JP2003264327A - Device using polythiofen - Google Patents

Device using polythiofen

Info

Publication number
JP2003264327A
JP2003264327A JP2003006210A JP2003006210A JP2003264327A JP 2003264327 A JP2003264327 A JP 2003264327A JP 2003006210 A JP2003006210 A JP 2003006210A JP 2003006210 A JP2003006210 A JP 2003006210A JP 2003264327 A JP2003264327 A JP 2003264327A
Authority
JP
Japan
Prior art keywords
electronic device
thin film
film transistor
polythiophene
alkyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003006210A
Other languages
Japanese (ja)
Other versions
JP4530616B2 (en
JP2003264327A5 (en
Inventor
Beng S Ong
エス オン ベン
Lu Jiang
ジアン ルー
Yiliang Wu
ウー イリアン
Dasarao K Murti
ケイ ムルチ ダサラオ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xerox Corp
Original Assignee
Xerox Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xerox Corp filed Critical Xerox Corp
Publication of JP2003264327A publication Critical patent/JP2003264327A/en
Publication of JP2003264327A5 publication Critical patent/JP2003264327A5/ja
Application granted granted Critical
Publication of JP4530616B2 publication Critical patent/JP4530616B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/126Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/464Lateral top-gate IGFETs comprising only a single gate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/466Lateral bottom-gate IGFETs comprising only a single gate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/151Copolymers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Thin Film Transistor (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electronic device using a semiconductor polymer where doping by environmental oxygen is hard to occur and which can be processed economically by solution treatment. <P>SOLUTION: This electronic device includes polythiofen which has the structural formula (I) of a formula 11 shown below. [formula 11] In this formula, R and R' are side chains, A is dihydric bond group, x and y show the number of non-substituent thienylene unit, z is 0 or 1, the sum of x and y is larger than 0, m shows the number of segment, and n shows the polymerization degree. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は一般的に、有機超小
形電子デバイスに関し、より詳細には、実施の形態にお
いて、薄膜トランジスタの活物質としてのポリチオフェ
ン類の使用に関する。
FIELD OF THE INVENTION This invention relates generally to organic microelectronic devices, and more particularly, in embodiments, to the use of polythiophenes as active materials in thin film transistors.

【0002】[0002]

【従来の技術】薄膜トランジスタ(TFT)の活性半導
体材料として有用な、ある種のポリチオフェン類などの
半導体ポリマーが報告されている。これらのポリマーの
多くは有機溶媒に適度に良好な溶解度を持つため、例え
ば、スピンコーティング、溶液キャスティング、浸漬塗
布、スクリーン印刷、スタンプ印刷、ジェット印刷等の
溶液処理によってTFT内の半導体チャネル層に加工す
ることができる。通常の溶液処理によって加工できるこ
とは、水素化アモルファスシリコンTFTなどのシリコ
ンベースのデバイスに特有のコストの高い従来のフォト
リソグラフ処理に比べ、その製造をより簡単かつ低コス
トにする。更に、ポリマーTFTと呼ばれる、優れた機
械的耐久性と構造可撓性とを備えた、ポリチオフェン類
などのポリマー材料から作られたトランジスタが望まれ
ている。プラスチック基板上の可撓性TFTの製造のた
めには、優れた機械的耐久性と構造可撓性が非常に望ま
しい。可撓性TFTは、構造可撓性と機械的耐久性の特
性を通常必要とする電子的デバイスの設計を可能にする
と考えられる。有機又はポリマートランジスタ要素と共
にプラスチック基板を用いれば、従来の堅牢なシリコン
TFTを、機械的により頑丈で、構造可撓性のポリマー
TFT設計に代えることができる。後者は、大面積画像
センサ、電子ペーパー、その他可撓性TFTとしての表
示媒体などの大面積デバイスを、小型で構造可撓性の設
計とすることが可能になる点で特に興味深い。また、ス
マートカードや無線周波データキャリア(RFID)タ
グなどの低価格のマイクロエレクトロニクス用集積回路
論理素子や、メモリ/記憶デバイスにポリマーTFTを
用いると、その機械的耐久性が著しく向上し、その使用
可能寿命が長くなる。
2. Description of the Related Art Certain semiconductor polymers such as polythiophenes have been reported to be useful as active semiconductor materials for thin film transistors (TFTs). Many of these polymers have moderately good solubilities in organic solvents, so they can be processed into semiconductor channel layers in TFTs by solution processing such as spin coating, solution casting, dip coating, screen printing, stamp printing, jet printing, etc. can do. Being able to be processed by conventional solution processing makes it easier and cheaper to manufacture compared to the costly conventional photolithographic processing typical of silicon-based devices such as hydrogenated amorphous silicon TFTs. Further, there is a demand for a transistor called a polymer TFT, which is made of a polymer material such as polythiophene and has excellent mechanical durability and structural flexibility. Excellent mechanical durability and structural flexibility are highly desirable for the manufacture of flexible TFTs on plastic substrates. Flexible TFTs are believed to enable the design of electronic devices that typically require structural flexibility and mechanical durability properties. The use of plastic substrates with organic or polymer transistor elements can replace traditional robust silicon TFTs with mechanically more robust, structurally flexible polymer TFT designs. The latter is of particular interest because it allows large area devices such as large area image sensors, electronic paper, and other display media as flexible TFTs to be designed in a small and structurally flexible manner. Further, when polymer TFTs are used for low-cost integrated circuit logic elements for microelectronics such as smart cards and radio frequency data carrier (RFID) tags, and memory / storage devices, their mechanical durability is significantly improved and their use is improved. The usable life is extended.

【0003】[0003]

【特許文献1】米国特許6,150,191号[Patent Document 1] US Pat. No. 6,150,191

【特許文献2】米国特許6,107,117号[Patent Document 2] US Pat. No. 6,107,117

【特許文献3】米国特許5,969,376号[Patent Document 3] US Pat. No. 5,969,376

【特許文献4】米国特許5,619,357号[Patent Document 4] US Pat. No. 5,619,357

【特許文献5】米国特許5,777,070号[Patent Document 5] US Pat. No. 5,777,070

【0004】[0004]

【発明が解決しようとする課題】しかし、半導体ポリチ
オフェン類の多くは、周囲の酸素によって酸化的にドー
プされ、導電率が増大するため、空気に触れると安定で
はない。この結果、これらの材料から製造したデバイス
ではオフ電流が大きくなり、このため電流オン/オフ比
が小さくなってしまう。従ってこれらの材料の多くは、
材料加工とデバイス製造の際には環境酸素を排除して酸
化的ドーピングを防止するよう厳重な対策を講じなけれ
ばならない。この予防策は製造コストを押し上げるた
め、特に大面積デバイスのための、アモルファスシリコ
ン技術に代わる経済的な技術としてのある種のポリマー
TFTの魅力が削がれてしまう。これら及びその他の欠
点は、本発明の実施の形態において回避され、あるいは
最小となる。
However, many of the semiconductor polythiophenes are not stable when exposed to air because they are oxidatively doped with ambient oxygen and have increased conductivity. As a result, the devices manufactured from these materials have a large off current, which reduces the current on / off ratio. Therefore, many of these materials
Strict measures must be taken during material processing and device manufacturing to exclude environmental oxygen and prevent oxidative doping. This precaution adds to the manufacturing cost and detracts from the appeal of certain polymer TFTs as an economical alternative to amorphous silicon technology, especially for large area devices. These and other drawbacks are avoided or minimized in embodiments of the present invention.

【0005】本発明は、上記課題を鑑みてなされたもの
であり、薄膜トランジスタデバイスのような超小形電子
デバイスの用途に有用な、ポリチオフェン類などの半導
体ポリマーの提供を目的とする。
The present invention has been made in view of the above problems, and an object of the present invention is to provide a semiconductor polymer such as polythiophene, which is useful for use in a microelectronic device such as a thin film transistor device.

【0006】[0006]

【課題を解決するための手段】本発明の態様は次のとお
りである。下記化3の構造式(I)を持つポリチオフェ
ンを含む電子的デバイス。
The aspects of the present invention are as follows. An electronic device comprising polythiophene having the structural formula (I) as shown below.

【0007】[0007]

【化3】 式中、R及びR’は側鎖であり、Aは二価結合基であ
り、x及びyは非置換チエニレン単位の数を示し、zは
0又は1であり、xとyとの和は0より大きく、mはセ
グメントの数を示し、nは重合度を示す。;R及びR’
はそれぞれ独立して、アルキル及び置換アルキルより選
ばれ、Aはアリーレンである電子的デバイス。;R及び
R’は約3〜約20の炭素原子を含むデバイス。;R及
びR’はそれぞれ独立して、アルキルとアルキル誘導体
とから成る群より選ばれるものであって、アルキル誘導
体は、アルコキシアルキル、シロキシ置換アルキル、パ
ーフルオロアルキルであるパーハロアルキル、及びポリ
エーテルであり、Aは、フェニレン、ビフェニレン、フ
ェナントレニレン、ジヒドロフェナントレニレン、フル
オレニレン、オリゴアリーレン、メチレン、ポリメチレ
ン、ジアルキルメチレン、ジオキシアルキレン、ジオキ
シアリーレン、及びオリゴエチレンオキシドである、ア
リーレンから成る群より選ばれる電子的デバイス。;R
及びR’はそれぞれ独立してプロピル、ブチル、ペンチ
ル、ヘキシル、ヘプチル、オクチル、ノニル、デシル、
ウンデシル、ドデシル、トリデシル、テトラデシル、ペ
ンタデシル、及びそれらの異性体から成る群より選ばれ
るデバイス。;Aは、炭素数約6〜約40のアリーレン
であるデバイス。;R及びR’は、ヘキシル、ヘプチ
ル、オクチル、ノニル、デシル、ウンデシル、ドデシ
ル、トリデシル、テトラデシル、及びペンタデシルから
成る群より選ばれ、Aは、フェニレン、ビフェニレン、
及びフルオレニレンから成る群より選ばれ、x及びyは
それぞれ独立して0〜約10の数であり、mは1〜約5
の数であるデバイス。;nは約7〜約5,000であ
り、いずれもポリスチレン標準を用いたゲル浸透クロマ
トグラフ法より求めた、ポリチオフェンの数平均分子量
(Mn)は約2,000〜約10万であり、重量平均分
子量(Mw)は約4,000〜約50万である電子的デ
バイス。;基板と、ゲート電極と、ゲート誘電体層と、
ソース電極及びドレイン電極と、ソース及びドレイン電
極とゲート誘電体層とに接した半導体層と、を含み、半
導体層はポリチオフェンを含む薄膜トランジスタ。;R
及びR’はそれぞれ独立して、アルキル、アルコキシア
ルキル、シロキシ置換アルキル、及びパーハロアルキル
から成る群より選ばれ、Aは、フェニレン、ビフェニレ
ン、フェナントレニレン、ジヒドロフェナントレニレ
ン、フルオレニレン、オリゴアリーレン、メチレン、ポ
リメチレン、ジアルキルメチレン、ジオキシアルキレ
ン、ジオキシアリーレン、及びオリゴエチレンオキシド
から成る群より選ばれる薄膜トランジスタデバイス。;
nは約5〜約5,000であり、いずれもポリスチレン
標準を用いたゲル浸透クロマトグラフ法より求めた、ポ
リチオフェンの数平均分子量(Mn)は約4,000〜
約5万であり、重量平均分子量(Mw)は約5,000
〜約10万である薄膜トランジスタデバイス。;R及び
R’は約3〜約20の炭素原子を含むアルキルである薄
膜トランジスタデバイス。;Aは炭素数約6〜約30の
アリーレンである薄膜トランジスタデバイス。;Aは炭
素数約6〜約24のアリーレンである薄膜トランジスタ
デバイス。;Aは、フェニレン、ビフェニレン、又はフ
ルオレニレンである薄膜トランジスタデバイス。;保護
層を備えた薄膜トランジスタデバイス。;ポリチオフェ
ンは、下記化4の構造式(1)〜(14)を持つポリチ
オフェン類から成る群より選ばれるデバイス。
[Chemical 3] In the formula, R and R ′ are side chains, A is a divalent bonding group, x and y represent the number of unsubstituted thienylene units, z is 0 or 1, and the sum of x and y is Greater than 0, m indicates the number of segments, and n indicates the degree of polymerization. R and R '
Are each independently selected from alkyl and substituted alkyl, and A is arylene. R and R'is a device containing from about 3 to about 20 carbon atoms. R and R'are each independently selected from the group consisting of alkyl and alkyl derivatives, wherein the alkyl derivative is alkoxyalkyl, siloxy substituted alkyl, perhaloalkyl which is perfluoroalkyl, and polyether. Where A is phenylene, biphenylene, phenanthrenylene, dihydrophenanthrenylene, fluorenylene, oligoarylene, methylene, polymethylene, dialkylmethylene, dioxyalkylene, dioxyarylene, and oligoethylene oxide, the group consisting of arylene. Electronic device of choice. ; R
And R ′ are each independently propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl,
A device selected from the group consisting of undecyl, dodecyl, tridecyl, tetradecyl, pentadecyl, and their isomers. A is a device in which A is arylene having about 6 to about 40 carbon atoms. R and R'are selected from the group consisting of hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl, tridecyl, tetradecyl, and pentadecyl; A is phenylene, biphenylene,
And fluorenylene, x and y are each independently a number from 0 to about 10, and m is 1 to about 5
The number of devices. N is about 7 to about 5,000, and the number average molecular weight (M n ) of polythiophene is about 2,000 to about 100,000, which is determined by gel permeation chromatography using a polystyrene standard. An electronic device having a weight average molecular weight (M w ) of about 4,000 to about 500,000. A substrate, a gate electrode, a gate dielectric layer,
A thin film transistor including a source electrode and a drain electrode, and a semiconductor layer in contact with the source and drain electrodes and a gate dielectric layer, the semiconductor layer including polythiophene. ; R
And R ′ are each independently selected from the group consisting of alkyl, alkoxyalkyl, siloxy substituted alkyl, and perhaloalkyl, A is phenylene, biphenylene, phenanthrenylene, dihydrophenanthrenylene, fluorenylene, oligoarylene. , A methylene, polymethylene, dialkylmethylene, dioxyalkylene, dioxyarylene, and oligoethylene oxide thin film transistor device. ;
n is about 5 to about 5,000, and the number average molecular weight (M n ) of polythiophene determined by gel permeation chromatography using polystyrene standards is about 4,000 to about 4,000.
It is about 50,000, and the weight average molecular weight (M w ) is about 5,000.
A thin film transistor device that is about 100,000. A thin film transistor device, wherein R and R ′ are alkyl containing from about 3 to about 20 carbon atoms. A thin film transistor device wherein A is arylene having from about 6 to about 30 carbon atoms. A thin film transistor device, wherein A is arylene having from about 6 to about 24 carbon atoms. A is a thin film transistor device, wherein A is phenylene, biphenylene, or fluorenylene. A thin film transistor device with a protective layer. The polythiophene is a device selected from the group consisting of polythiophenes having structural formulas (1) to (14) shown below.

【0008】[0008]

【化4】 ;nは約5〜約5,000であるデバイス。;nは約1
0〜約1,000であるデバイス。;Mnは約4,00
0〜約5万、Mwは約5,000〜約10万であるデバ
イス。;ポリチオフェンは、下記化5の構造式(1)〜
(8)を持つポリチオフェン類から成る群より選ばれる
デバイス。
[Chemical 4] A device wherein n is from about 5 to about 5,000. ; N is about 1
Devices that are 0 to about 1,000. Mn is about 4,000
A device having 0 to about 50,000 and M w of about 5,000 to about 100,000. Polythiophene is represented by the following structural formula (1)
A device selected from the group consisting of polythiophenes having (8).

【0009】[0009]

【化5】 ;ポリチオフェンは、下記化6の構造式(1)〜(1
4)を持つポリチオフェン類から成る群より選ばれる薄
膜トランジスタデバイス。
[Chemical 5] The polythiophene has the following structural formulas (1) to (1)
A thin film transistor device selected from the group consisting of polythiophenes having 4).

【0010】[0010]

【化6】 ;ポリチオフェンは、下記化7の構造式(1)〜(8)
を持ち、必要に応じて、式中、nは約5〜約5,000
であるポリチオフェン類から成る群より選ばれる薄膜ト
ランジスタデバイス。
[Chemical 6] Polythiophene is represented by the following structural formulas (1) to (8).
And, where necessary, n is from about 5 to about 5,000.
Is a thin film transistor device selected from the group consisting of polythiophenes.

【0011】[0011]

【化7】 ;x、y、及びmは1〜3であり、zは0又は1であ
り、デバイスは薄膜トランジスタであるデバイス。;
x、y、及びmは1であり、zは0又は1であり、デバ
イスは薄膜トランジスタであるデバイス。;x、y、及
びmは1であり、zは0又は1であり、あるいは、x、
y、及びmは1であり、zは0であり、デバイスは薄膜
トランジスタであるデバイス。;基板は、ポリエステ
ル、ポリカーボネート、又はポリイミドであるプラスチ
ックシートであり、ゲート、ソース、及びドレイン電極
は、金、ニッケル、アルミニウム、プラチナ、酸化イン
ジウムチタン、又は導電性ポリマーを含み、ゲート誘電
体層は、窒化ケイ素、酸化ケイ素、又は絶縁性ポリマー
を含むものである薄膜トランジスタデバイス。;基板
は、ガラス又はプラスチックシートであり、ゲート、ソ
ース、及びドレイン電極はそれぞれ金を含み、ゲート誘
電体層は、ポリ(メタクリレート)、ポリ(ビニルフェ
ノール)である有機ポリマーを含むものである薄膜トラ
ンジスタデバイス。;ゲート、ソース、及びドレイン電
極は、ポリスチレンスルホナートをドープしたポリ
(3,4−エチレンジオキシチオフェン)であるドープ
した有機導電性ポリマー、あるいは、ポリマーバインダ
中にコロイド状に分散した銀を含む導電性インキ/ペー
ストから製造され、ゲート誘電体層は、有機ポリマー又
は無機酸化物粒子−ポリマー複合材である薄膜トランジ
スタデバイス。;下記化8に包含されるポリチオフェン
類。
[Chemical 7] A device in which x, y, and m are 1 to 3, z is 0 or 1, and the device is a thin film transistor. ;
The device wherein x, y, and m are 1, z is 0 or 1, and the device is a thin film transistor. X, y, and m are 1 and z is 0 or 1, or x,
The device in which y and m are 1, z is 0, and the device is a thin film transistor. The substrate is a plastic sheet that is polyester, polycarbonate, or polyimide, the gate, source, and drain electrodes include gold, nickel, aluminum, platinum, indium titanium oxide, or a conductive polymer, and the gate dielectric layer is , A silicon nitride, a silicon oxide, or an insulating polymer. The substrate is a glass or plastic sheet, the gate, source, and drain electrodes each comprise gold, and the gate dielectric layer comprises an organic polymer that is poly (methacrylate), poly (vinylphenol). The gate, source, and drain electrodes comprise a doped organic conductive polymer, which is poly (3,4-ethylenedioxythiophene) doped with polystyrene sulfonate, or colloidally dispersed silver in a polymer binder. A thin film transistor device manufactured from a conductive ink / paste, wherein the gate dielectric layer is an organic polymer or inorganic oxide particle-polymer composite. Polythiophenes included in the following chemical formula 8.

