JP2003265184A - Method for examining effectiveness of glucocorticoid preparation in examinee - Google Patents

Method for examining effectiveness of glucocorticoid preparation in examinee

Info

Publication number
JP2003265184A
JP2003265184A JP2002074171A JP2002074171A JP2003265184A JP 2003265184 A JP2003265184 A JP 2003265184A JP 2002074171 A JP2002074171 A JP 2002074171A JP 2002074171 A JP2002074171 A JP 2002074171A JP 2003265184 A JP2003265184 A JP 2003265184A
Authority
JP
Japan
Prior art keywords
ser
leu
dna
lys
gly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002074171A
Other languages
Japanese (ja)
Inventor
Junichi Sawada
純一 澤田
Shogo Ozawa
正吾 小澤
Yoshiaki Saito
嘉朗 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IYAKUHIN FUKUSAYOU HIGAI KYUUS
JENOKKUSU SOYAKU KENKYUSHO KK
KOKURITSU IYAKUHIN SHOKUHIN EI
Genox Research Inc
National Institute of Health Sciences
Iyakuhin Fukusayou Higai Kyuusai Kenkyu Shinko Chosa Kiko
Original Assignee
IYAKUHIN FUKUSAYOU HIGAI KYUUS
JENOKKUSU SOYAKU KENKYUSHO KK
KOKURITSU IYAKUHIN SHOKUHIN EI
Genox Research Inc
National Institute of Health Sciences
Iyakuhin Fukusayou Higai Kyuusai Kenkyu Shinko Chosa Kiko
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IYAKUHIN FUKUSAYOU HIGAI KYUUS, JENOKKUSU SOYAKU KENKYUSHO KK, KOKURITSU IYAKUHIN SHOKUHIN EI, Genox Research Inc, National Institute of Health Sciences, Iyakuhin Fukusayou Higai Kyuusai Kenkyu Shinko Chosa Kiko filed Critical IYAKUHIN FUKUSAYOU HIGAI KYUUS
Priority to JP2002074171A priority Critical patent/JP2003265184A/en
Publication of JP2003265184A publication Critical patent/JP2003265184A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for examining a glucocorticoid preparation in an examinee and to obtain a test reagent. <P>SOLUTION: In a glucocorticoid receptor (GR), CR which has 643 amino acid residue substituting cystine with arginine, amino acid residues from 722 leucine to 777 lysine substituting with other amino acid residues is found ([C643R variation type GR] and [2314 ins-a variation type GR], respectively). The transcriptive activity of the C643R variation type GR and the 2314 ins-a variation type GR prove to be controlled. The bond affinity of the C643R variation type GR for dexamethasone proves to be low. Consequently, the effectiveness of glucocorticoid is predicted by examining these variations. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、被検者におけるグ
ルココルチコイド製剤の有効性の検査方法に関する。
TECHNICAL FIELD The present invention relates to a method for examining the effectiveness of a glucocorticoid preparation in a subject.

【0002】[0002]

【従来の技術】グルココルチコイド受容体(GR)は、グル
ココルチコイドで活性化される転写因子である。GRは、
最初に、いくつかの熱ショックタンパク質および他のタ
ンパク質に会合した細胞質タンパク質として存在する
(W. B. Pratt, D. O. Toft, Steroid receptor interac
tions with heat shock protein and immunophilin cha
perones. Endocr. Rev. 18 (1997) 306-360)。グルココ
ルチコイドは、細胞質においてGRに結合し、これはGRの
核内移行を誘導する(J. C. Webster, J. A. Cidlowski,
Mechanisms of Glucocorticoid-receptor-mediated Re
pression of Gene Expression. Trends Endocrinol. Me
tab. 10 (1999) 396-402)。その転写活性の誘導または
減少は、組織または細胞の型に応じて異なり、従って異
なる組織上の多様なそして時には相反する生理作用に関
係している。すなわち、GRは、リンパ球におけるグルコ
コルチコイドが誘導したアポトーシスに関与しているこ
とが知られている(A. H. Wyllie, Glucocorticoid-indu
ced thymocyte apoptosis is associated with endogen
ous endonuclease activation. Nature 284 (1980) 555
-556; R. Schwartzman, J. Cidlowski, Glucocorticoid
-induced apoptosis oflymphoid cells. Int. Arch. Al
lergy Immunol. 105 (1994) 347-354)。しかし、ヒト乳
房上皮細胞(MEC)は、GR活性化によりむしろアポトーシ
スから保護されている(T.J. Moran, S. Gray, C.A. Mik
osz, S.D. Conzen.The glucocorticoidreceptor mediat
es a survival signal in human mammary epithelial c
ells. Cancer Res. 60 (2000) 867-72)。最近になっ
て、リンパ球系細胞のグルココルチコイド依存型アポト
ーシスに対する感受性が、標的細胞分化の状態および外
来細胞支持因子(supporting factor)の有無に強く左右
されることが示された(E.B. Thompson, Mechanisms of
T-cell Apoptosis Induced by Glucocorticoids. Trend
s Endocrinol Metab. 10 (1999) 353-358.)。様々なプ
ロテインキナーゼC(PKC)、NF-κBおよびPKA経路の基本
レベルは、グルココルチコイド依存型アポトーシスに対
するリンパ球系細胞の固有の感受性の決定因子とみなさ
れた。しかし、これらのGRが媒介した作用の機序につい
てはごくわずかしかわかっていない。
Glucocorticoid receptor (GR) is a transcription factor activated by glucocorticoid. GR is
First present as a cytoplasmic protein associated with some heat shock proteins and other proteins
(WB Pratt, DO Toft, Steroid receptor interac
tions with heat shock protein and immunophilin cha
perones. Endocr. Rev. 18 (1997) 306-360). Glucocorticoids bind GR in the cytoplasm, which induces GR nuclear translocation (JC Webster, JA Cidlowski,
Mechanisms of Glucocorticoid-receptor-mediated Re
pression of Gene Expression. Trends Endocrinol. Me
tab. 10 (1999) 396-402). The induction or reduction of its transcriptional activity depends on the tissue or cell type and is therefore associated with diverse and sometimes conflicting physiological effects on different tissues. That is, GR is known to be involved in glucocorticoid-induced apoptosis in lymphocytes (AH Wyllie, Glucocorticoid-indu
ced thymocyte apoptosis is associated with endogen
ous endonuclease activation. Nature 284 (1980) 555
-556; R. Schwartzman, J. Cidlowski, Glucocorticoid
-induced apoptosis of lymphoid cells. Int. Arch. Al
lergy Immunol. 105 (1994) 347-354). However, human mammary epithelial cells (MEC) are rather protected from apoptosis by GR activation (TJ Moran, S. Gray, CA Mik.
osz, SD Conzen.The glucocorticoidreceptor mediat
es a survival signal in human mammary epithelial c
ells. Cancer Res. 60 (2000) 867-72). Recently, susceptibility of lymphoid cells to glucocorticoid-dependent apoptosis was shown to be strongly dependent on the state of target cell differentiation and the presence or absence of foreign cell supporting factors (EB Thompson, Mechanisms of
T-cell Apoptosis Induced by Glucocorticoids. Trend
s Endocrinol Metab. 10 (1999) 353-358.). Basal levels of various protein kinase C (PKC), NF-κB and PKA pathways were considered as determinants of the intrinsic susceptibility of lymphoid cells to glucocorticoid-dependent apoptosis. However, very little is known about the mechanisms of these GR-mediated effects.

【0003】グルココルチコイドは、小児急性リンパ芽
球性白血病の治療に使用される最も強力な物質のひとつ
であり、全ての標準の寛解導入療法に含まれている(C.-
H. Pui, Childhood leukemias. N. Engl. J. Med. 332
(1995) 1618-1630; G. J. L.Kaspers, R. Pieters, E.
Klumper, F. C. DeWaal, A. J. P. Veerman, Glucocort
icoid resistance in childhood leukemia. Leukemia L
ymphoma 13 (1994) 187-201)。先行する研究は、ヒト白
血病性CEM-C1細胞は、グルココルチコイド耐性であり、
かつGR遺伝子のリガンド結合ドメイン(LBD)中のヘテロ
接合性変異(L753F)を有することを示している(M. Hanad
a, M. Shimoyama, Potential limitation of growth-in
hibitory action of recombinant human tumor necrosi
s factor (PAC-4D) due to easy induction of resista
nce: evidence in vitro. Jpn.J. Cancer Res. 78 (198
7) 1266-1273; E. M. Strasser-Wozak, R. Hattmannsto
rfer, M. Hala, B. L. Hartmann, M. Fiegl, S. Geley,
R. Kofler, Splice site mutation in the glucocorti
coid receptor gene causes resistance to glucocorti
coid-induced apoptosis in a human acute leukemic c
ell line. CancerRes. 55 (1995) 348-353; A. G. Hill
mann, J. Ramdas, K. Multanen, M. R. Norman, J. M.
Harmon, Glucocorticoid receptor gene mutations in
leukemiccells acquired in vitro and in vivo. Cance
r Res. 60 (2000) 2056-2062; S.Geley, B. L. Hartman
n, M. Hala, E. M. Strasser-Wozak, K. Kapelari, R.
Kofler, Resistance to glucocorticoid-induced apopt
osis in human T-cell acute lymphoblastic leukemia
CEM-C1 cells is due to insufficient glucocorticoid
receptor expression. Cancer Res. 56 (1996) 5033-5
038)。これらの細胞において、グルココルチコイド結合
親和性および転写活性化は顕著に低下された。これらの
報告は、変異L753FがCEM-C1細胞におけるグルココルチ
コイド耐性に影響を及ぼすこと、およびこの変異がグル
ココルチコイドにより誘導されたアポトーシスを阻害し
得ることを示唆している。従って、CEM-C1細胞のグルコ
コルチコイド耐性は、GR遠位のシグナル伝達経路の欠損
よりもむしろ、機能GRの閾値発現に起因すると考えられ
た。
Glucocorticoids are one of the most potent substances used in the treatment of childhood acute lymphoblastic leukemia and are included in all standard induction treatments (C.-.
H. Pui, Childhood leukemias. N. Engl. J. Med. 332
(1995) 1618-1630; GJLKaspers, R. Pieters, E.
Klumper, FC DeWaal, AJP Veerman, Glucocort
icoid resistance in childhood leukemia. Leukemia L
ymphoma 13 (1994) 187-201). Previous studies have shown that human leukemic CEM-C1 cells are glucocorticoid resistant,
And has a heterozygous mutation (L753F) in the ligand binding domain (LBD) of the GR gene (M. Hanad
a, M. Shimoyama, Potential limitation of growth-in
hibitory action of recombinant human tumor necrosi
s factor (PAC-4D) due to easy induction of resista
nce: evidence in vitro.Jpn.J. Cancer Res. 78 (198
7) 1266-1273; EM Strasser-Wozak, R. Hattmannsto
rfer, M. Hala, BL Hartmann, M. Fiegl, S. Geley,
R. Kofler, Splice site mutation in the glucocorti
coid receptor gene causes resistance to glucocorti
coid-induced apoptosis in a human acute leukemic c
ell line. CancerRes. 55 (1995) 348-353; AG Hill
mann, J. Ramdas, K. Multanen, MR Norman, JM
Harmon, Glucocorticoid receptor gene mutations in
leukemiccells acquired in vitro and in vivo.Cance
r Res. 60 (2000) 2056-2062; S. Geley, BL Hartman
n, M. Hala, EM Strasser-Wozak, K. Kapelari, R.
Kofler, Resistance to glucocorticoid-induced apopt
osis in human T-cell acute lymphoblastic leukemia
CEM-C1 cells is due to insufficient glucocorticoid
receptor expression. Cancer Res. 56 (1996) 5033-5
038). In these cells, glucocorticoid binding affinity and transcriptional activation were markedly reduced. These reports suggest that the mutation L753F affects glucocorticoid resistance in CEM-C1 cells and that this mutation may inhibit glucocorticoid-induced apoptosis. Therefore, it was suggested that the glucocorticoid resistance of CEM-C1 cells was due to the threshold expression of functional GR rather than the defect of the signaling pathway distal to GR.

【0004】グルココルチコイド遺伝子における変異
と、GRのグルココルチコイド結合能の低下との関連性が
明らかになれば、GR遺伝子における変異を検出すること
によりグルココルチコイド製剤の有効性を評価すること
が可能であるものと期待される。
[0004] If the relationship between the mutation in the glucocorticoid gene and the decrease in GR glucocorticoid-binding ability is revealed, it is possible to evaluate the efficacy of the glucocorticoid preparation by detecting the mutation in the GR gene. Expected to be.

【0005】[0005]

【発明が解決しようとする課題】本発明は、このような
状況に鑑みてなされたものであり、その目的は、被検者
におけるグルココルチコイド製剤の有効性の検査方法を
提供することにある。さらに、グルココルチコイド製剤
の有効性を検査するための試薬を提供することを目的と
する。
SUMMARY OF THE INVENTION The present invention has been made in view of such circumstances, and an object thereof is to provide a method for examining the effectiveness of a glucocorticoid preparation in a subject. Furthermore, it aims at providing the reagent for testing the effectiveness of a glucocorticoid formulation.

【0006】[0006]

【課題を解決するための手段】本発明者らは、上記の課
題を解決するために鋭意研究を行った。まず、日本人10
名の個別の白血病細胞株および1種の日本人由来結腸ガ
ン細胞株のGR遺伝子コード領域の塩基配列を決定し、GR
遺伝子にある種の変異が存在するか否かを検討した。そ
の結果、GR遺伝子において、システイン-643をアルギニ
ンに置換する変異C643R、およびロイシン-772からリジ
ン-777を別の26アミノ酸に置換する変異2314 ins-aを見
出した。
[Means for Solving the Problems] The inventors of the present invention have conducted extensive studies to solve the above problems. First, Japanese 10
Sequence of the GR gene coding region of each individual leukemia cell line and one Japanese colon cancer cell line
We examined whether certain mutations were present in the gene. As a result, in the GR gene, a mutation C643R that replaces cysteine-643 with arginine and a mutation 2314 ins-a that replaces leucine-772 with lysine-777 with another 26 amino acids were found.

【0007】また、本発明者らは、C643R変異型GRおよ
び2314 ins-a変異型GRが有する転写活性を調べるため
に、野生型GRプラスミド、C643R変異型GRプラスミドま
たは2314 ins-a変異型GRプラスミドを、マウスの乳がん
ウイルス(MMTV)プロモーター-ルシフェラーゼレポータ
ー構築体(pHH-Luc)を用いて、COS-7細胞中にトランスフ
ェクションした。検討の結果、野生型GRでトランスフェ
クションした細胞において、ルシフェラーゼ活性は、用
量依存的に増加した。しかしC643R変異型GRは、デキサ
メサゾン反応性ルシフェラーゼレポーター遺伝子の発現
を誘導しなかった。また、2314 ins-a変異型GRにおいて
も同様の結果が得られた。よって、C643R変異型GRおよ
び2314 ins-a変異型GRの転写活性は抑制されていること
が判明した。
[0007] In order to examine the transcriptional activity of C643R mutant GR and 2314 ins-a mutant GR, the present inventors have examined wild type GR plasmid, C643R mutant GR plasmid or 2314 ins-a mutant GR. The plasmid was transfected into COS-7 cells using the mouse mammary tumor virus (MMTV) promoter-luciferase reporter construct (pHH-Luc). As a result of the examination, the luciferase activity increased in a dose-dependent manner in the cells transfected with wild-type GR. However, the C643R mutant GR did not induce expression of the dexamethasone-responsive luciferase reporter gene. Similar results were obtained with the 2314 ins-a mutant GR. Therefore, it was revealed that the transcriptional activities of C643R mutant GR and 2314 ins-a mutant GR were suppressed.

【0008】さらに、本発明者らは、デキサメサゾンに
対するC643R変異型GRの親和性を調べるために、Scatcha
rdプロット解析に従い、野生型またはC643R変異型GRプ
ラスミドでトランスフェクションしたCOS-7細胞の細胞
質画分における[H]デキサメサゾンへの結合親和性を
測定した。その結果、特異的な高親和性結合が、野生型
GRでトランスフェクションしたCOS-7細胞から調製した
細胞質画分中で明らかになった。この結合能は、864fmo
l/mg細胞質タンパク質であり、解離定数Kdは7.4nMであ
った。C643R変異型GRでトランスフェクションしたCOS-7
細胞からの細胞質画分の結合能(921fmol/mg細胞質タン
パク質)は、野生型の値と同等であったが、Kd値(44.6n
M)は6倍高かった。よって、C643R変異型GRのデキサメサ
ゾンに対する結合親和性は低いことが判明した。
Furthermore, the present inventors have investigated the affinity of C643R mutant GR for dexamethasone by using Scatcha.
According to rd plot analysis, the binding affinity to [ 3 H] dexamethasone in the cytosolic fraction of COS-7 cells transfected with the wild type or C643R mutant GR plasmid was measured. As a result, specific high affinity binding was
It was revealed in the cytoplasmic fraction prepared from COS-7 cells transfected with GR. This binding capacity is 864fmo
It was 1 / mg cytoplasmic protein, and the dissociation constant Kd was 7.4 nM. COS-7 transfected with C643R mutant GR
The binding capacity of the cytoplasmic fraction from the cells (921 fmol / mg cytoplasmic protein) was similar to that of the wild type, but the Kd value (44.6n
M) was 6 times higher. Therefore, it was revealed that the binding affinity of C643R mutant GR to dexamethasone was low.

【0009】上記の如く本発明者らは、GRにおけるシス
テイン-643をアルギニンに置換する変異C643R、または
ロイシン-772からリジン-777を別の26アミノ酸に置換す
る変異2314 ins-aが、グルココルチコイド結合能を低下
させる、またはGRの転写活性化能を低下させることを初
めて実証し、本発明を完成させた。GRのグルココルチコ
イド結合能を低下させる、またはGRの有する転写活性化
能を低下させるGR遺伝子の多型を検出することで、被検
者についてグルココルチコイド製剤の有効性を判定する
ことが可能となった。
[0009] As described above, the present inventors have found that the mutation C643R in which GR cysteine-643 is replaced with arginine, or the mutation 2314 ins-a in which leucine-772 is replaced with lysine-777 with another 26 amino acids is glucocorticoid. The present invention was completed by demonstrating for the first time that the binding ability was reduced or the transcriptional activation ability of GR was reduced. By detecting a GR gene polymorphism that reduces the glucocorticoid binding ability of GR or reduces the transcriptional activation ability of GR, it becomes possible to determine the efficacy of a glucocorticoid preparation in a subject. It was

【0010】即ち、本発明は、被検者におけるグルココ
ルチコイド製剤の有効性の検査方法、および、グルココ
ルチコイド製剤の有効性を検査するための試薬に関し、
より具体的には、〔1〕 被検者におけるグルココルチ
コイド製剤の有効性の検査方法であって、グルココルチ
コイド受容体のグルココルチコイド結合能を低下させ
る、または該受容体の有する転写活性化能を低下させる
グルココルチコイド受容体遺伝子の多型を検出する工程
を含み、多型が検出された場合に、被検者はグルココル
チコイド製剤に対して耐性であると判定される検査方
法、〔2〕 多型が一塩基多型である、〔1〕に記載の
検査方法、〔3〕 グルココルチコイド受容体遺伝子の
多型が、グルココルチコイド受容体の643番目のアミ
ノ酸変異をもたらすものである、〔1〕に記載の検査方
法、〔4〕 グルココルチコイド受容体遺伝子の多型
が、グルココルチコイド受容体の643番目のアミノ酸
変異をもたらす多型、および該受容体の772〜777
番目のアミノ酸変異をもたらす多型である、〔1〕に記
載の検査方法、〔5〕 グルココルチコイド受容体の6
43番目のアミノ酸変異が、システインからアルギニン
への変異である、〔3〕または〔4〕に記載の検査方
法、〔6〕 グルココルチコイド受容体の643番目の
アミノ酸変異をもたらす該受容体遺伝子の多型が、該遺
伝子のcDNA配列において1927番目の塩基部位の
多型である、〔3〕または〔4〕に記載の検査方法、
〔7〕 グルココルチコイド受容体遺伝子のcDNA配
列において1927番目の塩基部位の多型が、チミンか
らシトシンへの変異である、〔6〕に記載の検査方法、
〔8〕 グルココルチコイド受容体の772〜777番
目のアミノ酸変異をもたらす該受容体遺伝子の多型が、
該遺伝子のcDNA配列において2314番目の塩基部
位の多型である、〔4〕に記載の検査方法、
That is, the present invention relates to a method for examining the effectiveness of a glucocorticoid preparation in a subject, and a reagent for examining the effectiveness of the glucocorticoid preparation,
More specifically, [1] a method for examining the efficacy of a glucocorticoid preparation in a subject, which comprises decreasing the glucocorticoid-binding ability of a glucocorticoid receptor or the transcription activation ability of the receptor. A method of detecting a polymorphism of a glucocorticoid receptor gene to be reduced, wherein the test method determines that the subject is resistant to the glucocorticoid preparation when the polymorphism is detected, [2] The method according to [1], wherein the type is a single nucleotide polymorphism, [3] the polymorphism in the glucocorticoid receptor gene causes a mutation at the 643th amino acid in the glucocorticoid receptor, [1] [4] The polymorphism of the glucocorticoid receptor gene, wherein the polymorphism of the glucocorticoid receptor gene results in a mutation at the 643th amino acid in the glucocorticoid receptor, and Receptor 772-777
The test method according to [1], which is a polymorphism that causes the th amino acid mutation, [5] 6 of the glucocorticoid receptor
The inspection method according to [3] or [4], wherein the 43rd amino acid mutation is a mutation from cysteine to arginine, [6] a polymorphism of the receptor gene that causes the 643th amino acid mutation of the glucocorticoid receptor. The test method according to [3] or [4], wherein the type is a polymorphism at the 1927th nucleotide site in the cDNA sequence of the gene,
[7] The test method according to [6], wherein the polymorphism at the 1927th nucleotide site in the cDNA sequence of the glucocorticoid receptor gene is a mutation from thymine to cytosine.
[8] A polymorphism in the receptor gene that causes a mutation at the 772nd to 777th amino acids in the glucocorticoid receptor is
The test method according to [4], which is a polymorphism at the 2314th base site in the cDNA sequence of the gene,

〔9〕 グ
ルココルチコイド受容体遺伝子のcDNA配列において
2314番目の塩基部位の多型が、該部位への一塩基挿
入変異である、〔8〕に記載の検査方法、〔10〕 グ
ルココルチコイド結合能が、デキサメゾン結合能であ
る、〔1〕〜
[9] The test method according to [8], wherein the polymorphism at the 2314th base site in the cDNA sequence of the glucocorticoid receptor gene is a single-base insertion mutation in the site, [10] the glucocorticoid-binding ability is , Dexamethasone binding ability, [1]-

〔9〕のいずれかに記載の検査方法、〔1
1〕 以下の(a)〜(d)の工程を含む、〔1〕〜
〔10〕のいずれかに記載の検査方法、 (a)被検者からDNA試料を調製する工程 (b)グルココルチコイド受容体遺伝子における塩基部
位であって、該受容体遺伝子のcDNA配列において1
927番目の塩基部位を含む、または1927番目およ
び2314番目の塩基部位を含むDNAを単離する工程 (c)単離したDNAの塩基配列を決定する工程 (d)工程(c)により決定したDNAの塩基配列を、
対照と比較する工程 〔12〕 以下の(a)〜(d)の工程を含む、〔1〕
〜〔10〕のいずれかに記載の検査方法、 (a)被検者からDNA試料を調製する工程 (b)調製したDNA試料を制限酵素により切断する工
程 (c)DNA断片をその大きさに応じて分離する工程 (d)検出されたDNA断片の大きさを、対照と比較す
る工程 〔13〕 以下の(a)〜(e)の工程を含む、〔1〕
〜〔10〕のいずれかに記載の検査方法、 (a)被検者からDNA試料を調製する工程 (b)グルココルチコイド受容体遺伝子における塩基部
位であって、該受容体遺伝子のcDNA配列において1
927番目の塩基部位を含む、または1927番目およ
び2314番目の塩基部位を含むDNAを増幅する工程 (c)増幅したDNAを制限酵素により切断する工程 (d)DNA断片をその大きさに応じて分離する工程 (e)検出されたDNA断片の大きさを、対照と比較す
る工程 〔14〕 以下の(a)〜(e)の工程を含む、〔1〕
〜〔10〕のいずれかに記載の検査方法、 (a)被検者からDNA試料を調製する工程 (b)グルココルチコイド受容体遺伝子における塩基部
位であって、該受容体遺伝子のcDNA配列において1
927番目の塩基部位を含む、または1927番目およ
び2314番目の塩基部位を含むDNAを増幅する工程 (c)増幅したDNAを一本鎖DNAに解離させる工程 (d)解離させた一本鎖DNAを非変性ゲル上で分離す
る工程 (e)分離した一本鎖DNAのゲル上での移動度を対照
と比較する工程 〔15〕 以下の(a)〜(d)の工程を含む、〔1〕
〜〔10〕のいずれかに記載の検査方法、 (a)被検者からDNA試料を調製する工程 (b)グルココルチコイド受容体遺伝子における塩基部
位であって、該受容体遺伝子のcDNA配列において1
927番目の塩基部位を含む、または1927番目およ
び2314番目の塩基部位を含むDNAを増幅する工程 (c)増幅したDNAを、DNA変性剤の濃度が次第に
高まるゲル上で分離する工程 (d)分離したDNAのゲル上での移動度を対照と比較
する工程 〔16〕 以下の(a)〜(c)の工程を含む、〔1〕
〜〔10〕のいずれかに記載の検査方法、 (a)(i)被検者から調製したグルココルチコイド受
容体遺伝子における塩基部位であって、該受容体遺伝子
のcDNA配列において1927番目の塩基部位を含
む、または1927番目および2314番目の塩基部位
を含むDNA、および (ii)ヌクレオチドプローブが固定された基板、を提
供する工程 (b)工程(a)(i)のDNAと工程(a)(ii)
の基板を接触させる工程 (c)該DNAと該基板に固定されたヌクレオチドプロ
ーブとのハイブリダイズの強度を検出することにより、
グルココルチコイド受容体をコードする遺伝子における
多型を検出する工程 〔17〕 グルココルチコイド受容体遺伝子における多
型部位であって、該受容体遺伝子のcDNA配列におい
て1927番目の多型部位を含む、少なくとも15ヌク
レオチドの鎖長を有するポリヌクレオチド、〔18〕
多型部位の塩基がシトシン(C)である、〔17〕記載
のポリヌクレオチド、〔19〕 グルココルチコイド受
容体遺伝子における塩基部位であって、該受容体遺伝子
のcDNA配列において1927番目の塩基部位を含む
DNAにハイブリダイズし、少なくとも15ヌクレオチ
ドの鎖長を有するポリヌクレオチドを含む、グルココル
チコイド製剤の有効性を検査するための試薬、〔20〕
さらに、グルココルチコイド受容体遺伝子における塩
基部位であって、該受容体遺伝子のcDNA配列におい
て2314番目の塩基部位を含むDNAにハイブリダイ
ズし、少なくとも15ヌクレオチドの鎖長を有するポリ
ヌクレオチドを含む、〔19〕に記載の試薬、〔21〕
グルココルチコイド受容体遺伝子における塩基部位で
あって、該受容体遺伝子のcDNA配列において192
7番目の塩基部位を含むDNAを増幅するように設計さ
れたフォワードプライマー、およびリバースプライマー
を含む、グルココルチコイド製剤の有効性を検査するた
めの試薬、〔22〕 さらに、グルココルチコイド受容
体遺伝子における塩基部位であって、該受容体遺伝子の
cDNA配列において2314番目の塩基部位を含むD
NAを増幅するように設計されたフォワードプライマー
およびリバースプライマーを含む、〔21〕に記載の試
薬、を提供するものである。
The inspection method according to any one of [9], [1
1] Including the following steps (a) to (d), [1] to
The inspection method according to any one of [10], (a) the step of preparing a DNA sample from a subject, (b) the base site in the glucocorticoid receptor gene, which is 1 in the cDNA sequence of the receptor gene.
Step (c) of isolating DNA containing the 927th base site, or containing the 1927th and 2314th base sites (c) Step of determining the base sequence of the isolated DNA (d) DNA determined by the step (c) The base sequence of
Step of comparing with control [12] Including the following steps (a) to (d), [1]
To (10), (a) a step of preparing a DNA sample from a subject (b) a step of cleaving the prepared DNA sample with a restriction enzyme (c) a size of the DNA fragment Step of separating according to (d) step of comparing the size of the detected DNA fragment with a control [13] including the following steps (a) to (e), [1]
To (10), (a) a step of preparing a DNA sample from a subject (b) a base site in the glucocorticoid receptor gene, which is 1 in the cDNA sequence of the receptor gene
Amplifying DNA containing the 927th base site or containing the 1927th and 2314th base sites (c) Cleaving the amplified DNA with a restriction enzyme (d) Separation of DNA fragments according to their size Step (e) Comparing the size of the detected DNA fragment with a control [14] The following steps (a) to (e) are included: [1]
To (10), (a) a step of preparing a DNA sample from a subject (b) a base site in the glucocorticoid receptor gene, which is 1 in the cDNA sequence of the receptor gene
A step of amplifying DNA containing the 927th base site, or containing the 1927th and 2314th base sites (c) Dissociating the amplified DNA into single-stranded DNAs (d) Dissociating the single-stranded DNAs Step of separating on non-denaturing gel (e) Step of comparing mobility of separated single-stranded DNA on gel with control [15] Including steps (a) to (d) below [1]
To (10), (a) a step of preparing a DNA sample from a subject (b) a base site in the glucocorticoid receptor gene, which is 1 in the cDNA sequence of the receptor gene
Amplifying DNA containing the 927th base site or containing the 1927th and 2314th base sites (c) Separation of the amplified DNA on a gel in which the concentration of the DNA denaturant is gradually increased (d) Separation Comparing the mobility of the prepared DNA on a gel with a control [16] including the following steps (a) to (c): [1]
To (10), (a) (i) a base site in the glucocorticoid receptor gene prepared from a subject, which is the 1927th base site in the cDNA sequence of the receptor gene Or (ii) a substrate having a nucleotide probe immobilized thereon, and (ii) the DNA of step (a) (i) and step (a) ( ii)
Contacting the substrate of (c) by detecting the intensity of hybridization between the DNA and the nucleotide probe immobilized on the substrate,
A step of detecting a polymorphism in a gene encoding a glucocorticoid receptor [17] a polymorphic site in the glucocorticoid receptor gene, comprising at least the 1927th polymorphic site in the cDNA sequence of the receptor gene, A polynucleotide having a chain length of nucleotides [18]
[19] The polynucleotide according to [17], wherein the base of the polymorphic site is cytosine (C), and [19] a base site in the glucocorticoid receptor gene, wherein the 1927th base site in the cDNA sequence of the receptor gene is A reagent for testing the efficacy of a glucocorticoid preparation, which comprises a polynucleotide that hybridizes to DNA containing and has a chain length of at least 15 nucleotides, [20].
Furthermore, a polynucleotide that hybridizes to a DNA that is a base site in the glucocorticoid receptor gene and includes the 2314th base site in the cDNA sequence of the receptor gene, and has a chain length of at least 15 nucleotides is included [19 ]] [21]
A base site in the glucocorticoid receptor gene, which is 192 in the cDNA sequence of the receptor gene
A reagent for testing the effectiveness of a glucocorticoid preparation, comprising a forward primer designed to amplify a DNA containing the 7th base site, and a reverse primer, [22] further, a base in the glucocorticoid receptor gene D, which includes the 2314th base site in the cDNA sequence of the receptor gene
The reagent according to [21], which comprises a forward primer and a reverse primer designed to amplify NA.

