from primary alcohols
JP2020011228A (en) Catalyst for alcohol synthesis, and method for producing alcohol using the same
JPH10216522A (en) Catalyst for methanol synthesis
JP5038700B2 (en) Method for producing fat nitrogen-containing compound
EP3384985A1 (en) Steam reforming catalyst for hydrocarbons
CN107824199B (en) Magnetic nano gold catalyst for synthesizing ester by aldehyde one-step oxidative esterification and preparation method and application thereof
JP2002079101A (en) Catalyst precursor for methanol steam reforming, catalyst for methanol steam reforming and its manufacturing method
JP4115724B2 (en) Method for producing aminocarboxylic acid (salt)
CN113509922B (en) Catalyst for synthesizing aliphatic carbonate and preparation method and application thereof
CN112156797B (en) Catalyst for synthesizing dimethyl carbonate by ester exchange of cyclic carbonate and methanol, preparation method and application thereof
JP3944875B2 (en) Catalyst for synthesizing carboxylic acid ester and method for producing carboxylic acid ester
JPS6253739A (en) Preparation of methanol synthesizing catalyst
JP2017124366A (en) Catalyst for ammonia decomposition and manufacturing method of hydrogen using catalyst

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050207

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080415

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080416

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120425

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140425

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees