JP2003267745A - Method and apparatus for drawing optical fiber - Google Patents

Method and apparatus for drawing optical fiber

Info

Publication number
JP2003267745A
JP2003267745A JP2002072637A JP2002072637A JP2003267745A JP 2003267745 A JP2003267745 A JP 2003267745A JP 2002072637 A JP2002072637 A JP 2002072637A JP 2002072637 A JP2002072637 A JP 2002072637A JP 2003267745 A JP2003267745 A JP 2003267745A
Authority
JP
Japan
Prior art keywords
optical fiber
furnace
temperature adjusting
tube
adjusting gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002072637A
Other languages
Japanese (ja)
Other versions
JP4169997B2 (en
Inventor
Kenji Okada
健志 岡田
Munehisa Fujimaki
宗久 藤巻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2002072637A priority Critical patent/JP4169997B2/en
Publication of JP2003267745A publication Critical patent/JP2003267745A/en
Application granted granted Critical
Publication of JP4169997B2 publication Critical patent/JP4169997B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/027Fibres composed of different sorts of glass, e.g. glass optical fibres
    • C03B37/02718Thermal treatment of the fibre during the drawing process, e.g. cooling
    • C03B37/02727Annealing or re-heating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/029Furnaces therefor
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2205/00Fibre drawing or extruding details
    • C03B2205/56Annealing or re-heating the drawn fibre prior to coating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2205/00Fibre drawing or extruding details
    • C03B2205/60Optical fibre draw furnaces
    • C03B2205/90Manipulating the gas flow through the furnace other than by use of upper or lower seals, e.g. by modification of the core tube shape or by using baffles

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and an apparatus for drawing an optical fiber capable of spinning the optical fiber having reduced transmission loss and small variation of the outer diameter. <P>SOLUTION: A furnace bottom tube 5 is provided successively at the lower end of a furnace core tube 2. An optical fiber preform 10 is suspended inside the furnace core tube 2 and the tip of the optical fiber preform 10 is melted by heating to reduce the diameter. The diameter reduced part 11 is positioned in the furnace bottom tube 5 and drawn upto the outer diameter of an optical fiber 12 while slowly cooling the diameter reduced part 11 by flowing a temperature adjusting-gas in the furnace bottom tube 5. The drawing conditions are controlled such that the diameter reduced part 11 reaches the target outer diameter of the optical fiber 12 within the furnace bottom tube 5 and the Reynolds number R of the temperature adjusting-gas flow is 1,000 or less. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、光ファイバ用母材
を加熱溶融して光ファイバを線引きするために用いられ
る光ファイバの線引き方法および装置に関し、特に、光
ファイバの伝送損失を低減させるとともに、外径変動を
小さく抑制しうる光ファイバの線引き方法および装置に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical fiber drawing method and device used for drawing an optical fiber by heating and melting an optical fiber preform, and more particularly to reducing transmission loss of the optical fiber. The present invention relates to an optical fiber drawing method and apparatus capable of suppressing fluctuations in outer diameter to a small extent.

【0002】[0002]

【従来の技術】従来、光ファイバは、光ファイバ母材を
紡糸炉で加熱溶融し、線引き(紡糸)することにより製
造されている。線引き後の光ファイバが冷たい外気にさ
らされると、ガラスが急冷され、高温の液体構造が保持
されたまま固化することになる。すると、ガラスの密度
揺らぎや濃度揺らぎが大きくなり、レーリ散乱に起因す
る伝送損失が増加するおそれがある。このため、線引き
後の光ファイバを徐冷することが行われている。
2. Description of the Related Art Conventionally, an optical fiber is manufactured by heating and melting an optical fiber preform in a spinning furnace and drawing (spinning) the fiber. When the drawn optical fiber is exposed to cold ambient air, the glass is rapidly cooled and solidifies while retaining the hot liquid structure. Then, the density fluctuation and the density fluctuation of the glass become large, and the transmission loss due to Rayleigh scattering may increase. Therefore, the optical fiber after drawing is gradually cooled.

【0003】例えば、特開平10−218635号公報
には、ガラスの粘度に基づいて決められた温度範囲にお
いて、光ファイバを熱処理して徐冷し、レーリ散乱の低
減を図る方法が開示されている。また、特願2001−
374320号には、紡糸炉の下部に、該紡糸炉と一体
になるように円筒状の炉下部管を設け、線引き後の光フ
ァイバを前記炉下部管内に挿通し、該炉下部管内に温度
調整用ガスを流すことによって、前記光ファイバを徐冷
するようにした光ファイバの製造装置の提案がある。
For example, Japanese Laid-Open Patent Publication No. 10-218635 discloses a method for reducing Rayleigh scattering by heat-treating an optical fiber and gradually cooling it in a temperature range determined based on the viscosity of glass. . Also, Japanese Patent Application 2001-
In 374320, a cylindrical lower furnace tube is provided in the lower part of the spinning furnace so as to be integrated with the spinning furnace, and an optical fiber after drawing is inserted into the lower furnace tube to adjust the temperature in the lower furnace tube. There has been proposed an optical fiber manufacturing apparatus in which the optical fiber is gradually cooled by flowing a working gas.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、線引き
後の光ファイバを炉下部管を用いて徐冷するようにした
場合、得られる光ファイバの外径が、目標外径に対して
大きく変動することがあるという問題がある。本発明
は、上記事情に鑑みてなされたものであって、伝送損失
が低減され、かつ、外径変動の小さい光ファイバを紡糸
することができる光ファイバの線引き方法および装置を
提供することを課題とする。
However, when the drawn optical fiber is gradually cooled by using the furnace lower tube, the outer diameter of the obtained optical fiber greatly varies with respect to the target outer diameter. There is a problem that there is. The present invention has been made in view of the above circumstances, and an object thereof is to provide an optical fiber drawing method and apparatus capable of spinning an optical fiber with reduced transmission loss and small fluctuation in outer diameter. And

【0005】[0005]

【課題を解決するための手段】前記課題を解決するため
の本発明の光ファイバ素線の製造方法は、炉心管の下端
に炉下部管を連設し、光ファイバ母材を炉心管の内側に
吊り下げ、前記光ファイバ母材の先端部を加熱溶融する
ことにより縮径させ、この縮径部を、前記炉下部管内に
臨ませ、該炉下部管内に温度調整用ガスを流すことによ
り前記縮径部を徐冷しながら、光ファイバの目標外径に
なるまで線引きする光ファイバの線引き方法であって、
前記縮径部が炉下部管内で光ファイバの目標外径に達す
るようにし、かつ、温度調整用ガスの流れのレイノルズ
数を1000以下となるように、線引き条件を制御する
ことを特徴とする。
A method of manufacturing an optical fiber element wire according to the present invention for solving the above-mentioned problems comprises a lower furnace tube connected to a lower end of a core tube, and an optical fiber preform placed inside the core tube. The diameter of the tip end of the optical fiber preform is reduced by heating and melting the optical fiber preform, and the reduced diameter part is made to face the inside of the furnace lower tube, and a temperature adjusting gas is flowed in the furnace lower tube. A method of drawing an optical fiber in which the reduced diameter portion is gradually cooled and drawn until the target outer diameter of the optical fiber is achieved,
The drawing condition is controlled so that the reduced diameter portion reaches the target outer diameter of the optical fiber in the furnace lower tube and the Reynolds number of the flow of the temperature adjusting gas is 1000 or less.

【0006】周知の通り、レイノルズ数は、流れにおけ
る流体の慣性力と粘性力の比を表わす無次元の値であ
る。レイノルズ数が所定の臨界値以下では、流れは層流
となって整然と流れ、臨界値を超えると乱流となって乱
れやすいということができる。
As is well known, the Reynolds number is a dimensionless value representing the ratio of the inertial force and the viscous force of a fluid in a flow. It can be said that when the Reynolds number is equal to or lower than a predetermined critical value, the flow becomes a laminar flow and flows in an orderly manner, and when the Reynolds number exceeds the critical value, a turbulent flow easily occurs.

【0007】本発明において、炉下部管内に流される温
度調整用ガスの流れのレイノルズ数Rは、該炉下部管の
内径をd、温度調整用ガスの流速をv、温度調整用ガス
の動粘度をηとするとき、R=vd/ηとして表され
る。
In the present invention, the Reynolds number R of the flow of the temperature adjusting gas flowing in the lower furnace tube is defined by the inner diameter of the lower furnace tube d, the flow rate of the temperature adjusting gas v, and the kinematic viscosity of the temperature adjusting gas. Is represented by R = vd / η.

【0008】そして、縮径部が炉下部管内で光ファイバ
の目標外径に達するようにし、縮径部から光ファイバの
目標外径に達するまでの部分を、温度調整用ガスにて徐
冷する。そして、前記温度調整用ガスの流れのレイノル
ズ数Rを1000以下とする。これにより、光ファイバ
の徐冷が効果的に行われるようになり、かつ温度調整用
ガスの流れが安定するので、光ファイバの伝送損失を低
減することができるとともに、外径変動と極めて小さく
抑制することができる。
Then, the reduced diameter portion is made to reach the target outer diameter of the optical fiber in the furnace lower tube, and the portion from the reduced diameter portion to the target outer diameter of the optical fiber is gradually cooled by the temperature adjusting gas. . Then, the Reynolds number R of the flow of the temperature adjusting gas is set to 1000 or less. As a result, the optical fiber can be cooled slowly and the flow of the temperature adjusting gas is stabilized, so that the transmission loss of the optical fiber can be reduced and the fluctuation of the outer diameter can be suppressed to a very small level. can do.

【0009】前記温度調整用ガスの流れのレイノルズ数
を1000以下とするためには、例えば、前記炉下部管
として、前記温度調整用ガスの流れのレイノルズ数が1
000以下となるようなものを用いる方法、および/ま
たは、前記温度調整用ガスとして、少なくとも2種類の
ガスを用意し、その混合比率と温度とを変化させること
により、温度調整用ガスの流れのレイノルズ数を100
0以下となるようにする方法を用いることができる。
In order to set the Reynolds number of the flow of the temperature adjusting gas to 1000 or less, for example, the Reynolds number of the flow of the temperature adjusting gas is 1 as the furnace lower tube.
000 or less, and / or at least two kinds of gases are prepared as the temperature adjusting gas, and the mixing ratio and the temperature thereof are changed to change the flow of the temperature adjusting gas. Reynolds number is 100
It is possible to use a method in which it becomes 0 or less.

【0010】さらに本発明は、光ファイバ母材を収容す
るための炉心管と、該炉心管の外周に設置され、前記光
ファイバ母材の先端部を加熱溶融して縮径させるための
ヒータと、前記炉心管の下端に連設されている炉下部管
と、この炉下部管内に温度調整用ガスを供給するための
温度調整用ガス供給手段とを備える光ファイバの線引き
装置であって、前記炉下部管は、光ファイバの線引き速
度に応じて、温度調整用ガスの流れのレイノルズ数が1
000以下となるように、所定の形状のものに交換可能
となっている光ファイバの線引き装置を提供する。
Further, according to the present invention, there is provided a core tube for accommodating the optical fiber preform, and a heater installed on the outer periphery of the core tube for heating and melting the tip portion of the optical fiber preform to reduce its diameter. An optical fiber drawing apparatus comprising: a furnace lower tube connected to a lower end of the furnace core tube; and a temperature adjusting gas supply means for supplying a temperature adjusting gas into the furnace lower tube, The Reynolds number of the temperature adjusting gas flow is 1 in the furnace lower tube according to the drawing speed of the optical fiber.
(EN) Provided is an optical fiber drawing device which can be exchanged into a predetermined shape so as to be 000 or less.

【0011】また、本発明は、光ファイバ母材を収容す
るための炉心管と、前記光ファイバ母材の先端部を加熱
溶融して縮径させるためのヒータと、前記炉心管の下端
に連設されている炉下部管と、少なくとも2種類のガス
を所定の比率で混合して温度調整用ガスとするガス混合
手段と、前記ガス混合手段によって混合されるガスの混
合比率を、前記温度調整用ガスの流れのレイノルズ数が
1000以下となるように制御するガス混合比率制御手
段と、温度調整用ガスを前記炉下部管内に供給するため
の温度調整用ガス供給手段とを備える光ファイバの線引
き装置を提供する。このような線引き装置を用いること
により、温度調整用ガスの流れのレイノルズ数を容易に
調整することができるので、本発明の光ファイバの線引
き方法の実施が一層容易になる。
Further, according to the present invention, a core tube for accommodating the optical fiber preform, a heater for heating and melting the tip portion of the optical fiber preform to reduce the diameter, and a lower end of the core tube are connected. The furnace lower tube provided, a gas mixing means for mixing at least two kinds of gases at a predetermined ratio to obtain a temperature adjusting gas, and a mixing ratio of the gas mixed by the gas mixing means are set to the temperature adjusting means. Drawing of an optical fiber provided with gas mixing ratio control means for controlling the Reynolds number of the working gas to be 1000 or less, and temperature adjusting gas supplying means for supplying the temperature adjusting gas into the furnace lower tube. Provide a device. By using such a drawing device, the Reynolds number of the flow of the temperature adjusting gas can be easily adjusted, so that the optical fiber drawing method of the present invention can be more easily implemented.

【0012】[0012]

【発明の実施の形態】以下、実施の形態に基づいて、本
発明を詳しく説明する。図1は、本発明の光ファイバの
線引き方法に用いられる装置の一例を示す概略図であ
る。図1において、符号1は紡糸炉本体である。紡糸炉
本体1には、炉心管2が貫装されている。炉心管2は一
般にカーボンからなる管である。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail based on the embodiments. FIG. 1 is a schematic view showing an example of an apparatus used in the optical fiber drawing method of the present invention. In FIG. 1, reference numeral 1 is a spinning furnace main body. A core tube 2 is inserted through the spinning furnace body 1. The core tube 2 is generally a tube made of carbon.

【0013】炉心管2の内径は、特に制限されるもので
はなく、光ファイバ母材10の外径に応じて決定される
が、一般には、例えば、光ファイバ母材10の外径がφ
80〜90mmの場合、100〜120mmの範囲内と
される。また、炉心管2の肉厚は、一般に、1〜10m
mとされる。炉心管2の肉厚が1mm未満であると、強
度が低下して取扱い性が悪くなるので好ましくない。炉
心管2の肉厚の上限値は特に制限するものではないが、
必要以上に厚くしても無駄であり不経済であるので、1
0mm以下とすることが好ましい。
The inner diameter of the core tube 2 is not particularly limited and is determined according to the outer diameter of the optical fiber preform 10. Generally, for example, the outer diameter of the optical fiber preform 10 is φ.
In the case of 80 to 90 mm, the range is 100 to 120 mm. The wall thickness of the core tube 2 is generally 1 to 10 m.
m. If the wall thickness of the furnace core tube 2 is less than 1 mm, the strength is lowered and the handleability is deteriorated, which is not preferable. Although the upper limit of the wall thickness of the core tube 2 is not particularly limited,
It is wasteful and uneconomical to make it thicker than necessary, so 1
It is preferably 0 mm or less.

【0014】炉心管2の外周にはヒータ3が取り付けら
れており、炉心管2内に吊り下げられた光ファイバ母材
10の先端部を加熱溶融させることができるようになっ
ている。また、紡糸炉本体1の上部には、炉心管2内に
不活性ガスを供給するための不活性ガス供給手段4が設
けられている。炉心管2内に不活性ガスを供給すること
により、炉心管2の酸化による劣化とダストの発生とを
抑制していることができるので、好ましい。この炉心管
2内に供給される不活性ガスとしては、ヘリウム、アル
ゴン、窒素などを用いることができる。
A heater 3 is attached to the outer periphery of the core tube 2 so that the tip of the optical fiber preform 10 suspended in the core tube 2 can be heated and melted. Further, an inert gas supply means 4 for supplying an inert gas into the core tube 2 is provided on the upper portion of the spinning furnace body 1. By supplying the inert gas into the core tube 2, it is possible to suppress the deterioration of the core tube 2 due to the oxidation and the generation of dust, which is preferable. Helium, argon, nitrogen, or the like can be used as the inert gas supplied into the furnace core tube 2.

【0015】炉心管2の下端には炉下部管5が連設され
ており、光ファイバ母材10から引き出され、光ファイ
バ12の目標外径まで縮径する過程にある縮径部11
は、炉下部管5内に臨むようになっている。炉下部管5
は概略円筒状であり、その材質としては、カーボン、石
英ガラスなどの耐熱性材料が用いられる。その寸法は、
後述するように、縮径部11が炉下部管5の下端から突
出せず、所望のレイノルズ数が得られるように、適切な
値とする必要があるが、一般的な範囲としては、外径は
20〜150mmであり、内径は10〜125mmであ
り、長さは100mm以上とすることが例示される。し
かし、炉下部管5の内径は、必ずしも炉心管2の内径に
一致させる必要はない。炉下部管5の内径が炉心管2の
内径に一致しない場合は、例えば、炉下部管5の一端に
テーパ部やフランジ部などを形成し、このテーパ部やフ
ランジ部などを介して炉心管2に連設させるようにする
ことができる。炉下部管5は、ネジなどを介して紡糸炉
本体1に取り付けるようにし、容易に取り外して交換可
能とすることが好ましい。
A lower furnace tube 5 is connected to the lower end of the furnace core tube 2 and is drawn out from the optical fiber preform 10 to reduce the diameter of the optical fiber 12 to a target outer diameter.
Faces the inside of the furnace lower tube 5. Lower furnace tube 5
Has a substantially cylindrical shape, and heat-resistant materials such as carbon and quartz glass are used as the material. Its dimensions are
As will be described later, the diameter-reduced portion 11 does not project from the lower end of the furnace lower tube 5 and must be set to an appropriate value so that a desired Reynolds number can be obtained. Is 20 to 150 mm, the inner diameter is 10 to 125 mm, and the length is 100 mm or more. However, the inner diameter of the lower furnace tube 5 does not necessarily have to match the inner diameter of the core tube 2. When the inner diameter of the lower furnace tube 5 does not match the inner diameter of the core tube 2, for example, a taper portion or a flange portion is formed at one end of the lower furnace tube 5, and the core tube 2 is inserted through the tapered portion or the flange portion. It can be made to connect to. The lower furnace tube 5 is preferably attached to the spinning furnace main body 1 via a screw or the like so that it can be easily removed and replaced.

【0016】そして、炉下部管5の内部に温度調整用ガ
スを供給するための、温度調整用ガス供給手段6が設置
されている。そしてこの温度調整用ガス供給手段6に
は、炉下部管5内に供給される温度調整用ガスの温度を
制御するための温度制御装置7が取り付けられている。
Then, a temperature adjusting gas supply means 6 for supplying a temperature adjusting gas into the lower furnace tube 5 is installed. A temperature control device 7 for controlling the temperature of the temperature adjusting gas supplied into the lower furnace tube 5 is attached to the temperature adjusting gas supply means 6.

【0017】炉下部管5に温度制御された温度調整用ガ
スを供給して、炉下部管5内に温度調整用ガスの流れを
形成することにより、縮径部11および光ファイバ12
を徐冷し、冷却速度を調整することができる。また、縮
径部11および光ファイバ12へのダストの付着を防止
する効果もある。徐冷効果を高めるため、炉下部管5の
周囲に断熱材や加熱装置などを配置して、温度が低下し
にくいようにしてもよい。
By supplying the temperature-controlled gas for temperature control to the lower furnace tube 5 to form a flow of the temperature-adjusting gas in the lower furnace tube 5, the reduced diameter portion 11 and the optical fiber 12 are formed.
Can be slowly cooled and the cooling rate can be adjusted. It also has an effect of preventing dust from adhering to the reduced diameter portion 11 and the optical fiber 12. In order to enhance the slow cooling effect, a heat insulating material, a heating device, or the like may be arranged around the furnace lower tube 5 so that the temperature does not easily decrease.

【0018】温度調整用ガスとしては、熱伝導率が小さ
いガス、例えば、ヘリウム、アルゴン、窒素などが使用
可能である。また、これらの2種類またはそれ以上を混
合して得られるガスを用いてもよい。特に熱伝導率が小
さいアルゴンを用いることが好ましい。温度調整用ガス
の温度は、所望の冷却速度が得られるように必要に応じ
て変化させられるが、常温〜1200℃とすることが好
ましい。
As the temperature adjusting gas, a gas having a low thermal conductivity, such as helium, argon or nitrogen, can be used. Moreover, you may use the gas obtained by mixing these 2 types or more. It is particularly preferable to use argon, which has a small thermal conductivity. The temperature of the temperature adjusting gas may be changed as necessary so as to obtain a desired cooling rate, but it is preferably room temperature to 1200 ° C.

【0019】この製造装置には、炉心管2内に供給され
る不活性ガスや、炉下部管5内に供給される温度調整用
ガスを排気するため、排気手段8を設けることが好まし
い。排気手段8の取り付け位置は特に制限されず、不活
性ガス供給手段4や温度調整用ガス供給手段6の開口位
置を考慮に入れ、不活性ガスや温度調整用ガスの流れが
乱れにくい適切な位置に設けることが好ましく、例え
ば、ヒータ3よりも上方に設けることが挙げられる。
This manufacturing apparatus is preferably provided with an exhaust means 8 for exhausting the inert gas supplied into the core tube 2 and the temperature adjusting gas supplied into the lower furnace tube 5. The mounting position of the exhaust means 8 is not particularly limited, and taking into consideration the opening positions of the inert gas supply means 4 and the temperature adjustment gas supply means 6, an appropriate position in which the flow of the inert gas or the temperature adjustment gas is less likely to be disturbed. It is preferable to provide it at, for example, above the heater 3.

【0020】本実施の形態においては、第一に、炉下部
管5の内径や長さを適切に選択し、また、温度調整用ガ
スの種類や温度を制御することによって、図2(a)に
示すように、前記縮径部11が炉下部管5内で光ファイ
バ12の目標外径に達するようにする。図2(b)に示
すように、縮径部11の先端が炉下部管5の下端から突
出するようになると、光ファイバ12の目標外径に達す
る前の部分が外気にさらされて、急冷されるので、外径
変動が大きくなり、好ましくない。
In the present embodiment, firstly, by appropriately selecting the inner diameter and length of the furnace lower tube 5 and controlling the type and temperature of the temperature adjusting gas, as shown in FIG. As shown in, the reduced diameter portion 11 reaches the target outer diameter of the optical fiber 12 in the furnace lower tube 5. As shown in FIG. 2B, when the tip of the reduced diameter portion 11 comes to project from the lower end of the furnace lower tube 5, the portion of the optical fiber 12 before reaching the target outer diameter is exposed to the outside air and rapidly cooled. Therefore, the fluctuation of the outer diameter becomes large, which is not preferable.

【0021】そして第二に、炉下部管5内を流れる温度
調整用ガスの流れのレイノルズ数Rが1000以下にな
るように線引き条件を変化させて、光ファイバ12を線
引きする。前記線引き条件としては、線引き速度、炉下
部管5の内径や長さ、または、温度調整用ガスの種類、
温度、流量などが挙げられる。
Secondly, the optical fiber 12 is drawn by changing the drawing conditions so that the Reynolds number R of the flow of the temperature adjusting gas flowing in the furnace lower tube 5 is 1000 or less. The drawing conditions include the drawing speed, the inner diameter and length of the furnace lower tube 5, or the type of temperature adjusting gas,
Examples include temperature and flow rate.

【0022】本発明においては、炉下部管5内を流れる
温度調整用ガスの流れのレイノルズ数Rは、式 R=v
d/η により定義される。ここで、vは温度調整用ガ
スの流速(m/s)であり、dは炉下部管5の内径
(m)であり、ηは温度調整用ガスの動粘度(m2
s)である。
In the present invention, the Reynolds number R of the flow of the temperature adjusting gas flowing in the lower furnace tube 5 is expressed by the equation R = v.
It is defined by d / η. Here, v is the flow velocity (m / s) of the temperature adjusting gas, d is the inner diameter (m) of the furnace lower tube 5, and η is the kinematic viscosity (m 2 / m 2 ) of the temperature adjusting gas.
s).

【0023】温度調整用ガスの流れのレイノルズ数Rを
1000以下とすることにより、温度調整用ガスの流れ
は乱流になりにくくなり安定化するので、光ファイバ1
2の外径変動が小さく抑制される。レイノルズ数Rは大
きくなると、温度調整用ガスの流れが乱れやすくなり、
Rが1000を超えると、光ファイバ12の外径変動が
大きくなりやすいので、好ましくない。
By setting the Reynolds number R of the flow of the temperature adjusting gas to 1000 or less, the flow of the temperature adjusting gas hardly becomes turbulent and is stabilized.
The fluctuation of the outer diameter of No. 2 is suppressed to be small. When the Reynolds number R becomes large, the flow of the temperature adjusting gas becomes turbulent easily,
When R exceeds 1000, the fluctuation of the outer diameter of the optical fiber 12 tends to increase, which is not preferable.

【0024】温度調整用ガスの流れのレイノルズ数Rを
1000以下とするためには、例えば、以下のようにし
て、製造条件を変化させる。まず、一般に、線引き速度
を高速化することによって流速vは増加するので、レイ
ノルズ数Rは大きくなる。これに対しては、例えば、炉
下部管5の内径dを細くすることによってレイノルズ数
Rを減少させることができる。そこで、線引きを開始す
る前に、適切な内径dを有する炉下部管5を選択して装
置に取り付ける。また、炉下部管5の長さも、縮径部1
1が炉下部管5内で光ファイバ12の目標外径に達する
ように、適宜選択する。
In order to set the Reynolds number R of the temperature adjusting gas flow to 1000 or less, the manufacturing conditions are changed as follows, for example. First, since the flow velocity v generally increases by increasing the drawing speed, the Reynolds number R increases. On the other hand, for example, the Reynolds number R can be reduced by narrowing the inner diameter d of the furnace lower tube 5. Therefore, before starting the drawing, a furnace lower tube 5 having an appropriate inner diameter d is selected and attached to the apparatus. Also, the length of the furnace lower tube 5 is
1 is appropriately selected so that 1 reaches the target outer diameter of the optical fiber 12 in the furnace lower tube 5.

【0025】また、温度調整用ガスの動粘度ηは、該温
度調整用ガスの粘度μ(Pa・s)と密度ρ(kg/m
3)との比μ/ρから求められる。一般に、気体は温度
が高くなると、粘度μは増大し、密度ρは減少すること
から、動粘度ηは増大する。従って、温度調整用ガスの
温度を上げることによっても、レイノルズ数Rを減少さ
せることができる。しかも、温度調整用ガスの温度を上
げることにより、縮径部11の冷却速度を低下させ、徐
冷効果を高めることができる。従って、温度調整用ガス
の温度は、常温〜1200℃まで変化させられるように
することが好ましい。
Further, the kinematic viscosity η of the temperature adjusting gas is the viscosity μ (Pa · s) and the density ρ (kg / m of the temperature adjusting gas.
3 ) and the ratio μ / ρ. Generally, when the temperature of a gas increases, the viscosity μ increases and the density ρ decreases, so that the kinematic viscosity η increases. Therefore, the Reynolds number R can be decreased by increasing the temperature of the temperature adjusting gas. Moreover, by increasing the temperature of the temperature adjusting gas, the cooling rate of the reduced diameter portion 11 can be reduced and the gradual cooling effect can be enhanced. Therefore, it is preferable that the temperature of the temperature adjusting gas can be changed from room temperature to 1200 ° C.

【0026】温度調整用ガスの種類に関しては、ヘリウ
ムとアルゴンとを比較する場合、ヘリウムはアルゴンよ
り動粘度が約10倍大きいので、温度調整用ガスの流れ
のレイノルズ数Rを小さくするためには好ましい。しか
しながら、熱伝導率も、ヘリウムはアルゴンより約10
倍大きいので、徐冷効果の点ではアルゴンより劣る。
Regarding the kind of the temperature adjusting gas, when helium and argon are compared, helium has a kinematic viscosity about 10 times larger than that of argon. Therefore, in order to reduce the Reynolds number R of the flow of the temperature adjusting gas, preferable. However, the thermal conductivity of helium is about 10 times that of argon.
Since it is twice as large, it is inferior to argon in terms of the slow cooling effect.

【0027】温度調整用ガスとして単一のガスを用いれ
ば、装置の構成はより単純になり、操作がより容易にな
るという利点がある。しかし、より優れた光ファイバを
得るためには、所望の伝送損失と、外径変動の度合いと
の兼ね合いにより、適宜複数のガスを混合して調製され
た混合ガスを用いることが好ましい。例えば、ヘリウム
とアルゴンを1:5の比率で混合したガスを用いると、
熱伝導率が3.73×10-2W・m-1・K-1となり、動
粘度が2.71×10-52/sとなる。
If a single gas is used as the temperature adjusting gas, the structure of the apparatus becomes simpler and the operation becomes easier. However, in order to obtain a better optical fiber, it is preferable to use a mixed gas prepared by appropriately mixing a plurality of gases in consideration of the desired transmission loss and the degree of outer diameter fluctuation. For example, when using a gas in which helium and argon are mixed at a ratio of 1: 5,
The thermal conductivity is 3.73 × 10 −2 W · m −1 · K −1 and the kinematic viscosity is 2.71 × 10 −5 m 2 / s.

【0028】温度調整用ガスとして混合ガスを用いる場
合、例えば、予め所定の比率で混合されたガスを用い、
この混合ガスを温度調整用ガス供給手段6を介して炉下
部管5に供給する方法を用いることができる。また、図
3に示すように、少なくとも2種類のガスを所定の比率
で混合して温度調整用ガスとするガス混合手段21と、
前記ガス混合手段によって混合されるガスの混合比率
を、前記温度調整用ガスの流れのレイノルズ数が100
0以下となるように制御するガス混合比率制御手段22
とを有する線引き装置を用い、線引き作業と並行して混
合ガスを調製する方法を採用することもできる。
When a mixed gas is used as the temperature adjusting gas, for example, a gas mixed in advance in a predetermined ratio is used.
A method of supplying this mixed gas to the furnace lower tube 5 via the temperature adjusting gas supply means 6 can be used. Further, as shown in FIG. 3, gas mixing means 21 for mixing at least two kinds of gases at a predetermined ratio to obtain a temperature adjusting gas,
The Reynolds number of the temperature control gas flow is 100 when the mixing ratio of the gases mixed by the gas mixing means is 100.
Gas mixing ratio control means 22 for controlling to be 0 or less
It is also possible to employ a method of preparing a mixed gas in parallel with the drawing work by using a drawing device having

【0029】この場合、ガス混合比率を制御する方法と
しては、例えば、コンピュータ等を用いて、混合ガスの
動粘度を実験データや近似式等に基づいて算出し、得ら
れた動粘度の値と、炉下部管の寸法、線引き速度の他の
線引き条件等から温度調整用ガスの流れのレイノルズ数
Rを計算して最適な混合比率を求め、求められた最適値
に基づいて、制御弁等を用いて、実際のガスの混合比率
を制御するようにする方法をとることができる。これに
より、動粘度と熱伝導率のバランスが優れた温度調整用
ガスを常に供給することができるので、伝送損失と外径
変動とがともに極めて抑制された光ファイバを線引きす
ることができる。
In this case, as a method of controlling the gas mixing ratio, for example, a computer or the like is used to calculate the kinematic viscosity of the mixed gas based on experimental data, an approximate expression, etc. Calculate the Reynolds number R of the temperature control gas flow from the furnace lower tube dimensions, other drawing conditions such as drawing speed, etc. to find the optimum mixing ratio, and based on the found optimum value, control valve etc. It can be used to control the actual gas mixing ratio. As a result, the temperature adjusting gas having an excellent balance between the kinematic viscosity and the thermal conductivity can be constantly supplied, so that it is possible to draw an optical fiber in which both the transmission loss and the outer diameter variation are extremely suppressed.