【0011】[0011]

【発明の実施の形態】本発明者らにより、グルココルチ
コイド受容体(GR)のグルココルチコイド結合能を低下
させる、またはGRの転写活性可能を低下させる、GRにお
けるアミノ酸変異が見出された。より具体的には、本発
明者らは、グルココルチコイド受容体(GR)遺伝子(Ge
nBank Accession番号: NM 000176)のcDNA配列におい
て、1927番目の塩基TがCへ置換された、または、2313番
目の塩基と2314番目の塩基の間にAが挿入されたことに
より、それぞれ、643番目のアミノ酸残基がシステイン
からアルギニンへアミノ酸残基が置換された、または、
ロイシン-772からリジン-777までのアミノ酸残基が別の
26アミノ酸残基に置換されたGRを見出した(それぞれ、
「C643R変異型GR」および「2314 ins-a変異型GR」と記
載する)。該C643R変異型GRおよび該2314 ins-a変異型G
Rの転写活性は抑制されており、さらに、該C643R変異型
GRのグルココルチコイドに対する結合親和性は低いこと
が判明した。従って、上記変異について検査することに
より、グルココルチコイド製剤を投与する前に、グルコ
コルチコイド製剤の有効性を予測することが可能であ
る。本発明は、このような知見に基づくものである。な
お、本発明においては、野生型GR遺伝子、C643R変異型G
R遺伝子および2314 ins-a変異型GR遺伝子のcDNA配列
を、それぞれ配列番号:1、配列番号:3および配列番
号:5に記載する。また、野生型GR、C643R変異型GRお
よび2314 ins-a変異型GRのアミノ酸配列を、それぞれ配
列番号:2、配列番号:4および配列番号:6に記載す
る。
BEST MODE FOR CARRYING OUT THE INVENTION The present inventors have found an amino acid mutation in GR that reduces the glucocorticoid-binding ability of the glucocorticoid receptor (GR) or reduces the transcriptional activation capability of GR. More specifically, the inventors have found that the glucocorticoid receptor (GR) gene (Ge
In the cDNA sequence of nBank Accession No .: NM 000176), the 1927th base T was replaced by C, or the A was inserted between the 2313th base and the 2314th base. The amino acid residue of is replaced with an amino acid residue from cysteine to arginine, or
Amino acid residues from leucine-772 to lysine-777 are different
We found GR substituted with 26 amino acid residues (respectively,
Described as "C643R mutant GR" and "2314 ins-a mutant GR"). The C643R mutant GR and the 2314 ins-a mutant G
The transcriptional activity of R is suppressed, and the C643R mutant
It was found that GR has a low binding affinity for glucocorticoids. Therefore, by testing for the above mutation, it is possible to predict the efficacy of the glucocorticoid preparation before administering the glucocorticoid preparation. The present invention is based on such knowledge. In the present invention, wild-type GR gene, C643R mutant G
The cDNA sequences of the R gene and the 2314 ins-a mutant GR gene are shown in SEQ ID NO: 1, SEQ ID NO: 3 and SEQ ID NO: 5, respectively. The amino acid sequences of wild-type GR, C643R mutant GR and 2314 ins-a mutant GR are shown in SEQ ID NO: 2, SEQ ID NO: 4 and SEQ ID NO: 6, respectively.

【0012】本発明は、被検者におけるグルココルチコ
イド製剤の有効性の検査方法であって、GRのグルココル
チコイド結合能を低下させる、または該GRの有する転写
活性化能を低下させるGR遺伝子の多型を検出する工程を
含み、多型が検出された場合に、被検者はグルココルチ
コイド製剤に対して耐性であると判定される検査方法を
提供する。
[0012] The present invention is a method for testing the efficacy of a glucocorticoid preparation in a subject, which comprises reducing the glucocorticoid binding ability of GR or reducing the transcription activation ability of GR. Provided is a method for detecting a polymorphism, the method including the step of detecting the type, wherein the subject is determined to be resistant to the glucocorticoid preparation when the polymorphism is detected.

【0013】本発明において、グルココルチコイド受容
体(GR)とは、グルココルチコイドをリガンドとする核内
スーパーファミリーに属する受容体であり、リガンドに
依存的に転写を促進または抑制する転写制御因子であ
る。
In the present invention, the glucocorticoid receptor (GR) is a receptor belonging to the nuclear superfamily having glucocorticoid as a ligand, and is a transcriptional regulatory factor that promotes or suppresses transcription in a ligand-dependent manner. .

【0014】多型とは、遺伝学的には、人口中1%以上
の頻度で存在している1遺伝子におけるある塩基の変化
と一般的に定義される。しかしながら、本発明の「多
型」はこの定義に制限されず、1%未満の塩基の変化で
あっても本発明の「多型」に含まれる。本発明における
多型の種類としては、例えば、一塩基多型(SNP)から
数十塩基が欠失、置換あるいは挿入されている多型等が
挙げられるが、これらに制限されるものではない。
[0014] A polymorphism is genetically defined as a change in a certain base in one gene that is present at a frequency of 1% or more in the population. However, the “polymorphism” of the present invention is not limited to this definition, and even a base change of less than 1% is included in the “polymorphism” of the present invention. Examples of polymorphisms in the present invention include, but are not limited to, polymorphisms in which several tens of nucleotides are deleted, substituted or inserted from single nucleotide polymorphism (SNP).

【0015】本発明における多型として、例えば、GRの
643番目のアミノ酸変異(好ましくはシステインからア
ルギニンへの変異)をもたらす多型であり、具体的に
は、GR遺伝子のcDNA配列において1927番目の塩基変異
(好ましくはチミンからシトシンへの変異)を示すこと
ができるが、GRの643番目のアミノ酸変異を引き起こす
ような変異であれば、上記の変異に必ずしも限定されな
い。また、本発明の多型として、GRの772〜777番目のア
ミノ酸変異(好ましくは別のアミノ酸残基への置換変
異)をもたらす多型を挙げることができる。具体的には
GR遺伝子のcDNA配列において2314番目の塩基変異(好ま
しくは2313番目と2314番目の塩基の間への一塩基挿入変
異、より好ましくは2313番目と2314番目の塩基の間への
アデニンの挿入変異)を示すことができるが、野生型GR
の772〜777番目のアミノ酸を欠失もしくは別のアミノ酸
へ置換し得るようなGR遺伝子上の変異であれば、上記の
変異に特に制限されない。また本発明においては、上記
の多型に加えて、GR遺伝子上に別の多型(遺伝子変異)
が存在していてもよい。
Examples of polymorphisms in the present invention include GR
It is a polymorphism that causes the 643rd amino acid mutation (preferably cysteine to arginine mutation), and specifically shows the 1927th base mutation (preferably thymine to cytosine mutation) in the cDNA sequence of the GR gene. However, the mutation is not necessarily limited to the above-mentioned mutation as long as it is a mutation that causes the 643rd amino acid mutation in GR. In addition, examples of the polymorphism of the present invention include a polymorphism that causes an amino acid mutation at positions 772 to 777 of GR (preferably a substitution mutation with another amino acid residue). In particular
2314th base mutation in the cDNA sequence of the GR gene (preferably a single base insertion mutation between 2313th and 2314th bases, more preferably an adenine insertion mutation between 2313th and 2314th bases) As can be shown, wild type GR
Is not particularly limited to the above-mentioned mutations as long as it is a mutation on the GR gene that allows deletion of the 772nd to 777th amino acids or substitution of another amino acid. In the present invention, in addition to the above polymorphism, another polymorphism (gene mutation) on the GR gene
May exist.

【0016】本発明においては、GRの643番目のアミノ
酸変異をもたらす多型、またはGRの772〜777番目のアミ
ノ酸変異をもたらす多型を検出することにより、グルコ
コルチコイド製剤の有効性の検査を行うが、より好まし
い態様においては、GRの643番目のアミノ酸変異をもた
らす多型および772〜777番目のアミノ酸変異をもたらす
多型の両方について検出を行うことにより、より精度の
高い、グルココルチコイド製剤の有効性の検査が可能で
ある。
In the present invention, the efficacy of the glucocorticoid preparation is tested by detecting a polymorphism that causes the amino acid mutation at the 643rd amino acid in GR or a polymorphism that causes the amino acid mutations at the 772nd to 777th amino acids in GR. However, in a more preferred embodiment, the detection of both the polymorphism that causes the amino acid mutation at the 643rd amino acid and the polymorphism that causes the amino acid mutation at the 772nd to 777th amino acids in GR is performed with higher accuracy, and thus the efficacy of the glucocorticoid formulation Sexual examination is possible.

【0017】本発明において「グルココルチコイド結合
能」とは、GRとグルココルチコイドとの結合活性を指
す。この結合活性は、当業者においては、受容体とリガ
ンドとの結合活性を測定できる一般的な方法により行う
ことができる。例えば、上記結合活性の測定は、GRとデ
キサメサゾンとの結合活性を調べることにより行うこと
ができる。デキサメサゾンとはグルココルチコイドの一
種で、皮膚炎や血管炎等の炎症、リンパ腫、白血病等の
治療に一般的に用いられる化合物である。デキサメサゾ
ンとの結合活性は、例えば、被検GR遺伝子でトランスフ
ェクションしたCOS-7細胞の細胞質画分における3H-デキ
サメサゾンへの結合親和性をスキャッチャードプロット
解析することにより行うことができる。より具体的に
は、後述の実施例で示される方法により行うことができ
るが、特にこの方法に制限されない。
In the present invention, the "glucocorticoid-binding ability" refers to the binding activity between GR and glucocorticoid. This binding activity can be performed by those skilled in the art by a general method capable of measuring the binding activity between a receptor and a ligand. For example, the binding activity can be measured by examining the binding activity between GR and dexamethasone. Dexamethasone is a kind of glucocorticoid, and is a compound generally used for treating inflammation such as dermatitis and vasculitis, lymphoma, leukemia and the like. The binding activity with dexamethasone can be carried out, for example, by performing a Scatchard plot analysis of the binding affinity for 3 H-dexamethasone in the cytoplasmic fraction of COS-7 cells transfected with the GR gene to be tested. More specifically, it can be carried out by the method described in Examples below, but the method is not particularly limited.

【0018】また、GRの有する転写活性化能は、当業者
においては、一般的なレポーターアッセイにより測定す
ることができる。例えば、GRに対する結合配列を有する
レポーター遺伝子を細胞へ導入し、GRの結合によって発
現されるレポーター産物の量を測定することにより行う
ことができる。より具体的には、後述の実施例で示され
る方法により行うことが可能である。
The transcription activation ability of GR can be measured by those skilled in the art by a general reporter assay. For example, it can be carried out by introducing a reporter gene having a binding sequence for GR into cells and measuring the amount of the reporter product expressed by the binding of GR. More specifically, it can be carried out by the method shown in Examples described later.

【0019】本発明において、グルココルチコイド製剤
とは、グルココルチコイドを有効成分として含む医薬組
成物を意味する。通常、上記グルココルチコイド製剤
は、炎症抑制や白血病細胞死などの薬理作用を有する。
該製剤の作用機序は、まず、細胞質にあるGRに結合し、
次いで、グルココルチコイド製剤が結合したGRが遺伝子
の上流領域または他の転写因子タンパク質に結合する。
これにより、遺伝子群の転写活性化または転写の抑制が
起こり薬理作用がもたらされる。
In the present invention, the glucocorticoid preparation means a pharmaceutical composition containing glucocorticoid as an active ingredient. Usually, the glucocorticoid preparation has a pharmacological action such as inflammation suppression and leukemia cell death.
The mechanism of action of the preparation is that it first binds to GR in the cytoplasm,
The GR bound by the glucocorticoid preparation then binds to the upstream region of the gene or other transcription factor protein.
As a result, transcriptional activation or transcriptional repression of the gene group occurs to bring about a pharmacological action.

【0020】本発明において、「グルココルチコイド製
剤に対して耐性である」とは、被検者においてグルココ
ルチコイド製剤の薬理効果が見られない、もしくは抑制
された状態をいう。本発明において「抑制」とは、完全
な抑制に限定されず、対照(通常、健常人)と比較して
抑制されていれば、上記「抑制」の意味に解される。例
えば、本発明の検査方法によって、ある被検者について
グルココルチコイド製剤に対して耐性であると判定され
た場合には、該被検者へのグルココルチコイド製剤の投
与による治療効果は見られない、もしくは低いものと予
想することができる。本発明の方法によって得られた被
検者についてのグルココルチコイド製剤の有効性に関す
る情報によって、該被検者に対する治療方針等を適宜決
定することが可能である。
In the present invention, "resistant to a glucocorticoid preparation" means a state in which the pharmacological effect of the glucocorticoid preparation is not observed or suppressed in a subject. In the present invention, “suppression” is not limited to complete suppression, and is understood to mean “suppression” as long as it is suppressed compared to a control (usually a healthy person). For example, by the test method of the present invention, when it is determined that a certain subject is resistant to a glucocorticoid formulation, the therapeutic effect of administration of the glucocorticoid formulation to the subject is not observed, Or it can be expected to be low. Based on the information on the efficacy of the glucocorticoid preparation for the subject obtained by the method of the present invention, it is possible to appropriately determine the treatment policy and the like for the subject.

【0021】本発明の検査方法において、GR遺伝子に生
じた多型の検出は、例えば、被検者のGR遺伝子の塩基配
列を直接決定することにより行うことができる。この方
法においてはまず、被検者からDNA試料を調製する。DNA
試料は、例えば被検者の末梢血白血球、皮膚、口腔粘膜
等の組織または細胞、涙、唾液、尿、糞便または毛髪か
ら抽出した染色体DNA、あるいはRNAを基に調製すること
ができる。
In the test method of the present invention, the polymorphism generated in the GR gene can be detected, for example, by directly determining the base sequence of the GR gene of the subject. In this method, first, a DNA sample is prepared from a subject. DNA
The sample can be prepared, for example, based on chromosomal DNA or RNA extracted from peripheral blood leukocytes, tissues or cells such as skin, oral mucous membranes, tears, saliva, urine, feces or hair of a subject.

【0022】本方法においては、次いで、GR遺伝子にお
ける塩基部位であって、該遺伝子のcDNA配列において19
27番目の塩基部位または1927番目および2314番目の塩基
部位を含むDNAを単離する。該DNAの単離は、例えば、GR
遺伝子にハイブリダイズするプライマーを用いて、染色
体DNA、あるいはRNAを鋳型としたPCR等によって行うこ
とができる。本方法においては、次いで、単離したDNA
の塩基配列を決定する。単離したDNAの塩基配列の決定
は、当業者においては周知の方法により実施することが
できる。
In the present method, next, the base site in the GR gene, which is 19 nucleotides in the cDNA sequence of the gene, is selected.
DNA containing the 27th base site or the 1927th and 2314th base sites is isolated. Isolation of the DNA can be performed, for example, by GR
It can be performed by PCR using chromosomal DNA or RNA as a template, using a primer that hybridizes to the gene. In this method, the isolated DNA is then
The base sequence of is determined. The nucleotide sequence of the isolated DNA can be determined by a method well known to those skilled in the art.

【0023】本方法においては、次いで、決定したDNA
の塩基配列を、対照と比較する。本方法における対照と
は、通常、正常な(野生型)GR遺伝子の配列を言う。一
般に健常人のGR遺伝子の配列は正常であるものと考えら
れることから、上記工程の「対照と比較する」とは、通
常、健常人のGR遺伝子の配列と比較することを意味する
が、GenBankに野生型として登録されているGR遺伝子の
配列(GenBank Accession番号: NM 000176)と比較して
もよい。
In the present method, the determined DNA is then
The nucleotide sequence of is compared with the control. The control in this method usually refers to the sequence of the normal (wild type) GR gene. Generally, since the sequence of the GR gene of a healthy person is considered to be normal, the term “comparing with the control” in the above step usually means comparing with the sequence of the GR gene of a healthy person. It may be compared with the sequence of the GR gene (GenBank Accession No .: NM 000176) registered as a wild type in.

【0024】本発明の検査方法は、上記のように直接被
検者由来のDNAの塩基配列を決定する方法以外に、多型
の検出が可能な種々の方法によって行うことができる。
The test method of the present invention can be carried out by various methods capable of detecting polymorphisms in addition to the method of directly determining the base sequence of DNA derived from a subject as described above.

【0025】例えば、本発明における多型の検出は、以
下のような方法によっても行うことができる。まず、被
検者からDNA試料を調製する。次いで、調製したDNA試料
を制限酵素により切断する。次いで、DNA断片をその大
きさに応じて分離する。次いで、検出されたDNA断片の
大きさを、対照と比較する。また、他の一つの態様にお
いては、まず、被検者からDNA試料を調製する。次い
で、GR遺伝子における塩基部位であって、該遺伝子のcD
NA配列において1927番目の塩基部位、または1927番目お
よび2314番目の塩基部位を含むDNAを増幅する。さら
に、増幅したDNAを制限酵素により切断する。次いで、D
NA断片をその大きさに応じて分離する。次いで、検出さ
れたDNA断片の大きさを、対照と比較する。
For example, the polymorphism in the present invention can be detected by the following method. First, a DNA sample is prepared from a subject. Then, the prepared DNA sample is cleaved with a restriction enzyme. Then, the DNA fragments are separated according to their size. Then, the size of the detected DNA fragment is compared with the control. Moreover, in another one embodiment, first, a DNA sample is prepared from a subject. Next, the base site in the GR gene, which is the cD of the gene
A DNA containing the 1927th base site or the 1927th and 2314th base sites in the NA sequence is amplified. Furthermore, the amplified DNA is cut with a restriction enzyme. Then D
NA fragments are separated according to their size. Then, the size of the detected DNA fragment is compared with the control.

【0026】このような方法としては、例えば、制限酵
素断片長多型(Restriction Fragment Length Polymorp
hism/RFLP)を利用した方法やPCR-RFLP法等が挙げられ
る。具体的には、制限酵素の認識部位に変異が存在する
場合、あるいは制限酵素処理によって生じるDNA断片内
に塩基挿入または欠失がある場合、制限酵素処理後に生
じる断片の大きさが対照と比較して変化する。この変異
を含む部分をPCR法によって増幅し、それぞれの制限酵
素で処理することによって、これらの変異を電気泳動後
のバンドの移動度の差として検出することができる。あ
るいは、染色体DNAをこれらの制限酵素によって処理
し、電気泳動した後、本発明のプローブDNAを用いてサ
ザンブロッティングを行うことにより、変異の有無を検
出することができる。用いられる制限酵素は、それぞれ
の変異に応じて適宜選択することができる。この方法で
は、ゲノムDNA以外にも被検者から調製したRNAを逆転写
酵素でcDNAにし、これをそのまま制限酵素で切断した
後、サザンブロッティングを行うことも可能である。ま
た、このcDNAを鋳型としてPCRでGR遺伝子を含むDNAを増
幅し、それを制限酵素で切断した後、移動度の差を調べ
ることも可能である。
As such a method, for example, Restriction Fragment Length Polymorp
hism / RFLP) and PCR-RFLP method. Specifically, if there is a mutation at the recognition site of the restriction enzyme, or if there is a base insertion or deletion in the DNA fragment generated by the restriction enzyme treatment, the size of the fragment generated after the restriction enzyme treatment is compared with that of the control. Change. By amplifying the portion containing this mutation by the PCR method and treating with each restriction enzyme, these mutations can be detected as a difference in the mobility of bands after electrophoresis. Alternatively, the presence or absence of a mutation can be detected by treating chromosomal DNA with these restriction enzymes, performing electrophoresis, and then performing Southern blotting using the probe DNA of the present invention. The restriction enzyme used can be appropriately selected according to each mutation. In this method, in addition to genomic DNA, RNA prepared from a subject can be converted into cDNA with a reverse transcriptase, which can be cleaved as it is with a restriction enzyme and then subjected to Southern blotting. It is also possible to amplify the GR gene-containing DNA by PCR using this cDNA as a template, cut it with a restriction enzyme, and then investigate the difference in mobility.

【0027】さらに別の方法においては、まず、被検者
からDNA試料を調製する。次いで、GR遺伝子における塩
基部位であって、該遺伝子のcDNA配列において1927番目
の塩基部位、または1927番目および2314番目の塩基部位
を含むDNAを増幅する。さらに、増幅したDNAを一本鎖DN
Aに解離させる。次いで、解離させた一本鎖DNAを非変性
ゲル上で分離する。分離した一本鎖DNAのゲル上での移
動度を対照と比較する。
[0027] In yet another method, first, a DNA sample is prepared from a subject. Then, a DNA containing a base site in the GR gene, which includes the 1927th base site or the 1927th and 2314th base sites in the cDNA sequence of the gene is amplified. In addition, the amplified DNA is converted to single-stranded DN.
Dissociate into A. The dissociated single-stranded DNA is then separated on a non-denaturing gel. The mobility of the separated single-stranded DNA on the gel is compared with that of the control.

【0028】該方法としては、例えばPCR-SSCP(single-
strand conformation polymorphism、一本鎖高次構造多
型)法(Cloning and polymerase chain reaction-single
-strand conformation polymorphism analysis of anon
ymous Alu repeats on chromosome 11. Genomics. 1992
Jan 1; 12(1): 139-146.、Detection of p53 gene mut
ations in human brain tumors by single-strand conf
ormation polymorphism analysis of polymerase chain
reaction products. Oncogene. 1991 Aug 1;6(8): 131
3-1318.、Multiple fluorescence-based PCR-SSCP anal
ysis with postlabeling.、PCR Methods Appl. 1995 Ap
r 1; 4(5): 275-282.)が挙げられる。この方法は操作が
比較的簡便であり、また被検試料の量も少なくて済む等
の利点を有するため、特に多数のDNA試料をスクリーニ
ングするのに好適である。その原理は次の通りである。
二本鎖DNA断片を一本鎖に解離すると、各鎖はその塩基
配列に依存した独自の高次構造を形成する。この解離し
たDNA鎖を、変性剤を含まないポリアクリルアミドゲル
中で電気泳動すると、それぞれの高次構造の差に応じ
て、相補的な同じ鎖長の一本鎖DNAが異なる位置に移動
する。一塩基の置換によってもこの一本鎖DNAの高次構
造は変化し、ポリアクリルアミドゲル電気泳動において
異なる移動度を示す。従って、この移動度の変化を検出
することによりDNA断片に点突然変異や欠失、あるいは
挿入等による変異が存在することを検出することができ
る。
As the method, for example, PCR-SSCP (single-
strand conformation polymorphism (Cloning and polymerase chain reaction-single
-strand conformation polymorphism analysis of anon
ymous Alu repeats on chromosome 11. Genomics. 1992
Jan 1; 12 (1): 139-146., Detection of p53 gene mut
ations in human brain tumors by single-strand conf
ormation polymorphism analysis of polymerase chain
reaction products. Oncogene. 1991 Aug 1; 6 (8): 131
3-1318., Multiple fluorescence-based PCR-SSCP anal
ysis with postlabeling., PCR Methods Appl. 1995 Ap
r 1; 4 (5): 275-282.). This method is relatively easy to operate and has the advantage that the amount of test sample can be small and so is particularly suitable for screening a large number of DNA samples. The principle is as follows.
When a double-stranded DNA fragment is dissociated into single strands, each strand forms its own higher-order structure depending on its base sequence. When this dissociated DNA chain is electrophoresed in a polyacrylamide gel containing no denaturing agent, complementary single-stranded DNAs of the same chain length move to different positions depending on the difference in their higher-order structures. The single-stranded substitution also changes the higher-order structure of this single-stranded DNA and shows different mobilities in polyacrylamide gel electrophoresis. Therefore, by detecting this change in mobility, it is possible to detect the presence of a mutation such as a point mutation, a deletion, or an insertion in the DNA fragment.

【0029】具体的には、まず、GR遺伝子を含むDNAをP
CR法等によって増幅する。増幅される範囲としては、通
常200〜400bp程度の長さが好ましい。PCRは、当業者に
おいては反応条件等を適宜選択して行うことができる。
PCRの際に、32P等のアイソトープ、蛍光色素、またはビ
オチン等によって標識したプライマーを用いることによ
り、増幅DNA産物を標識することができる。あるいはPCR
反応液に32P等のアイソトープ、蛍光色素、またはビオ
チン等によって標識された基質塩基を加えてPCRを行う
ことにより、増幅DNA産物を標識することも可能であ
る。さらに、PCR反応後にクレノウ酵素等を用いて、32P
等のアイソトープ、蛍光色素、またはビオチン等によっ
て標識された基質塩基を、増幅DNA断片に付加すること
によっても標識を行うことができる。こうして得られた
標識DNA断片を、熱を加えること等により変性させ、尿
素などの変性剤を含まないポリアクリルアミドゲルによ
って電気泳動を行う。この際、ポリアクリルアミドゲル
に適量(5から10%程度)のグリセロールを添加するこ
とにより、DNA断片の分離の条件を改善することができ
る。また、泳動条件は各DNA断片の性質により変動する
が、通常、室温(20から25℃)で行い、好ましい分離が
得られないときには4から30℃までの温度で最適の移動
度を与える温度の検討を行う。電気泳動後、DNA断片の
移動度を、X線フィルムを用いたオートラジオグラフィ
ーや、蛍光を検出するスキャナー等で検出し、解析を行
う。移動度に差があるバンドが検出された場合、このバ
ンドを直接ゲルから切り出し、PCRによって再度増幅
し、それを直接シークエンシングすることにより、変異
の存在を確認することができる。また、標識したDNAを
使わない場合においても、電気泳動後のゲルをエチジウ
ムブロマイドや銀染色法などによって染色することによ
って、バンドを検出することができる。
Specifically, first, the DNA containing the GR gene is
Amplify by CR method. The range of amplification is usually preferably about 200 to 400 bp. Those skilled in the art can perform PCR by appropriately selecting reaction conditions and the like.
At the time of PCR, the amplified DNA product can be labeled by using a primer labeled with an isotope such as 32 P, a fluorescent dye, or biotin. Or PCR
It is also possible to label the amplified DNA product by adding a substrate base labeled with an isotope such as 32 P, a fluorescent dye, or biotin to the reaction solution and performing PCR. Furthermore, in using Klenow enzyme or the like after the PCR reaction, 32 P
Labeling can also be performed by adding a substrate base labeled with an isotope such as, a fluorescent dye, or biotin to the amplified DNA fragment. The labeled DNA fragment thus obtained is denatured by applying heat or the like, and electrophoresed on a polyacrylamide gel containing no denaturing agent such as urea. At this time, the conditions for separating the DNA fragments can be improved by adding an appropriate amount (about 5 to 10%) of glycerol to the polyacrylamide gel. In addition, although the electrophoresis conditions vary depending on the properties of each DNA fragment, they are usually performed at room temperature (20 to 25 ° C), and when a preferable separation is not obtained, a temperature from 4 to 30 ° C that gives the optimum mobility Consider. After electrophoresis, the mobility of the DNA fragment is detected by autoradiography using an X-ray film, a scanner for detecting fluorescence, or the like, and analyzed. When a band with a difference in mobility is detected, the presence of the mutation can be confirmed by directly cutting out this band from the gel, amplifying it again by PCR, and directly sequencing it. Further, even when the labeled DNA is not used, the band can be detected by staining the gel after electrophoresis with ethidium bromide or the silver staining method.

【0030】さらに別の方法は、まず、被検者からDNA
試料を調製する。次いで、GR遺伝子における塩基部位で
あって、該遺伝子のcDNA配列において1927番目の塩基部
位、または1927番目および2314番目の塩基部位を含むDN
Aを増幅する。さらに、増幅したDNAを、DNA変性剤の濃
度が次第に高まるゲル上で分離する。次いで、分離した
DNAのゲル上での移動度を対照と比較する。
In another method, first, DNA from a subject is
Prepare the sample. Then, a DN which is a base site in the GR gene and includes the 1927th base site or the 1927th and 2314th base sites in the cDNA sequence of the gene.
Amplify A. In addition, the amplified DNA is separated on a gel with increasing concentrations of DNA denaturants. Then separated
The mobility of the DNA on the gel is compared to the control.

【0031】このような方法としては、例えば、変性剤
濃度勾配ゲル(denaturant gradient gel electrophore
sis: DGGE法)等を例示することができる。DGGE法は、
変性剤の濃度勾配のあるポリアクリルアミドゲル中で、
DNA断片の混合物を泳動し、それぞれの不安定性の違い
によってDNA断片を分離する方法である。ミスマッチの
ある不安定なDNA断片が、ゲル中のある変性剤濃度の部
分まで移動すると、ミスマッチ周辺のDNA配列はその不
安定さのために、部分的に1本鎖へと解離する。この部
分的に解離したDNA断片の移動度は、非常に遅くなり、
解離部分のない完全な二本鎖DNAの移動度と差がつくこ
とから、両者を分離することができる。具体的には、GR
遺伝子を含むDNAを本発明のプライマー等を用いたPCR法
等によって増幅し、これを尿素などの変性剤の濃度が移
動するに従って徐々に高くなっているポリアクリルアミ
ドゲル中で電気泳動し、対照と比較する。変異が存在す
るDNA断片の場合、より低い変性剤濃度位置でDNA断片が
一本鎖になり、極端に移動速度が遅くなるため、この移
動度の差を検出することにより変異の有無を検出するこ
とができる。
As such a method, for example, a denaturant gradient gel electrophore is used.
sis: DGGE method) and the like. The DGGE method is
In a polyacrylamide gel with a denaturant gradient,
In this method, a mixture of DNA fragments is electrophoresed, and the DNA fragments are separated according to the difference in instability. When a labile DNA fragment with a mismatch migrates to a certain denaturant concentration in the gel, the DNA sequence around the mismatch partially dissociates into single strands due to its instability. The mobility of this partially dissociated DNA fragment is very slow,
Since they differ from the mobility of complete double-stranded DNA with no dissociated portion, they can be separated from each other. Specifically, GR
A DNA containing a gene is amplified by a PCR method using the primer or the like of the present invention, and this is electrophoresed in a polyacrylamide gel that gradually increases as the concentration of a denaturant such as urea shifts. Compare. In the case of a DNA fragment that has a mutation, the DNA fragment becomes single-stranded at a lower denaturant concentration position, and the migration speed becomes extremely slow. Therefore, the presence or absence of a mutation can be detected by detecting this mobility difference. be able to.

【0032】さらに別の方法は、まず、被検者から調製
したGR遺伝子における塩基部位であって、該遺伝子のcD
NA配列において1927番目の塩基部位、または1927番目お
よび2314番目の塩基部位を含むDNA、および該DNAとハイ
ブリダイズするヌクレオチドプローブが固定された基
板、を提供する。次いで、該DNAと該基板を接触させ
る。さらに、基板に固定されたヌクレオチドプローブに
ハイブリダイズしたDNAを検出することにより、GR遺伝
子多型を検出する。
[0032] Another method is as follows. First, the base site in the GR gene prepared from a subject,
Provided is a DNA containing the 1927th base site or the 1927th and 2314th base sites in the NA sequence, and a substrate on which a nucleotide probe that hybridizes with the DNA is immobilized. Next, the DNA is brought into contact with the substrate. Furthermore, GR gene polymorphism is detected by detecting the DNA hybridized with the nucleotide probe fixed to the substrate.

【0033】このような方法としては、DNAアレイ法(S
NP遺伝子多型の戦略、松原謙一・榊佳之、中山書店、p1
28-135)が例示できる。被検者からのGR遺伝子を含むDN
A試料の調製は、当業者に周知の方法で行うことができ
る。該DNA試料の調製の好ましい態様においては、例え
ば被検者の末梢血白血球、皮膚、口腔粘膜等の組織また
は細胞、涙、唾液、尿、糞便または毛髪から抽出した染
色体DNAを基に調製することができる。染色体DNAから本
方法のDNA試料を調製するには、例えばGR遺伝子を含むD
NAにハイブリダイズするプライマーを用いて、染色体DN
Aを鋳型としたPCR等によってGR遺伝子を含むDNAを調製
することも可能である。調製したDNA試料には、必要に
応じて、当業者に周知の方法によって検出のための標識
を施すことができる。
As such a method, the DNA array method (S
NP gene polymorphism strategy, Kenichi Matsubara / Yoshiyuki Sakaki, Nakayama Shoten, p1
28-135). DN containing GR gene from subject
A sample can be prepared by a method well known to those skilled in the art. In a preferred embodiment of the preparation of the DNA sample, for example, it is prepared on the basis of chromosomal DNA extracted from peripheral blood leukocytes of the subject, skin, tissues or cells such as oral mucous membranes, tears, saliva, urine, feces or hair. You can To prepare a DNA sample of this method from chromosomal DNA, for example, D containing GR gene
Chromosome DN using primers that hybridize to NA
It is also possible to prepare a DNA containing the GR gene by PCR using A as a template. If necessary, the prepared DNA sample can be labeled for detection by a method well known to those skilled in the art.

【0034】本発明において「基板」とは、ヌクレオチ
ドを固定することが可能な板状の材料を意味する。本発
明においてヌクレオチドには、オリゴヌクレオチドおよ
びポリヌクレオチドが含まれる。本発明の基板は、ヌク
レオチドを固定することが可能であれば特に制限はない
が、一般にDNAアレイ技術で使用される基板を好適に用
いることができる。
In the present invention, the "substrate" means a plate-shaped material capable of immobilizing nucleotides. In the present invention, nucleotides include oligonucleotides and polynucleotides. The substrate of the present invention is not particularly limited as long as it can immobilize nucleotides, but substrates generally used in DNA array technology can be preferably used.

【0035】一般にDNAアレイは、高密度に基板にプリ
ントされた何千ものヌクレオチドで構成されている。通
常これらのDNAは非透過性(non- porous)の基板の表層に
プリントされる。基板の表層は、一般的にはガラスであ
るが、透過性(porous)の膜、例えばニトロセルロースメ
ンブレムを使用することができる。
Generally, a DNA array is composed of thousands of nucleotides printed on a substrate with high density. Usually, these DNAs are printed on the surface of a non-porous substrate. The surface layer of the substrate is generally glass, but porous membranes such as nitrocellulose membranes can be used.

【0036】本発明において、ヌクレオチドの固定(ア
レイ)方法として、Affymetrix社開発によるオリゴヌク
レオチドを基本としたアレイが例示できる。オリゴヌク
レオチドのアレイにおいて、オリゴヌクレオチドは通常
インサイチュ(in situ)で合成される。例えば、photoli
thographicの技術(Affymetrix社)、および化学物質を
固定させるためのインクジェット(Rosetta Inpharmatic
s社)技術等によるオリゴヌクレオチドのインサイチュ合
成法が既に知られており、いずれの技術も本発明の基板
の作製に利用することができる。
In the present invention, an oligonucleotide-based array developed by Affymetrix can be exemplified as a nucleotide immobilization (array) method. In an array of oligonucleotides, the oligonucleotides are usually synthesized in situ. For example, photoli
thographic technology (Affymetrix) and inkjet for fixing chemicals (Rosetta Inpharmatic
In-situ synthetic methods of oligonucleotides by the technology (s., Inc.) are already known, and any technology can be used for producing the substrate of the present invention.

【0037】基板に固定するヌクレオチドプローブは、
GR遺伝子の多型を検出することができるものであれば、
特に制限されない。即ち該プローブは、例えば、野生型
のGR遺伝子、あるいは多型を有するGR遺伝子と特異的に
ハイブリダイズするようなプローブである。特異的なハ
イブリダイズが可能であれば、ヌクレオチドプローブ
は、検出するGR遺伝子を含むDNA、または多型を有するG
R遺伝子に対し、完全に相補的である必要はない。
The nucleotide probe immobilized on the substrate is
If it is possible to detect polymorphism of GR gene,
There is no particular limitation. That is, the probe is a probe that specifically hybridizes with, for example, a wild-type GR gene or a GR gene having a polymorphism. If specific hybridization is possible, the nucleotide probe may be DNA containing the GR gene to be detected or G having a polymorphism.
It need not be completely complementary to the R gene.

【0038】本発明において基板に結合させるヌクレオ
チドプローブの長さは、オリゴヌクレオチドを固定する
場合は、通常10〜100ベースであり、好ましくは10〜50
ベースであり、さらに好ましくは15〜25ベースである。
In the present invention, the length of the nucleotide probe to be bound to the substrate is usually 10 to 100 bases, preferably 10 to 50, when the oligonucleotide is immobilized.
It is a base, more preferably 15 to 25 bases.

【0039】本発明においては、次いで、該cDNA試料と
該基板を接触させる。本工程により、上記ヌクレオチド
プローブに対し、DNA試料をハイブリダイズさせる。ハ
イブリダイゼーションの反応液および反応条件は、基板
に固定するヌクレオチドプローブの長さ等の諸要因によ
り変動しうるが、一般的に当業者に周知の方法により行
うことができる。
In the present invention, the cDNA sample is then brought into contact with the substrate. By this step, a DNA sample is hybridized with the nucleotide probe. The reaction solution and reaction conditions for hybridization may vary depending on various factors such as the length of the nucleotide probe immobilized on the substrate, but generally they can be performed by methods well known to those skilled in the art.

【0040】本発明においては、次いで、該DNA試料と
基板に固定されたヌクレオチドプローブとのハイブリダ
イズの有無または強度を検出する。この検出は、例え
ば、蛍光シグナルをスキャナー等によって読み取ること
によって行うことができる。尚、DNAアレイにおいて
は、一般的にスライドガラスに固定したDNAをプローブ
といい、一方溶液中のラベルしたDNAをターゲットとい
う。従って、基板に固定された上記ヌクレオチドを、本
明細書においてヌクレオチドプローブと記載する。
In the present invention, the presence or absence of hybridization or the intensity of the hybridization between the DNA sample and the nucleotide probe immobilized on the substrate is then detected. This detection can be performed, for example, by reading the fluorescence signal with a scanner or the like. In a DNA array, DNA immobilized on a slide glass is generally called a probe, while labeled DNA in a solution is called a target. Therefore, the above nucleotide immobilized on the substrate is referred to as a nucleotide probe in the present specification.

【0041】上記の方法以外にも、特定位置の変異のみ
を検出する目的にはアレル特異的オリゴヌクレオチド
(Allele Specific Oligonucleotide/ASO)ハイブリダ
イゼーション法が利用できる。変異が存在すると考えら
れる塩基配列を含むオリゴヌクレオチドを作製し、これ
と試料DNAでハイブリダイゼーションを行わせると、変
異が存在する場合、ハイブリッド形成の効率が低下す
る。それをサザンブロット法や、特殊な蛍光試薬がハイ
ブリッドのギャップにインターカレーションすることに
より消光する性質を利用した方法、等により検出するこ
とができる。また、リボヌクレアーゼAミスマッチ切断
法による検出も可能である。具体的には、GR遺伝子を含
むDNAをPCR法等によって増幅し、これをプラスミドベク
ター等に組み込んだGR遺伝子cDNA等から調製した標識RN
Aとハイブリダイゼーションを行う。変異が存在する部
分においてはハイブリッドが一本鎖構造となるので、こ
の部分をリボヌクレアーゼAによって切断し、これをオ
ートラジオグラフィー等で検出することによって変異の
存在を検出することができる。
In addition to the above method, an allele specific oligonucleotide (ASO) hybridization method can be used for the purpose of detecting only a mutation at a specific position. When an oligonucleotide containing a nucleotide sequence that is considered to have a mutation is produced and hybridized with this and a sample DNA, the efficiency of hybridization is reduced in the presence of the mutation. It can be detected by Southern blotting or a method utilizing the property of quenching by intercalating a special fluorescent reagent into the hybrid gap. It can also be detected by the ribonuclease A mismatch cleavage method. Specifically, labeled RN prepared by amplifying DNA containing GR gene by PCR etc. and incorporating it into a plasmid vector etc.
Hybridize with A. Since the hybrid has a single-stranded structure in the portion where the mutation exists, the presence of the mutation can be detected by cleaving this portion with ribonuclease A and detecting this by autoradiography or the like.

【0042】その他の本発明の多型の検出が可能な方法
としては、(1)質量分析法による方法(Griffin TJ a
nd Smith LM, Trends Biotechnol.vol. 18, pp77-84,
(2000))、(2)Taq-Man PCRによる方法(Livak KJ. G
enet. Anal. vol.14, pp143-149, (1999))、(3)Pyr
osequencingによる方法(Ahmadian A et al., Anal. Bi
ochem. vol. 280, pp103-110, (2000))、(4)Invade
r法による方法(Lyamichev V et al., Nat. Biotechno
l. vol. 17,pp292-296, (1999)、メディカルドゥ社発行
「遺伝子医学」 vol.4, No.1, pp44-51およびpp68-7
2 (2000))等、を挙げることができる。以上、種々の検
出方法を例示したが、これらに限らず、GRのグルココル
チコイド結合能を低下させる上記多型、または該GRの有
する転写活性化能を低下させる上記多型の検出を可能に
する方法であれば、任意の方法を用いることができる。
Other methods capable of detecting the polymorphism of the present invention include (1) a method by mass spectrometry (Griffin TJ a
nd Smith LM, Trends Biotechnol.vol. 18, pp77-84,
(2000)), (2) Method by Taq-Man PCR (Livak KJ. G
enet. Anal. vol.14, pp143-149, (1999)), (3) Pyr
Method by osequencing (Ahmadian A et al., Anal. Bi
ochem. vol. 280, pp103-110, (2000)), (4) Invade
r method (Lyamichev V et al., Nat. Biotechno
l. vol. 17, pp292-296, (1999), Published by Medical Do, "Gene Medicine" vol.4, No.1, pp44-51 and pp68-7
2 (2000)) and the like. Although various detection methods have been exemplified above, the detection method is not limited to these, and enables detection of the polymorphism that reduces the glucocorticoid-binding ability of GR, or the polymorphism that reduces the transcription activation ability of GR. Any method can be used as long as it is a method.

【0043】本発明はまた、本発明の検査方法等に使用
できる、GR遺伝子における多型部位であって、該遺伝子
のcDNA配列において1927番目の多型部位を含む、少なく
とも15ヌクレオチドの鎖長を有するポリヌクレオチドを
提供する。該多型部位における塩基は、好ましくはシト
シンである。
The present invention also provides a polymorphic site in the GR gene which can be used in the test method of the present invention, and which has a chain length of at least 15 nucleotides, including the 1927th polymorphic site in the cDNA sequence of the gene. A polynucleotide having is provided. The base at the polymorphic site is preferably cytosine.

【0044】本発明はまた、グルココルチコイド製剤の
有効性を検査するための試薬を提供する。その一つの態
様としては、GR遺伝子における塩基部位であって、該遺
伝子のcDNA配列において1927番目の塩基部位を含むDNA
にハイブリダイズし、少なくとも15ヌクレオチドの鎖長
を有するポリヌクレオチドを含む、グルココルチコイド
製剤の有効性を検査するための試薬である。該試薬は、
さらに、GR遺伝子における塩基部位であって、該遺伝子
のcDNA配列において2314番目の塩基部位を含むDNAにハ
イブリダイズし、少なくとも15ヌクレオチドの鎖長を有
するポリヌクレオチドを含むものであってもよい。
The present invention also provides reagents for testing the efficacy of glucocorticoid formulations. As one embodiment thereof, a DNA that is a base site in the GR gene and contains the 1927th base site in the cDNA sequence of the gene.
It is a reagent for testing the efficacy of a glucocorticoid preparation, which comprises a polynucleotide that hybridizes to and has a chain length of at least 15 nucleotides. The reagent is
Further, it may include a polynucleotide which has a base length in the GR gene and which has a chain length of at least 15 nucleotides and hybridizes to a DNA containing the 2314th base site in the cDNA sequence of the gene.

【0045】該オリゴヌクレオチドは、GR遺伝子を含む
DNAに特異的にハイブリダイズするものである。ここで
「特異的にハイブリダイズする」とは、通常のハイブリ
ダイゼーション条件下、好ましくはストリンジェントな
ハイブリダイゼーション条件下(例えば、サムブルック
ら,Molecular Cloning,Cold Spring Harbour Laborator
y Press,New York,USA,第2版1989に記載の条件)にお
いて、他のタンパク質をコードするDNAとクロスハイブ
リダイゼーションを有意に生じないことを意味する。特
異的なハイブリダイズが可能であれば、該オリゴヌクレ
オチドは、検出するGR遺伝子の塩基配列に対し、完全に
相補的である必要はない。
The oligonucleotide contains a GR gene
It hybridizes specifically to DNA. The term "specifically hybridize" as used herein means ordinary hybridization conditions, preferably stringent hybridization conditions (for example, Sambrook et al., Molecular Cloning, Cold Spring Harbor Laborator).
y Press, New York, USA, 2nd edition 1989) does not significantly cause cross-hybridization with DNAs encoding other proteins. The oligonucleotide need not be completely complementary to the base sequence of the GR gene to be detected, as long as specific hybridization is possible.

【0046】該オリゴヌクレオチドは、上記本発明の検
査方法におけるプローブやプライマーとして用いること
ができる。該オリゴヌクレオチドをプライマーとして用
いる場合、その長さは、通常15bp〜100bpであり、好ま
しくは17bp〜30bpである。プライマーは、多型部分を含
むGR遺伝子の少なくとも一部を増幅しうるものであれ
ば、特に制限されない。
The oligonucleotide can be used as a probe or primer in the above-mentioned inspection method of the present invention. When the oligonucleotide is used as a primer, its length is usually 15 bp to 100 bp, preferably 17 bp to 30 bp. The primer is not particularly limited as long as it can amplify at least a part of the GR gene including the polymorphic part.

【0047】また、上記オリゴヌクレオチドをプローブ
として使用する場合、該プローブは、GR遺伝子における
塩基部位であって、該遺伝子のcDNA配列において1927番
目の塩基部位または2314番目の塩基部位を含むDNAに特
異的にハイブリダイズするものであれば、特に制限され
ない。該プローブは、合成オリゴヌクレオチドであって
もよく、通常少なくとも15bp以上の鎖長を有する。
When the above-mentioned oligonucleotide is used as a probe, the probe is specific to a DNA which is a base site in the GR gene and contains the 1927th base site or the 2314th base site in the cDNA sequence of the gene. There is no particular limitation as long as it hybridizes physically. The probe may be a synthetic oligonucleotide and usually has a chain length of at least 15 bp or more.

【0048】本発明のオリゴヌクレオチドは、例えば市
販のオリゴヌクレオチド合成機により作製することがで
きる。プローブは、制限酵素処理等によって取得される
二本鎖DNA断片として作製することもできる。
The oligonucleotide of the present invention can be produced, for example, by a commercially available oligonucleotide synthesizer. The probe can also be prepared as a double-stranded DNA fragment obtained by treatment with a restriction enzyme or the like.

【0049】本発明のオリゴヌクレオチドをプローブと
して用いる場合は、適宜標識して用いることが好まし
い。標識する方法としては、T4ポリヌクレオチドキナー
ゼを用いて、オリゴヌクレオチドの5'端を32Pでリン酸
化することにより標識する方法、およびクレノウ酵素等
のDNAポリメラーゼを用い、ランダムヘキサマーオリゴ
ヌクレオチド等をプライマーとして32P等のアイソトー
プ、蛍光色素、またはビオチン等によって標識された基
質塩基を取り込ませる方法(ランダムプライム法等)を
例示することができる。
When the oligonucleotide of the present invention is used as a probe, it is preferably labeled appropriately before use. As a method of labeling, using T4 polynucleotide kinase, a method of labeling by phosphorylating the 5'end of an oligonucleotide with 32 P, and a DNA polymerase such as Klenow enzyme, a random hexamer oligonucleotide, etc. As the primer, a method of incorporating a substrate base labeled with an isotope such as 32 P, a fluorescent dye, or biotin (random prime method etc.) can be exemplified.

【0050】また、本発明における検査薬の別の態様
は、GR遺伝子における塩基部位であって、該遺伝子のcD
NA配列において1927番目の塩基部位を含むDNAを増幅す
るように設計されたフォワードプライマー、およびリバ
ースプライマーを含む、グルココルチコイド製剤の有効
性を検査するための試薬である。該試薬は、さらに、GR
遺伝子における塩基部位であって、該遺伝子のcDNA配列
において2314番目の塩基部位を含むDNAを増幅するよう
に設計されたフォワードプライマーおよびリバースプラ
イマーを含むものであってもよい。プライマーの長さ
は、通常15bp〜100bpであり、好ましくは17bp〜30bpで
ある。プライマーは、多型部分を含むGR遺伝子の少なく
とも一部を増幅しうるものであれば、特に制限されな
い。
[0050] Another aspect of the test agent of the present invention is the base site in the GR gene, which is cD of the gene.
It is a reagent for testing the efficacy of a glucocorticoid preparation, which comprises a forward primer designed to amplify a DNA containing the 1927th base site in the NA sequence and a reverse primer. The reagent further comprises GR
It may contain a forward primer and a reverse primer designed to amplify a DNA containing a base site in the gene and a 2314th base site in the cDNA sequence of the gene. The length of the primer is usually 15 bp to 100 bp, preferably 17 bp to 30 bp. The primer is not particularly limited as long as it can amplify at least a part of the GR gene including the polymorphic part.

【0051】本発明の試薬においては、有効成分である
オリゴヌクレオチド以外に、例えば、滅菌水、生理食塩
水、植物油、界面活性剤、脂質、溶解補助剤、緩衝剤、
タンパク質安定剤(BSAやゼラチンなど)、保存剤等が
必要に応じて混合されていてもよい。
In the reagent of the present invention, in addition to the active ingredient oligonucleotide, for example, sterile water, physiological saline, vegetable oil, surfactant, lipid, solubilizing agent, buffer,
Protein stabilizers (BSA, gelatin, etc.), preservatives and the like may be mixed if necessary.

【0052】[0052]

【実施例】以下、本発明を実施例により、さらに具体的
に説明するが本発明はこれら実施例に制限されるもので
はない。
EXAMPLES The present invention will be described in more detail below with reference to examples, but the present invention is not limited to these examples.

【0053】(1)GR遺伝子のDNA供給源および配列決
定 10名の異なる個別の日本人(JCRB0071、0086、0091、009
2、0094、0104、0105、0112、0114および0122)に由来し
た確立された白血病細胞株および1種の日本人由来結腸
ガン細胞株(JCRB0208)はヒューマンサイエンス研究資源
バンク(HealthScience Research Resources Bank(HSRR
B))(大阪、日本)から、もしくは、直接国立医薬品食品
衛生研究所(NIHS)の厚生労働省研究資源バンク(Japanes
e Collection of Research Bioresources(JCRB))(東
京、日本)から入手した。
(1) DNA source and sequencing of GR gene Ten different Japanese (JCRB0071, 0086, 0091, 009)
2, 0094, 0104, 0105, 0112, 0114 and 0122), and one Japanese colon cancer cell line (JCRB0208) derived from the Health Science Research Resources Bank (HSRR).
B)) (Osaka, Japan) or directly from the National Institute of Health Sciences (NIHS) Ministry of Health, Labor and Welfare Research Resource Bank (Japanes)
e Collection of Research Bioresources (JCRB)) (Tokyo, Japan).

【0054】ポリメラーゼ連鎖反応(PCR)用のプライマ
ーデザインおよびコード領域の配列決定は、NCBIデータ
ベースから得た配列(M78506、M78507、U78508、AC00478
2)を基にした。本試験に使用した全てのプライマー(配
列番号:7〜30)を、表1に列記した。
Primer design for the polymerase chain reaction (PCR) and sequencing of the coding region was performed using the sequences (M78506, M78507, U78508, AC00478) obtained from the NCBI database.
Based on 2). All the primers (SEQ ID NOs: 7-30) used in this test are listed in Table 1.

【0055】[0055]

【表1】 [Table 1]

【0056】PCR条件は下記のものであった。Ex-Taqポ
リメラーゼ(TaKaRa社、京都、日本)を使用し、熱変性95
℃5分、それに続く95℃30秒、55℃1分および72℃2分の
反応を30サイクル、ならびに72℃7分の最終反応を1回行
った。その後PCR産物を、ABIPrism 3700 DNA分析装置(A
pplied Biosystems社、CA、米国)を使用するABI BigDye
Terminater Cycle Sequencing Kit (Applied Biosyste
ms社、CA、米国)を用いて直接配列決定した。
The PCR conditions were as follows: Ex-Taq polymerase (TaKaRa, Kyoto, Japan) is used to
C. for 5 minutes, followed by 95.degree. C. for 30 seconds, 55.degree. C. for 1 minute and 72.degree. C. for 2 minutes for 30 cycles and 72.degree. After that, the PCR product was transferred to the ABI Prism 3700 DNA Analyzer (A
ABI BigDye using pplied Biosystems, CA, USA)
Terminater Cycle Sequencing Kit (Applied Biosyste
Sequencing was performed directly using MS (CA, USA).

【0057】(2)プラスミド アメリカン・タイプ・カルチャー・コレクション(ATC
C、VA、米国)から入手したpRShGRαは、ヒトGRαの完全
長コード領域および構成的に活性のあるラウス肉腫ウイ
ルスプロモーターを含んでいる(V. Giguere, S. M. Hol
lenberg, M. G. Rosenfeld, R. M. Evans, Functional
domains of the human glucocorticoid receptor. Cell
46 (1986) 645-652)。変異型C643R GRおよび変異型231
4 ins-a GRのための発現ベクターは、鋳型として野生型
pRShGRαプラスミドを用い、QuickChange位置指定突然
変異導入キット(Stratagene社、CA、米国)で構築した。
対照としてのベクタープラスミドはpRShGRαプラスミド
からhGRα領域を取り除くことにより構築した。
(2) Plasmid American Type Culture Collection (ATC
C, VA, USA) pRShGRα contains the full-length coding region of human GRα and the constitutively active Rous sarcoma virus promoter (V. Giguere, SM Hol.
lenberg, MG Rosenfeld, RM Evans, Functional
domains of the human glucocorticoid receptor. Cell
46 (1986) 645-652). Mutant C643R GR and Mutant 231
The expression vector for 4 ins-a GR contains wild type as a template.
The pRShGRα plasmid was used to construct with a QuickChange site-directed mutagenesis kit (Stratagene, CA, USA).
A vector plasmid as a control was constructed by removing the hGRα region from the pRShGRα plasmid.

【0058】(3)細胞培養 COS-7細胞は、厚生労働省研究資源バンク(JCRB)(東京、
日本)から入手した。この細胞を、10%FBS、100U/mlペ
ニシリンおよびストレプトマイシンを補充したダルベッ
コの変更イーグル培地(DMEM)において、5%CO大気
下、37℃で増殖した。
(3) Cell culture COS-7 cells were obtained from the Research Resource Bank (JCRB) of the Ministry of Health, Labor and Welfare (Tokyo, Japan).
(Japan). The cells were grown in Dulbecco's Modified Eagle's Medium (DMEM) supplemented with 10% FBS, 100 U / ml penicillin and streptomycin in a 5% CO 2 atmosphere at 37 ° C.

【0059】(4)一過性トランスフェクション COS-7細胞を、ウェスタンブロットおよびデキサメサゾ
ン結合アッセイのために10cm組織培養皿(1.6 X 106細胞
/皿)上に、またはルシフェラーゼアッセイのために6ウ
ェル組織培養皿(1.4 X 1O5細胞/ウェル)に播種し、かつ
一晩増殖した。血清および抗生物質を含まないDMEM中の
野生型GR(pRShGRα)、C643R GRまたは2314 ins-a GRの
いずれかをコードしている発現ベクター4μg(10cm培養
皿について、皿1個当たり)または1.5μg(6ウェル皿につ
いて、ウェル1個当たり)を、PolyFectトランスフェクシ
ョン試薬(Qiagen社、ヒルデン、独国)と混合した。この
混合液を、10%FBS-DMEMで希釈し、かつ直ぐに該細胞に
滴下した。細胞質画分を調製するために、トランスフェ
クションし48時間培養した後、細胞をリン酸緩衝生理食
塩水(PBS)で洗浄し、かつトリプシン処理により分散し
た。培地を遠心分離によりSET緩衝液(0.25Mショ糖、1mM
EDTA、100mM Tris-HCl(pH7.4))と交換した後、細胞を
音波処理により破壊し、かつ105,000 X gで遠心した。
上清のタンパク質濃度を、BCAタンパク質アッセイキッ
ト(Pierce社、IL、米国)により測定した。
(4) Transiently transfected COS-7 cells were transferred to 10 cm tissue culture dishes (1.6 x 10 6 cells for Western blot and dexamethasone binding assay).
/ Dish) or 6 well tissue culture dishes (1.4 x 10 5 cells / well) for luciferase assay and grown overnight. 4 μg of expression vector encoding either wild-type GR (pRShGRα), C643R GR or 2314 ins-a GR in serum- and antibiotic-free DMEM (per dish for 10 cm dishes) or 1.5 μg (For 6-well dishes, per well) were mixed with PolyFect transfection reagent (Qiagen, Hilden, Germany). This mixture was diluted with 10% FBS-DMEM and immediately added dropwise to the cells. To prepare the cytoplasmic fraction, after transfection and incubation for 48 hours, cells were washed with phosphate buffered saline (PBS) and dispersed by trypsinization. Centrifuge the medium to obtain SET buffer (0.25 M sucrose, 1 mM
After replacing with EDTA, 100 mM Tris-HCl (pH 7.4)), the cells were disrupted by sonication and centrifuged at 105,000 X g.
The protein concentration of the supernatant was measured by BCA protein assay kit (Pierce, IL, USA).

【0060】(5)ウェスタンブロット分析 細胞質画分(50μgタンパク質)を、6%SDS-ポロアクリル
アミドゲル(Tefuco社、東京、日本)上で電気泳動し、か
つPVDF膜(Bio-Rad社、CA、米国)上に移した。これらの
膜を、一次抗体としてポリクローナルウサギ抗ヒトGR抗
体(Affinity Bioreagents社、CO、米国)、および二次抗
体としてアルカリホスファターゼに複合したヤギ抗ウサ
ギIgG抗体(Promega社、WI、米国)で染色した。これらの
シグナルを、ニトロブルーテトラゾリウムクロリド(NB
T)および5-ブロモ-4-クロロ-3-インドリルリン酸p-トル
イジン塩(BCIP) (Promega社、WI、米国)で処理すること
により視認した。
(5) Western blot analysis The cytoplasmic fraction (50 μg protein) was electrophoresed on a 6% SDS-polyacrylamide gel (Tefuco, Tokyo, Japan) and a PVDF membrane (Bio-Rad, CA, Japan) was used. (US). These membranes were stained with a polyclonal rabbit anti-human GR antibody as a primary antibody (Affinity Bioreagents, CO, USA) and a goat anti-rabbit IgG antibody conjugated to alkaline phosphatase as a secondary antibody (Promega, WI, USA). . These signals are transferred to nitroblue tetrazolium chloride (NB
T) and 5-bromo-4-chloro-3-indolyl phosphate p-toluidine salt (BCIP) (Promega, WI, USA) for visualization.

【0061】(6)デキサメサゾン結合アッセイ 少量の細胞質画分のを、500倍過剰量の標識していない
デキサメサゾンの存在または非存在下の各々で、[H]
デキサメサゾン(Amersham Pharmacia Biotech社、英国)
と共にインキュベーションし、各々、総結合および非特
異的結合を測定した。チャコール吸着法を用い、細胞質
画分における[H]デキサメサゾン結合を測定した。ウ
シ胎仔血清アルブミン(BSA)を、この溶液に添加し、GR
のチャコールへの非特異的吸着を阻害した(Niimi et. a
l., Regulation of glucocorticoid receptor by the t
yrosine kinase inhibitor herbimycin A in the cytos
olic fraction of primary cultured rat hepatocytes.
J. Steroid Biochem. Mol. Biol. 61:65-71 (1997);N
iimi et. al., Effect of dexamethasone pretreatment
on the dexamethasone-dependent induction of tyros
ine aminotransferase activity in primary cultured
rat hepatocytes. Biol. Pharm. Bull. 21:1009-1012
(1998))。遠心分離後、上清の放射能を、シンチレーシ
ョンスペクトロメーターにおいてACSIIで計測した。
(6) Dexamethasone binding assay A small amount of the cytosolic fraction was [ 3 H] in the presence or absence of a 500-fold excess of unlabeled dexamethasone, respectively.
Dexamethasone (Amersham Pharmacia Biotech, UK)
Incubation with and measured total and non-specific binding, respectively. [ 3 H] dexamethasone binding in the cytosolic fraction was measured using the charcoal adsorption method. Fetal bovine serum albumin (BSA) was added to this solution and the GR
Non-specific adsorption of charcoal on charcoal (Niimi et. A
l., Regulation of glucocorticoid receptor by the t
yrosine kinase inhibitor herbimycin A in the cytos
olic fraction of primary cultured rat hepatocytes.
J. Steroid Biochem. Mol. Biol. 61: 65-71 (1997); N
iimi et.al., Effect of dexamethasone pretreatment
on the dexamethasone-dependent induction of tyros
ine aminotransferase activity in primary cultured
rat hepatocytes. Biol. Pharm. Bull. 21: 1009-1012
(1998)). After centrifugation, the radioactivity of the supernatant was measured by ACSII in a scintillation spectrometer.

【0062】(7)ルシフェラーゼ活性 COS-7細胞を、野生型GR発現ベクターpRShGRα、変異型G
R発現ベクターであるpRShGRα-C643RまたはpRShGRα-23
14 ins-aに、マウスの乳がんウイルス(MMTV)プロモータ
ー-ルシフェラーゼレポーター構築体(pHH-Luc)(ATCC、V
A、米国)と一緒に、同時トランスフェクションした。30
時間インキュベーションした後、デキサメサゾンをこれ
らの細胞に添加し、その後これを更に18時間インキュベ
ーションした。これらの細胞を、PBSで洗浄し、かつ溶
解液をPicaGene Dual SeaPansy Luminescence Kit (Nip
pongene社、東京、日本)を用いて調製し、その後ルシフ
ェラーゼ活性を、ARVOルミノメーター(Wallac社、Turk
u、フィンランド)において測定した。phRL-TKベクター
(Promega社、WI、米国)を内部対照として使用した。
(7) Luciferase activity COS-7 cells were transformed with wild-type GR expression vector pRShGRα and mutant G
R expression vector pRShGRα-C643R or pRShGRα-23
The mouse mammary tumor virus (MMTV) promoter-luciferase reporter construct (pHH-Luc) (ATCC, V
A, USA). 30
After the hour incubation, dexamethasone was added to these cells, which were then incubated for another 18 hours. These cells were washed with PBS, and the lysate was added to the Pica Gene Dual SeaPansy Luminescence Kit (Nip
pongene, Tokyo, Japan) and then luciferase activity was measured using ARVO luminometer (Wallac, Turk).
u, Finland). phRL-TK vector
(Promega, WI, USA) was used as an internal control.

【0063】[実施例1] GR遺伝子のエクソン7におけ
る変異C643Rおよびエクソン9αにおける変異2314 ins-a 本発明者らは、日本人10名の白血病細胞のGR遺伝子コー
ド領域を配列決定したが、ヒト白血病性CEM-1細胞にお
いてグルココルチコイドに対する感受性に対し影響を及
ぼすことが報告(S. Geley, B. L. Hartmann, M. Hala,
E. M. Strasser-Wozak, K. Kapelari, R. Kofler, Resi
stance to glucocorticoid-induced apoptosis in huma
n T-cell acute lymphoblastic leukemia CEM-C1 cells
is dueto insufficient glucocorticoid receptor exp
ression. Cancer Res. 56 (1996) 5033-5038)されてい
るL753F変異は、認められなかった。しかし、参照配列
(NCBI受託番号;AC004782)(周辺配列(surrounding sequ
ence);tacgaccaaTgtaaacacat(配列番号:31))を基
に番号付けし、GR遺伝子のエクソン7においてシステイ
ン-643がアルギニンへ置換されている変異t5618c (C643
R)を検出した。これは、5618番目のチミンがシトシンに
置換した変異(GR遺伝子のcDNA配列(配列番号:1)に
おいては、1927番目のチミンがシトシンに置換した変
異)であった。この変異は、日本人の急性リンパ芽球性
白血病から得た末梢血であるP30/OHK細胞株(HSRRB受託
番号;JCRBOO94)において検出された(M. Hanada, M. Sh
imoyama, Potential limitation of growth-inhibitory
action of recombinant human tumor necrosis factor
(PAC-4D) due to easy induction of resistance: evi
dence in vitro. Jpn. J. Cancer Res. 78 (1987) 1266
-1273; M. Hirose, K. Minato, K. Tobinai, M. Ohira,
T. Ise, S. Watanabe, M. Shimoyama, M. Taniwaki,T.
Abe, A novel pre-T cell line derived from acute l
ymphoblastic leukemia. Gann 73 (1982) 600-605; M.
Hirose, K. Tobinai, K. Minato, M. Ohira,T. Ise, S.
Watanabe, M. Shimoyama, M. Taniwaki, T. Abe, A no
vel culturedcell line (P30/Ohkubo) of pre-T cell
(C/T hybrid) phenotype derived from an acute lymph
oblastic leukemia with some phenotypic change duri
ng clinical course. Nippon Ketsueki Gakkai Zasshi
46 (1983) 729-736)。また、日本人由来結腸ガン細胞株
CCK-81(HSRRB受託番号;JCRBO208)において、GR遺伝子
のエクソン9α上に、ロイシン-772からリジン-777を別
の26アミノ酸に置換する変異2314 ins-a(GR遺伝子のcD
NA配列(配列番号:1)において2313番目の塩基と2314
番目の塩基の間にアデニンが挿入された変異)を検出し
た。
[Example 1] Mutation in exon 7 of GR gene C643R and mutation in exon 9α 2314 ins-a The present inventors sequenced the GR gene coding region of 10 Japanese leukemia cells. Reported to affect susceptibility to glucocorticoids in leukemic CEM-1 cells (S. Geley, BL Hartmann, M. Hala,
EM Strasser-Wozak, K. Kapelari, R. Kofler, Resi
stance to glucocorticoid-induced apoptosis in huma
n T-cell acute lymphoblastic leukemia CEM-C1 cells
is dueto insufficient glucocorticoid receptor exp
No L753F mutation was identified in ression. Cancer Res. 56 (1996) 5033-5038). But the reference array
(NCBI accession number; AC004782) (surrounding sequence
ence); tacgaccaaTgtaaacacat (SEQ ID NO: 31)), and mutation t5618c (C643) in which cysteine-643 is replaced with arginine in exon 7 of the GR gene.
R) was detected. This was a mutation in which the 5618th thymine was replaced with cytosine (in the GR gene cDNA sequence (SEQ ID NO: 1), the 1927th thymine was replaced with cytosine). This mutation was detected in P30 / OHK cell line (HSRRB accession number: JCRBOO94), which is peripheral blood obtained from Japanese acute lymphoblastic leukemia (M. Hanada, M. Sh.
imoyama, Potential limitation of growth-inhibitory
action of recombinant human tumor necrosis factor
(PAC-4D) due to easy induction of resistance: evi
dence in vitro. Jpn. J. Cancer Res. 78 (1987) 1266
-1273; M. Hirose, K. Minato, K. Tobinai, M. Ohira,
T. Ise, S. Watanabe, M. Shimoyama, M. Taniwaki, T.
Abe, A novel pre-T cell line derived from acute l
ymphoblastic leukemia. Gann 73 (1982) 600-605; M.
Hirose, K. Tobinai, K. Minato, M. Ohira, T. Ise, S.
Watanabe, M. Shimoyama, M. Taniwaki, T. Abe, A no
vel cultured cell line (P30 / Ohkubo) of pre-T cell
(C / T hybrid) phenotype derived from an acute lymph
oblastic leukemia with some phenotypic change duri
ng clinical course.Nippon Ketsueki Gakkai Zasshi
46 (1983) 729-736). Japanese colon cancer cell line
In CCK-81 (HSRRB accession number; JCRBO208), mutation 2314 ins-a (cD of GR gene, which replaces leucine-772 to lysine-777 with another 26 amino acids, on exon 9α of GR gene
2314 of the NA sequence (SEQ ID NO: 1) and 2314
A mutation in which adenine was inserted between the 2nd base) was detected.

【0064】次に、COS-7細胞に、野生型GRプラスミ
ド、C643R変異型GRプラスミドまたは2314 ins-a変異型G
Rプラスミドをトランスフェクションし、抗GR抗体を用
い、細胞質画分のウェスタンブロット分析を行った。そ
の結果、トランスフェクションしたCOS-7細胞における
野生型GRおよびC643R変異型GRの両方が同様のレベルで
発現することが示された(図1)。一方、トランスフェ
クションしたCOS-7細胞の細胞質画分における2314 ins-
a変異型GRの発現レベルは、野生型GRのものに比べて低
下が認められた(図2)。しかし、細胞全体のライゼート
では、2314 ins-a 変異GRでも発現レベルの低下は認め
られなかった(図3)。これらの結果から、C643R変異
および2314 ins-a変異が、GRの発現を変化させないこ
と、しかし2314 ins-a 変異では発現細胞内局在が変化
していることが示された。また、C643R変異型GRおよび2
314 ins-a変異型GRの安定性が野生型GRに類似している
ことが示された。
Next, wild-type GR plasmid, C643R mutant GR plasmid or 2314 ins-a mutant G was added to COS-7 cells.
The R plasmid was transfected, and Western blot analysis of the cytoplasmic fraction was performed using anti-GR antibody. As a result, it was shown that both wild type GR and C643R mutant GR in transfected COS-7 cells were expressed at similar levels (FIG. 1). On the other hand, 2314 ins-in the cytoplasmic fraction of transfected COS-7 cells.
The expression level of a mutant GR was found to be lower than that of wild type GR (Fig. 2). However, in the whole cell lysate, no decrease in the expression level was observed even with 2314 ins-a mutant GR (Fig. 3). From these results, it was shown that the C643R mutation and the 2314 ins-a mutation do not change the expression of GR, but the 2314 ins-a mutation changes the subcellular localization of the expression. In addition, C643R mutant GR and 2
It was shown that the stability of 314 ins-a mutant GR was similar to that of wild type GR.

【0065】[実施例2] C643R変異型GRおよび2314 in
s-a変異型GRにおける転写活性の喪失 本発明者らは、C643R変異型GRおよび2314 ins-a変異型G
Rが有する転写活性を調べるために、野生型GRプラスミ
ド、C643R変異型GRプラスミドまたは2314 ins-a変異型G
Rプラスミドを、マウスの乳がんウイルス(MMTV)プロモ
ーター-ルシフェラーゼレポーター構築体(pHH-Luc)(Ge
nBank;寄託番号AF093686)を用いて、COS-7細胞中にト
ランスフェクションした。MMTVプロモーターは、グルコ
コルチコイドが媒介した遺伝子調節機構を研究するため
のモデルシステムとして広く使用されており(R. D. Med
h, T. J. Schmidt, Trans-retinoic acid and glucocor
ticoids synergistically induce transcription from
the mouse mammary tumorvirus promoter in human emb
ryonic kidney cells. J. Steroid Biochem. Mol.Biol.
62 (1997) 129-142)、かつホルモン誘導を媒介するよ
く特徴付けられたGR結合配列(GRE)を含んでいる。レポ
ーター遺伝子実験の結果を図4に示す。
Example 2 C643R mutant GR and 2314 in
Loss of Transcriptional Activity in sa Mutant GR We used C643R mutant GR and 2314 ins-a mutant G
To examine the transcription activity of R, wild-type GR plasmid, C643R mutant GR plasmid or 2314 ins-a mutant G
The R plasmid was used to transform the mouse mammary tumor virus (MMTV) promoter-luciferase reporter construct (pHH-Luc) (Ge
nBank; deposit number AF093686) was used to transfect COS-7 cells. The MMTV promoter is widely used as a model system to study glucocorticoid-mediated gene regulation mechanisms (RD Med
h, TJ Schmidt, Trans-retinoic acid and glucocor
ticoids synergistically induce transcription from
the mouse mammary tumorvirus promoter in human emb
ryonic kidney cells. J. Steroid Biochem. Mol. Biol.
62 (1997) 129-142) and contains a well-characterized GR binding sequence (GRE) that mediates hormone induction. The result of the reporter gene experiment is shown in FIG.

【0066】COS-7細胞のレポータープラスミド単独に
よるトランスフェクションは、デキサメサゾンに反応し
たルシフェラーゼ活性の増加を示さず、このことはこれ
らの細胞が顕著な量の機能GRを含まないことを示してい
る。野生型GRでトランスフェクションした細胞におい
て、ルシフェラーゼ活性は、用量依存的に増加した。し
かしC643R変異型GRは、デキサメサゾン反応性ルシフェ
ラーゼレポーター遺伝子の発現を誘導しなかった(図
4)。2314 ins-a変異型GRにおいても同様の結果が得ら
れた。これらの結果から、C643R変異型GRおよび2314 in
s-a変異型GRの転写活性は抑制されていることが示され
た。
Transfection of COS-7 cells with the reporter plasmid alone did not show an increase in luciferase activity in response to dexamethasone, indicating that these cells do not contain a significant amount of functional GR. Luciferase activity increased in a dose-dependent manner in cells transfected with wild-type GR. However, the C643R mutant GR did not induce the expression of the dexamethasone-responsive luciferase reporter gene (Fig. 4). Similar results were obtained with the 2314 ins-a mutant GR. These results show that C643R mutant GR and 2314 in
It was shown that the transcriptional activity of sa mutant GR was suppressed.

【0067】[実施例3] C643R変異型GRのデキサメサ
ゾン結合能(結合親和性)の低下 システイン-643残基は、GRのリガンド結合ドメイン(LB
D)に位置している。デキサメサゾンに対するC643R変異
型GRの親和性を調べるために、本発明者らは、Scatchar
dプロット解析に従い、野生型またはC643R変異型GRプラ
スミドでトランスフェクションしたCOS-7細胞の細胞質
画分における[H]デキサメサゾンへの結合親和性を測
定した(G. Scatchard, The aggregation of proteins f
or small molecules, ions. Ann. N. Y. Acad. Sci. 51
(1949) 660-672)。放射性リガンド結合アッセイの結果
を図5に示すと同時に、Kd値および結合能を表2に示
す。特異的な高親和性結合が、野生型GRでトランスフェ
クションしたCOS-7細胞から調製した細胞質画分中で明
らかになった。この結合能は、864fmol/mg細胞質タンパ
ク質であり、解離定数Kdは7.4nMであった。C643R変異型
GRでトランスフェクションしたCOS-7細胞からの細胞質
画分の結合能(921fmol/mg細胞質タンパク質)は、野生型
の値と同等であったが、Kd値(44.6nM)は6倍高かった。
この結果から、C643R変異型GRのデキサメサゾンに対す
る結合親和性は低いことが示された。
Example 3 Reduction of Dexamethasone Binding Ability (Binding Affinity) of C643R Mutant GR Cysteine-643 residue is the ligand binding domain of GR (LB
Located in D). To examine the affinity of C643R mutant GR for dexamethasone, we used Scatchar
The binding affinity to [ 3 H] dexamethasone in the cytosolic fraction of COS-7 cells transfected with wild-type or C643R mutant GR plasmid was measured according to d-plot analysis (G. Scatchard, The aggregation of proteins f.
or small molecules, ions. Ann. NY Acad. Sci. 51
(1949) 660-672). The results of the radioligand binding assay are shown in FIG. 5, and at the same time, the Kd value and the binding ability are shown in Table 2. Specific high affinity binding was revealed in cytosolic fractions prepared from COS-7 cells transfected with wild type GR. This binding capacity was 864 fmol / mg cytoplasmic protein, and the dissociation constant Kd was 7.4 nM. C643R variant
The binding capacity (921 fmol / mg cytoplasmic protein) of the cytosolic fraction from GR-transfected COS-7 cells was comparable to that of the wild type, but the Kd value (44.6nM) was 6 times higher.
From this result, it was shown that the binding affinity of C643R mutant GR to dexamethasone was low.

【0068】[0068]

【表2】 [Table 2]

【0069】グルココルチコイド耐性は、急性リンパ性
白血病の治療における大きい問題点であり、その原因と
なる機序に関するいくつかの報告が示されているが、ま
だごくわずかしかわかっていない。変異L753Fが、ヒト
ステロイド耐性白血病性CEM-C1細胞およびICR27TK.3細
胞において検出されることは報告されており、かつこの
変異と耐性の間の相関について考察されている(S. Gele
y, B. L. Hartmann, M.Hala, E. M. Strasser-Wozak,
K. Kapelari, R. Kofler, Resistance to glucocortico
id-induced apoptosis in human T-cell acute lymphob
lastic leukemiaCEM-C1 cells is due to insufficient
glucocorticoid receptor expression.Cancer Res. 56
(1996) 5033-5038)。
Glucocorticoid resistance is a major problem in the treatment of acute lymphocytic leukemia, and although some reports have been published on the underlying mechanisms, very little is known. The mutation L753F has been reported to be detected in human steroid resistant leukemia CEM-C1 cells and ICR27TK.3 cells, and the correlation between this mutation and resistance has been discussed (S. Gele
y, BL Hartmann, M. Hala, EM Strasser-Wozak,
K. Kapelari, R. Kofler, Resistance to glucocortico
id-induced apoptosis in human T-cell acute lymphob
lastic leukemia CEM-C1 cells is due to insufficient
glucocorticoid receptor expression.Cancer Res. 56
(1996) 5033-5038).

【0070】本発明者らは、変異L753Fが他の白血病細
胞中に存在するかどうかを調べるために、日本人10名の
個別の白血病細胞中のGR遺伝子のエクソン9αを配列決
定したが、これらの細胞において変異L753Fは検出され
なかった。本発明者らは、別の変異がこれらの細胞のGR
遺伝子中に存在すると仮定し、従ってGR遺伝子の他のコ
ード領域の配列を決定した。その中で、本発明者らは、
P30/OHK細胞のGR遺伝子エキソン7中のリガンド結合ドメ
イン(LBD)およびhsp90結合部位において別の変異C643R
を同定した。このP30/OHK細胞は、急性リンパ芽球性白
血病に罹患した日本人の骨髄性白血病細胞から樹立され
ている(M. Hirose, K. Minato, K. Tobinai, M. Ohira,
T. Ise, S. Watanabe, M. Shimoyama, M. Taniwaki,
T. Abe, Anovel pre-T cell line derived from acute
lymphoblastic leukemia. Gann 73 (1982) 600-605; M.
Hirose, K. Tobinai, K. Minato, M. Ohira, T. Ise,
S.Watanabe, M. Shimoyama, M. Taniwaki, T. Abe, A n
ovel cultured cell line(P30/Ohkubo) of pre-T cell
(C/T hybrid) phenotype derived from an acutelympho
blastic leukemia with some phenotypic change durin
g clinical course. Nippon Ketsueki Gakkai Zasshi 4
6 (1983) 729-736)。C643R変異型GRの作用を調べるため
に、リガンド結合親和性および転写活性を試験した。そ
の結果、C643R変異型GRは、野生型GRの1/6のデキサメサ
ゾン結合親和性を有し(図5、表2)、かつ転写活性が
ほとんどない、もしくは全くないこと(図4)が示され
た。
The present inventors sequenced exon 9α of the GR gene in 10 individual leukemia cells of Japanese to investigate whether the mutation L753F was present in other leukemia cells. Mutant L753F was not detected in the cells. We have found that another mutation is the GR in these cells.
Assumed to be present in the gene, the other coding regions of the GR gene were therefore sequenced. Among them, the present inventors
Another mutation C643R in the ligand binding domain (LBD) and hsp90 binding site in GR gene exon 7 of P30 / OHK cells
Was identified. The P30 / OHK cells have been established from Japanese myeloid leukemia cells suffering from acute lymphoblastic leukemia (M. Hirose, K. Minato, K. Tobinai, M. Ohira,
T. Ise, S. Watanabe, M. Shimoyama, M. Taniwaki,
T. Abe, Anovel pre-T cell line derived from acute
lymphoblastic leukemia. Gann 73 (1982) 600-605; M.
Hirose, K. Tobinai, K. Minato, M. Ohira, T. Ise,
S.Watanabe, M. Shimoyama, M. Taniwaki, T. Abe, A n
ovel cultured cell line (P30 / Ohkubo) of pre-T cell
(C / T hybrid) phenotype derived from an acutelympho
blastic leukemia with some phenotypic change durin
g clinical course. Nippon Ketsueki Gakkai Zasshi 4
6 (1983) 729-736). To investigate the effect of C643R mutant GR, ligand binding affinity and transcriptional activity were tested. As a result, it was shown that C643R mutant GR has a dexamethasone binding affinity 1/6 that of wild-type GR (Fig. 5, Table 2) and little or no transcriptional activity (Fig. 4). It was

【0071】システインは、ヒト、ラットおよびマウス
のGR中の特異的リガンドの相互作用を促進することによ
り、重要な機能を果たしていることが報告されている。
ヒトGRのLBDは、5個のシステイン残基を、622番、638
番、643番、665番および736番に含み、かつこれらの5個
のシステインは、ヒト、ラットおよびマウスのGRにおい
て保存されている。更に、各々、ヒトGRのCys-622、-63
8、-643に相同であるラットGRのCys-640、-656、および
-661は、GRの柔軟なステロイド結合洞(binding cavity)
に関与し、かつCys-643は、結合ポケット(binding pock
et)の入り口付近に位置している(P. K. Chakraborti,
M. L. Garabedian, K. R. Yamamoto, S.S. Simons Jr.,
Role of cysteines 640, 656, and 661 in steroid bi
nding to rat glucocorticoid receptors. J. Biol. Ch
em. 267 (1992) 11366-11373; S. S. Simons Jr., W.
B. Pratt, Glucocorticoid receptor thiols and stero
id-binding activity. Methods Enzymol. 251 (1995) 4
06-422)。このうち、システイン643のセリンとの置換
は、野生型の親和性および生体活性を本質的に維持して
おり、このことはC643のチオールが重要ではないことを
示唆している(C. Yu, N. Warriar, M. V. Govindan, Cy
steines 638 and 665 in the hormone binding domain
of human glucocorticoid receptor define the specif
icity to glucocorticoids. Biochemistry 34 (1995) 1
4163-14173)。しかしながら、本実施例において、シス
テイン643のアルギニンへの置換は、低いグルココルチ
コイド結合親和性を引き起こした。これらの結果は、Ar
g-643が、その長い側鎖により、GRのステロイド結合ポ
ケットとデキサメサゾンの間の結合を妨害することを示
唆している。従って本発明者らは、システイン643のア
ルギニンへの変化は、グルココルチコイド結合洞の立体
配置の変化を惹起し、かつグルココルチコイドとの結合
の機能を低下するであろうと考えた。
Cysteine has been reported to play an important function by promoting the interaction of specific ligands in human, rat and mouse GR.
Human GR LBD has 5 cysteine residues at positions 622 and 638.
Nos. 643, 665 and 736, and these 5 cysteines are conserved in human, rat and mouse GR. Furthermore, Cys-622, -63 of human GR, respectively.
Cys-640, -656 of rat GR homologous to 8, -643, and
-661 is GR's flexible steroid binding cavity
And Cys-643 is involved in the binding pocket (binding
et) near the entrance (PK Chakraborti,
ML Garabedian, KR Yamamoto, SS Simons Jr.,
Role of cysteines 640, 656, and 661 in steroid bi
nding to rat glucocorticoid receptors. J. Biol. Ch
em. 267 (1992) 11366-11373; SS Simons Jr., W.
B. Pratt, Glucocorticoid receptor thiols and stero
id-binding activity.Methods Enzymol.251 (1995) 4
06-422). Of these, the substitution of cysteine 643 for serine essentially retained the wild-type affinity and bioactivity, suggesting that the C643 thiol is not important (C. Yu, N. Warriar, MV Govindan, Cy
steines 638 and 665 in the hormone binding domain
of human glucocorticoid receptor define the specif
icity to glucocorticoids. Biochemistry 34 (1995) 1
4163-14173). However, in this example, substitution of cysteine 643 for arginine resulted in low glucocorticoid binding affinity. These results are Ar
It is suggested that g-643, by its long side chain, interferes with the binding between the steroid binding pocket of GR and dexamethasone. Therefore, the present inventors considered that the change of cysteine 643 to arginine would cause a change in the configuration of the glucocorticoid-binding sinus and reduce the function of binding to glucocorticoid.

【0072】GRは2種のタンパク質アイソフォームGRα
およびGRβを有しており、これらはGRmRNA前駆体の一次
転写産物の選択的スプライシングから生じる。GRβは、
グルココルチコイドに結合せず、かつGRα活性のインヒ
ビターである。最近、Stricklandら (Strickland et. a
l., High constitutive glucocorticoid receptor beta
in human neutrophils enables them to reduce their
spontaneous rate ofcell death in response to cort
icosteroids. J Exp Med. 193:585-94. (2001))が、ス
プライシング変異体GRβの構成的発現が、ヒト好中球に
おいて細胞死を減少することを示した。P30/OHK細胞に
おいて、野生型およびC643R変異型GR遺伝子はヘテロ接
合性で存在する。本発明者らは、C643R変異型GRが、選
択的スプライス変異体GRβのように作用し、その結果C6
43R変異型GRが、それ自身より少ない転写活性を有する
のみでなはく、GRα活性のインヒビターとしても作用す
ることを示した。従って本発明者らは、変異C643Rが、
グルココルチコイドに対する反応に影響を及ぼし、かつ
P30/OHK細胞においてアポトーシスを抑制することがで
きることを示唆する。
GR is two protein isoforms GRα
And GRβ, which result from alternative splicing of the primary transcript of the GR mRNA precursor. GRβ is
It does not bind to glucocorticoids and is an inhibitor of GRα activity. Recently, Strickland et al. (Strickland et.
l., High constitutive glucocorticoid receptor beta
in human neutrophils enables them to reduce their
spontaneous rate of cell death in response to cort
icosteroids. J Exp Med. 193: 585-94. (2001)) showed that constitutive expression of the splicing mutant GRβ reduces cell death in human neutrophils. In P30 / OHK cells, wild type and C643R mutant GR genes are heterozygous. We found that the C643R mutant GR acts like the alternative splice mutant GRβ, resulting in C6.
It was shown that the 43R mutant GR not only has less transcriptional activity than itself, but also acts as an inhibitor of GRα activity. Therefore, the present inventors have found that the mutation C643R
Influences the response to glucocorticoids, and
It suggests that apoptosis can be suppressed in P30 / OHK cells.

【0073】本発明者らは、他の9種の白血病細胞のコ
ード領域において、アミノ酸の非同義性(non-synonymou
s)変化を引き起こすようないかなる変異も検出しなかっ
た。これらの9種の細胞においては、いくつかの別の可
能性が考慮された。ひとつの可能性は、GRのmRNA発現に
影響を及ぼすある種の変異が、GRの転写調節部位に存在
し得ることである。更に別の可能性は、GR遺伝子のイン
トロン領域のある種の変異が、GRのスプライシング変異
体を生じ得ることである。従ってこれらの可能性を検討
するには、これらの9種の細胞のGR遺伝子の転写調節部
位およびイントロン領域の配列が興味深いように考えら
れた。
The present inventors have found that in the coding regions of 9 other leukemia cells, non-synonyms of amino acids are used.
s) We did not detect any mutations that would cause a change. In these 9 cells, several other possibilities were considered. One possibility is that certain mutations affecting GR mRNA expression may be present at GR transcriptional regulatory sites. Yet another possibility is that certain mutations in the intron region of the GR gene may give rise to splice variants of GR. Therefore, in order to examine these possibilities, the sequences of the transcriptional regulatory site and intron region of GR gene in these 9 types of cells were considered to be interesting.

【0074】以上の知見は、ヒト白血病性P30/OHK細胞
のGR遺伝子のエクソン7において変異C643Rが存在し、か
つこの変異型C643Rがより少ないグルココルチコイド結
合親和性および転写活性を有することを示している。ま
た、アミノ酸残基643がGRのグルココルチコイド結合能
において重要であること、および変異C643Rが転写活性
に影響を及ぼしかつP30/OHK細胞においてグルココルチ
コイド耐性を惹起するすることを示すものである。
The above findings indicate that there is a mutation C643R in exon 7 of the GR gene of human leukemic P30 / OHK cells, and that this mutant C643R has less glucocorticoid binding affinity and transcriptional activity. There is. Further, it is shown that the amino acid residue 643 is important in the glucocorticoid-binding ability of GR, and that the mutant C643R affects the transcriptional activity and induces glucocorticoid resistance in P30 / OHK cells.

【0075】一方、2314 ins-a 変異GRでは、細胞内局
在が変化することおよび転写活性化能が喪失することが
発明者らにより示された。本遺伝子変異は既に中国人狼
瘡(ループス)性腎炎の患者39名中8名で認められて
いる(Jiang T et al., Thephase-shift mutation in t
he glucocorticoid receptor gene: potential etiolog
ic significance of neuroendocrine mechanisms in lu
pus nephritis. ClinChim Acta. 313:113-117 (200
1))。この報告では、変異が認められた8名の患者でデ
キサメサゾン結合量は低下が認められているが、本変異
を持たない患者でもデキサメサゾン結合量の低下が認め
られたので、本変異とGR機能変化との相関は不明であっ
た。発明者らは本2314 ins-a 変異GRでは、転写活性可
能が喪失することを示し、本変異がGR機能の喪失をもた
らすことを初めて見出した(図4)。
On the other hand, the present inventors have shown that 2314 ins-a mutant GR has a change in intracellular localization and a loss of transcription activation ability. This gene mutation has already been found in 8 out of 39 Chinese patients with lupus nephritis (Jiang T et al., Thephase-shift mutation in t
he glucocorticoid receptor gene: potential etiolog
ic significance of neuroendocrine mechanisms in lu
pus nephritis. ClinChim Acta. 313: 113-117 (200
1)). In this report, the amount of dexamethasone binding was decreased in 8 patients with mutations, but the amount of dexamethasone binding was also decreased in patients without this mutation. The correlation with was unknown. The present inventors have shown that this 2314 ins-a mutant GR loses transcriptional ability, and found for the first time that this mutation results in loss of GR function (FIG. 4).

【0076】GR蛋白質上には2カ所の核移行信号が存在
しているが、本2314 ins-a 変異により変異を起こす7
72〜777番目のアミノ酸は、2番目の核移行信号部
分に相当する。GRは通常、細胞質に局在し、リガンドで
あるグルココルチコイドの結合により細胞質から核に移
行して転写活性を発揮するが、本2314 ins-a変異ではグ
ルココルチコイドが結合していなくても核に移行してい
る可能性が考えられる。細胞全体のライゼートでは、GR
発現レベルが野生型GRと2314 ins-a 変異GRとで変化は
認められない(図3)が、細胞質では2314 ins-a 変異G
Rの発現レベルが低下している(図2)という結果は、
この考えを支持するものである。
There are two nuclear localization signals on the GR protein, which are mutated by this 2314 ins-a mutation.
The 72nd to 777th amino acids correspond to the second nuclear localization signal portion. GR is normally localized in the cytoplasm and translocates from the cytoplasm to the nucleus upon binding of the ligand glucocorticoid to exert transcriptional activity.However, in the 2314 ins-a mutation, GR is localized in the nucleus even if glucocorticoid is not bound. It is possible that it has moved. GR for whole cell lysates
The expression level was not changed between wild type GR and 2314 ins-a mutant GR (Fig. 3), but 2314 ins-a mutant G was observed in the cytoplasm.
The result that the expression level of R is decreased (Fig. 2) is
It supports this idea.

【0077】[0077]

【発明の効果】本発明者らによって、GRのグルココルチ
コイド結合能を低下させる、または該GRの有する転写活
性化能を低下させるGR遺伝子の多型とグルココルチコイ
ド製剤の有効性との関連が見出された。このことから、
本発明により、被検者におけるグルココルチコイド製剤
の有効性の検査方法および該検査方法に使用できる検査
試薬が提供された。本発明によって、グルココルチコイ
ド製剤の有効性を予測することができ、グルココルチコ
イド製剤に対して耐性を示す患者に対する適切な治療法
の開発が可能になるものと大いに期待される。
EFFECTS OF THE INVENTION The present inventors have found a relationship between GR gene polymorphisms that reduce the glucocorticoid-binding ability of GR or the transcriptional activation ability of GR and the efficacy of glucocorticoid preparations. Was issued. From this,
INDUSTRIAL APPLICABILITY The present invention provides a method for examining the effectiveness of a glucocorticoid preparation in a subject and a test reagent that can be used in the method. The present invention is highly expected to be able to predict the efficacy of a glucocorticoid preparation and to enable the development of an appropriate treatment method for patients who are resistant to the glucocorticoid preparation.

【0078】[0078]

【配列表】 SEQUENCE LISTING <110> National Institute of Health Sciences The Organization for Pharmaceutical Safety and Research Genox Research, Inc. <120> Methods for evaluating the effectiveness of glucocorticoid on a pa tient <130> G1-A0116 <140> <141> <160> 31 <170> PatentIn Ver. 2.1 <210> 1 <211> 2334 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (1)..(2331) <400> 1 atg gac tcc aaa gaa tca tta act cct ggt aga gaa gaa aac ccc agc 48 Met Asp Ser Lys Glu Ser Leu Thr Pro Gly Arg Glu Glu Asn Pro Ser 1 5 10 15 agt gtg ctt gct cag gag agg gga gat gtg atg gac ttc tat aaa acc 96 Ser Val Leu Ala Gln Glu Arg Gly Asp Val Met Asp Phe Tyr Lys Thr 20 25 30 cta aga gga gga gct act gtg aag gtt tct gcg tct tca ccc tca ctg 144 Leu Arg Gly Gly Ala Thr Val Lys Val Ser Ala Ser Ser Pro Ser Leu 35 40 45 gct gtc gct tct caa tca gac tcc aag cag cga aga ctt ttg gtt gat 192 Ala Val Ala Ser Gln Ser Asp Ser Lys Gln Arg Arg Leu Leu Val Asp 50 55 60 ttt cca aaa ggc tca gta agc aat gcg cag cag cca gat ctg tcc aaa 240 Phe Pro Lys Gly Ser Val Ser Asn Ala Gln Gln Pro Asp Leu Ser Lys 65 70 75 80 gca gtt tca ctc tca atg gga ctg tat atg gga gag aca gaa aca aaa 288 Ala Val Ser Leu Ser Met Gly Leu Tyr Met Gly Glu Thr Glu Thr Lys 85 90 95 gtg atg gga aat gac ctg gga ttc cca cag cag ggc caa atc agc ctt 336 Val Met Gly Asn Asp Leu Gly Phe Pro Gln Gln Gly Gln Ile Ser Leu 100 105 110 tcc tcg ggg gaa aca gac tta aag ctt ttg gaa gaa agc att gca aac 384 Ser Ser Gly Glu Thr Asp Leu Lys Leu Leu Glu Glu Ser Ile Ala Asn 115 120 125 ctc aat agg tcg acc agt gtt cca gag aac ccc aag agt tca gca tcc 432 Leu Asn Arg Ser Thr Ser Val Pro Glu Asn Pro Lys Ser Ser Ala Ser 130 135 140 act gct gtg tct gct gcc ccc aca gag aag gag ttt cca aaa act cac 480 Thr Ala Val Ser Ala Ala Pro Thr Glu Lys Glu Phe Pro Lys Thr His 145 150 155 160 tct gat gta tct tca gaa cag caa cat ttg aag ggc cag act ggc acc 528 Ser Asp Val Ser Ser Glu Gln Gln His Leu Lys Gly Gln Thr Gly Thr 165 170 175 aac ggt ggc aat gtg aaa ttg tat acc aca gac caa agc acc ttt gac 576 Asn Gly Gly Asn Val Lys Leu Tyr Thr Thr Asp Gln Ser Thr Phe Asp 180 185 190 att ttg cag gat ttg gag ttt tct tct ggg tcc cca ggt aaa gag acg 624 Ile Leu Gln Asp Leu Glu Phe Ser Ser Gly Ser Pro Gly Lys Glu Thr 195 200 205 aat gag agt cct tgg aga tca gac ctg ttg ata gat gaa aac tgt ttg 672 Asn Glu Ser Pro Trp Arg Ser Asp Leu Leu Ile Asp Glu Asn Cys Leu 210 215 220 ctt tct cct ctg gcg gga gaa gac gat tca ttc ctt ttg gaa gga aac 720 Leu Ser Pro Leu Ala Gly Glu Asp Asp Ser Phe Leu Leu Glu Gly Asn 225 230 235 240 tcg aat gag gac tgc aag cct ctc att tta ccg gac act aaa ccc aaa 768 Ser Asn Glu Asp Cys Lys Pro Leu Ile Leu Pro Asp Thr Lys Pro Lys 245 250 255 att aag gat aat gga gat ctg gtt ttg tca agc ccc agt aat gta aca 816 Ile Lys Asp Asn Gly Asp Leu Val Leu Ser Ser Pro Ser Asn Val Thr 260 265 270 ctg ccc caa gtg aaa aca gaa aaa gaa gat ttc atc gaa ctc tgc acc 864 Leu Pro Gln Val Lys Thr Glu Lys Glu Asp Phe Ile Glu Leu Cys Thr 275 280 285 cct ggg gta att aag caa gag aaa ctg ggc aca gtt tac tgt cag gca 912 Pro Gly Val Ile Lys Gln Glu Lys Leu Gly Thr Val Tyr Cys Gln Ala 290 295 300 agc ttt cct gga gca aat ata att ggt aat aaa atg tct gcc att tct 960 Ser Phe Pro Gly Ala Asn Ile Ile Gly Asn Lys Met Ser Ala Ile Ser 305 310 315 320 gtt cat ggt gtg agt acc tct gga gga cag atg tac cac tat gac atg 1008 Val His Gly Val Ser Thr Ser Gly Gly Gln Met Tyr His Tyr Asp Met 325 330 335 aat aca gca tcc ctt tct caa cag cag gat cag aag cct att ttt aat 1056 Asn Thr Ala Ser Leu Ser Gln Gln Gln Asp Gln Lys Pro Ile Phe Asn 340 345 350 gtc att cca cca att ccc gtt ggt tcc gaa aat tgg aat agg tgc caa 1104 Val Ile Pro Pro Ile Pro Val Gly Ser Glu Asn Trp Asn Arg Cys Gln 355 360 365 gga tct gga gat gac aac ttg act tct ctg ggg act ctg aac ttc cct 1152 Gly Ser Gly Asp Asp Asn Leu Thr Ser Leu Gly Thr Leu Asn Phe Pro 370 375 380 ggt cga aca gtt ttt tct aat ggc tat tca agc ccc agc atg aga cca 1200 Gly Arg Thr Val Phe Ser Asn Gly Tyr Ser Ser Pro Ser Met Arg Pro 385 390 395 400 gat gta agc tct cct cca tcc agc tcc tca aca gca aca aca gga cca 1248 Asp Val Ser Ser Pro Pro Ser Ser Ser Ser Thr Ala Thr Thr Gly Pro 405 410 415 cct ccc aaa ctc tgc ctg gtg tgc tct gat gaa gct tca gga tgt cat 1296 Pro Pro Lys Leu Cys Leu Val Cys Ser Asp Glu Ala Ser Gly Cys His 420 425 430 tat gga gtc tta act tgt gga agc tgt aaa gtt ttc ttc aaa aga gca 1344 Tyr Gly Val Leu Thr Cys Gly Ser Cys Lys Val Phe Phe Lys Arg Ala 435 440 445 gtg gaa gga cag cac aat tac cta tgt gct gga agg aat gat tgc atc 1392 Val Glu Gly Gln His Asn Tyr Leu Cys Ala Gly Arg Asn Asp Cys Ile 450 455 460 atc gat aaa att cga aga aaa aac tgc cca gca tgc cgc tat cga aaa 1440 Ile Asp Lys Ile Arg Arg Lys Asn Cys Pro Ala Cys Arg Tyr Arg Lys 465 470 475 480 tgt ctt cag gct gga atg aac ctg gaa gct cga aaa aca aag aaa aaa 1488 Cys Leu Gln Ala Gly Met Asn Leu Glu Ala Arg Lys Thr Lys Lys Lys 485 490 495 ata aaa gga att cag cag gcc act aca gga gtc tca caa gaa acc tct 1536 Ile Lys Gly Ile Gln Gln Ala Thr Thr Gly Val Ser Gln Glu Thr Ser 500 505 510 gaa aat cct ggt aac aaa aca ata gtt cct gca acg tta cca caa ctc 1584 Glu Asn Pro Gly Asn Lys Thr Ile Val Pro Ala Thr Leu Pro Gln Leu 515 520 525 acc cct acc ctg gtg tca ctg ttg gag gtt att gaa cct gaa gtg tta 1632 Thr Pro Thr Leu Val Ser Leu Leu Glu Val Ile Glu Pro Glu Val Leu 530 535 540 tat gca gga tat gat agc tct gtt cca gac tca act tgg agg atc atg 1680 Tyr Ala Gly Tyr Asp Ser Ser Val Pro Asp Ser Thr Trp Arg Ile Met 545 550 555 560 act acg ctc aac atg tta gga ggg cgg caa gtg att gca gca gtg aaa 1728 Thr Thr Leu Asn Met Leu Gly Gly Arg Gln Val Ile Ala Ala Val Lys 565 570 575 tgg gca aag gca ata cca ggt ttc agg aac tta cac ctg gat gac caa 1776 Trp Ala Lys Ala Ile Pro Gly Phe Arg Asn Leu His Leu Asp Asp Gln 580 585 590 atg acc cta ctg cag tac tcc tgg atg ttt ctt atg gca ttt gct ctg 1824 Met Thr Leu Leu Gln Tyr Ser Trp Met Phe Leu Met Ala Phe Ala Leu 595 600 605 ggg tgg aga tca tat aga caa tca agt gca aac ctg ctg tgt ttt gct 1872 Gly Trp Arg Ser Tyr Arg Gln Ser Ser Ala Asn Leu Leu Cys Phe Ala 610 615 620 cct gat ctg att att aat gag cag aga atg act cta ccc tgc atg tac 1920 Pro Asp Leu Ile Ile Asn Glu Gln Arg Met Thr Leu Pro Cys Met Tyr 625 630 635 640 gac caa tgt aaa cac atg ctg tat gtt tcc tct gag tta cac agg ctt 1968 Asp Gln Cys Lys His Met Leu Tyr Val Ser Ser Glu Leu His Arg Leu 645 650 655 cag gta tct tat gaa gag tat ctc tgt atg aaa acc tta ctg ctt ctc 2016 Gln Val Ser Tyr Glu Glu Tyr Leu Cys Met Lys Thr Leu Leu Leu Leu 660 665 670 tct tca gtt cct aag gac ggt ctg aag agc caa gag cta ttt gat gaa 2064 Ser Ser Val Pro Lys Asp Gly Leu Lys Ser Gln Glu Leu Phe Asp Glu 675 680 685 att aga atg acc tac atc aaa gag cta gga aaa gcc att gtc aag agg 2112 Ile Arg Met Thr Tyr Ile Lys Glu Leu Gly Lys Ala Ile Val Lys Arg 690 695 700 gaa gga aac tcc agc cag aac tgg cag cgg ttt tat caa ctg aca aaa 2160 Glu Gly Asn Ser Ser Gln Asn Trp Gln Arg Phe Tyr Gln Leu Thr Lys 705 710 715 720 ctc ttg gat tct atg cat gaa gtg gtt gaa aat ctc ctt aac tat tgc 2208 Leu Leu Asp Ser Met His Glu Val Val Glu Asn Leu Leu Asn Tyr Cys 725 730 735 ttc caa aca ttt ttg gat aag acc atg agt att gaa ttc ccc gag atg 2256 Phe Gln Thr Phe Leu Asp Lys Thr Met Ser Ile Glu Phe Pro Glu Met 740 745 750 tta gct gaa atc atc acc aat cag ata cca aaa tat tca aat gga aat 2304 Leu Ala Glu Ile Ile Thr Asn Gln Ile Pro Lys Tyr Ser Asn Gly Asn 755 760 765 atc aaa aaa ctt ctg ttt cat caa aag tga 2334 Ile Lys Lys Leu Leu Phe His Gln Lys 770 775 <210> 2 <211> 777 <212> PRT <213> Homo sapiens <400> 2 Met Asp Ser Lys Glu Ser Leu Thr Pro Gly Arg Glu Glu Asn Pro Ser 1 5 10 15 Ser Val Leu Ala Gln Glu Arg Gly Asp Val Met Asp Phe Tyr Lys Thr 20 25 30 Leu Arg Gly Gly Ala Thr Val Lys Val Ser Ala Ser Ser Pro Ser Leu 35 40 45 Ala Val Ala Ser Gln Ser Asp Ser Lys Gln Arg Arg Leu Leu Val Asp 50 55 60 Phe Pro Lys Gly Ser Val Ser Asn Ala Gln Gln Pro Asp Leu Ser Lys 65 70 75 80 Ala Val Ser Leu Ser Met Gly Leu Tyr Met Gly Glu Thr Glu Thr Lys 85 90 95 Val Met Gly Asn Asp Leu Gly Phe Pro Gln Gln Gly Gln Ile Ser Leu 100 105 110 Ser Ser Gly Glu Thr Asp Leu Lys Leu Leu Glu Glu Ser Ile Ala Asn 115 120 125 Leu Asn Arg Ser Thr Ser Val Pro Glu Asn Pro Lys Ser Ser Ala Ser 130 135 140 Thr Ala Val Ser Ala Ala Pro Thr Glu Lys Glu Phe Pro Lys Thr His 145 150 155 160 Ser Asp Val Ser Ser Glu Gln Gln His Leu Lys Gly Gln Thr Gly Thr 165 170 175 Asn Gly Gly Asn Val Lys Leu Tyr Thr Thr Asp Gln Ser Thr Phe Asp 180 185 190 Ile Leu Gln Asp Leu Glu Phe Ser Ser Gly Ser Pro Gly Lys Glu Thr 195 200 205 Asn Glu Ser Pro Trp Arg Ser Asp Leu Leu Ile Asp Glu Asn Cys Leu 210 215 220 Leu Ser Pro Leu Ala Gly Glu Asp Asp Ser Phe Leu Leu Glu Gly Asn 225 230 235 240 Ser Asn Glu Asp Cys Lys Pro Leu Ile Leu Pro Asp Thr Lys Pro Lys 245 250 255 Ile Lys Asp Asn Gly Asp Leu Val Leu Ser Ser Pro Ser Asn Val Thr 260 265 270 Leu Pro Gln Val Lys Thr Glu Lys Glu Asp Phe Ile Glu Leu Cys Thr 275 280 285 Pro Gly Val Ile Lys Gln Glu Lys Leu Gly Thr Val Tyr Cys Gln Ala 290 295 300 Ser Phe Pro Gly Ala Asn Ile Ile Gly Asn Lys Met Ser Ala Ile Ser 305 310 315 320 Val His Gly Val Ser Thr Ser Gly Gly Gln Met Tyr His Tyr Asp Met 325 330 335 Asn Thr Ala Ser Leu Ser Gln Gln Gln Asp Gln Lys Pro Ile Phe Asn 340 345 350 Val Ile Pro Pro Ile Pro Val Gly Ser Glu Asn Trp Asn Arg Cys Gln 355 360 365 Gly Ser Gly Asp Asp Asn Leu Thr Ser Leu Gly Thr Leu Asn Phe Pro 370 375 380 Gly Arg Thr Val Phe Ser Asn Gly Tyr Ser Ser Pro Ser Met Arg Pro 385 390 395 400 Asp Val Ser Ser Pro Pro Ser Ser Ser Ser Thr Ala Thr Thr Gly Pro 405 410 415 Pro Pro Lys Leu Cys Leu Val Cys Ser Asp Glu Ala Ser Gly Cys His 420 425 430 Tyr Gly Val Leu Thr Cys Gly Ser Cys Lys Val Phe Phe Lys Arg Ala 435 440 445 Val Glu Gly Gln His Asn Tyr Leu Cys Ala Gly Arg Asn Asp Cys Ile 450 455 460 Ile Asp Lys Ile Arg Arg Lys Asn Cys Pro Ala Cys Arg Tyr Arg Lys 465 470 475 480 Cys Leu Gln Ala Gly Met Asn Leu Glu Ala Arg Lys Thr Lys Lys Lys 485 490 495 Ile Lys Gly Ile Gln Gln Ala Thr Thr Gly Val Ser Gln Glu Thr Ser 500 505 510 Glu Asn Pro Gly Asn Lys Thr Ile Val Pro Ala Thr Leu Pro Gln Leu 515 520 525 Thr Pro Thr Leu Val Ser Leu Leu Glu Val Ile Glu Pro Glu Val Leu 530 535 540 Tyr Ala Gly Tyr Asp Ser Ser Val Pro Asp Ser Thr Trp Arg Ile Met 545 550 555 560 Thr Thr Leu Asn Met Leu Gly Gly Arg Gln Val Ile Ala Ala Val Lys 565 570 575 Trp Ala Lys Ala Ile Pro Gly Phe Arg Asn Leu His Leu Asp Asp Gln 580 585 590 Met Thr Leu Leu Gln Tyr Ser Trp Met Phe Leu Met Ala Phe Ala Leu 595 600 605 Gly Trp Arg Ser Tyr Arg Gln Ser Ser Ala Asn Leu Leu Cys Phe Ala 610 615 620 Pro Asp Leu Ile Ile Asn Glu Gln Arg Met Thr Leu Pro Cys Met Tyr 625 630 635 640 Asp Gln Cys Lys His Met Leu Tyr Val Ser Ser Glu Leu His Arg Leu 645 650 655 Gln Val Ser Tyr Glu Glu Tyr Leu Cys Met Lys Thr Leu Leu Leu Leu 660 665 670 Ser Ser Val Pro Lys Asp Gly Leu Lys Ser Gln Glu Leu Phe Asp Glu 675 680 685 Ile Arg Met Thr Tyr Ile Lys Glu Leu Gly Lys Ala Ile Val Lys Arg 690 695 700 Glu Gly Asn Ser Ser Gln Asn Trp Gln Arg Phe Tyr Gln Leu Thr Lys 705 710 715 720 Leu Leu Asp Ser Met His Glu Val Val Glu Asn Leu Leu Asn Tyr Cys 725 730 735 Phe Gln Thr Phe Leu Asp Lys Thr Met Ser Ile Glu Phe Pro Glu Met 740 745 750 Leu Ala Glu Ile Ile Thr Asn Gln Ile Pro Lys Tyr Ser Asn Gly Asn 755 760 765 Ile Lys Lys Leu Leu Phe His Gln Lys 770 775 <210> 3 <211> 2334 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (1)..(2331) <400> 3 atg gac tcc aaa gaa tca tta act cct ggt aga gaa gaa aac ccc agc 48 Met Asp Ser Lys Glu Ser Leu Thr Pro Gly Arg Glu Glu Asn Pro Ser 1 5 10 15 agt gtg ctt gct cag gag agg gga gat gtg atg gac ttc tat aaa acc 96 Ser Val Leu Ala Gln Glu Arg Gly Asp Val Met Asp Phe Tyr Lys Thr 20 25 30 cta aga gga gga gct act gtg aag gtt tct gcg tct tca ccc tca ctg 144 Leu Arg Gly Gly Ala Thr Val Lys Val Ser Ala Ser Ser Pro Ser Leu 35 40 45 gct gtc gct tct caa tca gac tcc aag cag cga aga ctt ttg gtt gat 192 Ala Val Ala Ser Gln Ser Asp Ser Lys Gln Arg Arg Leu Leu Val Asp 50 55 60 ttt cca aaa ggc tca gta agc aat gcg cag cag cca gat ctg tcc aaa 240 Phe Pro Lys Gly Ser Val Ser Asn Ala Gln Gln Pro Asp Leu Ser Lys 65 70 75 80 gca gtt tca ctc tca atg gga ctg tat atg gga gag aca gaa aca aaa 288 Ala Val Ser Leu Ser Met Gly Leu Tyr Met Gly Glu Thr Glu Thr Lys 85 90 95 gtg atg gga aat gac ctg gga ttc cca cag cag ggc caa atc agc ctt 336 Val Met Gly Asn Asp Leu Gly Phe Pro Gln Gln Gly Gln Ile Ser Leu 100 105 110 tcc tcg ggg gaa aca gac tta aag ctt ttg gaa gaa agc att gca aac 384 Ser Ser Gly Glu Thr Asp Leu Lys Leu Leu Glu Glu Ser Ile Ala Asn 115 120 125 ctc aat agg tcg acc agt gtt cca gag aac ccc aag agt tca gca tcc 432 Leu Asn Arg Ser Thr Ser Val Pro Glu Asn Pro Lys Ser Ser Ala Ser 130 135 140 act gct gtg tct gct gcc ccc aca gag aag gag ttt cca aaa act cac 480 Thr Ala Val Ser Ala Ala Pro Thr Glu Lys Glu Phe Pro Lys Thr His 145 150 155 160 tct gat gta tct tca gaa cag caa cat ttg aag ggc cag act ggc acc 528 Ser Asp Val Ser Ser Glu Gln Gln His Leu Lys Gly Gln Thr Gly Thr 165 170 175 aac ggt ggc aat gtg aaa ttg tat acc aca gac caa agc acc ttt gac 576 Asn Gly Gly Asn Val Lys Leu Tyr Thr Thr Asp Gln Ser Thr Phe Asp 180 185 190 att ttg cag gat ttg gag ttt tct tct ggg tcc cca ggt aaa gag acg 624 Ile Leu Gln Asp Leu Glu Phe Ser Ser Gly Ser Pro Gly Lys Glu Thr 195 200 205 aat gag agt cct tgg aga tca gac ctg ttg ata gat gaa aac tgt ttg 672 Asn Glu Ser Pro Trp Arg Ser Asp Leu Leu Ile Asp Glu Asn Cys Leu 210 215 220 ctt tct cct ctg gcg gga gaa gac gat tca ttc ctt ttg gaa gga aac 720 Leu Ser Pro Leu Ala Gly Glu Asp Asp Ser Phe Leu Leu Glu Gly Asn 225 230 235 240 tcg aat gag gac tgc aag cct ctc att tta ccg gac act aaa ccc aaa 768 Ser Asn Glu Asp Cys Lys Pro Leu Ile Leu Pro Asp Thr Lys Pro Lys 245 250 255 att aag gat aat gga gat ctg gtt ttg tca agc ccc agt aat gta aca 816 Ile Lys Asp Asn Gly Asp Leu Val Leu Ser Ser Pro Ser Asn Val Thr 260 265 270 ctg ccc caa gtg aaa aca gaa aaa gaa gat ttc atc gaa ctc tgc acc 864 Leu Pro Gln Val Lys Thr Glu Lys Glu Asp Phe Ile Glu Leu Cys Thr 275 280 285 cct ggg gta att aag caa gag aaa ctg ggc aca gtt tac tgt cag gca 912 Pro Gly Val Ile Lys Gln Glu Lys Leu Gly Thr Val Tyr Cys Gln Ala 290 295 300 agc ttt cct gga gca aat ata att ggt aat aaa atg tct gcc att tct 960 Ser Phe Pro Gly Ala Asn Ile Ile Gly Asn Lys Met Ser Ala Ile Ser 305 310 315 320 gtt cat ggt gtg agt acc tct gga gga cag atg tac cac tat gac atg 1008 Val His Gly Val Ser Thr Ser Gly Gly Gln Met Tyr His Tyr Asp Met 325 330 335 aat aca gca tcc ctt tct caa cag cag gat cag aag cct att ttt aat 1056 Asn Thr Ala Ser Leu Ser Gln Gln Gln Asp Gln Lys Pro Ile Phe Asn 340 345 350 gtc att cca cca att ccc gtt ggt tcc gaa aat tgg aat agg tgc caa 1104 Val Ile Pro Pro Ile Pro Val Gly Ser Glu Asn Trp Asn Arg Cys Gln 355 360 365 gga tct gga gat gac aac ttg act tct ctg ggg act ctg aac ttc cct 1152 Gly Ser Gly Asp Asp Asn Leu Thr Ser Leu Gly Thr Leu Asn Phe Pro 370 375 380 ggt cga aca gtt ttt tct aat ggc tat tca agc ccc agc atg aga cca 1200 Gly Arg Thr Val Phe Ser Asn Gly Tyr Ser Ser Pro Ser Met Arg Pro 385 390 395 400 gat gta agc tct cct cca tcc agc tcc tca aca gca aca aca gga cca 1248 Asp Val Ser Ser Pro Pro Ser Ser Ser Ser Thr Ala Thr Thr Gly Pro 405 410 415 cct ccc aaa ctc tgc ctg gtg tgc tct gat gaa gct tca gga tgt cat 1296 Pro Pro Lys Leu Cys Leu Val Cys Ser Asp Glu Ala Ser Gly Cys His 420 425 430 tat gga gtc tta act tgt gga agc tgt aaa gtt ttc ttc aaa aga gca 1344 Tyr Gly Val Leu Thr Cys Gly Ser Cys Lys Val Phe Phe Lys Arg Ala 435 440 445 gtg gaa gga cag cac aat tac cta tgt gct gga agg aat gat tgc atc 1392 Val Glu Gly Gln His Asn Tyr Leu Cys Ala Gly Arg Asn Asp Cys Ile 450 455 460 atc gat aaa att cga aga aaa aac tgc cca gca tgc cgc tat cga aaa 1440 Ile Asp Lys Ile Arg Arg Lys Asn Cys Pro Ala Cys Arg Tyr Arg Lys 465 470 475 480 tgt ctt cag gct gga atg aac ctg gaa gct cga aaa aca aag aaa aaa 1488 Cys Leu Gln Ala Gly Met Asn Leu Glu Ala Arg Lys Thr Lys Lys Lys 485 490 495 ata aaa gga att cag cag gcc act aca gga gtc tca caa gaa acc tct 1536 Ile Lys Gly Ile Gln Gln Ala Thr Thr Gly Val Ser Gln Glu Thr Ser 500 505 510 gaa aat cct ggt aac aaa aca ata gtt cct gca acg tta cca caa ctc 1584 Glu Asn Pro Gly Asn Lys Thr Ile Val Pro Ala Thr Leu Pro Gln Leu 515 520 525 acc cct acc ctg gtg tca ctg ttg gag gtt att gaa cct gaa gtg tta 1632 Thr Pro Thr Leu Val Ser Leu Leu Glu Val Ile Glu Pro Glu Val Leu 530 535 540 tat gca gga tat gat agc tct gtt cca gac tca act tgg agg atc atg 1680 Tyr Ala Gly Tyr Asp Ser Ser Val Pro Asp Ser Thr Trp Arg Ile Met 545 550 555 560 act acg ctc aac atg tta gga ggg cgg caa gtg att gca gca gtg aaa 1728 Thr Thr Leu Asn Met Leu Gly Gly Arg Gln Val Ile Ala Ala Val Lys 565 570 575 tgg gca aag gca ata cca ggt ttc agg aac tta cac ctg gat gac caa 1776 Trp Ala Lys Ala Ile Pro Gly Phe Arg Asn Leu His Leu Asp Asp Gln 580 585 590 atg acc cta ctg cag tac tcc tgg atg ttt ctt atg gca ttt gct ctg 1824 Met Thr Leu Leu Gln Tyr Ser Trp Met Phe Leu Met Ala Phe Ala Leu 595 600 605 ggg tgg aga tca tat aga caa tca agt gca aac ctg ctg tgt ttt gct 1872 Gly Trp Arg Ser Tyr Arg Gln Ser Ser Ala Asn Leu Leu Cys Phe Ala 610 615 620 cct gat ctg att att aat gag cag aga atg act cta ccc tgc atg tac 1920 Pro Asp Leu Ile Ile Asn Glu Gln Arg Met Thr Leu Pro Cys Met Tyr 625 630 635 640 gac caa cgt aaa cac atg ctg tat gtt tcc tct gag tta cac agg ctt 1968 Asp Gln Arg Lys His Met Leu Tyr Val Ser Ser Glu Leu His Arg Leu 645 650 655 cag gta tct tat gaa gag tat ctc tgt atg aaa acc tta ctg ctt ctc 2016 Gln Val Ser Tyr Glu Glu Tyr Leu Cys Met Lys Thr Leu Leu Leu Leu 660 665 670 tct tca gtt cct aag gac ggt ctg aag agc caa gag cta ttt gat gaa 2064 Ser Ser Val Pro Lys Asp Gly Leu Lys Ser Gln Glu Leu Phe Asp Glu 675 680 685 att aga atg acc tac atc aaa gag cta gga aaa gcc att gtc aag agg 2112 Ile Arg Met Thr Tyr Ile Lys Glu Leu Gly Lys Ala Ile Val Lys Arg 690 695 700 gaa gga aac tcc agc cag aac tgg cag cgg ttt tat caa ctg aca aaa 2160 Glu Gly Asn Ser Ser Gln Asn Trp Gln Arg Phe Tyr Gln Leu Thr Lys 705 710 715 720 ctc ttg gat tct atg cat gaa gtg gtt gaa aat ctc ctt aac tat tgc 2208 Leu Leu Asp Ser Met His Glu Val Val Glu Asn Leu Leu Asn Tyr Cys 725 730 735 ttc caa aca ttt ttg gat aag acc atg agt att gaa ttc ccc gag atg 2256 Phe Gln Thr Phe Leu Asp Lys Thr Met Ser Ile Glu Phe Pro Glu Met 740 745 750 tta gct gaa atc atc acc aat cag ata cca aaa tat tca aat gga aat 2304 Leu Ala Glu Ile Ile Thr Asn Gln Ile Pro Lys Tyr Ser Asn Gly Asn 755 760 765 atc aaa aaa ctt ctg ttt cat caa aag tga 2334 Ile Lys Lys Leu Leu Phe His Gln Lys 770 775 <210> 4 <211> 777 <212> PRT <213> Homo sapiens <400> 4 Met Asp Ser Lys Glu Ser Leu Thr Pro Gly Arg Glu Glu Asn Pro Ser 1 5 10 15 Ser Val Leu Ala Gln Glu Arg Gly Asp Val Met Asp Phe Tyr Lys Thr 20 25 30 Leu Arg Gly Gly Ala Thr Val Lys Val Ser Ala Ser Ser Pro Ser Leu 35 40 45 Ala Val Ala Ser Gln Ser Asp Ser Lys Gln Arg Arg Leu Leu Val Asp 50 55 60 Phe Pro Lys Gly Ser Val Ser Asn Ala Gln Gln Pro Asp Leu Ser Lys 65 70 75 80 Ala Val Ser Leu Ser Met Gly Leu Tyr Met Gly Glu Thr Glu Thr Lys 85 90 95 Val Met Gly Asn Asp Leu Gly Phe Pro Gln Gln Gly Gln Ile Ser Leu 100 105 110 Ser Ser Gly Glu Thr Asp Leu Lys Leu Leu Glu Glu Ser Ile Ala Asn 115 120 125 Leu Asn Arg Ser Thr Ser Val Pro Glu Asn Pro Lys Ser Ser Ala Ser 130 135 140 Thr Ala Val Ser Ala Ala Pro Thr Glu Lys Glu Phe Pro Lys Thr His 145 150 155 160 Ser Asp Val Ser Ser Glu Gln Gln His Leu Lys Gly Gln Thr Gly Thr 165 170 175 Asn Gly Gly Asn Val Lys Leu Tyr Thr Thr Asp Gln Ser Thr Phe Asp 180 185 190 Ile Leu Gln Asp Leu Glu Phe Ser Ser Gly Ser Pro Gly Lys Glu Thr 195 200 205 Asn Glu Ser Pro Trp Arg Ser Asp Leu Leu Ile Asp Glu Asn Cys Leu 210 215 220 Leu Ser Pro Leu Ala Gly Glu Asp Asp Ser Phe Leu Leu Glu Gly Asn 225 230 235 240 Ser Asn Glu Asp Cys Lys Pro Leu Ile Leu Pro Asp Thr Lys Pro Lys 245 250 255 Ile Lys Asp Asn Gly Asp Leu Val Leu Ser Ser Pro Ser Asn Val Thr 260 265 270 Leu Pro Gln Val Lys Thr Glu Lys Glu Asp Phe Ile Glu Leu Cys Thr 275 280 285 Pro Gly Val Ile Lys Gln Glu Lys Leu Gly Thr Val Tyr Cys Gln Ala 290 295 300 Ser Phe Pro Gly Ala Asn Ile Ile Gly Asn Lys Met Ser Ala Ile Ser 305 310 315 320 Val His Gly Val Ser Thr Ser Gly Gly Gln Met Tyr His Tyr Asp Met 325 330 335 Asn Thr Ala Ser Leu Ser Gln Gln Gln Asp Gln Lys Pro Ile Phe Asn 340 345 350 Val Ile Pro Pro Ile Pro Val Gly Ser Glu Asn Trp Asn Arg Cys Gln 355 360 365 Gly Ser Gly Asp Asp Asn Leu Thr Ser Leu Gly Thr Leu Asn Phe Pro 370 375 380 Gly Arg Thr Val Phe Ser Asn Gly Tyr Ser Ser Pro Ser Met Arg Pro 385 390 395 400 Asp Val Ser Ser Pro Pro Ser Ser Ser Ser Thr Ala Thr Thr Gly Pro 405 410 415 Pro Pro Lys Leu Cys Leu Val Cys Ser Asp Glu Ala Ser Gly Cys His 420 425 430 Tyr Gly Val Leu Thr Cys Gly Ser Cys Lys Val Phe Phe Lys Arg Ala 435 440 445 Val Glu Gly Gln His Asn Tyr Leu Cys Ala Gly Arg Asn Asp Cys Ile 450 455 460 Ile Asp Lys Ile Arg Arg Lys Asn Cys Pro Ala Cys Arg Tyr Arg Lys 465 470 475 480 Cys Leu Gln Ala Gly Met Asn Leu Glu Ala Arg Lys Thr Lys Lys Lys 485 490 495 Ile Lys Gly Ile Gln Gln Ala Thr Thr Gly Val Ser Gln Glu Thr Ser 500 505 510 Glu Asn Pro Gly Asn Lys Thr Ile Val Pro Ala Thr Leu Pro Gln Leu 515 520 525 Thr Pro Thr Leu Val Ser Leu Leu Glu Val Ile Glu Pro Glu Val Leu 530 535 540 Tyr Ala Gly Tyr Asp Ser Ser Val Pro Asp Ser Thr Trp Arg Ile Met 545 550 555 560 Thr Thr Leu Asn Met Leu Gly Gly Arg Gln Val Ile Ala Ala Val Lys 565 570 575 Trp Ala Lys Ala Ile Pro Gly Phe Arg Asn Leu His Leu Asp Asp Gln 580 585 590 Met Thr Leu Leu Gln Tyr Ser Trp Met Phe Leu Met Ala Phe Ala Leu 595 600 605 Gly Trp Arg Ser Tyr Arg Gln Ser Ser Ala Asn Leu Leu Cys Phe Ala 610 615 620 Pro Asp Leu Ile Ile Asn Glu Gln Arg Met Thr Leu Pro Cys Met Tyr 625 630 635 640 Asp Gln Arg Lys His Met Leu Tyr Val Ser Ser Glu Leu His Arg Leu 645 650 655 Gln Val Ser Tyr Glu Glu Tyr Leu Cys Met Lys Thr Leu Leu Leu Leu 660 665 670 Ser Ser Val Pro Lys Asp Gly Leu Lys Ser Gln Glu Leu Phe Asp Glu 675 680 685 Ile Arg Met Thr Tyr Ile Lys Glu Leu Gly Lys Ala Ile Val Lys Arg 690 695 700 Glu Gly Asn Ser Ser Gln Asn Trp Gln Arg Phe Tyr Gln Leu Thr Lys 705 710 715 720 Leu Leu Asp Ser Met His Glu Val Val Glu Asn Leu Leu Asn Tyr Cys 725 730 735 Phe Gln Thr Phe Leu Asp Lys Thr Met Ser Ile Glu Phe Pro Glu Met 740 745 750 Leu Ala Glu Ile Ile Thr Asn Gln Ile Pro Lys Tyr Ser Asn Gly Asn 755 760 765 Ile Lys Lys Leu Leu Phe His Gln Lys 770 775 <210> 5 <211> 2394 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (1)..