【0012】[0012]

【化8】 式中、R及びR’は側鎖であって、それぞれ独立して例
えば、アルキル及びアルキル誘導体から成る群より選ば
れ、アルキル誘導体は、アルコキシアルキル、シロキシ
置換アルキル、パーフルオロアルキルなどのパーハロア
ルキル、オリゴエチレンオキシドなどのポリエーテル、
ポリシロキシ、等であり、Aは二価結合基であって、例
えば、フェニレン、ビフェニレン、フェナントレニレ
ン、ジヒドロフェナントレニレン、フルオレニレン、オ
リゴアリーレン、メチレン、ポリメチレン、ジアルキル
メチレン、ジオキシアルキレン、ジオキシアリーレン、
及びオリゴエチレンオキシド、等のアリーレンから成る
群より選ばれ、x及びyはそれぞれ独立して0〜10よ
り選ばれる整数であり、zは0又は1のいずれかであ
り、xとyとの和は0より大きく、mは1〜約5の整数
であり、nは重合度であって、通常、約5〜5,000
以上、より詳細には約10〜約1,000とすることが
できる。いずれもポリスチレン標準を用いたゲル浸透ク
ロマトグラフ法より求めた、ポリチオフェン類の数平均
分子量(Mn)は、例えば約2,000〜約10万、よ
り詳細には約4,000〜約5万とすることができ、そ
の重量平均分子量(Mw)は約4,000〜約50万、
より詳細には約5,000〜約10万とすることができ
る。
[Chemical 8] In the formula, R and R ′ are side chains and are independently selected from the group consisting of, for example, alkyl and alkyl derivatives, and the alkyl derivative is peroxyalkyl such as alkoxyalkyl, siloxy-substituted alkyl, or perfluoroalkyl, Polyether such as oligoethylene oxide,
Polysiloxy, etc., A is a divalent linking group, for example, phenylene, biphenylene, phenanthrenylene, dihydrophenanthrenylene, fluorenylene, oligoarylene, methylene, polymethylene, dialkylmethylene, dioxyalkylene, dialkyl. Oxyarylene,
And an arylene such as oligoethylene oxide, x and y are each independently an integer selected from 0 to 10, z is either 0 or 1, and the sum of x and y is Greater than 0, m is an integer from 1 to about 5, n is the degree of polymerization, usually about 5 to 5,000.
More specifically, it can be about 10 to about 1,000. The number average molecular weight (M n ) of the polythiophenes, which is determined by gel permeation chromatography using polystyrene standards, is about 2,000 to about 100,000, more specifically about 4,000 to about 50,000. And its weight average molecular weight (M w ) is about 4,000 to about 500,000,
More specifically, it can be about 5,000 to about 100,000.

【0013】側鎖R及びR’の例としては、例えば炭素
数約1〜約25、より詳細には約4〜約12の、ブチ
ル、ペンチル、ヘキシル、ヘプチル、オクチル、ノニ
ル、デシル、ウンデシル、ドデシル、それらの異性体、
等のアルキル、炭素数1〜約25の、例えば、メトキシ
プロピル、メトキシブチル、メトキシヘキシル、メトキ
シヘプチル、等のアルコキシアルキル、ポリエチレンオ
キシドなどのポリエーテル鎖、パーフルオロアルキル
(例えば、ノナフルオロヘキシル、ノナフルオロヘプチ
ル、ペンタデカフルオロオクチル、トリデカフルオロノ
ニル、等)などのパーハロアルキル、トリアルキルシロ
キシアルキル等のポリシロキシ鎖などが挙げられる。
Examples of the side chains R and R'include, for example, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl having about 1 to about 25 carbon atoms, more specifically about 4 to about 12 carbon atoms, Dodecyl, their isomers,
Etc., alkyl having 1 to about 25 carbon atoms, for example, alkoxyalkyl such as methoxypropyl, methoxybutyl, methoxyhexyl, methoxyheptyl, polyether chains such as polyethylene oxide, perfluoroalkyl (eg, nonafluorohexyl, nona Fluoroheptyl, pentadecafluorooctyl, tridecafluorononyl, etc.) and polysiloxy chains such as trialkylsiloxyalkyl.

【0014】使用されるポリチオフェン類は、繰り返し
チエニレン単位を含むことができ、その中では特定のチ
エニレンだけが側鎖を持ち、またチエニレン単位はポリ
チオフェン主鎖上に位置規則性(レジオレギュラ:regi
oregular)に配列している。
The polythiophenes used can contain repeating thienylene units, of which only certain thienylene units have side chains, and thienylene units are also regioregular (regiregular) on the polythiophene backbone.
oregular).

【0015】このポリチオフェン類は実施の形態におい
て実質的に安定であり、周囲条件でこれを用いたデバイ
スの製造が可能である。またそのデバイスは高い電流オ
ン/オフ比を持ち、更に操作上より安定で、その性能は
通常、位置規則性ポリ(3−アルキルチオフェン−2,
5−ジイル)などの公知の位置規則性ポリチオフェン類
から製造したもののように急激に低下することがない。
より詳細には、本発明のポリチオフェン類は実施の形態
において、非置換の2,5−チエニレン単位と、必要に
応じて二価結合基とに挾まれた、3,4−二置換−2,
5−チエニレン単位の繰り返しセグメントを含む。側鎖
は、薄膜製造の際にポリチオフェン類の分子自己組織化
の誘発及び促進を促す。多少の回転自由度を持つ非置換
チエニレン単位と必要に応じた二価結合基は、ポリチオ
フェン鎖に沿って伸びるπ共役を妨げ、その酸化的ドー
ピング傾向を抑制することができる。
The polythiophenes are substantially stable in the embodiment, and devices using the polythiophenes can be manufactured under ambient conditions. The device also has a high current on / off ratio, is more stable in operation, and its performance is usually regioregular poly (3-alkylthiophene-2,
It does not drop sharply as in the case of those prepared from known regioregular polythiophenes such as 5-diyl).
More specifically, the polythiophenes of the present invention include, in embodiments, 3,4-disubstituted-2,2, which is sandwiched between an unsubstituted 2,5-thienylene unit and optionally a divalent linking group.
It contains repeating segments of 5-thienylene units. The side chains facilitate the induction and promotion of molecular self-assembly of polythiophenes during thin film fabrication. An unsubstituted thienylene unit having some rotational freedom and optionally a divalent linking group can prevent π conjugation extending along the polythiophene chain and suppress its oxidative doping tendency.

【0016】本発明は、上記特徴により、薄膜トランジ
スタデバイスのような超小形電子デバイスの用途に有用
な、ポリチオフェン類などの半導体ポリマーの提供する
ことができる。
According to the above characteristics, the present invention can provide a semiconductor polymer such as polythiophene, which is useful for use in a microelectronic device such as a thin film transistor device.

【0017】また、本発明は、その薄膜の吸収スペクト
ルから求めたバンドギャップが約1.5〜約3eVであ
るポリチオフェン類の提供であり、このポリチオフェン
類は、薄膜トランジスタ半導体チャネル層材料としての
使用に適する。
The present invention also provides polythiophenes having a bandgap of about 1.5 to about 3 eV determined from the absorption spectrum of the thin film, which polythiophene is suitable for use as a thin film transistor semiconductor channel layer material. Suitable.

【0018】更に本発明は、超小形電子部品として有用
なポリチオフェン類の提供であり、このポリチオフェン
類は、ジクロロメタン、テトラヒドロフラン、トルエ
ン、キシレン、メシチレン、クロロベンゼン等の一般的
な有機溶媒に適度な、例えば約0.1重量%以上の溶解
度を持ち、このためスピンコーティング、スクリーン印
刷、スタンプ印刷、浸漬塗布、溶液キャスティング、ジ
ェット印刷等の溶液処理によって経済的に加工すること
ができる。
The present invention further provides polythiophenes useful as microminiature electronic components, which are suitable for general organic solvents such as dichloromethane, tetrahydrofuran, toluene, xylene, mesitylene, chlorobenzene, etc. It has a solubility of about 0.1% by weight or more, and therefore can be economically processed by solution processing such as spin coating, screen printing, stamp printing, dip coating, solution casting, jet printing.

【0019】別の本発明の特徴は、ポリチオフェンチャ
ネル層を持ち、その層の導電率が10-6〜約10-9S/
cm(ジーメンス/センチメートル)である薄膜トラン
ジスタなどの電子的デバイスの提供である。
Another feature of the invention is that it has a polythiophene channel layer having a conductivity of 10 -6 to about 10 -9 S /.
The provision of electronic devices such as thin film transistors that are cm (Siemens / centimeter).

【0020】また更に本発明の特徴は、ポリチオフェン
類とそれを用いたデバイスの提供であり、このデバイス
は酸素の悪影響に対して優れた抵抗性を示し、つまりこ
のデバイスは比較的高い電流オン/オフ比を示し、その
性能は通常、位置規則性ポリ(3−アルキルチオフェン
−2,5−ジイル)などの位置規則性ポリチオフェン類
から製造したもののように急激に低下することなく、あ
るいは最小限の低下と同程度である。
A further feature of the present invention is to provide polythiophenes and devices using the same, which devices exhibit excellent resistance to the adverse effects of oxygen, that is, the devices have relatively high current on / off. It exhibits an off-ratio, and its performance usually does not drop sharply or at a minimum, such as those made from regioregular polythiophenes such as regioregular poly (3-alkylthiophene-2,5-diyl). It is about the same as the decline.

【0021】また別の本発明の特徴は、特殊な構造的特
徴を持ち、これにより適当な加工条件下において分子が
自己配列し、またその構造的特徴がデバイス性能の安定
性をも向上させるようなポリチオフェン類の提供であ
る。適当な分子配列は、薄膜中により高次の分子構造配
列を形成し、効率良く電荷キャリアを移動させて高い電
気的性能を可能とする。
Another feature of the present invention is that it has special structural features that allow the molecules to self-align under appropriate processing conditions, and that the structural features also improve device performance stability. To provide various polythiophenes. A suitable molecular arrangement forms a higher-order molecular structure arrangement in a thin film, and efficiently moves charge carriers to enable high electric performance.