【0030】本発明の製造方法では、気相軸付け法(V
AD法)、外付け法(OVD法)、内付け法(CVD
法、MCVD法、PCVD法)、ロッドインチューブ法
等により得られた光ファイバ母材を用いることができ
る。本発明は、シングルモード光ファイバ、分散シフト
光ファイバ、カットオフシフト光ファイバ、分散補償光
ファイバなど、いかなる種類の光ファイバにも適用でき
る。
In the manufacturing method of the present invention, the vapor phase axial method (V
AD method), external attachment method (OVD method), internal attachment method (CVD
Method, MCVD method, PCVD method), rod-in-tube method, or other optical fiber preform. The present invention can be applied to any type of optical fiber such as a single mode optical fiber, a dispersion shift optical fiber, a cutoff shift optical fiber and a dispersion compensating optical fiber.

【0031】次に、光ファイバ12を線引きするための
手順の一例を説明する。まず、稼動時の目標線引き速度
に応じて、適切な内径と長さを有する炉下部管5を選択
し、製造装置に取り付ける。光ファイバ母材10を炉心
管2の内側に吊り下げたのち、光ファイバ母材10の先
端部を加熱溶融して縮径させる。次いで縮径部11を、
炉下部管5内に臨ませ、該炉下部管5内に温度調整用ガ
スを流すことにより前記縮径部11を徐冷しながら、光
ファイバ12の外径になるように、線引きする。この
際、温度調整用ガスの温度や流量などを制御することに
より、縮径部11の冷却速度を調節し、前記縮径部が炉
下部管内で光ファイバの目標外径に達するようにし、か
つ、温度調整用ガスの流れのレイノルズ数が1000以
下となるようにする。このようにして製造された光ファ
イバは、伝送損失が低減されているとともに、外径変動
が極めて小さいものとなる。
Next, an example of a procedure for drawing the optical fiber 12 will be described. First, the lower furnace tube 5 having an appropriate inner diameter and length is selected according to the target drawing speed during operation and attached to the manufacturing apparatus. After suspending the optical fiber preform 10 inside the core tube 2, the tip of the optical fiber preform 10 is heated and melted to reduce its diameter. Next, the reduced diameter portion 11
The diameter-reduced portion 11 is gradually cooled by facing the inside of the furnace lower tube 5 and flowing a temperature adjusting gas into the furnace lower tube 5, and is drawn so as to have the outer diameter of the optical fiber 12. At this time, the cooling rate of the reduced diameter portion 11 is adjusted by controlling the temperature and flow rate of the temperature adjusting gas so that the reduced diameter portion reaches the target outer diameter of the optical fiber in the furnace lower tube, and The Reynolds number of the temperature adjusting gas flow is set to 1000 or less. The optical fiber manufactured in this manner has a reduced transmission loss and an extremely small change in outer diameter.

【0032】線引きされた光ファイバは、常法により、
ウレタンアクリレート樹脂などを塗布し硬化させて2層
の被覆を形成することにより、光ファイバ素線とするこ
とができる。
The drawn optical fiber is formed by a conventional method.
An optical fiber element wire can be obtained by applying a urethane acrylate resin or the like and curing it to form a two-layer coating.

【0033】次に、本発明を、試験例によって具体的に
説明する。外径φ60mm、長さ1000mmのシング
ルモード光ファイバ用の光ファイバ母材10を用いて、
目標外径を125μmに設定してシングルモード光ファ
イバを製造した。そして、得られた光ファイバ12に、
ウレタンアクリレート系紫外線硬化型樹脂を塗布し、硬
化して一次被覆層を形成し、次に同様にして二次被覆層
を形成して、一次被覆層のコート径190μm、二次被
覆のコート径250μmの光ファイバ素線を製造した。
この際、製造条件を変えることによってレイノルズ数を
変化させた。また、外径測定器を用いて、線引き中のそ
れぞれの光ファイバ12の外径変動を測定した。
Next, the present invention will be specifically described with reference to test examples. Using the optical fiber preform 10 for a single mode optical fiber having an outer diameter of φ60 mm and a length of 1000 mm,
A single mode optical fiber was manufactured by setting the target outer diameter to 125 μm. Then, in the obtained optical fiber 12,
A urethane acrylate-based UV-curable resin is applied and cured to form a primary coating layer, and then a secondary coating layer is formed in the same manner. The primary coating layer has a coat diameter of 190 μm, and the secondary coating has a coating diameter of 250 μm. Optical fiber strands were manufactured.
At this time, the Reynolds number was changed by changing the manufacturing conditions. Moreover, the outer diameter variation of each optical fiber 12 during drawing was measured using an outer diameter measuring device.

【0034】(試験例1)紡糸張力を100gfに、紡
糸線速を300m/分に設定して、光ファイバ12を線
引きした。炉下部管5の長さを250mmとし、内径を
60mmとした。温度調整用ガスとしてヘリウムを用
い、その温度は常温とした。線引き時、縮径部11の先
端は炉下部管5内にあった。炉下部管5内のレイノルズ
数は約200であった。線引中の光ファイバ12の外径
変動は、±0.2μmであった。
Test Example 1 The optical fiber 12 was drawn with the spinning tension set to 100 gf and the spinning linear velocity set to 300 m / min. The length of the furnace lower tube 5 was 250 mm and the inner diameter was 60 mm. Helium was used as the temperature adjusting gas, and the temperature was normal temperature. At the time of drawing, the tip of the reduced diameter portion 11 was inside the furnace lower tube 5. The Reynolds number in the furnace lower tube 5 was about 200. The outer diameter variation of the optical fiber 12 during drawing was ± 0.2 μm.

【0035】(試験例2)紡糸張力を100gfに、紡
糸線速を300m/分に設定して、光ファイバ12を線
引きした。炉下部管5の長さを250mmとし、内径を
60mmとした。温度調整用ガスとしてアルゴンを用
い、その温度は常温とした。線引き時、冷却速度が遅く
なったために、縮径部11の先端は炉下部管5の外に突
出していた。炉下部管5内のレイノルズ数は約1800
であった。線引中の光ファイバ12の外径変動は、±
0.5μmであった。
Test Example 2 The optical fiber 12 was drawn at a spinning tension of 100 gf and a spinning linear velocity of 300 m / min. The length of the furnace lower tube 5 was 250 mm and the inner diameter was 60 mm. Argon was used as the temperature adjusting gas, and the temperature thereof was room temperature. At the time of drawing, the tip of the reduced diameter portion 11 was projected to the outside of the furnace lower tube 5 because the cooling rate became slow. Reynolds number in the lower furnace tube 5 is about 1800
Met. The outer diameter variation of the optical fiber 12 during drawing is ±
It was 0.5 μm.

【0036】(試験例3)紡糸張力を100gfに、紡
糸線速を300m/分に設定して、光ファイバ12を線
引きした。炉下部管5の長さを500mmとし、内径を
60mmとした。温度調整用ガスとしてアルゴンを用
い、その温度を温度制御装置7を用いて200℃に制御
した。線引き時、縮径部11の先端は炉下部管5内にあ
った。炉下部管5内のレイノルズ数は約800であっ
た。線引中の光ファイバ12の外径変動は、±0.2μ
mであった。
(Test Example 3) The optical fiber 12 was drawn at a spinning tension of 100 gf and a spinning linear velocity of 300 m / min. The length of the furnace lower tube 5 was 500 mm and the inner diameter was 60 mm. Argon was used as the temperature adjusting gas, and its temperature was controlled to 200 ° C. by using the temperature controller 7. At the time of drawing, the tip of the reduced diameter portion 11 was inside the furnace lower tube 5. The Reynolds number in the furnace lower tube 5 was about 800. The outer diameter variation of the optical fiber 12 during drawing is ± 0.2 μ
It was m.

【0037】前記試験例1〜3の結果を、表1に示す。The results of Test Examples 1 to 3 are shown in Table 1.