(2391) <400> 5 atg gac tcc aaa gaa tca tta act cct ggt aga gaa gaa aac ccc agc 48 Met Asp Ser Lys Glu Ser Leu Thr Pro Gly Arg Glu Glu Asn Pro Ser 1 5 10 15 agt gtg ctt gct cag gag agg gga gat gtg atg gac ttc tat aaa acc 96 Ser Val Leu Ala Gln Glu Arg Gly Asp Val Met Asp Phe Tyr Lys Thr 20 25 30 cta aga gga gga gct act gtg aag gtt tct gcg tct tca ccc tca ctg 144 Leu Arg Gly Gly Ala Thr Val Lys Val Ser Ala Ser Ser Pro Ser Leu 35 40 45 gct gtc gct tct caa tca gac tcc aag cag cga aga ctt ttg gtt gat 192 Ala Val Ala Ser Gln Ser Asp Ser Lys Gln Arg Arg Leu Leu Val Asp 50 55 60 ttt cca aaa ggc tca gta agc aat gcg cag cag cca gat ctg tcc aaa 240 Phe Pro Lys Gly Ser Val Ser Asn Ala Gln Gln Pro Asp Leu Ser Lys 65 70 75 80 gca gtt tca ctc tca atg gga ctg tat atg gga gag aca gaa aca aaa 288 Ala Val Ser Leu Ser Met Gly Leu Tyr Met Gly Glu Thr Glu Thr Lys 85 90 95 gtg atg gga aat gac ctg gga ttc cca cag cag ggc caa atc agc ctt 336 Val Met Gly Asn Asp Leu Gly Phe Pro Gln Gln Gly Gln Ile Ser Leu 100 105 110 tcc tcg ggg gaa aca gac tta aag ctt ttg gaa gaa agc att gca aac 384 Ser Ser Gly Glu Thr Asp Leu Lys Leu Leu Glu Glu Ser Ile Ala Asn 115 120 125 ctc aat agg tcg acc agt gtt cca gag aac ccc aag agt tca gca tcc 432 Leu Asn Arg Ser Thr Ser Val Pro Glu Asn Pro Lys Ser Ser Ala Ser 130 135 140 act gct gtg tct gct gcc ccc aca gag aag gag ttt cca aaa act cac 480 Thr Ala Val Ser Ala Ala Pro Thr Glu Lys Glu Phe Pro Lys Thr His 145 150 155 160 tct gat gta tct tca gaa cag caa cat ttg aag ggc cag act ggc acc 528 Ser Asp Val Ser Ser Glu Gln Gln His Leu Lys Gly Gln Thr Gly Thr 165 170 175 aac ggt ggc aat gtg aaa ttg tat acc aca gac caa agc acc ttt gac 576 Asn Gly Gly Asn Val Lys Leu Tyr Thr Thr Asp Gln Ser Thr Phe Asp 180 185 190 att ttg cag gat ttg gag ttt tct tct ggg tcc cca ggt aaa gag acg 624 Ile Leu Gln Asp Leu Glu Phe Ser Ser Gly Ser Pro Gly Lys Glu Thr 195 200 205 aat gag agt cct tgg aga tca gac ctg ttg ata gat gaa aac tgt ttg 672 Asn Glu Ser Pro Trp Arg Ser Asp Leu Leu Ile Asp Glu Asn Cys Leu 210 215 220 ctt tct cct ctg gcg gga gaa gac gat tca ttc ctt ttg gaa gga aac 720 Leu Ser Pro Leu Ala Gly Glu Asp Asp Ser Phe Leu Leu Glu Gly Asn 225 230 235 240 tcg aat gag gac tgc aag cct ctc att tta ccg gac act aaa ccc aaa 768 Ser Asn Glu Asp Cys Lys Pro Leu Ile Leu Pro Asp Thr Lys Pro Lys 245 250 255 att aag gat aat gga gat ctg gtt ttg tca agc ccc agt aat gta aca 816 Ile Lys Asp Asn Gly Asp Leu Val Leu Ser Ser Pro Ser Asn Val Thr 260 265 270 ctg ccc caa gtg aaa aca gaa aaa gaa gat ttc atc gaa ctc tgc acc 864 Leu Pro Gln Val Lys Thr Glu Lys Glu Asp Phe Ile Glu Leu Cys Thr 275 280 285 cct ggg gta att aag caa gag aaa ctg ggc aca gtt tac tgt cag gca 912 Pro Gly Val Ile Lys Gln Glu Lys Leu Gly Thr Val Tyr Cys Gln Ala 290 295 300 agc ttt cct gga gca aat ata att ggt aat aaa atg tct gcc att tct 960 Ser Phe Pro Gly Ala Asn Ile Ile Gly Asn Lys Met Ser Ala Ile Ser 305 310 315 320 gtt cat ggt gtg agt acc tct gga gga cag atg tac cac tat gac atg 1008 Val His Gly Val Ser Thr Ser Gly Gly Gln Met Tyr His Tyr Asp Met 325 330 335 aat aca gca tcc ctt tct caa cag cag gat cag aag cct att ttt aat 1056 Asn Thr Ala Ser Leu Ser Gln Gln Gln Asp Gln Lys Pro Ile Phe Asn 340 345 350 gtc att cca cca att ccc gtt ggt tcc gaa aat tgg aat agg tgc caa 1104 Val Ile Pro Pro Ile Pro Val Gly Ser Glu Asn Trp Asn Arg Cys Gln 355 360 365 gga tct gga gat gac aac ttg act tct ctg ggg act ctg aac ttc cct 1152 Gly Ser Gly Asp Asp Asn Leu Thr Ser Leu Gly Thr Leu Asn Phe Pro 370 375 380 ggt cga aca gtt ttt tct aat ggc tat tca agc ccc agc atg aga cca 1200 Gly Arg Thr Val Phe Ser Asn Gly Tyr Ser Ser Pro Ser Met Arg Pro 385 390 395 400 gat gta agc tct cct cca tcc agc tcc tca aca gca aca aca gga cca 1248 Asp Val Ser Ser Pro Pro Ser Ser Ser Ser Thr Ala Thr Thr Gly Pro 405 410 415 cct ccc aaa ctc tgc ctg gtg tgc tct gat gaa gct tca gga tgt cat 1296 Pro Pro Lys Leu Cys Leu Val Cys Ser Asp Glu Ala Ser Gly Cys His 420 425 430 tat gga gtc tta act tgt gga agc tgt aaa gtt ttc ttc aaa aga gca 1344 Tyr Gly Val Leu Thr Cys Gly Ser Cys Lys Val Phe Phe Lys Arg Ala 435 440 445 gtg gaa gga cag cac aat tac cta tgt gct gga agg aat gat tgc atc 1392 Val Glu Gly Gln His Asn Tyr Leu Cys Ala Gly Arg Asn Asp Cys Ile 450 455 460 atc gat aaa att cga aga aaa aac tgc cca gca tgc cgc tat cga aaa 1440 Ile Asp Lys Ile Arg Arg Lys Asn Cys Pro Ala Cys Arg Tyr Arg Lys 465 470 475 480 tgt ctt cag gct gga atg aac ctg gaa gct cga aaa aca aag aaa aaa 1488 Cys Leu Gln Ala Gly Met Asn Leu Glu Ala Arg Lys Thr Lys Lys Lys 485 490 495 ata aaa gga att cag cag gcc act aca gga gtc tca caa gaa acc tct 1536 Ile Lys Gly Ile Gln Gln Ala Thr Thr Gly Val Ser Gln Glu Thr Ser 500 505 510 gaa aat cct ggt aac aaa aca ata gtt cct gca acg tta cca caa ctc 1584 Glu Asn Pro Gly Asn Lys Thr Ile Val Pro Ala Thr Leu Pro Gln Leu 515 520 525 acc cct acc ctg gtg tca ctg ttg gag gtt att gaa cct gaa gtg tta 1632 Thr Pro Thr Leu Val Ser Leu Leu Glu Val Ile Glu Pro Glu Val Leu 530 535 540 tat gca gga tat gat agc tct gtt cca gac tca act tgg agg atc atg 1680 Tyr Ala Gly Tyr Asp Ser Ser Val Pro Asp Ser Thr Trp Arg Ile Met 545 550 555 560 act acg ctc aac atg tta gga ggg cgg caa gtg att gca gca gtg aaa 1728 Thr Thr Leu Asn Met Leu Gly Gly Arg Gln Val Ile Ala Ala Val Lys 565 570 575 tgg gca aag gca ata cca ggt ttc agg aac tta cac ctg gat gac caa 1776 Trp Ala Lys Ala Ile Pro Gly Phe Arg Asn Leu His Leu Asp Asp Gln 580 585 590 atg acc cta ctg cag tac tcc tgg atg ttt ctt atg gca ttt gct ctg 1824 Met Thr Leu Leu Gln Tyr Ser Trp Met Phe Leu Met Ala Phe Ala Leu 595 600 605 ggg tgg aga tca tat aga caa tca agt gca aac ctg ctg tgt ttt gct 1872 Gly Trp Arg Ser Tyr Arg Gln Ser Ser Ala Asn Leu Leu Cys Phe Ala 610 615 620 cct gat ctg att att aat gag cag aga atg act cta ccc tgc atg tac 1920 Pro Asp Leu Ile Ile Asn Glu Gln Arg Met Thr Leu Pro Cys Met Tyr 625 630 635 640 gac caa tgt aaa cac atg ctg tat gtt tcc tct gag tta cac agg ctt 1968 Asp Gln Cys Lys His Met Leu Tyr Val Ser Ser Glu Leu His Arg Leu 645 650 655 cag gta tct tat gaa gag tat ctc tgt atg aaa acc tta ctg ctt ctc 2016 Gln Val Ser Tyr Glu Glu Tyr Leu Cys Met Lys Thr Leu Leu Leu Leu 660 665 670 tct tca gtt cct aag gac ggt ctg aag agc caa gag cta ttt gat gaa 2064 Ser Ser Val Pro Lys Asp Gly Leu Lys Ser Gln Glu Leu Phe Asp Glu 675 680 685 att aga atg acc tac atc aaa gag cta gga aaa gcc att gtc aag agg 2112 Ile Arg Met Thr Tyr Ile Lys Glu Leu Gly Lys Ala Ile Val Lys Arg 690 695 700 gaa gga aac tcc agc cag aac tgg cag cgg ttt tat caa ctg aca aaa 2160 Glu Gly Asn Ser Ser Gln Asn Trp Gln Arg Phe Tyr Gln Leu Thr Lys 705 710 715 720 ctc ttg gat tct atg cat gaa gtg gtt gaa aat ctc ctt aac tat tgc 2208 Leu Leu Asp Ser Met His Glu Val Val Glu Asn Leu Leu Asn Tyr Cys 725 730 735 ttc caa aca ttt ttg gat aag acc atg agt att gaa ttc ccc gag atg 2256 Phe Gln Thr Phe Leu Asp Lys Thr Met Ser Ile Glu Phe Pro Glu Met 740 745 750 tta gct gaa atc atc acc aat cag ata cca aaa tat tca aat gga aat 2304 Leu Ala Glu Ile Ile Thr Asn Gln Ile Pro Lys Tyr Ser Asn Gly Asn 755 760 765 atc aaa aaa act tct gtt tca tca aaa gtg act gcc tta ata aga atg 2352 Ile Lys Lys Thr Ser Val Ser Ser Lys Val Thr Ala Leu Ile Arg Met 770 775 780 gtt gcc tta aag aaa gtc gaa tta ata gct ttt att gta taa 2394 Val Ala Leu Lys Lys Val Glu Leu Ile Ala Phe Ile Val 785 790 795 <210> 6 <211> 797 <212> PRT <213> Homo sapiens <400> 6 Met Asp Ser Lys Glu Ser Leu Thr Pro Gly Arg Glu Glu Asn Pro Ser 1 5 10 15 Ser Val Leu Ala Gln Glu Arg Gly Asp Val Met Asp Phe Tyr Lys Thr 20 25 30 Leu Arg Gly Gly Ala Thr Val Lys Val Ser Ala Ser Ser Pro Ser Leu 35 40 45 Ala Val Ala Ser Gln Ser Asp Ser Lys Gln Arg Arg Leu Leu Val Asp 50 55 60 Phe Pro Lys Gly Ser Val Ser Asn Ala Gln Gln Pro Asp Leu Ser Lys 65 70 75 80 Ala Val Ser Leu Ser Met Gly Leu Tyr Met Gly Glu Thr Glu Thr Lys 85 90 95 Val Met Gly Asn Asp Leu Gly Phe Pro Gln Gln Gly Gln Ile Ser Leu 100 105 110 Ser Ser Gly Glu Thr Asp Leu Lys Leu Leu Glu Glu Ser Ile Ala Asn 115 120 125 Leu Asn Arg Ser Thr Ser Val Pro Glu Asn Pro Lys Ser Ser Ala Ser 130 135 140 Thr Ala Val Ser Ala Ala Pro Thr Glu Lys Glu Phe Pro Lys Thr His 145 150 155 160 Ser Asp Val Ser Ser Glu Gln Gln His Leu Lys Gly Gln Thr Gly Thr 165 170 175 Asn Gly Gly Asn Val Lys Leu Tyr Thr Thr Asp Gln Ser Thr Phe Asp 180 185 190 Ile Leu Gln Asp Leu Glu Phe Ser Ser Gly Ser Pro Gly Lys Glu Thr 195 200 205 Asn Glu Ser Pro Trp Arg Ser Asp Leu Leu Ile Asp Glu Asn Cys Leu 210 215 220 Leu Ser Pro Leu Ala Gly Glu Asp Asp Ser Phe Leu Leu Glu Gly Asn 225 230 235 240 Ser Asn Glu Asp Cys Lys Pro Leu Ile Leu Pro Asp Thr Lys Pro Lys 245 250 255 Ile Lys Asp Asn Gly Asp Leu Val Leu Ser Ser Pro Ser Asn Val Thr 260 265 270 Leu Pro Gln Val Lys Thr Glu Lys Glu Asp Phe Ile Glu Leu Cys Thr 275 280 285 Pro Gly Val Ile Lys Gln Glu Lys Leu Gly Thr Val Tyr Cys Gln Ala 290 295 300 Ser Phe Pro Gly Ala Asn Ile Ile Gly Asn Lys Met Ser Ala Ile Ser 305 310 315 320 Val His Gly Val Ser Thr Ser Gly Gly Gln Met Tyr His Tyr Asp Met 325 330 335 Asn Thr Ala Ser Leu Ser Gln Gln Gln Asp Gln Lys Pro Ile Phe Asn 340 345 350 Val Ile Pro Pro Ile Pro Val Gly Ser Glu Asn Trp Asn Arg Cys Gln 355 360 365 Gly Ser Gly Asp Asp Asn Leu Thr Ser Leu Gly Thr Leu Asn Phe Pro 370 375 380 Gly Arg Thr Val Phe Ser Asn Gly Tyr Ser Ser Pro Ser Met Arg Pro 385 390 395 400 Asp Val Ser Ser Pro Pro Ser Ser Ser Ser Thr Ala Thr Thr Gly Pro 405 410 415 Pro Pro Lys Leu Cys Leu Val Cys Ser Asp Glu Ala Ser Gly Cys His 420 425 430 Tyr Gly Val Leu Thr Cys Gly Ser Cys Lys Val Phe Phe Lys Arg Ala 435 440 445 Val Glu Gly Gln His Asn Tyr Leu Cys Ala Gly Arg Asn Asp Cys Ile 450 455 460 Ile Asp Lys Ile Arg Arg Lys Asn Cys Pro Ala Cys Arg Tyr Arg Lys 465 470 475 480 Cys Leu Gln Ala Gly Met Asn Leu Glu Ala Arg Lys Thr Lys Lys Lys 485 490 495 Ile Lys Gly Ile Gln Gln Ala Thr Thr Gly Val Ser Gln Glu Thr Ser 500 505 510 Glu Asn Pro Gly Asn Lys Thr Ile Val Pro Ala Thr Leu Pro Gln Leu 515 520 525 Thr Pro Thr Leu Val Ser Leu Leu Glu Val Ile Glu Pro Glu Val Leu 530 535 540 Tyr Ala Gly Tyr Asp Ser Ser Val Pro Asp Ser Thr Trp Arg Ile Met 545 550 555 560 Thr Thr Leu Asn Met Leu Gly Gly Arg Gln Val Ile Ala Ala Val Lys 565 570 575 Trp Ala Lys Ala Ile Pro Gly Phe Arg Asn Leu His Leu Asp Asp Gln 580 585 590 Met Thr Leu Leu Gln Tyr Ser Trp Met Phe Leu Met Ala Phe Ala Leu 595 600 605 Gly Trp Arg Ser Tyr Arg Gln Ser Ser Ala Asn Leu Leu Cys Phe Ala 610 615 620 Pro Asp Leu Ile Ile Asn Glu Gln Arg Met Thr Leu Pro Cys Met Tyr 625 630 635 640 Asp Gln Cys Lys His Met Leu Tyr Val Ser Ser Glu Leu His Arg Leu 645 650 655 Gln Val Ser Tyr Glu Glu Tyr Leu Cys Met Lys Thr Leu Leu Leu Leu 660 665 670 Ser Ser Val Pro Lys Asp Gly Leu Lys Ser Gln Glu Leu Phe Asp Glu 675 680 685 Ile Arg Met Thr Tyr Ile Lys Glu Leu Gly Lys Ala Ile Val Lys Arg 690 695 700 Glu Gly Asn Ser Ser Gln Asn Trp Gln Arg Phe Tyr Gln Leu Thr Lys 705 710 715 720 Leu Leu Asp Ser Met His Glu Val Val Glu Asn Leu Leu Asn Tyr Cys 725 730 735 Phe Gln Thr Phe Leu Asp Lys Thr Met Ser Ile Glu Phe Pro Glu Met 740 745 750 Leu Ala Glu Ile Ile Thr Asn Gln Ile Pro Lys Tyr Ser Asn Gly Asn 755 760 765 Ile Lys Lys Thr Ser Val Ser Ser Lys Val Thr Ala Leu Ile Arg Met 770 775 780 Val Ala Leu Lys Lys Val Glu Leu Ile Ala Phe Ile Val 785 790 795 <210> 7 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: An Artificially Synthesized Primer Sequence <400> 7 ggctttttat tctggaagat ag 22 <210> 8 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: An Artificially Synthesized Primer Sequence <400> 8 gtttctgtct ctcccatata cagtc 25 <210> 9 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: An Artificially Synthesized Primer Sequence <400> 9 aggctcagta agcaatgcgc 20 <210> 10 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: An Artificially Synthesized Primer Sequence <400> 10 aacaaaagtg atgggaaatg ac 22 <210> 11 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: An Artificially Synthesized Primer Sequence <400> 11 aactgtttgc tttctcctct gg 22 <210> 12 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: An Artificially Synthesized Primer Sequence <400> 12 gcaagcctct cattttaccg 20 <210> 13 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: An Artificially Synthesized Primer Sequence <400> 13 ttctttttct gttttcactt ggggca 26 <210> 14 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: An Artificially Synthesized Primer Sequence <400> 14 acatctatta atctccttaa atgtccattc 30 <210> 15 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: An Artificially Synthesized Primer Sequence <400> 15 tgaagtgaga agctaagaga actg 24 <210> 16 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: An Artificially Synthesized Primer Sequence <400> 16 cgtgagaaat aaaaccaagt agagg 25 <210> 17 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: An Artificially Synthesized Primer Sequence <400> 17 gacagaaggc tgtccttata a 21 <210> 18 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: An Artificially Synthesized Primer Sequence <400> 18 catctgctta cgtgtatctt ca 22 <210> 19 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: An Artificially Synthesized Primer Sequence <400> 19 tcttgaataa actgtgtagc gc 22 <210> 20 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: An Artificially Synthesized Primer Sequence <400> 20 tccctatcac ctgtattcac c 21 <210> 21 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: An Artificially Synthesized Primer Sequence <400> 21 tttccatttt ctgttagggg tg 22 <210> 22 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: An Artificially Synthesized Primer Sequence <400> 22 agtcaatcag gaaaacatca gc 22 <210> 23 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: An Artificially Synthesized Primer Sequence <400> 23 tttttggggg gaagtagcag 20 <210> 24 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: An Artificially Synthesized Primer Sequence <400> 24 aacagagatc cctatgcagc 20 <210> 25 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: An Artificially Synthesized Primer Sequence <400> 25 gacacagtga gaccctatct 20 <210> 26 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: An Artificially Synthesized Primer Sequence <400> 26 caccaacatc cacaaactgg 20 <210> 27 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: An Artificially Synthesized Primer Sequence <400> 27 tgagatgttc ccactgacca at 22 <210> 28 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: An Artificially Synthesized Primer Sequence <400> 28 caccatctac tctcccatca ctg 23 <210> 29 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: An Artificially Synthesized Primer Sequence <400> 29 cagaatctca taggttgcca ataat 25 <210> 30 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: An Artificially Synthesized Primer Sequence <400> 30 aacagcacca ccatatagca c 21 <210> 31 <211> 20 <212> DNA <213> Homo sapiens <400> 31 tacgaccaat gtaaacacat 20 [Sequence list]                                SEQUENCE LISTING        <110> National Institute of Health Sciences       The Organization for Pharmaceutical Safety and Research       Genox Research, Inc. <120> Methods for evaluating the effectiveness of glucocorticoid on a pa tient <130> G1-A0116 <140> <141> <160> 31 <170> PatentIn Ver. 2.1 <210> 1 <211> 2334 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (1) .. (2331) <400> 1 atg gac tcc aaa gaa tca tta act cct ggt aga gaa gaa aac ccc agc 48 Met Asp Ser Lys Glu Ser Leu Thr Pro Gly Arg Glu Glu Asn Pro Ser   1 5 10 15 agt gtg ctt gct cag gag agg gga gat gtg atg gac ttc tat aaa acc 96 Ser Val Leu Ala Gln Glu Arg Gly Asp Val Met Asp Phe Tyr Lys Thr              20 25 30 cta aga gga gga gct act gtg aag gtt tct gcg tct tca ccc tca ctg 144 Leu Arg Gly Gly Ala Thr Val Lys Val Ser Ala Ser Ser Pro Ser Leu          35 40 45 gct gtc gct tct caa tca gac tcc aag cag cga aga ctt ttg gtt gat 192 Ala Val Ala Ser Gln Ser Asp Ser Lys Gln Arg Arg Leu Leu Val Asp      50 55 60 ttt cca aaa ggc tca gta agc aat gcg cag cag cca gat ctg tcc aaa 240 Phe Pro Lys Gly Ser Val Ser Asn Ala Gln Gln Pro Asp Leu Ser Lys  65 70 75 80 gca gtt tca ctc tca atg gga ctg tat atg gga gag aca gaa aca aaa 288 Ala Val Ser Leu Ser Met Gly Leu Tyr Met Gly Glu Thr Glu Thr Lys                  85 90 95 gtg atg gga aat gac ctg gga ttc cca cag cag ggc caa atc agc ctt 336 Val Met Gly Asn Asp Leu Gly Phe Pro Gln Gln Gly Gln Ile Ser Leu             100 105 110 tcc tcg ggg gaa aca gac tta aag ctt ttg gaa gaa agc att gca aac 384 Ser Ser Gly Glu Thr Asp Leu Lys Leu Leu Glu Glu Ser Ile Ala Asn         115 120 125 ctc aat agg tcg acc agt gtt cca gag aac ccc aag agt tca gca tcc 432 Leu Asn Arg Ser Thr Ser Val Pro Glu Asn Pro Lys Ser Ser Ala Ser     130 135 140 act gct gtg tct gct gcc ccc aca gag aag gag ttt cca aaa act cac 480 Thr Ala Val Ser Ala Ala Pro Thr Glu Lys Glu Phe Pro Lys Thr His 145 150 155 160 tct gat gta tct tca gaa cag caa cat ttg aag ggc cag act ggc acc 528 Ser Asp Val Ser Ser Glu Gln Gln His Leu Lys Gly Gln Thr Gly Thr                 165 170 175 aac ggt ggc aat gtg aaa ttg tat acc aca gac caa agc acc ttt gac 576 Asn Gly Gly Asn Val Lys Leu Tyr Thr Thr Asp Gln Ser Thr Phe Asp             180 185 190 att ttg cag gat ttg gag ttt tct tct ggg tcc cca ggt aaa gag acg 624 Ile Leu Gln Asp Leu Glu Phe Ser Ser Gly Ser Pro Gly Lys Glu Thr         195 200 205 aat gag agt cct tgg aga tca gac ctg ttg ata gat gaa aac tgt ttg 672 Asn Glu Ser Pro Trp Arg Ser Asp Leu Leu Ile Asp Glu Asn Cys Leu     210 215 220 ctt tct cct ctg gcg gga gaa gac gat tca ttc ctt ttg gaa gga aac 720 Leu Ser Pro Leu Ala Gly Glu Asp Asp Ser Phe Leu Leu Glu Gly Asn 225 230 235 240 tcg aat gag gac tgc aag cct ctc att tta ccg gac act aaa ccc aaa 768 Ser Asn Glu Asp Cys Lys Pro Leu Ile Leu Pro Asp Thr Lys Pro Lys                 245 250 255 att aag gat aat gga gat ctg gtt ttg tca agc ccc agt aat gta aca 816 Ile Lys Asp Asn Gly Asp Leu Val Leu Ser Ser Pro Ser Asn Val Thr             260 265 270 ctg ccc caa gtg aaa aca gaa aaa gaa gat ttc atc gaa ctc tgc acc 864 Leu Pro Gln Val Lys Thr Glu Lys Glu Asp Phe Ile Glu Leu Cys Thr         275 280 285 cct ggg gta att aag caa gag aaa ctg ggc aca gtt tac tgt cag gca 912 Pro Gly Val Ile Lys Gln Glu Lys Leu Gly Thr Val Tyr Cys Gln Ala     290 295 300 agc ttt cct gga gca aat ata att ggt aat aaa atg tct gcc att tct 960 Ser Phe Pro Gly Ala Asn Ile Ile Gly Asn Lys Met Ser Ala Ile Ser 305 310 315 320 gtt cat ggt gtg agt acc tct gga gga cag atg tac cac tat gac atg 1008 Val His Gly Val Ser Thr Ser Gly Gly Gln Met Tyr His Tyr Asp Met                 325 330 335 aat aca gca tcc ctt tct caa cag cag gat cag aag cct att ttt aat 1056 Asn Thr Ala Ser Leu Ser Gln Gln Gln Asp Gln Lys Pro Ile Phe Asn             340 345 350 gtc att cca cca att ccc gtt ggt tcc gaa aat tgg aat agg tgc caa 1104 Val Ile Pro Pro Ile Pro Val Gly Ser Glu Asn Trp Asn Arg Cys Gln         355 360 365 gga tct gga gat gac aac ttg act tct ctg ggg act ctg aac ttc cct 1152 Gly Ser Gly Asp Asp Asn Leu Thr Ser Leu Gly Thr Leu Asn Phe Pro     370 375 380 ggt cga aca gtt ttt tct aat ggc tat tca agc ccc agc atg aga cca 1200 Gly Arg Thr Val Phe Ser Asn Gly Tyr Ser Ser Pro Ser Met Arg Pro 385 390 395 400 gat gta agc tct cct cca tcc agc tcc tca aca gca aca aca gga cca 1248 Asp Val Ser Ser Pro Pro Ser Ser Ser Ser Thr Ala Thr Thr Gly Pro                 405 410 415 cct ccc aaa ctc tgc ctg gtg tgc tct gat gaa gct tca gga tgt cat 1296 Pro Pro Lys Leu Cys Leu Val Cys Ser Asp Glu Ala Ser Gly Cys His             420 425 430 tat gga gtc tta act tgt gga agc tgt aaa gtt ttc ttc aaa aga gca 1344 Tyr Gly Val Leu Thr Cys Gly Ser Cys Lys Val Phe Phe Lys Arg Ala         435 440 445 gtg gaa gga cag cac aat tac cta tgt gct gga agg aat gat tgc atc 1392 Val Glu Gly Gln His Asn Tyr Leu Cys Ala Gly Arg Asn Asp Cys Ile     450 455 460 atc gat aaa att cga aga aaa aac tgc cca gca tgc cgc tat cga aaa 1440 Ile Asp Lys Ile Arg Arg Lys Asn Cys Pro Ala Cys Arg Tyr Arg Lys 465 470 475 480 tgt ctt cag gct gga atg aac ctg gaa gct cga aaa aca aag aaa aaa 1488 Cys Leu Gln Ala Gly Met Asn Leu Glu Ala Arg Lys Thr Lys Lys Lys                 485 490 495 ata aaa gga att cag cag gcc act aca gga gtc tca caa gaa acc tct 1536 Ile Lys Gly Ile Gln Gln Ala Thr Thr Gly Val Ser Gln Glu Thr Ser             500 505 510 gaa aat cct ggt aac aaa aca ata gtt cct gca acg tta cca caa ctc 1584 Glu Asn Pro Gly Asn Lys Thr Ile Val Pro Ala Thr Leu Pro Gln Leu         515 520 525 acc cct acc ctg gtg tca ctg ttg gag gtt att gaa cct gaa gtg tta 1632 Thr Pro Thr Leu Val Ser Leu Leu Glu Val Ile Glu Pro Glu Val Leu     530 535 540 tat gca gga tat gat agc tct gtt cca gac tca act tgg agg atc atg 1680 Tyr Ala Gly Tyr Asp Ser Ser Val Pro Asp Ser Thr Trp Arg Ile Met 545 550 555 560 act acg ctc aac atg tta gga ggg cgg caa gtg att gca gca gtg aaa 1728 Thr Thr Leu Asn Met Leu Gly Gly Arg Gln Val Ile Ala Ala Val Lys                 565 570 575 tgg gca aag gca ata cca ggt ttc agg aac tta cac ctg gat gac caa 1776 Trp Ala Lys Ala Ile Pro Gly Phe Arg Asn Leu His Leu Asp Asp Gln             580 585 590 atg acc cta ctg cag tac tcc tgg atg ttt ctt atg gca ttt gct ctg 1824 Met Thr Leu Leu Gln Tyr Ser Trp Met Phe Leu Met Ala Phe Ala Leu         595 600 605 ggg tgg aga tca tat aga caa tca agt gca aac ctg ctg tgt ttt gct 1872 Gly Trp Arg Ser Tyr Arg Gln Ser Ser Ala Asn Leu Leu Cys Phe Ala     610 615 620 cct gat ctg att att aat gag cag aga atg act cta ccc tgc atg tac 1920 Pro Asp Leu Ile Ile Asn Glu Gln Arg Met Thr Leu Pro Cys Met Tyr 625 630 635 640 gac caa tgt aaa cac atg ctg tat gtt tcc tct gag tta cac agg ctt 1968 Asp Gln Cys Lys His Met Leu Tyr Val Ser Ser Glu Leu His Arg Leu                 645 650 655 cag gta tct tat gaa gag tat ctc tgt atg aaa acc tta ctg ctt ctc 2016 Gln Val Ser Tyr Glu Glu Tyr Leu Cys Met Lys Thr Leu Leu Leu Leu             660 665 670 tct tca gtt cct aag gac ggt ctg aag agc caa gag cta ttt gat gaa 2064 Ser Ser Val Pro Lys Asp Gly Leu Lys Ser Gln Glu Leu Phe Asp Glu         675 680 685 att aga atg acc tac atc aaa gag cta gga aaa gcc att gtc aag agg 2112 Ile Arg Met Thr Tyr Ile Lys Glu Leu Gly Lys Ala Ile Val Lys Arg     690 695 700 gaa gga aac tcc agc cag aac tgg cag cgg ttt tat caa ctg aca aaa 2160 Glu Gly Asn Ser Ser Gln Asn Trp Gln Arg Phe Tyr Gln Leu Thr Lys 705 710 715 720 ctc ttg gat tct atg cat gaa gtg gtt gaa aat ctc ctt aac tat tgc 2208 Leu Leu Asp Ser Met His Glu Val Val Glu Asn Leu Leu Asn Tyr Cys                 725 730 735 ttc caa aca ttt ttg gat aag acc atg agt att gaa ttc ccc gag atg 2256 Phe Gln Thr Phe Leu Asp Lys Thr Met Ser Ile Glu Phe Pro Glu Met             740 745 750 tta gct gaa atc atc acc aat cag ata cca aaa tat tca aat gga aat 2304 Leu Ala Glu Ile Ile Thr Asn Gln Ile Pro Lys Tyr Ser Asn Gly Asn         755 760 765 atc aaa aaa ctt ctg ttt cat caa aag tga 2334 Ile Lys Lys Leu Leu Phe His Gln Lys     770 775 <210> 2 <211> 777 <212> PRT <213> Homo sapiens <400> 2 Met Asp Ser Lys Glu Ser Leu Thr Pro Gly Arg Glu Glu Asn Pro Ser   1 5 10 15 Ser Val Leu Ala Gln Glu Arg Gly Asp Val Met Asp Phe Tyr Lys Thr              20 25 30 Leu Arg Gly Gly Ala Thr Val Lys Val Ser Ala Ser Ser Pro Ser Leu          35 40 45 Ala Val Ala Ser Gln Ser Asp Ser Lys Gln Arg Arg Leu Leu Val Asp      50 55 60 Phe Pro Lys Gly Ser Val Ser Asn Ala Gln Gln Pro Asp Leu Ser Lys  65 70 75 80 Ala Val Ser Leu Ser Met Gly Leu Tyr Met Gly Glu Thr Glu Thr Lys                  85 90 95 Val Met Gly Asn Asp Leu Gly Phe Pro Gln Gln Gly Gln Ile Ser Leu             100 105 110 Ser Ser Gly Glu Thr Asp Leu Lys Leu Leu Glu Glu Ser Ile Ala Asn         115 120 125 Leu Asn Arg Ser Thr Ser Val Pro Glu Asn Pro Lys Ser Ser Ala Ser     130 135 140 Thr Ala Val Ser Ala Ala Pro Thr Glu Lys Glu Phe Pro Lys Thr His 145 150 155 160 Ser Asp Val Ser Ser Glu Gln Gln His Leu Lys Gly Gln Thr Gly Thr                 165 170 175 Asn Gly Gly Asn Val Lys Leu Tyr Thr Thr Asp Gln Ser Thr Phe Asp             180 185 190 Ile Leu Gln Asp Leu Glu Phe Ser Ser Gly Ser Pro Gly Lys Glu Thr         195 200 205 Asn Glu Ser Pro Trp Arg Ser Asp Leu Leu Ile Asp Glu Asn Cys Leu     210 215 220 Leu Ser Pro Leu Ala Gly Glu Asp Asp Ser Phe Leu Leu Glu Gly Asn 225 230 235 240 Ser Asn Glu Asp Cys Lys Pro Leu Ile Leu Pro Asp Thr Lys Pro Lys                 245 250 255 Ile Lys Asp Asn Gly Asp Leu Val Leu Ser Ser Pro Ser Asn Val Thr             260 265 270 Leu Pro Gln Val Lys Thr Glu Lys Glu Asp Phe Ile Glu Leu Cys Thr         275 280 285 Pro Gly Val Ile Lys Gln Glu Lys Leu Gly Thr Val Tyr Cys Gln Ala     290 295 300 Ser Phe Pro Gly Ala Asn Ile Ile Gly Asn Lys Met Ser Ala Ile Ser 305 310 315 320 Val His Gly Val Ser Thr Ser Gly Gly Gln Met Tyr His Tyr Asp Met                 325 330 335 Asn Thr Ala Ser Leu Ser Gln Gln Gln Asp Gln Lys Pro Ile Phe Asn             340 345 350 Val Ile Pro Pro Ile Pro Val Gly Ser Glu Asn Trp Asn Arg Cys Gln         355 360 365 Gly Ser Gly Asp Asp Asn Leu Thr Ser Leu Gly Thr Leu Asn Phe Pro     370 375 380 Gly Arg Thr Val Phe Ser Asn Gly Tyr Ser Ser Pro Ser Met Arg Pro 385 390 395 400 Asp Val Ser Ser Pro Pro Ser Ser Ser Ser Thr Ala Thr Thr Gly Pro                 405 410 415 Pro Pro Lys Leu Cys Leu Val Cys Ser Asp Glu Ala Ser Gly Cys His             420 425 430 Tyr Gly Val Leu Thr Cys Gly Ser Cys Lys Val Phe Phe Lys Arg Ala         435 440 445 Val Glu Gly Gln His Asn Tyr Leu Cys Ala Gly Arg Asn Asp Cys Ile     450 455 460 Ile Asp Lys Ile Arg Arg Lys Asn Cys Pro Ala Cys Arg Tyr Arg Lys 465 470 475 480 Cys Leu Gln Ala Gly Met Asn Leu Glu Ala Arg Lys Thr Lys Lys Lys                 485 490 495 Ile Lys Gly Ile Gln Gln Ala Thr Thr Gly Val Ser Gln Glu Thr Ser             500 505 510 Glu Asn Pro Gly Asn Lys Thr Ile Val Pro Ala Thr Leu Pro Gln Leu         515 520 525 Thr Pro Thr Leu Val Ser Leu Leu Glu Val Ile Glu Pro Glu Val Leu     530 535 540 Tyr Ala Gly Tyr Asp Ser Ser Val Pro Asp Ser Thr Trp Arg Ile Met 545 550 555 560 Thr Thr Leu Asn Met Leu Gly Gly Arg Gln Val Ile Ala Ala Val Lys                 565 570 575 Trp Ala Lys Ala Ile Pro Gly Phe Arg Asn Leu His Leu Asp Asp Gln             580 585 590 Met Thr Leu Leu Gln Tyr Ser Trp Met Phe Leu Met Ala Phe Ala Leu         595 600 605 Gly Trp Arg Ser Tyr Arg Gln Ser Ser Ala Asn Leu Leu Cys Phe Ala     610 615 620 Pro Asp Leu Ile Ile Asn Glu Gln Arg Met Thr Leu Pro Cys Met Tyr 625 630 635 640 Asp Gln Cys Lys His Met Leu Tyr Val Ser Ser Glu Leu His Arg Leu                 645 650 655 Gln Val Ser Tyr Glu Glu Tyr Leu Cys Met Lys Thr Leu Leu Leu Leu             660 665 670 Ser Ser Val Pro Lys Asp Gly Leu Lys Ser Gln Glu Leu Phe Asp Glu         675 680 685 Ile Arg Met Thr Tyr Ile Lys Glu Leu Gly Lys Ala Ile Val Lys Arg     690 695 700 Glu Gly Asn Ser Ser Gln Asn Trp Gln Arg Phe Tyr Gln Leu Thr Lys 705 710 715 720 Leu Leu Asp Ser Met His Glu Val Val Glu Asn Leu Leu Asn Tyr Cys                 725 730 735 Phe Gln Thr Phe Leu Asp Lys Thr Met Ser Ile Glu Phe Pro Glu Met             740 745 750 Leu Ala Glu Ile Ile Thr Asn Gln Ile Pro Lys Tyr Ser Asn Gly Asn         755 760 765 Ile Lys Lys Leu Leu Phe His Gln Lys     770 775 <210> 3 <211> 2334 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (1) .. (2331) <400> 3 atg gac tcc aaa gaa tca tta act cct ggt aga gaa gaa aac ccc agc 48 Met Asp Ser Lys Glu Ser Leu Thr Pro Gly Arg Glu Glu Asn Pro Ser   1 5 10 15 agt gtg ctt gct cag gag agg gga gat gtg atg gac ttc tat aaa acc 96 Ser Val Leu Ala Gln Glu Arg Gly Asp Val Met Asp Phe Tyr Lys Thr              20 25 30 cta aga gga gga gct act gtg aag gtt tct gcg tct tca ccc tca ctg 144 Leu Arg Gly Gly Ala Thr Val Lys Val Ser Ala Ser Ser Pro Ser Leu          35 40 45 gct gtc gct tct caa tca gac tcc aag cag cga aga ctt ttg gtt gat 192 Ala Val Ala Ser Gln Ser Asp Ser Lys Gln Arg Arg Leu Leu Val Asp      50 55 60 ttt cca aaa ggc tca gta agc aat gcg cag cag cca gat ctg tcc aaa 240 Phe Pro Lys Gly Ser Val Ser Asn Ala Gln Gln Pro Asp Leu Ser Lys  65 70 75 80 gca gtt tca ctc tca atg gga ctg tat atg gga gag aca gaa aca aaa 288 Ala Val Ser Leu Ser Met Gly Leu Tyr Met Gly Glu Thr Glu Thr Lys                  85 90 95 gtg atg gga aat gac ctg gga ttc cca cag cag ggc caa atc agc ctt 336 Val Met Gly Asn Asp Leu Gly Phe Pro Gln Gln Gly Gln Ile Ser Leu             100 105 110 tcc tcg ggg gaa aca gac tta aag ctt ttg gaa gaa agc att gca aac 384 Ser Ser Gly Glu Thr Asp Leu Lys Leu Leu Glu Glu Ser Ile Ala Asn         115 120 125 ctc aat agg tcg acc agt gtt cca gag aac ccc aag agt tca gca tcc 432 Leu Asn Arg Ser Thr Ser Val Pro Glu Asn Pro Lys Ser Ser Ala Ser     130 135 140 act gct gtg tct gct gcc ccc aca gag aag gag ttt cca aaa act cac 480 Thr Ala Val Ser Ala Ala Pro Thr Glu Lys Glu Phe Pro Lys Thr His 145 150 155 160 tct gat gta tct tca gaa cag caa cat ttg aag ggc cag act ggc acc 528 Ser Asp Val Ser Ser Glu Gln Gln His Leu Lys Gly Gln Thr Gly Thr                 165 170 175 aac ggt ggc aat gtg aaa ttg tat acc aca gac caa agc acc ttt gac 576 Asn Gly Gly Asn Val Lys Leu Tyr Thr Thr Asp Gln Ser Thr Phe Asp             180 185 190 att ttg cag gat ttg gag ttt tct tct ggg