【0022】[0022]

【発明の実施の形態】より詳細には、ポリチオフェン類
の例は下記化9のものである。
More specifically, examples of polythiophenes are shown below.

【0023】[0023]

【化9】 構造式(I)を参照するならば、ポリチオフェン類は、
3,4−二置換−2,5−チエニレン単位と、非置換
2,5−チエニレン単位と、必要に応じて二価の結合基
との位置規則性セグメントを含むものである。ポリチオ
フェン(I)(構造式(1)〜(14)を参照)中の側
鎖の位置規則性は、適当な加工条件下で薄膜を製造する
際に分子の自己配列を誘導し、薄膜中に高度に組織化さ
れた微細構造を作ることができると考えられる。薄膜ト
ランジスタの半導体チャネル層中の高次の微細構造はト
ランジスタ性能を向上する。これらのポリチオフェン類
は、適当な溶媒系に溶解した溶液から厚さ約10〜約5
00nmの薄膜を作ると、強い分子内π−πスタックが
形成され、導電性となって効率良く電荷キャリヤを移動
すると考えられる。(I)中の非置換チエニレン部分は
多少の回転自由度を持つため、酸化的ドーピングを十分
に抑制する程度に(I)の分子内に広がるπ共役を妨げ
る。従って、このポリチオフェン類は周囲条件下で安定
であり、これらのポリチオフェン類から製造したデバイ
スは、位置規則性ポリ(3−アルキルチオフェン−2,
5−ジイル)などの位置規則性ポリチオフェン類より機
能的により安定である。保護しなくても、構造式(I)
のポリチオフェン類から製造したデバイスは、その実施
の形態において、通常数週間から数ヶ月間、例えば約3
〜約12週間も安定である。これに対し、位置規則性ポ
リ(3−アルキルチオフェン−2,5−ジイル)を用い
たデバイスは、周囲の酸素に曝すと数日で、例えば5日
足らずで劣化してしまう。本願のポリチオフェン類から
製造したデバイスはまた、高い電流オン/オフ比を持
ち、その性能は、材料調製、デバイス製造、及び評価の
際に周囲の酸素を排除するよう厳しい操作上の予防措置
を講じなくても、ポリ(3−アルキルチオフェン−2,
5−ジイル)のものほど急激には変化しない。酸化的ド
ーピングに対して安定な材料は、低コストデバイスの製
造には特に有用である。この材料はより安定であるた
め、通常、厳重に不活性な雰囲気中で取り扱う必要がな
く、故にその製造工程がより単純かつ低コストで、その
工程をシンプルな大規模製造工程とすることができる。
[Chemical 9] Referring to Structural Formula (I), the polythiophenes are
It contains a regioregular segment of a 3,4-disubstituted-2,5-thienylene unit, an unsubstituted 2,5-thienylene unit, and optionally a divalent linking group. The regioregularity of side chains in polythiophene (I) (see structural formulas (1) to (14)) induces self-alignment of molecules during the production of a thin film under appropriate processing conditions, and It is believed possible to create highly organized microstructures. Higher order microstructures in the semiconductor channel layer of thin film transistors improve transistor performance. These polythiophenes have a thickness of about 10 to about 5 from a solution dissolved in a suitable solvent system.
It is considered that when a thin film of 00 nm is formed, a strong intramolecular π-π stack is formed, which becomes conductive and efficiently moves charge carriers. Since the unsubstituted thienylene moiety in (I) has some rotational freedom, it interferes with π conjugation spreading in the molecule of (I) to the extent that oxidative doping is sufficiently suppressed. Therefore, the polythiophenes are stable under ambient conditions, and devices made from these polythiophenes show regioregular poly (3-alkylthiophene-2,
It is functionally more stable than regioregular polythiophenes such as 5-diyl). Structural formula (I) without protection
Devices manufactured from the polythiophenes of, for example, are typically for several weeks to several months, for example about 3
~ Stable for about 12 weeks. In contrast, a device using regioregular poly (3-alkylthiophene-2,5-diyl) deteriorates in a few days, for example, in less than 5 days when exposed to ambient oxygen. Devices made from the polythiophenes of the present application also have high current on / off ratios, and their performance takes strict operational precautions to exclude ambient oxygen during material preparation, device fabrication, and evaluation. Even without, poly (3-alkylthiophene-2,
It does not change as rapidly as that of 5-diyl). Materials that are stable to oxidative doping are particularly useful for making low cost devices. Because this material is more stable, it usually does not need to be handled in a severely inert atmosphere, thus making the manufacturing process simpler and less costly, and can be a simple large-scale manufacturing process. .

【0024】実施の形態においてこのポリチオフェン類
は、一般的な被覆用溶媒に可溶であり、例えば、ジクロ
ロメタン、1,2−ジクロロエタン、テトラヒドロフラ
ン、トルエン、キシレン、メシチレン、クロロベンゼン
等の溶媒に約0.1重量%以上、より詳細には約0.5
〜約15重量%の溶解度を持つ。更に、このポリチオフ
ェン類を薄膜トランジスタデバイスの半導体チャネル層
に加工すると安定した導電率となり、例えば、一般的な
4プローブ伝導率測定法によれば、約10-9〜約10-6
S/cm、より詳細には約10-8〜約10-7S/cmで
ある。
In the embodiment, the polythiophenes are soluble in common coating solvents, for example, in a solvent such as dichloromethane, 1,2-dichloroethane, tetrahydrofuran, toluene, xylene, mesitylene, chlorobenzene, etc. 1% by weight or more, more specifically about 0.5
Has a solubility of about 15% by weight. Further, when the polythiophenes are processed into a semiconductor channel layer of a thin film transistor device, the conductivity becomes stable. For example, according to a general 4-probe conductivity measuring method, about 10 −9 to about 10 −6.
S / cm, more particularly about 10 -8 to about 10 -7 S / cm.

【0025】本発明のポリチオフェン類は、適切に組み
立てられたモノマー、例えば、トリチオフェンモノマー
の重合により調製可能である。例えば、スキーム1に従
って例示のポリチオフェン類(Ia)及び(Ib)を調製す
るには、2,5−ビス(2−チエニル)−3,4−ジ−
R−チオフェン(IIa)、又は2,5−ビス(5−ブロ
モ−2−チエニル)−3,4−ジ−R−チオフェン(II
b)を用いる。モノマー類(IIa)及び(IIb)はそれぞ
れその中央のチエニレン単位上に2つの側鎖を持つた
め、重合すると側鎖がそれぞれのポリチオフェン主鎖上
に位置規則性に並んだポリチオフェン類(Ia)及び(Ib)と
なる。位置規則性カップリング反応が必要なポリ(3−
アルキルチオフェン−2,5−ジイル)などの位置規則
性ポリチオフェン類の調製とは異なり、本発明のポリチ
オフェン類は、位置規則性の複雑さの無い通常の重合法
により調製できる。詳細には、(Ia)は、FeCl3
介在させた酸化的カップリング重合によりモノマー (II
a)から、あるいはレイケ(Reike)亜鉛で処理後Ni
(dppe)Cl2触媒を加えることによりモノマー(II
b)から調製できる。一方、ポリチオフェン(Ib)は、適
当なアリーレンジボロナートとのスズキカップリング反
応により(IIb)から容易に得ることができる。
The polythiophenes of the present invention can be prepared by the polymerization of properly assembled monomers such as trithiophene monomers. For example, to prepare the exemplary polythiophenes (Ia) and (Ib) according to Scheme 1, 2,5-bis (2-thienyl) -3,4-di-
R-thiophene (IIa) or 2,5-bis (5-bromo-2-thienyl) -3,4-di-R-thiophene (II
Use b). Since the monomers (IIa) and (IIb) each have two side chains on the thienylene unit in the center of the polythiophene main chain, polythiophenes (Ia) and (Ib). Poly (3-) that requires regioregular coupling reaction
Unlike the preparation of regioregular polythiophenes such as alkylthiophene-2,5-diyl), the polythiophenes of the present invention can be prepared by conventional polymerization methods without regioregular complexity. Specifically, (Ia) is a monomer (II) formed by oxidative coupling polymerization mediated by FeCl 3.
a) or after treatment with Reike zinc Ni
By adding a (dppe) Cl 2 catalyst, the monomer (II
It can be prepared from b). On the other hand, polythiophene (Ib) can be easily obtained from (IIb) by Suzuki coupling reaction with a suitable arylenediboronate.

【0026】[0026]

【化10】スキーム1 詳細には、(IIa)の重合は、乾燥空気の気流中で、塩
化物溶媒、例えばクロロホルムに溶解した(IIa)の1
モル等量の溶液を、約1〜約5モル当量の無水FeCl
3のクロロホルム懸濁液に加えることにより行うことが
できる。得られた混合物を、乾燥空気気流中、あるいは
乾燥空気の泡をゆっくり反応混合物中に通しながら、約
25〜約50℃の温度で、約30分〜約48時間反応さ
せる。反応後、反応混合物を水又は希塩酸水溶液で洗
い、希アンモニア水溶液と撹拌した後に水で洗い、次に
メタノール又はアセトンから沈殿させてポリマー生成物
を単離する。レイケ亜鉛法では、無水テトラヒドロフラ
ンに溶解した10ミリモル当量の(IIb)を、11ミリ
モル当量の調製直後のレイケZnの無水テトラヒドロフ
ラン懸濁液に、20〜40分かけて良く撹拌しながら滴
下して加え、次に得られた混合物を、室温(約22〜約
25℃)で約30分〜約2時間反応させる。続いて、約
0.1ミリモル当量のNi(dppe)Cl2の無水テ
トラヒドロフラン懸濁液を約10〜約20分かけてゆっ
くり加え、次に混合物を約40〜約65℃で2〜5時間
加熱する。次に反応混合物を、激しくかき混ぜながら希
塩酸−メタノール溶液に注ぎ、ポリマー生成物を沈殿さ
せる。後者を熱テトラヒドロフランに再溶解した後、希
アンモニア−メタノール溶液から再沈殿させる。
Scheme 1 In detail, the polymerization of (IIa) is carried out by dissolving 1 of (IIa) in a chloride solvent such as chloroform in a stream of dry air.
A molar equivalent solution is added to about 1 to about 5 molar equivalents of anhydrous FeCl 2.
It can be carried out by adding 3 to the chloroform suspension. The resulting mixture is reacted at a temperature of about 25 to about 50 ° C. for about 30 minutes to about 48 hours in a stream of dry air or while slowly passing bubbles of dry air through the reaction mixture. After the reaction, the reaction mixture is washed with water or a dilute aqueous hydrochloric acid solution, stirred with a dilute aqueous ammonia solution and then washed with water, and then precipitated from methanol or acetone to isolate the polymer product. In the Reike zinc method, 10 millimolar equivalents of (IIb) dissolved in anhydrous tetrahydrofuran are added dropwise to 11 millimolar equivalents of freshly prepared suspension of Reike Zn in anhydrous tetrahydrofuran over 20 to 40 minutes with good stirring. Then, the obtained mixture is reacted at room temperature (about 22 to about 25 ° C.) for about 30 minutes to about 2 hours. Subsequently, about 0.1 millimolar equivalent of a suspension of Ni (dppe) Cl 2 in anhydrous tetrahydrofuran is slowly added over about 10 to about 20 minutes, and then the mixture is heated at about 40 to about 65 ° C. for 2 to 5 hours. To do. The reaction mixture is then poured into dilute hydrochloric acid-methanol solution with vigorous stirring to precipitate the polymer product. The latter is redissolved in hot tetrahydrofuran and then reprecipitated from dilute ammonia-methanol solution.

【0027】より詳細には、ポリチオフェン(Ib)は、
モノマー(IIb)と適当なアリーレンジボロナートとの
スズキカップリング反応より得られる。等モル当量のモ
ノマー(IIb)とアリーレンジボロナートとのトルエン
溶液と、約2〜6モル%のテトラキス(トリフェニルホ
スフィン)パラジウムと、1〜2Mの水溶液とした約2
〜約4モル等量の炭酸ナトリウムなどの無機塩基と、約
1〜5モル%の、テトラブチルアンモニウム=クロリド
又はトリカプリリルメチルアンモニウム=クロリドなど
の相間移動触媒との混合物を、不活性雰囲気中で48時
間、約90℃に加熱する。重合後、ポリチオフェン生成
物(Ib)をメタノールから繰り返し沈殿させて単離す
る。
More specifically, polythiophene (Ib) is
Obtained by Suzuki coupling reaction of monomer (IIb) with the appropriate arylenediboronate. A toluene solution of equimolar equivalents of monomer (IIb) and arylenediboronate, about 2-6 mol% tetrakis (triphenylphosphine) palladium, and about 2M aqueous solution of about 2
To about 4 mole equivalents of an inorganic base such as sodium carbonate and about 1 to 5 mole% of a phase transfer catalyst such as tetrabutylammonium chloride or tricaprylylmethylammonium chloride in an inert atmosphere. Heat to about 90 ° C. for 48 hours. After polymerization, the polythiophene product (Ib) is isolated by repeated precipitation from methanol.

【0028】本発明の様々な代表的な実施の形態を図1
〜図4に示す。ここでは薄膜トランジスタ(TFT)構
造体中のチャネル材料としてポリチオフェン類を用いて
いる。
Various exemplary embodiments of the present invention are shown in FIG.
~ Shown in FIG. Here, polythiophenes are used as the channel material in the thin film transistor (TFT) structure.

【0029】図1は、基板16と、それに接した金属接
点18(ゲート電極)と、絶縁性誘電体層14の層と、
その上又はその頂部に置かれた2つの金属接点20及び
22(ソース及びドレイン電極)とを含む薄膜トランジ
スタ構造体10の概略図である。金属接点20及び22
の上と間にはポリチオフェン半導体層12がある。
FIG. 1 shows a substrate 16, a metal contact 18 (gate electrode) in contact therewith, a layer of an insulating dielectric layer 14,
1 is a schematic diagram of a thin film transistor structure 10 including two metal contacts 20 and 22 (source and drain electrodes) placed on or on top of it. Metal contacts 20 and 22
There is a polythiophene semiconductor layer 12 between and above.

【0030】図2は、基板36と、ゲート電極38と、
ソース電極40と、ドレイン電極42と、絶縁性誘電体
層34と、ポリチオフェン半導体層32とを含む、別の
薄膜トランジスタ構造体30の概略図である。
FIG. 2 shows a substrate 36, a gate electrode 38,
FIG. 5 is a schematic diagram of another thin film transistor structure 30 including a source electrode 40, a drain electrode 42, an insulating dielectric layer 34, and a polythiophene semiconductor layer 32.

【0031】図3は、ゲート電極として作用する高濃度
n−ドープシリコンウエハ56と、熱により生成した酸
化ケイ素誘電体層54と、ポリチオフェン半導体層52
と、その上に置かれたソース電極60とドレイン電極6
2とを含む薄膜トランジスタ構造体50の概略図であ
る。
FIG. 3 shows a heavily n-doped silicon wafer 56 acting as a gate electrode, a thermally generated silicon oxide dielectric layer 54, and a polythiophene semiconductor layer 52.
And the source electrode 60 and the drain electrode 6 placed thereon.
2 is a schematic diagram of a thin film transistor structure 50 including 2 and FIG.

【0032】図4は、基板76と、ゲート電極78と、
ソース電極80と、ドレイン電極82と、ポリチオフェ
ン半導体層72と、絶縁性誘電体層74とを含む、別の
薄膜トランジスタ構造体70の概略図である。
FIG. 4 shows a substrate 76, a gate electrode 78,
FIG. 6 is a schematic diagram of another thin film transistor structure 70 including a source electrode 80, a drain electrode 82, a polythiophene semiconductor layer 72, and an insulating dielectric layer 74.

【0033】本発明の一部の実施の形態では、必要に応
じて、図1〜図4の各トランジスタ構造体の上に保護層
を加えても良い。図4の薄膜トランジスタ構造体では、
絶縁性誘電体層74は保護層として機能することもでき
る。
In some embodiments of the invention, a protective layer may be added over each transistor structure of FIGS. 1-4, if desired. In the thin film transistor structure of FIG.
The insulating dielectric layer 74 can also function as a protective layer.

【0034】基板層は一般に、目的とする用途に応じ
て、様々な適当な形のシリコンを含むシリコン材料、ガ
ラス板、プラスチックフィルム又はシート、等である。
構造可撓性のデバイスでは、例えば、ポリエステル、ポ
リカーボネート、ポリイミドシート等のプラスチック基
板が望ましい。基板の厚さは、約10μm〜10mm以
上であり、詳細な厚さは、特に可撓性のプラスチック基
板では約50〜約100μm、ガラス又はシリコンなど
の堅牢な基板では約1〜約10mmである。
The substrate layer is generally a silicon material, including various suitable forms of silicon, glass plate, plastic film or sheet, etc., depending on the intended use.
For structurally flexible devices, plastic substrates such as polyester, polycarbonate, polyimide sheets are desirable. The thickness of the substrate is about 10 μm to 10 mm or more, and the detailed thickness is about 50 to about 100 μm, especially for a flexible plastic substrate, and about 1 to about 10 mm for a robust substrate such as glass or silicon. .

【0035】ゲート電極をソース及びドレイン電極と隔
て、半導体層に接している絶縁性誘電体層は一般に、無
機材料膜、有機ポリマー膜、又は有機−無機複合材膜と
することができる。誘電体層の厚さは、例えば約10n
m〜約1μm、より詳細な厚さは約100〜約500n
mである。誘電体層に適した無機材料の具体例として
は、酸化ケイ素、窒化ケイ素、酸化アルミニウム、チタ
ン酸バリウム、ジルコン酸チタン酸バリウム、等が挙げ
られ、誘電体層に適した有機ポリマーの具体例として
は、ポリエステル類、ポリカーボネート類、ポリ(ビニ
ルフェノール)、ポリイミド類、ポリスチレン、ポリ
(メタクリレート)類、ポリ(アクリレート)類、エポ
キシ樹脂、等が挙げられ、無機−有機複合材料の具体例
としては、ポリエステル、ポリイミド、エポキシ樹脂等
のポリマー中に分散した超微小金属酸化物粒子などが挙
げられる。絶縁性誘電体層の厚さは通常、使用する誘電
体材料の比誘電率に応じて約50〜約500nmであ
る。より詳細には、誘電体材料は約3以上の比誘電率を
持つため、約300nmの適当な誘電体の厚さがあれば
望ましい静電容量、例えば約10-9〜約10-7F/cm
2とすることができる。
The insulating dielectric layer separating the gate electrode from the source and drain electrodes and in contact with the semiconductor layer can generally be an inorganic material film, an organic polymer film, or an organic-inorganic composite material film. The thickness of the dielectric layer is, for example, about 10n.
m to about 1 μm, more detailed thickness is about 100 to about 500 n
m. Specific examples of the inorganic material suitable for the dielectric layer include silicon oxide, silicon nitride, aluminum oxide, barium titanate, barium zirconate titanate, and the like, and specific examples of the organic polymer suitable for the dielectric layer. Are polyesters, polycarbonates, poly (vinylphenol), polyimides, polystyrene, poly (methacrylate) s, poly (acrylate) s, epoxy resins, and the like. Specific examples of the inorganic-organic composite material include: Examples include ultrafine metal oxide particles dispersed in a polymer such as polyester, polyimide and epoxy resin. The thickness of the insulating dielectric layer is typically about 50 to about 500 nm, depending on the dielectric constant of the dielectric material used. More specifically, since the dielectric material has a relative dielectric constant of about 3 or greater, a suitable dielectric thickness of about 300 nm provides a desired capacitance, eg, about 10 -9 to about 10 -7 F /. cm
It can be 2 .