【0038】[0038]

【表1】 [Table 1]

【0039】(試験例4)紡糸張力を130gfに、紡
糸線速を600m/分に設定して、光ファイバ12を線
引きした。炉下部管5の長さを250mmとし、内径を
60mmとした。温度調整用ガスとしてヘリウムを用
い、その温度は常温とした。線引き時、縮径部11の先
端は炉下部管5内にあった。炉下部管5内のレイノルズ
数は約400であった。線引中の光ファイバ12の外径
変動は、±0.2μmであった。
Test Example 4 The optical fiber 12 was drawn with the spinning tension set to 130 gf and the spinning linear velocity set to 600 m / min. The length of the furnace lower tube 5 was 250 mm and the inner diameter was 60 mm. Helium was used as the temperature adjusting gas, and the temperature was normal temperature. At the time of drawing, the tip of the reduced diameter portion 11 was inside the furnace lower tube 5. The Reynolds number in the furnace lower tube 5 was about 400. The outer diameter variation of the optical fiber 12 during drawing was ± 0.2 μm.

【0040】(試験例5)紡糸張力を130gfに、紡
糸線速を600m/分に設定して、光ファイバ12を線
引きした。炉下部管5の長さを500mmとし、内径を
60mmとした。温度調整用ガスとしてアルゴンを用
い、その温度を温度制御装置7を用いて200℃に制御
した。線引き時、縮径部11の先端は炉下部管5外に突
出していた。炉下部管5内のレイノルズ数は約1500
であった。線引中の光ファイバの外径変動は、±0.8
μmであった。
Test Example 5 The optical fiber 12 was drawn with the spinning tension set to 130 gf and the spinning linear velocity set to 600 m / min. The length of the furnace lower tube 5 was 500 mm and the inner diameter was 60 mm. Argon was used as the temperature adjusting gas, and its temperature was controlled to 200 ° C. by using the temperature controller 7. At the time of drawing, the tip of the reduced diameter portion 11 was projected outside the furnace lower tube 5. Reynolds number in the furnace lower tube 5 is about 1500
Met. The outer diameter variation of the optical fiber during drawing is ± 0.8
was μm.

【0041】(試験例6)紡糸張力を130gfに、紡
糸線速を600m/分に設定して、光ファイバ12を線
引きした。炉下部管5の長さを1000mmとし、内径
を60mmとした。温度調整用ガスとしてアルゴンを用
い、その温度を温度制御装置7を用いて200℃に制御
した。線引き時、縮径部11の先端は炉下部管5内にあ
った。炉下部管5内のレイノルズ数は約1500であっ
た。線引中の光ファイバ12の外径変動は、±0.4μ
mであった。
Test Example 6 The optical fiber 12 was drawn with the spinning tension set to 130 gf and the spinning linear velocity set to 600 m / min. The length of the furnace lower tube 5 was 1000 mm, and the inner diameter was 60 mm. Argon was used as the temperature adjusting gas, and its temperature was controlled to 200 ° C. by using the temperature controller 7. At the time of drawing, the tip of the reduced diameter portion 11 was inside the furnace lower tube 5. The Reynolds number in the furnace lower tube 5 was about 1500. The fluctuation of the outer diameter of the optical fiber 12 during drawing is ± 0.4 μm.
It was m.

【0042】(試験例7)紡糸張力を130gfに、紡
糸線速を600m/分に設定して、光ファイバ12を線
引きした。炉下部管5の長さを1000mmとし、内径
を50mmとした。温度調整用ガスとしてアルゴンを用
い、その温度を温度制御装置7を用いて400℃に制御
した。線引き時、縮径部11の先端は炉下部管5内にあ
った。炉下部管5内のレイノルズ数は約600であっ
た。線引中の光ファイバ12の外径変動は、±0.2μ
mであった。
(Test Example 7) The optical fiber 12 was drawn with the spinning tension set to 130 gf and the spinning linear velocity set to 600 m / min. The furnace lower tube 5 had a length of 1000 mm and an inner diameter of 50 mm. Argon was used as the temperature adjusting gas, and the temperature was controlled to 400 ° C. by using the temperature controller 7. At the time of drawing, the tip of the reduced diameter portion 11 was inside the furnace lower tube 5. The Reynolds number in the furnace lower tube 5 was about 600. The outer diameter variation of the optical fiber 12 during drawing is ± 0.2 μ
It was m.

【0043】前記試験例4〜7の結果を、表2に示す。The results of Test Examples 4 to 7 are shown in Table 2.

【0044】[0044]

【表2】 [Table 2]

【0045】(試験例8)紡糸張力を180gfに、紡
糸線速を1200m/分に設定して、光ファイバ12を
線引きした。炉下部管5の長さを250mmとし、内径
を60mmとした。温度調整用ガスとしてヘリウムを用
い、その温度は常温とした。線引き時、縮径部11の先
端は炉下部管5外に突出していた。炉下部管5内のレイ
ノルズ数は約800であった。線引中の光ファイバ12
の外径変動は、±0.5μmであった。
(Test Example 8) The optical fiber 12 was drawn with the spinning tension set to 180 gf and the spinning linear velocity set to 1200 m / min. The length of the furnace lower tube 5 was 250 mm and the inner diameter was 60 mm. Helium was used as the temperature adjusting gas, and the temperature was normal temperature. At the time of drawing, the tip of the reduced diameter portion 11 was projected outside the furnace lower tube 5. The Reynolds number in the furnace lower tube 5 was about 800. Optical fiber 12 being drawn
The outer diameter variation of was 0.5 μm.

【0046】(試験例9)紡糸張力を180gfに、紡
糸線速を1200m/分に設定して、光ファイバ12を
線引きした。炉下部管5の長さを500mmとし、内径
を10mmとした。温度調整用ガスとしてヘリウムを用
い、その温度は常温とした。線引き時、縮径部11の先
端は炉下部管5内にあった。炉下部管5内のレイノルズ
数は約30であった。線引中の光ファイバ12の外径変
動は、±0.2μmであった。
Test Example 9 The optical fiber 12 was drawn with the spinning tension set to 180 gf and the spinning linear velocity set to 1200 m / min. The length of the furnace lower tube 5 was 500 mm, and the inner diameter was 10 mm. Helium was used as the temperature adjusting gas, and the temperature was normal temperature. At the time of drawing, the tip of the reduced diameter portion 11 was inside the furnace lower tube 5. The Reynolds number in the furnace lower tube 5 was about 30. The outer diameter variation of the optical fiber 12 during drawing was ± 0.2 μm.

【0047】(試験例10)紡糸張力を180gfに、
紡糸線速を1200m/分に設定して、光ファイバ12
を線引きした。炉下部管5の長さを500mmとし、内
径を50mmとした。温度調整用ガスとしてアルゴンを
用い、その温度を温度制御装置7を用いて400℃に制
御した。線引き時、縮径部11の先端は炉下部管5外に
突出していた。炉下部管5内のレイノルズ数は約120
0であった。線引中の光ファイバ12の外径変動は、±
1.0μmであった。
(Test Example 10) The spinning tension was set to 180 gf,
The spinning fiber speed is set to 1200 m / min, and the optical fiber 12
Was drawn. The furnace lower tube 5 had a length of 500 mm and an inner diameter of 50 mm. Argon was used as the temperature adjusting gas, and the temperature was controlled to 400 ° C. by using the temperature controller 7. At the time of drawing, the tip of the reduced diameter portion 11 was projected outside the furnace lower tube 5. Reynolds number in the lower furnace tube 5 is about 120
It was 0. The outer diameter variation of the optical fiber 12 during drawing is ±
It was 1.0 μm.

【0048】(試験例11)紡糸張力を180gfに、
紡糸線速を1200m/分に設定して、光ファイバ12
を線引きした。炉下部管5の長さを1500mmとし、
内径を45mmとした。温度調整用ガスとしてアルゴン
を用い、その温度を温度制御装置7を用いて400℃に
制御した。線引き時、縮径部11の先端は炉下部管5内
にあった。炉下部管5内のレイノルズ数は約1000で
あった。線引中の光ファイバ12の外径変動は、±0.
2μmであった。
(Test Example 11) The spinning tension was set to 180 gf,
The spinning fiber speed is set to 1200 m / min, and the optical fiber 12
Was drawn. The length of the furnace lower tube 5 is 1500 mm,
The inner diameter was 45 mm. Argon was used as the temperature adjusting gas, and the temperature was controlled to 400 ° C. by using the temperature controller 7. At the time of drawing, the tip of the reduced diameter portion 11 was inside the furnace lower tube 5. The Reynolds number in the furnace lower tube 5 was about 1000. The fluctuation of the outer diameter of the optical fiber 12 during drawing is ± 0.
It was 2 μm.