tcc cca ggt aaa gag acg 624 Ile Leu Gln Asp Leu Glu Phe Ser Ser Gly Ser Pro Gly Lys Glu Thr         195 200 205 aat gag agt cct tgg aga tca gac ctg ttg ata gat gaa aac tgt ttg 672 Asn Glu Ser Pro Trp Arg Ser Asp Leu Leu Ile Asp Glu Asn Cys Leu     210 215 220 ctt tct cct ctg gcg gga gaa gac gat tca ttc ctt ttg gaa gga aac 720 Leu Ser Pro Leu Ala Gly Glu Asp Asp Ser Phe Leu Leu Glu Gly Asn 225 230 235 240 tcg aat gag gac tgc aag cct ctc att tta ccg gac act aaa ccc aaa 768 Ser Asn Glu Asp Cys Lys Pro Leu Ile Leu Pro Asp Thr Lys Pro Lys                 245 250 255 att aag gat aat gga gat ctg gtt ttg tca agc ccc agt aat gta aca 816 Ile Lys Asp Asn Gly Asp Leu Val Leu Ser Ser Pro Ser Asn Val Thr             260 265 270 ctg ccc caa gtg aaa aca gaa aaa gaa gat ttc atc gaa ctc tgc acc 864 Leu Pro Gln Val Lys Thr Glu Lys Glu Asp Phe Ile Glu Leu Cys Thr         275 280 285 cct ggg gta att aag caa gag aaa ctg ggc aca gtt tac tgt cag gca 912 Pro Gly Val Ile Lys Gln Glu Lys Leu Gly Thr Val Tyr Cys Gln Ala     290 295 300 agc ttt cct gga gca aat ata att ggt aat aaa atg tct gcc att tct 960 Ser Phe Pro Gly Ala Asn Ile Ile Gly Asn Lys Met Ser Ala Ile Ser 305 310 315 320 gtt cat ggt gtg agt acc tct gga gga cag atg tac cac tat gac atg 1008 Val His Gly Val Ser Thr Ser Gly Gly Gln Met Tyr His Tyr Asp Met                 325 330 335 aat aca gca tcc ctt tct caa cag cag gat cag aag cct att ttt aat 1056 Asn Thr Ala Ser Leu Ser Gln Gln Gln Asp Gln Lys Pro Ile Phe Asn             340 345 350 gtc att cca cca att ccc gtt ggt tcc gaa aat tgg aat agg tgc caa 1104 Val Ile Pro Pro Ile Pro Val Gly Ser Glu Asn Trp Asn Arg Cys Gln         355 360 365 gga tct gga gat gac aac ttg act tct ctg ggg act ctg aac ttc cct 1152 Gly Ser Gly Asp Asp Asn Leu Thr Ser Leu Gly Thr Leu Asn Phe Pro     370 375 380 ggt cga aca gtt ttt tct aat ggc tat tca agc ccc agc atg aga cca 1200 Gly Arg Thr Val Phe Ser Asn Gly Tyr Ser Ser Pro Ser Met Arg Pro 385 390 395 400 gat gta agc tct cct cca tcc agc tcc tca aca gca aca aca gga cca 1248 Asp Val Ser Ser Pro Pro Ser Ser Ser Ser Thr Ala Thr Thr Gly Pro                 405 410 415 cct ccc aaa ctc tgc ctg gtg tgc tct gat gaa gct tca gga tgt cat 1296 Pro Pro Lys Leu Cys Leu Val Cys Ser Asp Glu Ala Ser Gly Cys His             420 425 430 tat gga gtc tta act tgt gga agc tgt aaa gtt ttc ttc aaa aga gca 1344 Tyr Gly Val Leu Thr Cys Gly Ser Cys Lys Val Phe Phe Lys Arg Ala         435 440 445 gtg gaa gga cag cac aat tac cta tgt gct gga agg aat gat tgc atc 1392 Val Glu Gly Gln His Asn Tyr Leu Cys Ala Gly Arg Asn Asp Cys Ile     450 455 460 atc gat aaa att cga aga aaa aac tgc cca gca tgc cgc tat cga aaa 1440 Ile Asp Lys Ile Arg Arg Lys Asn Cys Pro Ala Cys Arg Tyr Arg Lys 465 470 475 480 tgt ctt cag gct gga atg aac ctg gaa gct cga aaa aca aag aaa aaa 1488 Cys Leu Gln Ala Gly Met Asn Leu Glu Ala Arg Lys Thr Lys Lys Lys                 485 490 495 ata aaa gga att cag cag gcc act aca gga gtc tca caa gaa acc tct 1536 Ile Lys Gly Ile Gln Gln Ala Thr Thr Gly Val Ser Gln Glu Thr Ser             500 505 510 gaa aat cct ggt aac aaa aca ata gtt cct gca acg tta cca caa ctc 1584 Glu Asn Pro Gly Asn Lys Thr Ile Val Pro Ala Thr Leu Pro Gln Leu         515 520 525 acc cct acc ctg gtg tca ctg ttg gag gtt att gaa cct gaa gtg tta 1632 Thr Pro Thr Leu Val Ser Leu Leu Glu Val Ile Glu Pro Glu Val Leu     530 535 540 tat gca gga tat gat agc tct gtt cca gac tca act tgg agg atc atg 1680 Tyr Ala Gly Tyr Asp Ser Ser Val Pro Asp Ser Thr Trp Arg Ile Met 545 550 555 560 act acg ctc aac atg tta gga ggg cgg caa gtg att gca gca gtg aaa 1728 Thr Thr Leu Asn Met Leu Gly Gly Arg Gln Val Ile Ala Ala Val Lys                 565 570 575 tgg gca aag gca ata cca ggt ttc agg aac tta cac ctg gat gac caa 1776 Trp Ala Lys Ala Ile Pro Gly Phe Arg Asn Leu His Leu Asp Asp Gln             580 585 590 atg acc cta ctg cag tac tcc tgg atg ttt ctt atg gca ttt gct ctg 1824 Met Thr Leu Leu Gln Tyr Ser Trp Met Phe Leu Met Ala Phe Ala Leu         595 600 605 ggg tgg aga tca tat aga caa tca agt gca aac ctg ctg tgt ttt gct 1872 Gly Trp Arg Ser Tyr Arg Gln Ser Ser Ala Asn Leu Leu Cys Phe Ala     610 615 620 cct gat ctg att att aat gag cag aga atg act cta ccc tgc atg tac 1920 Pro Asp Leu Ile Ile Asn Glu Gln Arg Met Thr Leu Pro Cys Met Tyr 625 630 635 640 gac caa cgt aaa cac atg ctg tat gtt tcc tct gag tta cac agg ctt 1968 Asp Gln Arg Lys His Met Leu Tyr Val Ser Ser Glu Leu His Arg Leu                 645 650 655 cag gta tct tat gaa gag tat ctc tgt atg aaa acc tta ctg ctt ctc 2016 Gln Val Ser Tyr Glu Glu Tyr Leu Cys Met Lys Thr Leu Leu Leu Leu             660 665 670 tct tca gtt cct aag gac ggt ctg aag agc caa gag cta ttt gat gaa 2064 Ser Ser Val Pro Lys Asp Gly Leu Lys Ser Gln Glu Leu Phe Asp Glu         675 680 685 att aga atg acc tac atc aaa gag cta gga aaa gcc att gtc aag agg 2112 Ile Arg Met Thr Tyr Ile Lys Glu Leu Gly Lys Ala Ile Val Lys Arg     690 695 700 gaa gga aac tcc agc cag aac tgg cag cgg ttt tat caa ctg aca aaa 2160 Glu Gly Asn Ser Ser Gln Asn Trp Gln Arg Phe Tyr Gln Leu Thr Lys 705 710 715 720 ctc ttg gat tct atg cat gaa gtg gtt gaa aat ctc ctt aac tat tgc 2208 Leu Leu Asp Ser Met His Glu Val Val Glu Asn Leu Leu Asn Tyr Cys                 725 730 735 ttc caa aca ttt ttg gat aag acc atg agt att gaa ttc ccc gag atg 2256 Phe Gln Thr Phe Leu Asp Lys Thr Met Ser Ile Glu Phe Pro Glu Met             740 745 750 tta gct gaa atc atc acc aat cag ata cca aaa tat tca aat gga aat 2304 Leu Ala Glu Ile Ile Thr Asn Gln Ile Pro Lys Tyr Ser Asn Gly Asn         755 760 765 atc aaa aaa ctt ctg ttt cat caa aag tga 2334 Ile Lys Lys Leu Leu Phe His Gln Lys     770 775 <210> 4 <211> 777 <212> PRT <213> Homo sapiens <400> 4 Met Asp Ser Lys Glu Ser Leu Thr Pro Gly Arg Glu Glu Asn Pro Ser   1 5 10 15 Ser Val Leu Ala Gln Glu Arg Gly Asp Val Met Asp Phe Tyr Lys Thr              20 25 30 Leu Arg Gly Gly Ala Thr Val Lys Val Ser Ala Ser Ser Pro Ser Leu          35 40 45 Ala Val Ala Ser Gln Ser Asp Ser Lys Gln Arg Arg Leu Leu Val Asp      50 55 60 Phe Pro Lys Gly Ser Val Ser Asn Ala Gln Gln Pro Asp Leu Ser Lys  65 70 75 80 Ala Val Ser Leu Ser Met Gly Leu Tyr Met Gly Glu Thr Glu Thr Lys                  85 90 95 Val Met Gly Asn Asp Leu Gly Phe Pro Gln Gln Gly Gln Ile Ser Leu             100 105 110 Ser Ser Gly Glu Thr Asp Leu Lys Leu Leu Glu Glu Ser Ile Ala Asn         115 120 125 Leu Asn Arg Ser Thr Ser Val Pro Glu Asn Pro Lys Ser Ser Ala Ser     130 135 140 Thr Ala Val Ser Ala Ala Pro Thr Glu Lys Glu Phe Pro Lys Thr His 145 150 155 160 Ser Asp Val Ser Ser Glu Gln Gln His Leu Lys Gly Gln Thr Gly Thr                 165 170 175 Asn Gly Gly Asn Val Lys Leu Tyr Thr Thr Asp Gln Ser Thr Phe Asp             180 185 190 Ile Leu Gln Asp Leu Glu Phe Ser Ser Gly Ser Pro Gly Lys Glu Thr         195 200 205 Asn Glu Ser Pro Trp Arg Ser Asp Leu Leu Ile Asp Glu Asn Cys Leu     210 215 220 Leu Ser Pro Leu Ala Gly Glu Asp Asp Ser Phe Leu Leu Glu Gly Asn 225 230 235 240 Ser Asn Glu Asp Cys Lys Pro Leu Ile Leu Pro Asp Thr Lys Pro Lys                 245 250 255 Ile Lys Asp Asn Gly Asp Leu Val Leu Ser Ser Pro Ser Asn Val Thr             260 265 270 Leu Pro Gln Val Lys Thr Glu Lys Glu Asp Phe Ile Glu Leu Cys Thr         275 280 285 Pro Gly Val Ile Lys Gln Glu Lys Leu Gly Thr Val Tyr Cys Gln Ala     290 295 300 Ser Phe Pro Gly Ala Asn Ile Ile Gly Asn Lys Met Ser Ala Ile Ser 305 310 315 320 Val His Gly Val Ser Thr Ser Gly Gly Gln Met Tyr His Tyr Asp Met                 325 330 335 Asn Thr Ala Ser Leu Ser Gln Gln Gln Asp Gln Lys Pro Ile Phe Asn             340 345 350 Val Ile Pro Pro Ile Pro Val Gly Ser Glu Asn Trp Asn Arg Cys Gln         355 360 365 Gly Ser Gly Asp Asp Asn Leu Thr Ser Leu Gly Thr Leu Asn Phe Pro     370 375 380 Gly Arg Thr Val Phe Ser Asn Gly Tyr Ser Ser Pro Ser Met Arg Pro 385 390 395 400 Asp Val Ser Ser Pro Pro Ser Ser Ser Ser Thr Ala Thr Thr Gly Pro                 405 410 415 Pro Pro Lys Leu Cys Leu Val Cys Ser Asp Glu Ala Ser Gly Cys His             420 425 430 Tyr Gly Val Leu Thr Cys Gly Ser Cys Lys Val Phe Phe Lys Arg Ala         435 440 445 Val Glu Gly Gln His Asn Tyr Leu Cys Ala Gly Arg Asn Asp Cys Ile     450 455 460 Ile Asp Lys Ile Arg Arg Lys Asn Cys Pro Ala Cys Arg Tyr Arg Lys 465 470 475 480 Cys Leu Gln Ala Gly Met Asn Leu Glu Ala Arg Lys Thr Lys Lys Lys                 485 490 495 Ile Lys Gly Ile Gln Gln Ala Thr Thr Gly Val Ser Gln Glu Thr Ser             500 505 510 Glu Asn Pro Gly Asn Lys Thr Ile Val Pro Ala Thr Leu Pro Gln Leu         515 520 525 Thr Pro Thr Leu Val Ser Leu Leu Glu Val Ile Glu Pro Glu Val Leu     530 535 540 Tyr Ala Gly Tyr Asp Ser Ser Val Pro Asp Ser Thr Trp Arg Ile Met 545 550 555 560 Thr Thr Leu Asn Met Leu Gly Gly Arg Gln Val Ile Ala Ala Val Lys                 565 570 575 Trp Ala Lys Ala Ile Pro Gly Phe Arg Asn Leu His Leu Asp Asp Gln             580 585 590 Met Thr Leu Leu Gln Tyr Ser Trp Met Phe Leu Met Ala Phe Ala Leu         595 600 605 Gly Trp Arg Ser Tyr Arg Gln Ser Ser Ala Asn Leu Leu Cys Phe Ala     610 615 620 Pro Asp Leu Ile Ile Asn Glu Gln Arg Met Thr Leu Pro Cys Met Tyr 625 630 635 640 Asp Gln Arg Lys His Met Leu Tyr Val Ser Ser Glu Leu His Arg Leu                 645 650 655 Gln Val Ser Tyr Glu Glu Tyr Leu Cys Met Lys Thr Leu Leu Leu Leu             660 665 670 Ser Ser Val Pro Lys Asp Gly Leu Lys Ser Gln Glu Leu Phe Asp Glu         675 680 685 Ile Arg Met Thr Tyr Ile Lys Glu Leu Gly Lys Ala Ile Val Lys Arg     690 695 700 Glu Gly Asn Ser Ser Gln Asn Trp Gln Arg Phe Tyr Gln Leu Thr Lys 705 710 715 720 Leu Leu Asp Ser Met His Glu Val Val Glu Asn Leu Leu Asn Tyr Cys                 725 730 735 Phe Gln Thr Phe Leu Asp Lys Thr Met Ser Ile Glu Phe Pro Glu Met             740 745 750 Leu Ala Glu Ile Ile Thr Asn Gln Ile Pro Lys Tyr Ser Asn Gly Asn         755 760 765 Ile Lys Lys Leu Leu Phe His Gln Lys     770 775 <210> 5 <211> 2394 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (1) .. (2391) <400> 5 atg gac tcc aaa gaa tca tta act cct ggt aga gaa gaa aac ccc agc 48 Met Asp Ser Lys Glu Ser Leu Thr Pro Gly Arg Glu Glu Asn Pro Ser   1 5 10 15 agt gtg ctt gct cag gag agg gga gat gtg atg gac ttc tat aaa acc 96 Ser Val Leu Ala Gln Glu Arg Gly Asp Val Met Asp Phe Tyr Lys Thr              20 25 30 cta aga gga gga gct act gtg aag gtt tct gcg tct tca ccc tca ctg 144 Leu Arg Gly Gly Ala Thr Val Lys Val Ser Ala Ser Ser Pro Ser Leu          35 40 45 gct gtc gct tct caa tca gac tcc aag cag cga aga ctt ttg gtt gat 192 Ala Val Ala Ser Gln Ser Asp Ser Lys Gln Arg Arg Leu Leu Val Asp      50 55 60 ttt cca aaa ggc tca gta agc aat gcg cag cag cca gat ctg tcc aaa 240 Phe Pro Lys Gly Ser Val Ser Asn Ala Gln Gln Pro Asp Leu Ser Lys  65 70 75 80 gca gtt tca ctc tca atg gga ctg tat atg gga gag aca gaa aca aaa 288 Ala Val Ser Leu Ser Met Gly Leu Tyr Met Gly Glu Thr Glu Thr Lys                  85 90 95 gtg atg gga aat gac ctg gga ttc cca cag cag ggc caa atc agc ctt 336 Val Met Gly Asn Asp Leu Gly Phe Pro Gln Gln Gly Gln Ile Ser Leu             100 105 110 tcc tcg ggg gaa aca gac tta aag ctt ttg gaa gaa agc att gca aac 384 Ser Ser Gly Glu Thr Asp Leu Lys Leu Leu Glu Glu Ser Ile Ala Asn         115 120 125 ctc aat agg tcg acc agt gtt cca gag aac ccc aag agt tca gca tcc 432 Leu Asn Arg Ser Thr Ser Val Pro Glu Asn Pro Lys Ser Ser Ala Ser     130 135 140 act gct gtg tct gct gcc ccc aca gag aag gag ttt cca aaa act cac 480 Thr Ala Val Ser Ala Ala Pro Thr Glu Lys Glu Phe Pro Lys Thr His 145 150 155 160 tct gat gta tct tca gaa cag caa cat ttg aag ggc cag act ggc acc 528 Ser Asp Val Ser Ser Glu Gln Gln His Leu Lys Gly Gln Thr Gly Thr                 165 170 175 aac ggt ggc aat gtg aaa ttg tat acc aca gac caa agc acc ttt gac 576 Asn Gly Gly Asn Val Lys Leu Tyr Thr Thr Asp Gln Ser Thr Phe Asp             180 185 190 att ttg cag gat ttg gag ttt tct tct ggg tcc cca ggt aaa gag acg 624 Ile Leu Gln Asp Leu Glu Phe Ser Ser Gly Ser Pro Gly Lys Glu Thr         195 200 205 aat gag agt cct tgg aga tca gac ctg ttg ata gat gaa aac tgt ttg 672 Asn Glu Ser Pro Trp Arg Ser Asp Leu Leu Ile Asp Glu Asn Cys Leu     210 215 220 ctt tct cct ctg gcg gga gaa gac gat tca ttc ctt ttg gaa gga aac 720 Leu Ser Pro Leu Ala Gly Glu Asp Asp Ser Phe Leu Leu Glu Gly Asn 225 230 235 240 tcg aat gag gac tgc aag cct ctc att tta ccg gac act aaa ccc aaa 768 Ser Asn Glu Asp Cys Lys Pro Leu Ile Leu Pro Asp Thr Lys Pro Lys                 245 250 255 att aag gat aat gga gat ctg gtt ttg tca agc ccc agt aat gta aca 816 Ile Lys Asp Asn Gly Asp Leu Val Leu Ser Ser Pro Ser Asn Val Thr             260 265 270 ctg ccc caa gtg aaa aca gaa aaa gaa gat ttc atc gaa ctc tgc acc 864 Leu Pro Gln Val Lys Thr Glu Lys Glu Asp Phe Ile Glu Leu Cys Thr         275 280 285 cct ggg gta att aag caa gag aaa ctg ggc aca gtt tac tgt cag gca 912 Pro Gly Val Ile Lys Gln Glu Lys Leu Gly Thr Val Tyr Cys Gln Ala     290 295 300 agc ttt cct gga gca aat ata att ggt aat aaa atg tct gcc att tct 960 Ser Phe Pro Gly Ala Asn Ile Ile Gly Asn Lys Met Ser Ala Ile Ser 305 310 315 320 gtt cat ggt gtg agt acc tct gga gga cag atg tac cac tat gac atg 1008 Val His Gly Val Ser Thr Ser Gly Gly Gln Met Tyr His Tyr Asp Met                 325 330 335 aat aca gca tcc ctt tct caa cag cag gat cag aag cct att ttt aat 1056 Asn Thr Ala Ser Leu Ser Gln Gln Gln Asp Gln Lys Pro Ile Phe Asn             340 345 350 gtc att cca cca att ccc gtt ggt tcc gaa aat tgg aat agg tgc caa 1104 Val Ile Pro Pro Ile Pro Val Gly Ser Glu Asn Trp Asn Arg Cys Gln         355 360 365 gga tct gga gat gac aac ttg act tct ctg ggg act ctg aac ttc cct 1152 Gly Ser Gly Asp Asp Asn Leu Thr Ser Leu Gly Thr Leu Asn Phe Pro     370 375 380 ggt cga aca gtt ttt tct aat ggc tat tca agc ccc agc atg aga cca 1200 Gly Arg Thr Val Phe Ser Asn Gly Tyr Ser Ser Pro Ser Met Arg Pro 385 390 395 400 gat gta agc tct cct cca tcc agc tcc tca aca gca aca aca gga cca 1248 Asp Val Ser Ser Pro Pro Ser Ser Ser Ser Thr Ala Thr Thr Gly Pro                 405 410 415 cct ccc aaa ctc tgc ctg gtg tgc tct gat gaa gct tca gga tgt cat 1296 Pro Pro Lys Leu Cys Leu Val Cys Ser Asp Glu Ala Ser Gly Cys His             420 425 430 tat gga gtc tta act tgt gga agc tgt aaa gtt ttc ttc aaa aga gca 1344 Tyr Gly Val Leu Thr Cys Gly Ser Cys Lys Val Phe Phe Lys Arg Ala         435 440 445 gtg gaa gga cag cac aat tac cta tgt gct gga agg aat gat tgc atc 1392 Val Glu Gly Gln His Asn Tyr Leu Cys Ala Gly Arg Asn Asp Cys Ile     450 455 460 atc gat aaa att cga aga aaa aac tgc cca gca tgc cgc tat cga aaa 1440 Ile Asp Lys Ile Arg Arg Lys Asn Cys Pro Ala Cys Arg Tyr Arg Lys 465 470 475 480 tgt ctt cag gct gga atg aac ctg gaa gct cga aaa aca aag aaa aaa 1488 Cys Leu Gln Ala Gly Met Asn Leu Glu Ala Arg Lys Thr Lys Lys Lys                 485 490 495 ata aaa gga att cag cag gcc act aca gga gtc tca caa gaa acc tct 1536 Ile Lys Gly Ile Gln Gln Ala Thr Thr Gly Val Ser Gln Glu Thr Ser             500 505 510 gaa aat cct ggt aac aaa aca ata gtt cct gca acg tta cca caa ctc 1584 Glu Asn Pro Gly Asn Lys Thr Ile Val Pro Ala Thr Leu Pro Gln Leu         515 520 525 acc cct acc ctg gtg tca ctg ttg gag gtt att gaa cct gaa gtg tta 1632 Thr Pro Thr Leu Val Ser Leu Leu Glu Val Ile Glu Pro Glu Val Leu     530 535 540 tat gca gga tat gat agc tct gtt cca gac tca act tgg agg atc atg 1680 Tyr Ala Gly Tyr Asp Ser Ser Val Pro Asp Ser Thr Trp Arg Ile Met 545 550 555 560 act acg ctc aac atg tta gga ggg cgg caa gtg att gca gca gtg aaa 1728 Thr Thr Leu Asn Met Leu Gly Gly Arg Gln Val Ile Ala Ala Val Lys                 565 570 575 tgg gca aag gca ata cca ggt ttc agg aac tta cac ctg gat gac caa 1776 Trp Ala Lys Ala Ile Pro Gly Phe Arg Asn Leu His Leu Asp Asp Gln             580 585 590 atg acc cta ctg cag tac tcc tgg atg ttt ctt atg gca ttt gct ctg 1824 Met Thr Leu Leu Gln Tyr Ser Trp Met Phe Leu Met Ala Phe Ala Leu         595 600 605 ggg tgg aga tca tat aga caa tca agt gca aac ctg ctg tgt ttt gct 1872 Gly Trp Arg Ser Tyr Arg Gln Ser Ser Ala Asn Leu Leu Cys Phe Ala     610 615 620 cct gat ctg att att aat gag cag aga atg act cta ccc tgc atg tac 1920 Pro Asp Leu Ile Ile Asn Glu Gln Arg Met Thr Leu Pro Cys Met Tyr 625 630 635 640 gac caa tgt aaa cac atg ctg tat gtt tcc tct gag tta cac agg ctt 1968 Asp Gln Cys Lys His Met Leu Tyr Val Ser Ser Glu Leu His Arg Leu                 645 650 655 cag gta tct tat gaa gag tat ctc tgt atg aaa acc tta ctg ctt ctc 2016 Gln Val Ser Tyr Glu Glu Tyr Leu Cys Met Lys Thr Leu Leu Leu Leu             660 665 670 tct tca gtt cct aag gac ggt ctg aag agc caa gag cta ttt gat gaa 2064 Ser Ser Val Pro Lys Asp Gly Leu Lys Ser Gln Glu Leu Phe Asp Glu         675 680 685 att aga atg acc tac atc aaa gag cta gga aaa gcc att gtc aag agg 2112 Ile Arg Met Thr Tyr Ile Lys Glu Leu Gly Lys Ala Ile Val Lys Arg     690 695 700 gaa gga aac tcc agc cag aac tgg cag cgg ttt tat caa ctg aca aaa 2160 Glu Gly Asn Ser Ser Gln Asn Trp Gln Arg Phe Tyr Gln Leu Thr Lys 705 710 715 720 ctc ttg gat tct atg cat gaa gtg gtt gaa aat ctc ctt aac tat tgc 2208 Leu Leu Asp Ser Met His Glu Val Val Glu Asn Leu Leu Asn Tyr Cys                 725 730 735 ttc caa aca ttt ttg gat aag acc atg agt att gaa ttc ccc gag atg 2256 Phe Gln Thr Phe Leu Asp Lys Thr Met Ser Ile Glu Phe Pro Glu Met             740 745 750 tta gct gaa atc atc acc aat cag ata cca aaa tat tca aat gga aat 2304 Leu Ala Glu Ile Ile Thr Asn Gln Ile Pro Lys Tyr Ser Asn Gly Asn         755 760 765 atc aaa aaa act tct gtt tca tca aaa gtg act gcc tta ata aga atg 2352 Ile Lys Lys Thr Ser Val Ser Ser Lys Val Thr Ala Leu Ile Arg Met     770 775 780 gtt gcc tta aag aaa gtc gaa tta ata gct ttt att gta taa 2394 Val Ala Leu Lys Lys Val Glu Leu Ile Ala Phe Ile Val 785 790 795 <210> 6 <211> 797 <212> PRT <213> Homo sapiens <400> 6 Met Asp Ser Lys Glu Ser Leu Thr Pro Gly Arg Glu Glu Asn Pro Ser   1 5 10 15 Ser Val Leu Ala Gln Glu Arg Gly Asp Val Met Asp Phe Tyr Lys Thr              20 25 30 Leu Arg Gly Gly Ala Thr Val Lys Val Ser Ala Ser Ser Pro Ser Leu          35 40 45 Ala Val Ala Ser Gln Ser Asp Ser Lys Gln Arg Arg Leu Leu Val Asp      50 55 60 Phe Pro Lys Gly Ser Val Ser Asn Ala Gln Gln Pro Asp Leu Ser Lys  65 70 75 80 Ala Val Ser Leu Ser Met Gly Leu Tyr Met Gly Glu Thr Glu Thr Lys                  85 90 95 Val Met Gly Asn Asp Leu Gly Phe Pro Gln Gln Gly Gln Ile Ser Leu             100 105 110 Ser Ser Gly Glu Thr Asp Leu Lys Leu Leu Glu Glu Ser Ile Ala Asn         115 120 125 Leu Asn Arg Ser Thr Ser Val Pro Glu Asn Pro Lys Ser Ser Ala Ser     130 135 140 Thr Ala Val Ser Ala Ala Pro Thr Glu Lys Glu Phe Pro Lys Thr His 145 150 155 160 Ser Asp Val Ser Ser Glu Gln Gln His Leu Lys Gly Gln Thr Gly Thr                 165 170 175 Asn Gly Gly Asn Val Lys Leu Tyr Thr Thr Asp Gln Ser Thr Phe Asp             180 185 190 Ile Leu Gln Asp Leu Glu Phe Ser Ser Gly Ser Pro Gly Lys Glu Thr         195 200 205 Asn Glu Ser Pro Trp Arg Ser Asp Leu Leu Ile Asp Glu Asn Cys Leu     210 215 220 Leu Ser Pro Leu Ala Gly Glu Asp Asp Ser Phe Leu Leu Glu Gly Asn 225 230 235 240 Ser Asn Glu Asp Cys Lys Pro Leu Ile Leu Pro Asp Thr Lys Pro Lys                 245 250 255 Ile Lys Asp Asn Gly Asp Leu Val Leu Ser Ser Pro Ser Asn Val Thr             260 265 270 Leu Pro Gln Val Lys Thr Glu Lys Glu Asp Phe Ile Glu Leu Cys Thr         275 280 285 Pro Gly Val Ile Lys Gln Glu Lys Leu Gly Thr Val Tyr Cys Gln Ala     290 295 300 Ser Phe Pro Gly Ala Asn Ile Ile Gly Asn Lys Met Ser Ala Ile Ser 305 310 315 320 Val His Gly Val Ser Thr Ser Gly Gly Gln Met Tyr His Tyr Asp Met                 325 330 335 Asn Thr Ala Ser Leu Ser Gln Gln Gln Asp Gln Lys Pro Ile Phe Asn             340 345 350 Val Ile Pro Pro Ile Pro Val Gly Ser Glu Asn Trp Asn Arg Cys Gln         355 360 365 Gly Ser Gly Asp Asp Asn Leu Thr Ser Leu Gly Thr Leu Asn Phe Pro     370 375 380 Gly Arg Thr Val Phe Ser Asn Gly Tyr Ser Ser Pro Ser Met Arg Pro 385 390 395 400 Asp Val Ser Ser Pro Pro Ser Ser Ser Ser Thr Ala Thr Thr Gly Pro                 405 410 415 Pro Pro Lys Leu Cys Leu Val Cys Ser Asp Glu Ala Ser Gly Cys His             420 425 430 Tyr Gly Val Leu Thr Cys Gly Ser Cys Lys Val Phe Phe Lys Arg Ala         435 440 445 Val Glu Gly Gln His Asn Tyr Leu Cys Ala Gly Arg Asn Asp Cys Ile     450 455 460 Ile Asp Lys Ile Arg Arg Lys Asn Cys Pro Ala Cys Arg Tyr Arg Lys 465 470 475 480 Cys Leu Gln Ala Gly Met Asn Leu Glu Ala Arg Lys Thr Lys Lys Lys                 485 490 495 Ile Lys Gly Ile Gln Gln Ala Thr Thr Gly Val Ser Gln Glu Thr Ser             500 505 510 Glu Asn Pro Gly Asn Lys Thr Ile Val Pro Ala Thr Leu Pro Gln Leu         515 520 525 Thr Pro Thr Leu Val Ser Leu Leu Glu Val Ile Glu Pro Glu Val Leu     530 535 540 Tyr Ala Gly Tyr Asp Ser Ser Val Pro Asp Ser Thr Trp Arg Ile Met 545 550 555 560 Thr Thr Leu Asn Met Leu Gly Gly Arg Gln Val Ile Ala Ala Val Lys                 565 570 575 Trp Ala Lys Ala Ile Pro Gly Phe Arg Asn Leu His Leu Asp Asp Gln             580 585 590 Met Thr Leu Leu Gln Tyr Ser Trp Met Phe Leu Met Ala Phe Ala Leu         595 600 605 Gly Trp Arg Ser Tyr Arg Gln Ser Ser Ala Asn Leu Leu Cys Phe Ala     610 615 620 Pro Asp Leu Ile Ile Asn Glu Gln Arg Met Thr Leu Pro Cys Met Tyr 625 630 635 640 Asp Gln Cys Lys His Met Leu Tyr Val Ser Ser Glu Leu His Arg Leu                 645 650 655 Gln Val Ser Tyr Glu Glu Tyr Leu Cys Met Lys Thr Leu Leu Leu Leu             660 665 670 Ser Ser Val Pro Lys Asp Gly Leu Lys Ser Gln Glu Leu Phe Asp Glu         675 680 685 Ile Arg Met Thr Tyr Ile Lys Glu Leu Gly Lys Ala Ile Val Lys Arg     690 695 700 Glu Gly Asn Ser Ser Gln Asn Trp Gln Arg Phe Tyr Gln Leu Thr Lys 705 710 715 720 Leu Leu Asp Ser Met His Glu Val Val Glu Asn Leu Leu Asn Tyr Cys                 725 730 735 Phe Gln Thr Phe Leu Asp Lys Thr Met Ser Ile Glu Phe Pro Glu Met             740 745 750 Leu Ala Glu Ile Ile Thr Asn Gln Ile Pro Lys Tyr Ser Asn Gly Asn         755 760 765 Ile Lys Lys Thr Ser Val Ser Ser Lys Val Thr Ala Leu Ile Arg Met     770 775 780 Val Ala Leu Lys Lys Val Glu Leu Ile Ala Phe Ile Val 785 790 795 <210> 7 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: An       Artificially Synthesized Primer Sequence <400> 7 ggctttttat tctggaagat ag 22 <210> 8 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: An       Artificially Synthesized Primer Sequence <400> 8 gtttctgtct ctcccatata cagtc 25 <210> 9 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: An       Artificially Synthesized Primer Sequence <400> 9 aggctcagta agcaatgcgc 20 <210> 10 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: An       Artificially Synthesized Primer Sequence <400> 10 aacaaaagtg atgggaaatg ac 22 <210> 11 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: An       Artificially Synthesized Primer Sequence <400> 11 aactgtttgc tttctcctct gg 22 <210> 12 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: An       Artificially Synthesized Primer Sequence <400> 12 gcaagcctct cattttaccg 20 <210> 13 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: An       Artificially Synthesized Primer Sequence <400> 13 ttctttttct gttttcactt ggggca 26 <210> 14 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: An       Artificially Synthesized Primer Sequence <400> 14 acatctatta atctccttaa atgtccattc 30 <210> 15 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: An       Artificially Synthesized Primer Sequence <400> 15 tgaagtgaga agctaagaga actg 24 <210> 16 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: An       Artificially Synthesized Primer Sequence <400> 16 cgtgagaaat aaaaccaagt agagg 25 <210> 17 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: An       Artificially Synthesized Primer Sequence <400> 17 gacagaaggc tgtccttata a 21 <210> 18 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: An       Artificially Synthesized Primer Sequence <400> 18 catctgctta cgtgtatctt ca 22 <210> 19 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: An       Artificially Synthesized Primer Sequence <400> 19 tcttgaataa actgtgtagc gc 22 <210> 20 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: An       Artificially Synthesized Primer Sequence <400> 20 tccctatcac ctgtattcac c 21 <210> 21 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: An       Artificially Synthesized Primer Sequence <400> 21 tttccatttt ctgttagggg tg 22 <210> 22 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: An       Artificially Synthesized Primer Sequence <400> 22 agtcaatcag gaaaacatca gc 22 <210> 23 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: An       Artificially Synthesized Primer Sequence <400> 23 tttttggggg gaagtagcag 20 <210> 24 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: An       Artificially Synthesized Primer Sequence <400> 24 aacagagatc cctatgcagc 20 <210> 25 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: An       Artificially Synthesized Primer Sequence <400> 25 gacacagtga gaccctatct 20 <210> 26 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: An       Artificially Synthesized Primer Sequence <400> 26 caccaacatc cacaaactgg 20 <210> 27 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: An       Artificially Synthesized Primer Sequence <400> 27 tgagatgttc ccactgacca at 22 <210> 28 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: An       Artificially Synthesized Primer Sequence <400> 28 caccatctac tctcccatca ctg 23 <210> 29 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: An       Artificially Synthesized Primer Sequence <400> 29 cagaatctca taggttgcca ataat 25 <210> 30 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: An       Artificially Synthesized Primer Sequence <400> 30 aacagcacca ccatatagca c 21 <210> 31 <211> 20 <212> DNA <213> Homo sapiens <400> 31 tacgaccaat gtaaacacat 20