【0036】誘電体層とソース/ドレイン電極との間に
接して、本願に述べるポリチオフェン類を含む活性半導
体層を置く。この層の厚さは通常約10nm〜約1μ
m、又は約40〜約100nmである。この層は通常、
スピンコーティング、キャスティング、スクリーン、ス
タンプ、又はジェット印刷などの溶液処理によって本発
明のポリチオフェン類の溶液から製造可能である。
An active semiconductor layer containing the polythiophenes described in the present application is placed in contact with the dielectric layer and the source / drain electrodes. The thickness of this layer is usually about 10 nm to about 1 μm.
m, or about 40 to about 100 nm. This layer is usually
It can be produced from the solution of the polythiophenes of the present invention by solution treatment such as spin coating, casting, screen, stamping or jet printing.

【0037】ゲート電極は、金属薄膜、導電性ポリマー
膜、導電性インキ又はペーストから作った導電性膜、あ
るいは基板自体(例えば、高濃度にドープしたシリコ
ン)とすることができる。ゲート電極材料の例として
は、アルミニウム、金、クロム、酸化インジウムスズ、
導電性ポリマー類、導電性インキ/ペースト等が挙げら
れるが、これらに限るものではない。導電性ポリマー
は、ポリスチレンスルホナートをドープしたポリ(3,
4−エチレンジオキシチオフェン)(PSS−/PED
OT)などであり、導電性インキ/ペーストは、カーボ
ンブラック/グラファイト又はコロイド状の銀をポリマ
ーバインダ中に分散したもの(例えば、アチソン・コロ
イズ社(Acheson Colloids Company)製のエレクトロダ
グ(ELECTRODAG))や、銀を充填した導電性熱可塑性イ
ンキ(ノエル・インダストリーズ(Noelle Industrie
s)製)である。ゲート層は、真空蒸着、金属や導電性
金属酸化物のスパッタリング、導電性ポリマー溶液又は
導電性インキのスピンコーティング、キャスティング、
又は印刷による塗布によって調製できる。ゲート電極層
の厚さは約10nm〜約10μmの範囲であり、金属薄
膜に望ましい厚さは約10〜約200nmの範囲であ
り、ポリマー導電体では約1〜約10μmの範囲であ
る。
The gate electrode can be a thin metal film, a conductive polymer film, a conductive film made from a conductive ink or paste, or the substrate itself (eg heavily doped silicon). Examples of gate electrode materials include aluminum, gold, chromium, indium tin oxide,
Examples include conductive polymers and conductive inks / pastes, but are not limited to these. The conductive polymer is poly (3,3) doped with polystyrene sulfonate.
4-ethylenedioxythiophene) (PSS- / PED
The conductive ink / paste is carbon black / graphite or colloidal silver dispersed in a polymer binder (for example, ELECTRODAG manufactured by Acheson Colloids Company). Or conductive thermoplastic ink filled with silver (Noelle Industrie
s)). The gate layer is formed by vacuum deposition, sputtering of metal or conductive metal oxide, spin coating of conductive polymer solution or conductive ink, casting,
Alternatively, it can be prepared by application by printing. The thickness of the gate electrode layer is in the range of about 10 nm to about 10 μm, the desired thickness for the metal thin film is in the range of about 10 to about 200 nm, and for the polymer conductor it is in the range of about 1 to about 10 μm.

【0038】ソース及びドレイン電極層は、半導体層に
対して低抵抗オーム接触となる材料から製造することが
できる。ソース及びドレイン電極としての使用に適した
典型的な材料は、金、ニッケル、アルミニウム、プラチ
ナ、導電性ポリマー、導電性インキなどのゲート電極材
料として挙げられたものなどである。この層の典型的な
厚さは、例えば約40nm〜約1μmであり、より詳細
な厚さは約100〜約400nmである。TFTデバイ
ス構造体は、幅W、長さLの半導体チャネルから成る。
半導体チャネル幅は約10μm〜約5mmであり、望ま
しいチャネル幅は約100μm〜約1mmである。半導
体チャネル長さは約1μm〜約1mmであり、より詳細
なチャネル長さは約5〜約100μmである。
The source and drain electrode layers can be made from materials that make a low resistance ohmic contact to the semiconductor layer. Typical materials suitable for use as the source and drain electrodes include those listed as gate electrode materials such as gold, nickel, aluminum, platinum, conductive polymers, conductive inks, and the like. A typical thickness of this layer is, for example, about 40 nm to about 1 μm, and a more detailed thickness is about 100 to about 400 nm. The TFT device structure consists of semiconductor channels of width W and length L.
The semiconductor channel width is about 10 μm to about 5 mm, and the desired channel width is about 100 μm to about 1 mm. The semiconductor channel length is from about 1 μm to about 1 mm, and more detailed channel length is from about 5 to about 100 μm.

【0039】ソース電極は接地しており、通常約+10
〜約−80ボルトの電圧をゲート電極に印加したとき
に、半導体チャネルを通って移動する電荷キャリヤを集
めるため、通常約0〜約−80ボルトのバイアス電圧を
ドレイン電極に印加する。
The source electrode is grounded, usually about +10.
A bias voltage of about 0 to about -80 volts is typically applied to the drain electrode to collect charge carriers migrating through the semiconductor channel when a voltage of about -80 volts is applied to the gate electrode.

【0040】[0040]

【実施例】a)デバイスの製造:基本的な供試デバイス
配置として、図1及び図3にそれぞれ図示したボトムコ
ンタクト型及びトップコンタクト型薄膜トランジスタ構
造体を用いた。ボトムコンタクト型供試デバイスは、ガ
ラス基板上に写真平板で予めパターンを形成した一連の
トランジスタの誘電体層と、規定のチャネル幅と長さの
電極とを含むものである。ガラス基板上のゲート電極は
厚さ約80nmのクロムから成るものであった。ゲート
誘電体は、約22nF/cm2(ナノファラッド/平方
センチメートル)の静電容量を持つ、厚さ300nmの
窒化ケイ素であった。ゲート誘電体層の頂部又はその上
に被覆して、厚さ約100nmの金から成るソース及び
ドレイン接点を真空蒸着した。次に、厚さ約30〜約1
00nmの供試ポリチオフェン半導体層を、周囲の酸
素、湿気、又は光への暴露を防止する対策を何ら講じる
ことなく、周囲条件下でスピンコーティングにより塗布
した。半導体層の製造に用いた溶液は、適当な溶媒に溶
解した1重量%のポリチオフェンから成るものであり、
使用前に0.45μmのフィルタで濾過した。スピンコ
ーティングは、回転速度1,000rpmで約35秒間
行った。得られた被覆デバイスは、真空中80℃で20
時間乾燥した後、評価に供した。
EXAMPLES a) Device manufacture: As a basic device arrangement for test, the bottom contact type and top contact type thin film transistor structures shown in FIGS. 1 and 3 were used. The bottom contact type device under test includes a series of transistor dielectric layers pre-patterned with a photolithographic plate on a glass substrate, and electrodes having prescribed channel widths and lengths. The gate electrode on the glass substrate was made of chromium having a thickness of about 80 nm. The gate dielectric was 300 nm thick silicon nitride with a capacitance of about 22 nF / cm 2 (nanofarads per square centimeter). Source and drain contacts of about 100 nm thick gold were vacuum deposited over or on top of the gate dielectric layer. Next, the thickness is about 30 to about 1
The 00 nm test polythiophene semiconductor layer was applied by spin coating under ambient conditions without any measures taken to prevent exposure to ambient oxygen, moisture, or light. The solution used for the production of the semiconductor layer consists of 1% by weight of polythiophene dissolved in a suitable solvent,
It was filtered with a 0.45 μm filter before use. Spin coating was performed at a rotation speed of 1,000 rpm for about 35 seconds. The obtained coated device is 20 at 80 ° C. in vacuum.
After drying for an hour, it was subjected to evaluation.

【0041】トップコンタクト型供試デバイスは、n−
ドープシリコンウエハと、その上に熱生成させた厚さ約
110nmの酸化ケイ素層とを含む。ウエハがゲート電
極として機能する一方、酸化ケイ素層はゲート誘電体と
して働き、その静電容量は約32nF/cm2であっ
た。シリコンウエハをまずメタノールで清浄にし、空気
乾燥後、0.01Mの1,1,1,3,3,3−ヘキサ
メチルジシラザンのジクロロメタン溶液に、室温(22
〜25℃)で30分間浸した。次にこのウエハをジクロ
ロメタンで洗い、乾燥した。スピンコーティングによ
り、厚さ約30〜約100nmの半導体ポリチオフェン
層を酸化ケイ素誘電体層の上に塗布し、真空中80℃で
20時間乾燥した。デバイス製造の際、周囲の酸素、湿
気、又は光への材料の暴露を防止する対策は講じなかっ
た。次に、金のソース及びドレイン電極を、半導体ポリ
チオフェン層の上に、様々なチャネル長さと幅のシャド
ウマスクを通して真空蒸着し、様々な大きさの一連のト
ランジスタを製作した。念のため製造後のデバイスは、
評価の前後には相対湿度約30%の乾燥雰囲気中、暗所
で保存した。
The top contact type device under test is n-
It includes a doped silicon wafer with a thermally generated silicon oxide layer about 110 nm thick. The silicon oxide layer acted as the gate dielectric, while the wafer acted as the gate electrode, and its capacitance was about 32 nF / cm 2 . The silicon wafer was first cleaned with methanol, air-dried and then placed in a 0.01 M solution of 1,1,1,3,3,3-hexamethyldisilazane in dichloromethane at room temperature (22
Soak for 30 minutes at -25 ° C. The wafer was then washed with dichloromethane and dried. A semiconductor polythiophene layer with a thickness of about 30 to about 100 nm was applied onto the silicon oxide dielectric layer by spin coating and dried in vacuum at 80 ° C. for 20 hours. No measures were taken during device manufacture to prevent exposure of the material to ambient oxygen, moisture, or light. Next, gold source and drain electrodes were vacuum deposited on the semiconductor polythiophene layer through a shadow mask of various channel lengths and widths to fabricate a series of transistors of various sizes. Just in case, the device after manufacturing is
Before and after the evaluation, it was stored in a dark place in a dry atmosphere with a relative humidity of about 30%.