【0049】(試験例12)紡糸張力を180gfに、
紡糸線速を1200m/分に設定して、光ファイバ12
を線引きした。炉下部管5の長さを1000mmとし、
内径を20mmとした。温度調整用ガスとしてアルゴン
とヘリウムを5:1の比で混合したガスを用い、その温
度は常温とした。線引き時、縮径部11の先端は炉下部
管5内にあった。炉下部管5内のレイノルズ数は約50
0であった。線引中の光ファイバ12の外径変動は、±
0.2μmであった。
(Test Example 12) The spinning tension was set to 180 gf,
The spinning fiber speed is set to 1200 m / min, and the optical fiber 12
Was drawn. The furnace lower tube 5 has a length of 1000 mm,
The inner diameter was 20 mm. As the temperature adjusting gas, a gas in which argon and helium were mixed at a ratio of 5: 1 was used, and the temperature thereof was room temperature. At the time of drawing, the tip of the reduced diameter portion 11 was inside the furnace lower tube 5. Reynolds number in the lower furnace tube 5 is about 50
It was 0. The outer diameter variation of the optical fiber 12 during drawing is ±
It was 0.2 μm.

【0050】前記試験例8〜12の結果を、表3に示
す。
The results of Test Examples 8 to 12 are shown in Table 3.

【0051】[0051]

【表3】 [Table 3]

【0052】表4に、本試験例により得られたレイノル
ズ数と外径変動との関係を示す。表4において、線引き
時に縮径部11の先端が炉下部管5外に突出した場合の
レイノルズ数は、縮径部11の先端部周辺の管径が非常
に大きくなった場合と考え、無限大であるものとみなし
た。
Table 4 shows the relationship between the Reynolds number and the outer diameter variation obtained in this test example. In Table 4, the Reynolds number when the tip of the reduced diameter portion 11 projects outside the furnace lower tube 5 during drawing is considered to be infinite, considering that the pipe diameter around the tip of the reduced diameter portion 11 becomes very large. Considered to be

【0053】[0053]

【表4】 [Table 4]

【0054】表4に示す結果から明らかなように、縮径
部11の先端が外気にさらされないように該縮径部11
の周囲を炉下部管5により覆い、該炉下部管5内に温度
調整用ガスを流し、この温度調整用ガスの流れのレイノ
ルズ数を1000以下とすることによって、光ファイバ
の線引き速度によらず、光ファイバ12の外径変動を小
さく抑制することができることがわかる。
As is clear from the results shown in Table 4, the diameter-reduced portion 11 is protected so that the tip of the diameter-reduced portion 11 is not exposed to the outside air.
Is covered with a furnace lower tube 5 and a temperature adjusting gas is flown into the furnace lower tube 5 so that the Reynolds number of the flow of the temperature adjusting gas is 1000 or less, so that the temperature does not depend on the drawing speed of the optical fiber. It is understood that the fluctuation of the outer diameter of the optical fiber 12 can be suppressed to be small.

【0055】また、得られた各光ファイバ素線につい
て、1.55μmにおける伝送損失を測定したところ、
線引き時に縮径部11が炉下部管5内で目標外径に達す
るようにし、かつ温度調整用ガスの流れのレイノルズ数
を1000以下とした場合には、いずれの光ファイバ1
2も伝送損失が0.190dB/km以下となった。従
って、本発明の製造方法を用いることにより、縮径部1
1の徐冷が効果的に行われ、レーリ散乱に起因する伝送
損失の増加を抑制できたことがわかる。
When the transmission loss at 1.55 μm was measured for each of the obtained optical fiber strands,
When the reduced diameter portion 11 reaches the target outer diameter in the furnace lower tube 5 during drawing and the Reynolds number of the temperature adjusting gas flow is 1000 or less, whichever optical fiber 1
In No. 2 as well, the transmission loss was 0.190 dB / km or less. Therefore, by using the manufacturing method of the present invention, the reduced diameter portion 1
It can be seen that the gradual cooling of No. 1 was effectively performed, and the increase in transmission loss due to Rayleigh scattering could be suppressed.

【0056】[0056]

【発明の効果】以上説明したように、本発明の光ファイ
バの製造方法は、炉心管の下端に炉下部管を連設した装
置を用い、炉心管内に吊り下げられた光ファイバ母材の
先端部を加熱溶融することにより縮径させ、この縮径部
を前記炉下部管内に臨ませて、温度調整用ガスにより徐
冷しながら、光ファイバの目標外径になるまで線引きす
る際、前記縮径部が炉下部管内で光ファイバの目標外径
に達するようにし、かつ、炉下部管内に流される温度調
整用ガスの流れのレイノルズ数を1000以下とするも
のであるから、光ファイバ母材から引き出された縮径部
を効果的に徐冷することができ、かつ、温度調整用ガス
の乱流が発生しにくくなるので、光ファイバの線引き速
度によらず、光ファイバの伝送損失を低減させ、外径変
動を小さく抑制することができる。
As described above, the method of manufacturing an optical fiber according to the present invention uses the device in which the lower part of the furnace is connected to the lower end of the core tube, and the tip of the optical fiber preform suspended in the core tube is used. When the wire is drawn to the target outer diameter of the optical fiber while gradually reducing the diameter by heating and melting the portion, and allowing the reduced diameter portion to face the inside of the furnace lower tube and gradually cooling with the temperature adjusting gas, Since the diameter portion is designed to reach the target outer diameter of the optical fiber in the furnace lower tube, and the Reynolds number of the flow of the temperature adjusting gas flowing in the furnace lower tube is 1000 or less, Since the drawn-out reduced diameter portion can be effectively cooled slowly, and turbulence of the temperature adjusting gas is less likely to occur, transmission loss of the optical fiber can be reduced regardless of the drawing speed of the optical fiber. Minimize fluctuations in outer diameter It is possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の光ファイバの線引き方法に用いられ
る装置の一例を示す概略構成図である。
FIG. 1 is a schematic configuration diagram showing an example of an apparatus used in an optical fiber drawing method of the present invention.

【図2】 光ファイバ母材が光ファイバの外径にまで縮
径される状態の一例を説明する図である。
FIG. 2 is a diagram illustrating an example of a state in which the optical fiber preform is reduced in diameter to the outer diameter of the optical fiber.

【図3】 本発明の光ファイバの線引き方法に用いられ
る装置の他の例を示す概略構成図である。
FIG. 3 is a schematic configuration diagram showing another example of an apparatus used in the optical fiber drawing method of the present invention.

【符号の説明】[Explanation of symbols]