【図面の簡単な説明】[Brief description of drawings]

【図1】 野生型GRおよびC643R変異型GRのウェスタン
ブロット分析結果を示す写真である。細胞質画分は、ベ
クター、野生型又はC643R変異型GR発現プラスミドのい
ずれかでトランスフェクションしたCOS-7細胞から調製
した。この細胞質画分(50μg)を、電気泳動しかつブロ
ットした。
FIG. 1 is a photograph showing the results of Western blot analysis of wild-type GR and C643R mutant GR. Cytosolic fractions were prepared from COS-7 cells transfected with either vector, wild type or C643R mutant GR expression plasmid. This cytoplasmic fraction (50 μg) was electrophoresed and blotted.

【図2】 細胞質画分を用いた野生型GRおよび2314 ins
-a変異型GRのウェスタンブロット分析結果を示す写真で
ある。細胞質画分は、ベクター、野生型又は2314 ins-a
変異型GR発現プラスミドのいずれかでトランスフェクシ
ョンしたCOS-7細胞から調製した。この細胞質画分(50μ
g)を、電気泳動しかつブロットした。
FIG. 2: Wild-type GR and 2314 ins using cytoplasmic fraction
3 is a photograph showing the results of Western blot analysis of -a mutant GR. The cytoplasmic fraction can be vector, wild type or 2314 ins-a
Prepared from COS-7 cells transfected with either of the mutant GR expression plasmids. This cytoplasmic fraction (50 μ
g) was electrophoresed and blotted.

【図3】 細胞全体のライゼートを用いた野生型GRおよ
び2314 ins-a変異型GRのウェスタンブロット分析結果を
示す写真である。細胞全体のライゼートは、ベクター、
野生型又は2314 ins-a変異型GR発現プラスミドのいずれ
かでトランスフェクションしたCOS-7細胞から調製し
た。この細胞全体のライゼート(80μg)を、電気泳動し
かつブロットした。
FIG. 3 is a photograph showing the results of Western blot analysis of wild-type GR and 2314 ins-a mutant GR using a lysate of whole cells. The whole cell lysate is a vector,
Prepared from COS-7 cells transfected with either wild type or 2314 ins-a mutant GR expression plasmid. This whole cell lysate (80 μg) was electrophoresed and blotted.

【図4】 野生型、C643R変異型GRおよび2314 ins-a 変
異GRが有する転写活性の測定結果を示す図である。COS-
7細胞は、ベクター、野生型GR、C643R変異型GR、または
2314 ins-a 変異GRのいずれかにより、MMTVプロモータ
ー-ルシフェラーゼレポーター構築体(pHH-Luc)と一緒に
トランスフェクションした。デキサメサゾンと18時間イ
ンキュベーションした後、ルシフェラーゼ活性を測定し
た。
FIG. 4 is a diagram showing the results of measuring the transcriptional activity of wild type, C643R mutant GR and 2314 ins-a mutant GR. COS-
7 cells are vector, wild type GR, C643R mutant GR, or
Any of the 2314 ins-a mutant GRs were co-transfected with the MMTV promoter-luciferase reporter construct (pHH-Luc). Luciferase activity was measured after 18 hours incubation with dexamethasone.

【図5】 野生型およびC643R変異型GRのデキサメサゾ
ンへの結合親和性の分析結果を示す図である。代表的実
験のひとつを表している。野生型およびC643R変異型GR
は、COS-7細胞内で一過性に発現した。細胞を、トラン
スフェクション後48時間で収集し、かつ[H]デキサメ
サゾンへの特異的結合を、細胞質画分のインキュベーシ
ョンにより分析した。この結合データは、Scatchardプ
ロット解析に従い分析した。3回個別の結合アッセイを
行った。変異型GRの親和性は、野生型の値の 1/6であっ
た。
FIG. 5 is a diagram showing analysis results of binding affinities of wild type and C643R mutant GR to dexamethasone. It represents one of the representative experiments. Wild type and C643R mutant GR
Was transiently expressed in COS-7 cells. Cells were harvested 48 hours post transfection and specific binding to [ 3 H] dexamethasone was analyzed by incubation of cytoplasmic fractions. This binding data was analyzed according to Scatchard plot analysis. Three separate binding assays were performed. The affinity of mutant GR was 1/6 that of wild type.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 澤田 純一 東京都世田谷区上用賀1−18−1 国立医 薬品食品衛生研究所内 (72)発明者 小澤 正吾 東京都世田谷区上用賀1−18−1 国立医 薬品食品衛生研究所内 (72)発明者 齋藤 嘉朗 東京都世田谷区上用賀1−18−1 国立医 薬品食品衛生研究所内 Fターム(参考) 4B024 AA11 BA63 CA01 CA04 CA06 CA11 DA02 EA02 EA04 FA02 FA10 GA11 GA18 HA01 HA12 HA19 4B063 QA05 QA13 QA17 QQ12 QQ42 QR08 QR55 QR62 QS16 QS25 QS39    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Junichi Sawada             1-18-1 Kamigaga, Setagaya-ku, Tokyo National doctor             Inside the Institute for Pharmaceutical and Food Hygiene (72) Inventor Shogo Ozawa             1-18-1 Kamigaga, Setagaya-ku, Tokyo National doctor             Inside the Institute for Pharmaceutical and Food Hygiene (72) Inventor Yoshiro Saito             1-18-1 Kamigaga, Setagaya-ku, Tokyo National doctor             Inside the Institute for Pharmaceutical and Food Hygiene F-term (reference) 4B024 AA11 BA63 CA01 CA04 CA06                       CA11 DA02 EA02 EA04 FA02                       FA10 GA11 GA18 HA01 HA12                       HA19                 4B063 QA05 QA13 QA17 QQ12 QQ42                       QR08 QR55 QR62 QS16 QS25                       QS39

Claims (22)

【特許請求の範囲】[Claims] 【請求項1】 被検者におけるグルココルチコイド製剤
の有効性の検査方法であって、グルココルチコイド受容
体のグルココルチコイド結合能を低下させる、または該
受容体の有する転写活性化能を低下させるグルココルチ
コイド受容体遺伝子の多型を検出する工程を含み、多型
が検出された場合に、被検者はグルココルチコイド製剤
に対して耐性であると判定される検査方法。
1. A method for testing the efficacy of a glucocorticoid preparation in a subject, which comprises decreasing the glucocorticoid-binding ability of a glucocorticoid receptor or reducing the transcription activation ability of the receptor. A test method comprising a step of detecting a polymorphism of a receptor gene, wherein the subject is determined to be resistant to the glucocorticoid preparation when the polymorphism is detected.
【請求項2】 多型が一塩基多型である、請求項1に記
載の検査方法。
2. The test method according to claim 1, wherein the polymorphism is a single nucleotide polymorphism.
【請求項3】 グルココルチコイド受容体遺伝子の多型
が、グルココルチコイド受容体の643番目のアミノ酸
変異をもたらすものである、請求項1に記載の検査方
法。
3. The test method according to claim 1, wherein the polymorphism in the glucocorticoid receptor gene causes a mutation at the 643th amino acid in the glucocorticoid receptor.
【請求項4】 グルココルチコイド受容体遺伝子の多型
が、グルココルチコイド受容体の643番目のアミノ酸
変異をもたらす多型、および該受容体の772〜777
番目のアミノ酸変異をもたらす多型である、請求項1に
記載の検査方法。
4. A polymorphism in the glucocorticoid receptor gene, which results in an amino acid mutation at the 643th amino acid in the glucocorticoid receptor, and 772 to 777 of the receptor.
The test method according to claim 1, which is a polymorphism that causes the th amino acid mutation.
【請求項5】 グルココルチコイド受容体の643番目
のアミノ酸変異が、システインからアルギニンへの変異
である、請求項3または4に記載の検査方法。
5. The test method according to claim 3, wherein the 643rd amino acid mutation of the glucocorticoid receptor is a mutation of cysteine to arginine.
【請求項6】 グルココルチコイド受容体の643番目
のアミノ酸変異をもたらす該受容体遺伝子の多型が、該
遺伝子のcDNA配列において1927番目の塩基部位
の多型である、請求項3または4に記載の検査方法。
6. The polymorphism of the receptor gene that causes the amino acid mutation at the 643th amino acid in the glucocorticoid receptor is the polymorphism at the 1927th base site in the cDNA sequence of the gene. Inspection method.
【請求項7】 グルココルチコイド受容体遺伝子のcD
NA配列において1927番目の塩基部位の多型が、チ
ミンからシトシンへの変異である、請求項6に記載の検
査方法。
7. The glucocorticoid receptor gene cd
The test method according to claim 6, wherein the polymorphism at the 1927th base site in the NA sequence is a mutation from thymine to cytosine.
【請求項8】 グルココルチコイド受容体の772〜7
77番目のアミノ酸変異をもたらす該受容体遺伝子の多
型が、該遺伝子のcDNA配列において2314番目の
塩基部位の多型である、請求項4に記載の検査方法。
8. A glucocorticoid receptor 772-7.
The test method according to claim 4, wherein the polymorphism of the receptor gene that causes the 77th amino acid mutation is a polymorphism at the 2314th base site in the cDNA sequence of the gene.
【請求項9】 グルココルチコイド受容体遺伝子のcD
NA配列において2314番目の塩基部位の多型が、該
部位への一塩基挿入変異である、請求項8に記載の検査
方法。
9. The glucocorticoid receptor gene cd
The test method according to claim 8, wherein the polymorphism at the 2314th base site in the NA sequence is a single-base insertion mutation in the site.
【請求項10】 グルココルチコイド結合能が、デキサ
メゾン結合能である、請求項1〜9のいずれかに記載の
検査方法。
10. The test method according to claim 1, wherein the glucocorticoid-binding ability is a dexamezone-binding ability.
【請求項11】 以下の(a)〜(d)の工程を含む、
請求項1〜10のいずれかに記載の検査方法。 (a)被検者からDNA試料を調製する工程 (b)グルココルチコイド受容体遺伝子における塩基部
位であって、該受容体遺伝子のcDNA配列において1
927番目の塩基部位を含む、または1927番目およ
び2314番目の塩基部位を含むDNAを単離する工程 (c)単離したDNAの塩基配列を決定する工程 (d)工程(c)により決定したDNAの塩基配列を、
対照と比較する工程
11. The method includes the following steps (a) to (d):
The inspection method according to claim 1. (A) a step of preparing a DNA sample from a subject (b) a base site in the glucocorticoid receptor gene, which is 1 in the cDNA sequence of the receptor gene
Step (c) of isolating DNA containing the 927th base site or containing 1927th and 2314th base sites (c) Step of determining the base sequence of the isolated DNA (d) DNA determined by step (c) The base sequence of
Process to compare with control
【請求項12】 以下の(a)〜(d)の工程を含む、
請求項1〜10のいずれかに記載の検査方法。 (a)被検者からDNA試料を調製する工程 (b)調製したDNA試料を制限酵素により切断する工
程 (c)DNA断片をその大きさに応じて分離する工程 (d)検出されたDNA断片の大きさを、対照と比較す
る工程
12. The method includes the following steps (a) to (d):
The inspection method according to claim 1. (A) a step of preparing a DNA sample from a subject (b) a step of cleaving the prepared DNA sample with a restriction enzyme (c) a step of separating a DNA fragment according to its size (d) a detected DNA fragment Of comparing the size of
【請求項13】 以下の(a)〜(e)の工程を含む、
請求項1〜10のいずれかに記載の検査方法。 (a)被検者からDNA試料を調製する工程 (b)グルココルチコイド受容体遺伝子における塩基部
位であって、該受容体遺伝子のcDNA配列において1
927番目の塩基部位を含む、または1927番目およ
び2314番目の塩基部位を含むDNAを増幅する工程 (c)増幅したDNAを制限酵素により切断する工程 (d)DNA断片をその大きさに応じて分離する工程 (e)検出されたDNA断片の大きさを、対照と比較す
る工程
13. The method includes the following steps (a) to (e):
The inspection method according to claim 1. (A) a step of preparing a DNA sample from a subject (b) a base site in the glucocorticoid receptor gene, which is 1 in the cDNA sequence of the receptor gene
Amplifying DNA containing the 927th base site, or containing the 1927th and 2314th base sites (c) Cleaving the amplified DNA with a restriction enzyme (d) Separation of DNA fragments according to their size Step (e) Comparing the size of the detected DNA fragment with a control
【請求項14】 以下の(a)〜(e)の工程を含む、
請求項1〜10のいずれかに記載の検査方法。 (a)被検者からDNA試料を調製する工程 (b)グルココルチコイド受容体遺伝子における塩基部
位であって、該受容体遺伝子のcDNA配列において1
927番目の塩基部位を含む、または1927番目およ
び2314番目の塩基部位を含むDNAを増幅する工程 (c)増幅したDNAを一本鎖DNAに解離させる工程 (d)解離させた一本鎖DNAを非変性ゲル上で分離す
る工程 (e)分離した一本鎖DNAのゲル上での移動度を対照
と比較する工程
14. The method includes the following steps (a) to (e):
The inspection method according to claim 1. (A) a step of preparing a DNA sample from a subject (b) a base site in the glucocorticoid receptor gene, which is 1 in the cDNA sequence of the receptor gene
A step of amplifying DNA containing the 927th base site, or containing the 1927th and 2314th base sites (c) Dissociating the amplified DNA into single-stranded DNAs (d) Dissociating the single-stranded DNAs Separation on non-denaturing gel (e) Comparison of mobility of separated single-stranded DNA on gel with control
【請求項15】 以下の(a)〜(d)の工程を含む、
請求項1〜10のいずれかに記載の検査方法。 (a)被検者からDNA試料を調製する工程 (b)グルココルチコイド受容体遺伝子における塩基部
位であって、該受容体遺伝子のcDNA配列において1
927番目の塩基部位を含む、または1927番目およ
び2314番目の塩基部位を含むDNAを増幅する工程 (c)増幅したDNAを、DNA変性剤の濃度が次第に
高まるゲル上で分離する工程 (d)分離したDNAのゲル上での移動度を対照と比較
する工程
15. The method includes the following steps (a) to (d):
The inspection method according to claim 1. (A) a step of preparing a DNA sample from a subject (b) a base site in the glucocorticoid receptor gene, which is 1 in the cDNA sequence of the receptor gene
Amplifying DNA containing the 927th base site or containing the 1927th and 2314th base sites (c) Separation of the amplified DNA on a gel in which the concentration of the DNA denaturant is gradually increased (d) Separation Comparing the mobility of immobilized DNA on a gel with a control
【請求項16】 以下の(a)〜(c)の工程を含む、
請求項1〜10のいずれかに記載の検査方法。 (a)(i)被検者から調製したグルココルチコイド受
容体遺伝子における塩基部位であって、該受容体遺伝子
のcDNA配列において1927番目の塩基部位を含
む、または1927番目および2314番目の塩基部位
を含むDNA、および (ii)ヌクレオチドプローブが固定された基板、を提
供する工程 (b)工程(a)(i)のDNAと工程(a)(ii)
の基板を接触させる工程 (c)該DNAと該基板に固定されたヌクレオチドプロ
ーブとのハイブリダイズの強度を検出することにより、
グルココルチコイド受容体をコードする遺伝子における
多型を検出する工程
16. The method includes the following steps (a) to (c):
The inspection method according to claim 1. (A) (i) a base site in a glucocorticoid receptor gene prepared from a subject, including the 1927th base site in the cDNA sequence of the receptor gene, or the 1927th and 2314th base sites; And (ii) the DNA of step (a) (i) and step (a) (ii) of providing a substrate on which (ii) a nucleotide probe is immobilized.
Contacting the substrate of (c) by detecting the intensity of hybridization between the DNA and the nucleotide probe immobilized on the substrate,
Step of detecting polymorphism in gene encoding glucocorticoid receptor
【請求項17】 グルココルチコイド受容体遺伝子にお
ける多型部位であって、該受容体遺伝子のcDNA配列
において1927番目の多型部位を含む、少なくとも1
5ヌクレオチドの鎖長を有するポリヌクレオチド。
17. A polymorphic site in the glucocorticoid receptor gene, which comprises at least 1927 polymorphic site in the cDNA sequence of the receptor gene.
A polynucleotide having a chain length of 5 nucleotides.
【請求項18】 多型部位の塩基がシトシン(C)であ
る、請求項17記載のポリヌクレオチド。
18. The polynucleotide according to claim 17, wherein the base at the polymorphic site is cytosine (C).
【請求項19】 グルココルチコイド受容体遺伝子にお
ける塩基部位であって、該受容体遺伝子のcDNA配列
において1927番目の塩基部位を含むDNAにハイブ
リダイズし、少なくとも15ヌクレオチドの鎖長を有す
るポリヌクレオチドを含む、グルココルチコイド製剤の
有効性を検査するための試薬。
19. A polynucleotide which hybridizes to a DNA having a base site in the glucocorticoid receptor gene and containing the 1927th base site in the cDNA sequence of the receptor gene and having a chain length of at least 15 nucleotides. , A reagent for testing the effectiveness of glucocorticoid preparations.
【請求項20】 さらに、グルココルチコイド受容体遺
伝子における塩基部位であって、該受容体遺伝子のcD
NA配列において2314番目の塩基部位を含むDNA
にハイブリダイズし、少なくとも15ヌクレオチドの鎖
長を有するポリヌクレオチドを含む、請求項19に記載
の試薬。
20. Further, it is a base site in the glucocorticoid receptor gene, which is the cD of the receptor gene.
DNA containing the 2314th base site in the NA sequence
20. The reagent of claim 19, which comprises a polynucleotide that hybridizes to and has a chain length of at least 15 nucleotides.
【請求項21】 グルココルチコイド受容体遺伝子にお
ける塩基部位であって、該受容体遺伝子のcDNA配列
において1927番目の塩基部位を含むDNAを増幅す
るように設計されたフォワードプライマー、およびリバ
ースプライマーを含む、グルココルチコイド製剤の有効
性を検査するための試薬。
21. A forward primer and a reverse primer designed to amplify a DNA containing a base site in the glucocorticoid receptor gene, the base site being the 1927th base position in the cDNA sequence of the receptor gene, A reagent for testing the effectiveness of glucocorticoid preparations.
【請求項22】 さらに、グルココルチコイド受容体遺
伝子における塩基部位であって、該受容体遺伝子のcD
NA配列において2314番目の塩基部位を含むDNA
を増幅するように設計されたフォワードプライマーおよ
びリバースプライマーを含む、請求項21に記載の試
薬。
22. Furthermore, it is a base site in the glucocorticoid receptor gene, which is the cD of the receptor gene.
DNA containing the 2314th base site in the NA sequence
22. The reagent according to claim 21, comprising a forward primer and a reverse primer designed to amplify A.
JP2002074171A 2002-03-18 2002-03-18 Method for examining effectiveness of glucocorticoid preparation in examinee Withdrawn JP2003265184A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002074171A JP2003265184A (en) 2002-03-18 2002-03-18 Method for examining effectiveness of glucocorticoid preparation in examinee

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002074171A JP2003265184A (en) 2002-03-18 2002-03-18 Method for examining effectiveness of glucocorticoid preparation in examinee

Publications (1)

Publication Number Publication Date
JP2003265184A true JP2003265184A (en) 2003-09-24

Family

ID=29203634

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002074171A Withdrawn JP2003265184A (en) 2002-03-18 2002-03-18 Method for examining effectiveness of glucocorticoid preparation in examinee

Country Status (1)

Country Link
JP (1) JP2003265184A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009103081A2 (en) * 2008-02-15 2009-08-20 Shriners Hospitals For Children Glucocorticoid receptor polymorphisms
US8901098B2 (en) 2011-10-25 2014-12-02 Isis Pharmaceuticals, Inc. Antisense modulation of GCCR expression

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009103081A2 (en) * 2008-02-15 2009-08-20 Shriners Hospitals For Children Glucocorticoid receptor polymorphisms
WO2009103081A3 (en) * 2008-02-15 2009-12-30 Shriners Hospitals For Children Glucocorticoid receptor polymorphisms
US20120149668A1 (en) * 2008-02-15 2012-06-14 Shriners Hospital For Children Glucocorticoid receptor alleles and uses thereof
US8901098B2 (en) 2011-10-25 2014-12-02 Isis Pharmaceuticals, Inc. Antisense modulation of GCCR expression
US9567587B2 (en) 2011-10-25 2017-02-14 Ionis Pharmaceuticals, Inc. Antisense modulation of GCCR expression

Similar Documents

Publication Publication Date Title
Koper et al. Lack of association between five polymorphisms in the human glucocorticoid receptor gene and glucocorticoid resistance
Hurley et al. Point mutation causing a single amino acid substitution in the hormone binding domain of the glucocorticoid receptor in familial glucocorticoid resistance.
Tusie-Luna et al. A mutation (Pro-30 to Leu) in CYP 21 represents a potential nonclassic steroid 21-hydroxylase deficiency allele
EP2740742B1 (en) Fusion gene of kif5b gene and ret gene, and method for determining effectiveness of cancer treatment targeting fusion gene
KR20000070674A (en) Diagnosis and treatment of myocardial failure
KR20110015409A (en) Gene expression markers for inflammatory bowel disease
US20030113725A1 (en) Alpha-2 adrenergic receptor polymorphisms
Persu et al. Polymorphisms of the γ subunit of the epithelial Na+ channel in essential hypertension
Gaildrat et al. First cloning and functional characterization of a melatonin receptor in fish brain: a novel one?
US20060057628A1 (en) Method for prognosticating the progress of breast cancer and compounds useful for prevention or treatment thereof
US20040235006A1 (en) Chemical compounds
Yin et al. Myc target in myeloid cells-1, a novel c-Myc target, recapitulates multiple c-Myc phenotypes
US20030129596A1 (en) Chemical compounds
Kishimoto et al. Substitution of glutamine for arginine 1131. A newly identified mutation in the catalytic loop of the tyrosine kinase domain of the human insulin receptor
WO2004101747A2 (en) Identification and use of gpr54 and its ligands for reproductive disorders and contraception
US6861217B1 (en) Variation in drug response related to polymorphisms in the β2-adrenergic receptor
JP2003265184A (en) Method for examining effectiveness of glucocorticoid preparation in examinee
EP1499356A1 (en) Methods of treatment and diagnosis of patients with hepatitis c infection
JP4305609B2 (en) CYP3A4 gene polymorphism affecting drug metabolism and use thereof
US6544743B1 (en) Peroxisome proliferator-activated receptor alpha and disorders of lipid metabolism
US20040086886A1 (en) Polymorphisms associated with cardiac arrythmia
JP4348456B2 (en) Variant polynucleotides and nucleic acid molecules that can be used for genetic diagnosis of susceptibility to glucocorticoid preparations
Horvath et al. Systemic ovalbumin sensitization downregulates norepinephrine uptake by rabbit aortic smooth muscle cells
JP2009022269A (en) Method for examining obesity, and method for screening prophylactic or curative agent for obesity
WO2000031307A1 (en) POLYMORPHISMS IN THE 5&#39; LEADER CISTRON OF THE β2-ADRENERGIC RECEPTOR

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040623

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050607