【0042】b)TFTデバイスの特性評価:電界効果
トランジスタの性能を、キースリー(Keithley)420
0SCS半導体特性評価デバイスを用いて、暗箱中周囲
条件で評価した。キャリヤ移動度(μ)は、飽和領域
(ゲート電圧、VG<ソース−ドレイン電圧、VSD)に
おけるデータより、下記の式(1)に従って計算した。
B) TFT device characterization: Keithley 420 performance of field effect transistors
Using a 0SCS semiconductor property evaluation device, evaluation was performed in a dark box under ambient conditions. The carrier mobility (μ) was calculated according to the following formula (1) from the data in the saturation region (gate voltage, V G <source-drain voltage, V SD ).

【0043】[0043]

【式1】 ISD=Ciμ(W/2L)(VG−VT2 (1) 式中、ISDは飽和領域におけるドレイン電流であり、W
とLはそれぞれ半導体チャネルの幅と長さであり、Ci
はゲート誘電体層の単位面積当たりの静電容量であり、
G及びVTはそれぞれ、ゲート電圧及びしきい電圧であ
る。このデバイスのVTは、飽和領域におけるISDの平
方根と、測定データからISD=0を外挿して求めたデバ
イスのVGとの関係から求めた。
In [Equation 1] I SD = C i μ (W / 2L) (V G -V T) 2 (1) formula, I SD is the drain current at the saturated regime, W
And L are the width and length of the semiconductor channel, respectively, and C i
Is the capacitance per unit area of the gate dielectric layer,
V G and V T are the gate voltage and the threshold voltage, respectively. The V T of this device was obtained from the relationship between the square root of I SD in the saturation region and V G of the device obtained by extrapolating I SD = 0 from the measurement data.

【0044】薄膜トランジスタの特性を表す値は、その
電流オン/オフ比である。これはゲート電圧VGがドレ
イン電圧VDと等しいかそれ以上であるときの飽和ソー
ス−ドレイン電流と、ゲート電圧VGがゼロの時のソー
ス−ドレイン電流との比である。
A value representing the characteristic of the thin film transistor is its current on / off ratio. This is the ratio of the saturated source-drain current when the gate voltage V G is equal to or higher than the drain voltage V D and the source-drain current when the gate voltage V G is zero.

【0045】比較例 公知の位置規則性ポリチオフェン、ポリ(3−ヘキシル
チオフェン−2,5−ジイル)を用いる以外は本質的に
前記の手順を繰り返して、図1及び図3にそれぞれ示し
たボトムコンタクト型デバイス及びトップコンタクト型
デバイスを製作した。この材料はアルドリッチ・ケミカ
ル(Aldrich Chemical)より購入し、そのクロロベンゼ
ン溶液からメタノールへの沈殿を3回繰り返して精製し
た。
Comparative Example Essentially the above procedure was repeated except that the known regioregular polythiophene, poly (3-hexylthiophene-2,5-diyl), was used to obtain the bottom contacts shown in FIGS. 1 and 3, respectively. Type device and top contact type device were manufactured. This material was purchased from Aldrich Chemical and purified by repeating its precipitation from chlorobenzene solution into methanol three times.

【0046】半導体ポリチオフェン層は、前述の手法に
従い、1重量%の位置規則性ポリ(3−ヘキシルチオフ
ェン−2,5−ジイル)のクロロベンゼン溶液のスピン
コーティングにより、周囲条件下でデバイス上に被覆し
た。このデバイスは、評価前に真空中80℃で20時間
乾燥した。各デバイスに対し5個以上のトランジスタか
ら得た平均特性値を次にまとめた。 (1) ボトムコンタクト型デバイス(W=1,000
μm,L=10μm) 移動度:1〜2.3×10-3cm2/V.sec 初期電流オン/オフ比:0.8〜1×103 5日後の電流オン/オフ比:5〜10 (2) トップコンタクト型デバイス(W=5,000
μm,L=60μm) 移動度:1〜1.2×10-2cm2/V.sec 初期電流オン/オフ比:1.5〜2.1×103 5日後の電流オン/オフ比:5〜10
The semiconducting polythiophene layer was coated on the device under ambient conditions by spin coating of a 1% by weight solution of regioregular poly (3-hexylthiophene-2,5-diyl) in chlorobenzene according to the procedure described above. . This device was dried in vacuum at 80 ° C. for 20 hours before evaluation. The average characteristic values obtained from 5 or more transistors for each device are summarized below. (1) Bottom contact device (W = 1,000
μm, L = 10 μm) Mobility: 1 to 2.3 × 10 −3 cm 2 / V. sec initial current on / off ratio: 0.8 to 1 × 10 3 5 days after current on / off ratio of: 5 to 10 (2) Top-contact device (W = 5,000
μm, L = 60 μm) Mobility: 1 to 1.2 × 10 −2 cm 2 / V. sec initial current on / off ratio: 1.5 to 2.1 × 10 3 5 days after current on / off ratio of: 5 to 10

【0047】観察された初期電流オン/オフ比が低いの
は、ポリ(3−ヘキシルチオフェン−2,5−ジイル)
が酸化的ドーピングを受け易く、すなわち環境酸素の存
在下ではポリ(3−ヘキシルチオフェン−2,5−ジイ
ル)が不安定であることを示している。僅か5日間のう
ちに電流オン/オフ比が著しく減少するのも、周囲条件
でのポリ(3−ヘキシルチオフェン−2,5−ジイル)
の甚だしい機能不安定性を更に裏付けている。
The low initial current on / off ratio observed is due to poly (3-hexylthiophene-2,5-diyl).
Are susceptible to oxidative doping, ie, poly (3-hexylthiophene-2,5-diyl) is unstable in the presence of ambient oxygen. The current on / off ratio is significantly reduced in only 5 days because the poly (3-hexylthiophene-2,5-diyl) at ambient conditions
It further supports the immense functional instability of.

【0048】実施例 (a)ポリ[2,5−ビス(2−チエニル)−3,4−
ジオクチルチオフェン](2)の合成 i)モノマーの合成:ポリチオフェン(2)の調製に用
いるモノマー、2,5−ビス(5−ブロモ−2−チエニ
ル)−3,4−ジオクチルチオフェンを次のように合成
した。
Example (a) Poly [2,5-bis (2-thienyl) -3,4-
Synthesis of Dioctylthiophene] (2) i) Synthesis of Monomer: Monomer used to prepare polythiophene (2), 2,5-bis (5-bromo-2-thienyl) -3,4-dioctylthiophene, was prepared as follows. Synthesized.

【0049】3,4−ジオクチルチオフェン:不活性雰
囲気中、氷浴で冷却した500mlの丸底フラスコ中
で、200mlの無水ジエチルエーテルに溶解したジク
ロロ[1,3−ビス(ジフェニルホスフィノ)プロパ
ン]ニッケル(II)(0.2g)と、3,4−ジブロモ
チオフェン(20.16g、0.0833mol)との
混合物を良くかき混ぜながら、これに2Mのオクチルマ
グネシウム=ブロミド(100ml、0.2mol)の
無水ジエチルエーテル溶液を加えた。ニッケル錯体はす
ぐにグリニャール試薬と反応し、得られた反応混合物を
室温まで暖まるに任せた。発熱反応は30分以内に始ま
り、ジエチルエーテルが穏やかに還流し始めた。更に2
時間室温で撹拌後、反応混合物を6時間還流し、氷浴で
冷やし、2Nの塩酸水溶液で加水分解した。有機層を分
け、水で、次に塩水で洗い、再び水で洗った後、無水硫
酸ナトリウムに通して乾燥させた。溶媒を蒸発後、残留
物をクーゲルロア(Kugelrohr)デバイスに通して減圧
下で蒸留し、無色液体として21.3gの3,4−ジオ
クチルチオフェンを得た。1 H−NMR(CDCl3):δ6.89(s,2H),
2.50(t,J=7.0Hz,4H),1.64−
1.58(m,4H), 1.
40−1.28(m,20H),0.89(t,
J=6.5Hz,6H)13 C−NMR(CDCl3):δ142.1,119.
8,31.9,29.6(2C),29.5,29.
3,28.8,22.7,14.1
3,4-Dioctylthiophene: Dichloro [1,3-bis (diphenylphosphino) propane] dissolved in 200 ml of anhydrous diethyl ether in a 500 ml round bottom flask cooled in an ice bath in an inert atmosphere. A mixture of nickel (II) (0.2 g) and 3,4-dibromothiophene (20.16 g, 0.0833 mol) was stirred well while adding 2M octylmagnesium bromide (100 ml, 0.2 mol). Anhydrous diethyl ether solution was added. The nickel complex immediately reacted with the Grignard reagent and the resulting reaction mixture was allowed to warm to room temperature. The exothermic reaction started within 30 minutes and the diethyl ether began to reflux gently. 2 more
After stirring for an hour at room temperature, the reaction mixture was refluxed for 6 hours, cooled in an ice bath and hydrolyzed with 2N aqueous hydrochloric acid. The organic layer was separated, washed with water, then with brine, again with water, and then dried over anhydrous sodium sulfate. After evaporation of the solvent, the residue was distilled under reduced pressure through a Kugelrohr device to give 21.3 g of 3,4-dioctylthiophene as a colorless liquid. 1 H-NMR (CDCl 3 ): δ 6.89 (s, 2H),
2.50 (t, J = 7.0 Hz, 4H), 1.64-
1.58 (m, 4H), 1.
40-1.28 (m, 20H), 0.89 (t,
J = 6.5 Hz, 6 H) 13 C-NMR (CDCl 3 ): δ142.1, 119.
8, 31.9, 29.6 (2C), 29.5, 29.
3,28.8, 22.7, 14.1