2…炉心管、3…ヒータ、5…炉下部管、6…温度調整
用ガス供給手段、7…温度制御装置、10…光ファイバ
母材、11…縮径部、12…光ファイバ、21…ガス混
合手段、22…ガス混合比率制御手段。
2 ... Reactor core tube, 3 ... Heater, 5 ... Furnace lower tube, 6 ... Temperature adjusting gas supply means, 7 ... Temperature control device, 10 ... Optical fiber preform, 11 ... Reduced diameter section, 12 ... Optical fiber, 21 ... Gas mixing means, 22 ... Gas mixing ratio control means.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 炉心管の下端に炉下部管を連設し、光フ
ァイバ母材を炉心管の内側に吊り下げ、前記光ファイバ
母材の先端部を加熱溶融することにより縮径させ、この
縮径部を、前記炉下部管内に臨ませ、該炉下部管内に温
度調整用ガスを流すことにより前記縮径部を徐冷しなが
ら、光ファイバの目標外径になるまで線引きする光ファ
イバの線引き方法であって、 前記縮径部が炉下部管内で光ファイバの目標外径に達す
るようにし、かつ、温度調整用ガスの流れのレイノルズ
数を1000以下となるように、線引き条件を変化させ
ることを特徴とする光ファイバの線引き方法。
1. A furnace lower tube is connected to the lower end of the furnace core tube, the optical fiber preform is suspended inside the core tube, and the tip of the optical fiber preform is heated and melted to reduce its diameter. The reduced diameter portion is exposed in the lower furnace tube, and while gradually reducing the reduced diameter portion by flowing a temperature adjusting gas into the lower furnace tube, the optical fiber is drawn until the target outer diameter of the optical fiber is reached. In the drawing method, the drawing condition is changed so that the reduced diameter portion reaches the target outer diameter of the optical fiber in the furnace lower tube and the Reynolds number of the temperature adjusting gas flow is 1000 or less. An optical fiber drawing method characterized by the above.
【請求項2】 前記炉下部管として、前記温度調整用ガ
スの流れのレイノルズ数が1000以下となるようなも
のを用いることを特徴とする請求項1に記載の光ファイ
バの線引き方法。
2. The optical fiber drawing method according to claim 1, wherein the furnace lower tube has a Reynolds number of 1000 or less in the flow of the temperature adjusting gas.
【請求項3】 前記温度調整用ガスとして、少なくとも
2種類のガスを用意し、その混合比率と温度とを変化さ
せることにより、温度調整用ガスの流れのレイノルズ数
を1000以下となるようにすることを特徴とする請求
項1または2に記載の光ファイバの線引き方法。
3. Reynolds number of the flow of the temperature adjusting gas is set to 1000 or less by preparing at least two kinds of gas as the temperature adjusting gas and changing the mixing ratio and the temperature thereof. The optical fiber drawing method according to claim 1 or 2, characterized in that.
【請求項4】 光ファイバ母材を収容するための炉心管
と、前記光ファイバ母材の先端部を加熱溶融して縮径さ
せるためのヒータと、前記炉心管の下端に連設されてい
る炉下部管と、この炉下部管内に温度調整用ガスを供給
するための温度調整用ガス供給手段とを備える光ファイ
バの線引き装置であって、 前記炉下部管は、光ファイバの線引き速度に応じて、前
記温度調整用ガスの流れのレイノルズ数が1000以下
となるように、所定の形状のものに交換可能なものであ
ることを特徴とする光ファイバの線引き装置。
4. A core tube for accommodating the optical fiber preform, a heater for heating and melting the tip of the optical fiber preform to reduce its diameter, and a heater connected to the lower end of the core tube. A furnace lower tube, and an optical fiber drawing device comprising a temperature adjusting gas supply means for supplying a temperature adjusting gas into the furnace lower tube, wherein the furnace lower tube is provided according to a drawing speed of the optical fiber. The optical fiber drawing device is replaceable with a predetermined shape so that the Reynolds number of the flow of the temperature adjusting gas is 1000 or less.
【請求項5】 光ファイバ母材を収容するための炉心管
と、 前記光ファイバ母材の先端部を加熱溶融して縮径させる
ためのヒータと、 前記炉心管の下端に連設されている炉下部管と、少なく
とも2種類のガスを所定の比率で混合して温度調整用ガ
スとするガス混合手段と、 前記ガス混合手段によって混合されるガスの混合比率
を、前記温度調整用ガスの流れのレイノルズ数が100
0以下となるように制御するガス混合比率制御手段と、 温度調整用ガスを前記炉下部管内に供給するための温度
調整用ガス供給手段とを備える光ファイバの線引き装
置。
5. A furnace core tube for accommodating an optical fiber base material, a heater for heating and melting the tip end portion of the optical fiber base material to reduce its diameter, and a heater connected to the lower end of the furnace core tube. The furnace lower tube, a gas mixing means for mixing at least two kinds of gases at a predetermined ratio to obtain a temperature adjusting gas, and a mixing ratio of the gas mixed by the gas mixing means are set to the flow of the temperature adjusting gas. Reynolds number is 100
An optical fiber drawing device comprising: a gas mixing ratio control means for controlling the temperature to be 0 or less; and a temperature adjusting gas supply means for supplying a temperature adjusting gas into the furnace lower tube.
JP2002072637A 2002-03-15 2002-03-15 Optical fiber drawing method Expired - Lifetime JP4169997B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002072637A JP4169997B2 (en) 2002-03-15 2002-03-15 Optical fiber drawing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002072637A JP4169997B2 (en) 2002-03-15 2002-03-15 Optical fiber drawing method

Publications (2)

Publication Number Publication Date
JP2003267745A true JP2003267745A (en) 2003-09-25
JP4169997B2 JP4169997B2 (en) 2008-10-22

Family

ID=29202581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002072637A Expired - Lifetime JP4169997B2 (en) 2002-03-15 2002-03-15 Optical fiber drawing method

Country Status (1)

Country Link
JP (1) JP4169997B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008062465A2 (en) * 2006-10-17 2008-05-29 Sterlite Optical Technologies Ltd. Apparatus & method for drawing optical fiber having desired waveguide parameters and fiber produced thereby
JP2012218956A (en) * 2011-04-06 2012-11-12 Sumitomo Electric Ind Ltd Optical fiber drawing furnace, and method for drawing the same
CN103342463A (en) * 2013-07-05 2013-10-09 江苏法尔胜光子有限公司 Optical fiber drawing furnace
EP4219418A4 (en) * 2021-05-26 2024-04-24 Zhongtian Tech Fiber Potics Co Ltd Optical fiber drawing furnace, optical fiber preparation apparatus, optical fiber preparation method, and small-diameter optical fiber

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008062465A2 (en) * 2006-10-17 2008-05-29 Sterlite Optical Technologies Ltd. Apparatus & method for drawing optical fiber having desired waveguide parameters and fiber produced thereby
WO2008062465A3 (en) * 2006-10-17 2009-09-24 Sterlite Optical Technologies Ltd. Apparatus & method for drawing optical fiber having desired waveguide parameters and fiber produced thereby
JP2012218956A (en) * 2011-04-06 2012-11-12 Sumitomo Electric Ind Ltd Optical fiber drawing furnace, and method for drawing the same
CN103342463A (en) * 2013-07-05 2013-10-09 江苏法尔胜光子有限公司 Optical fiber drawing furnace
CN103342463B (en) * 2013-07-05 2015-05-27 江苏法尔胜光子有限公司 Optical fiber drawing furnace
EP4219418A4 (en) * 2021-05-26 2024-04-24 Zhongtian Tech Fiber Potics Co Ltd Optical fiber drawing furnace, optical fiber preparation apparatus, optical fiber preparation method, and small-diameter optical fiber

Also Published As

Publication number Publication date
JP4169997B2 (en) 2008-10-22

Similar Documents

Publication Publication Date Title
JP5544354B2 (en) Manufacturing method of optical fiber
JP5595925B2 (en) Fiber air turn for low attenuation fiber
EP2803643B1 (en) Optical fiber production method and optical fiber
JP5250630B2 (en) Optical fiber preform manufacturing method
JPH0459631A (en) Drawing of optical fiber
US9630872B2 (en) Method for manufacturing glass-fine-particle-deposited body and method for manufacturing glass base material
US8464554B2 (en) Method for stabilizing a column of molten material
JP4563391B2 (en) Apparatus and method for manufacturing tubes or rods
JP2015074600A (en) Method of manufacturing optical fiber
JPH09124336A (en) Melting furnace for apparatus for drawing optical fiber and supporting structure for base material for optical fiber
JP2003267745A (en) Method and apparatus for drawing optical fiber
US20020178762A1 (en) Methods and apparatus for forming and controlling the diameter of drawn optical glass fiber
JP2003335545A (en) Method and apparatus for drawing optical fiber
WO2001002312A1 (en) Optical fiber drawing method and drawing device
JP4404203B2 (en) Optical fiber manufacturing method
JPH038738A (en) Furnace and method for drawing optical fiber
CN115605444A (en) Optical fiber forming apparatus
JP2001013380A (en) Method and device of manufacturing optical fiber
JP2760697B2 (en) Optical fiber drawing furnace
JP2004338972A (en) Method and apparatus for manufacturing optical fiber
US11820696B2 (en) Optical fiber draw furnace system and method
JPH06211535A (en) Optical fiber drawing method
JPH0535094B2 (en)
CN113522393A (en) Nested balance crucible and control method
KR100393611B1 (en) Keeping device of bare fiber temperature

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071009

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080729

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080806

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4169997

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130815

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term