【0050】2,5−ジブロモ−3,4−ジオクチルチ
オフェン:100mlの丸底フラスコ中で、30mlの
ジクロロメタンと10mlの酢酸との混合物に溶解した
3,4−ジオクチルチオフェン(3.6g、11.7m
mol)の溶液を良く撹拌しながら、これにN−ブロモ
スクシンイミド(4.6g、25.7mmol)を加え
た。薄層クロマトグラフ法により反応の様子を観察した
ところ、約35分で完了した。この混合物を160ml
のジクロロメタンで希釈し、濾過してスクシンイミドを
除いた。濾液を2Nの水酸化ナトリウム水溶液で洗い、
次に水で2回洗った(2×100ml)。無水硫酸ナト
リウムで乾燥後溶媒を除き、淡黄色の液体として5.4
gの2,5−ジブロモ−3,4−ジオクチルチオフェン
を得た。1 H−NMR(CDCl3):δ2.50(t,J=7.
0Hz,4H),1.52−1.28(m,24H),
0.89(t,J=6.5Hz,6H)
2,5-Dibromo-3,4-dioctylthiophene: In a 100 ml round bottom flask, 3,4-dioctylthiophene (3.6 g, 11.g) dissolved in a mixture of 30 ml dichloromethane and 10 ml acetic acid. 7 m
N-bromosuccinimide (4.6 g, 25.7 mmol) was added to this while thoroughly stirring the solution of (mol). When the reaction state was observed by thin layer chromatography, it was completed in about 35 minutes. 160 ml of this mixture
Of dichloromethane and filtered to remove succinimide. Wash the filtrate with 2N aqueous sodium hydroxide,
It was then washed twice with water (2 x 100 ml). After drying over anhydrous sodium sulfate, the solvent was removed to obtain 5.4 as a pale yellow liquid.
g of 2,5-dibromo-3,4-dioctylthiophene was obtained. 1 H-NMR (CDCl 3 ): δ2.50 (t, J = 7.
0Hz, 4H), 1.52-1.28 (m, 24H),
0.89 (t, J = 6.5Hz, 6H)

【0051】2,5−ビス(2−チエニル)−3,4−
ジオクチルチオフェン:不活性雰囲気中の乾燥箱の中、
250mlの丸底フラスコ中で、無水テトラヒドロフラ
ン(50ml)に溶解した、2,5−ジブロモ−3,4
−ジオクチルチオフェン(4.2g、9.0mmol)
と、2−(トリブチルスズ)チオフェン(7.4g、1
9.8mmol)との混合物に、Pd(PPh32Cl
2(0.15g,0.2mmol)を加えた。次にこの
混合物を12時間還流し、溶媒を留去した。こうして得
られた粗生成物を、溶離液としてヘキサンを用いたシリ
カゲル上でのフラッシュ(flash)クロマトグラフ法に
より精製し、3.1gの2,5−ビス(2−チエニル)
−3,4−ジオクチルチオフェンを得た。1 H−NMR(CDCl3):δ7.31(dd,J=
3.2,0.5Hz,2H),7.13(dd,J=
2.2,0.5Hz,2H),7.06(dd,J=
2.2,4.5Hz, 2
H),2.68(dd,J=7.6,7.6Hz,
4H),1.59−1.53
(m,4H),1.42−1.27(m,20H),
0.91(t,J=6.5Hz,6H)
2,5-bis (2-thienyl) -3,4-
Dioctylthiophene: In a dry box in an inert atmosphere,
2,5-dibromo-3,4 dissolved in anhydrous tetrahydrofuran (50 ml) in a 250 ml round bottom flask.
-Dioctylthiophene (4.2 g, 9.0 mmol)
And 2- (tributyltin) thiophene (7.4 g, 1
9.8 mmol) and Pd (PPh 3 ) 2 Cl
2 (0.15 g, 0.2 mmol) was added. The mixture was then refluxed for 12 hours and the solvent was evaporated. The crude product thus obtained was purified by flash chromatography on silica gel using hexane as the eluent to give 3.1 g of 2,5-bis (2-thienyl).
-3,4-Dioctylthiophene was obtained. 1 H-NMR (CDCl 3 ): δ7.31 (dd, J =
3.2, 0.5 Hz, 2H), 7.13 (dd, J =
2.2, 0.5Hz, 2H), 7.06 (dd, J =
2.2, 4.5Hz, 2
H), 2.68 (dd, J = 7.6, 7.6 Hz,
4H), 1.59-1.53
(M, 4H), 1.42-1.27 (m, 20H),
0.91 (t, J = 6.5Hz, 6H)

【0052】2,5−ビス(5−ブロモ−2−チエニ
ル)−3,4−ジオクチルチオフェン:氷浴で冷却した
100mlの丸底フラスコ中で、N,N−ジメチルホル
ムアミド(30ml)に溶解した2,5−ビス(2−チ
エニル)−3,4−ジオクチルチオフェン(3.6g、
7.6mmol)の溶液を良く撹拌しながら、これにN
−ブロモスクシンイミド(2.8g、15.7mmo
l)を加えた。添加後、混合物がゆっくりと室温まで暖
まるに任せた。薄層クロマトグラフ法で反応を観察した
ところ、3時間後には反応は止まった。得られた混合物
をヘキサン(170ml)で希釈し、100mlの水で
3回洗った。有機層を分け、無水硫酸ナトリウムで乾燥
し、真空蒸発させて粗生成物を得た。これを、溶離液と
してヘキサンを用いたシリカゲル上のフラッシュクロマ
トグラフ法により精製し、2.5gの2,5−ビス(5
−ブロモ−2−チエニル)−3,4−ジオクチルチオフ
ェンを得た。1 H−NMR(CDCl3):δ7.06(d,J=3.
5Hz,2H),6.86(d,J=3.5Hz,2
H),2.62(dd, J=
7.3,7.3Hz,4H),1.55−1.49
(m,4H),1.41−1.28(m,20H),
0.89(t,J=6.5Hz,6H)13 C−NMR(CDCl3);δ140.6,137.
4,130.2,129.
3,126.2,112.0,31.9,30.8,
29.8,29.2(2C),
28.1,22.7, 14.
2,5-Bis (5-bromo-2-thienyl) -3,4-dioctylthiophene: dissolved in N, N-dimethylformamide (30 ml) in a 100 ml round bottom flask cooled in an ice bath. 2,5-bis (2-thienyl) -3,4-dioctylthiophene (3.6 g,
7.6 mmol) solution with good stirring and
-Bromosuccinimide (2.8 g, 15.7 mmo
l) was added. After the addition, the mixture was allowed to slowly warm to room temperature. When the reaction was observed by thin layer chromatography, the reaction stopped after 3 hours. The resulting mixture was diluted with hexane (170 ml) and washed 3 times with 100 ml water. The organic layer was separated, dried over anhydrous sodium sulfate and evaporated in vacuo to give a crude product. This was purified by flash chromatography on silica gel using hexane as the eluent, 2.5 g of 2,5-bis (5
-Bromo-2-thienyl) -3,4-dioctylthiophene was obtained. 1 H-NMR (CDCl 3 ): δ 7.06 (d, J = 3.
5Hz, 2H), 6.86 (d, J = 3.5Hz, 2
H), 2.62 (dd, J =
7.3, 7.3 Hz, 4H), 1.55-1.49
(M, 4H), 1.41-1.28 (m, 20H),
0.89 (t, J = 6.5 Hz, 6H) 13 C-NMR (CDCl 3 ); δ 140.6, 137.
4, 130.2, 129.
3,126.2, 112.0, 31.9, 30.8,
29.8, 29.2 (2C),
28.1, 22.7, 14.
Two

【0053】ポリ[2,5−ビス(2−チエニル)−
3,4−ジオクチルチオフェン](2):無水テトラヒ
ドロフラン(10ml)に溶解した2,5−ビス(5−
ブロモ−2−チエニル)−3,4−ジオクチルチオフェ
ン(2.46g、3.9mmol)の溶液に、調製直後
のレイケZn(0.28g,4.29mmol)を無水
テトラヒドロフラン(20ml)に懸濁したものを良く
撹拌しながら、不活性雰囲気中で滴下して加え、この混
合物を45分間室温で反応させた。次に、無水テトラヒ
ドロフラン(35ml)に懸濁させたNi(dppe)
Cl2(0.021g、0.04mmol)を注意しな
がら加えた。反応混合物を60℃で3時間加熱後、2N
の塩酸−メタノール溶液中に注いだ。沈殿したポリチオ
フェン生成物を濾過し、70mlの熱テトラヒドロフラ
ンに再溶解し、2Nのアンモニア−メタノール溶液から
沈殿させた。この操作を2度繰り返し、酸とオリゴマー
とを除いた。真空中、室温で乾燥後、1.6gの、Mw
41,900、Mn11,800K、Tm180℃のポ
リ[2,5−ビス(2−チエニル)−3,4−ジオクチ
ルチオフェン](2)を得た。1 H−NMR(CDCl3):δ7.30,7.13,
7.05,2.73,1.59,1.45,1.29,
0.8913 C−NMR(CDCl3):δ140.4,136.
7,135.1,129.
8,126.4,123.9,31.9,30.7,
29.9,29.3,28.
3,22.7,14.2
Poly [2,5-bis (2-thienyl)-
3,4-Dioctylthiophene] (2): 2,5-bis (5- dissolved in anhydrous tetrahydrofuran (10 ml)
In a solution of bromo-2-thienyl) -3,4-dioctylthiophene (2.46 g, 3.9 mmol), Reike Zn (0.28 g, 4.29 mmol) immediately after preparation was suspended in anhydrous tetrahydrofuran (20 ml). One was added dropwise with good stirring in an inert atmosphere and the mixture was allowed to react for 45 minutes at room temperature. Next, Ni (dppe) suspended in anhydrous tetrahydrofuran (35 ml)
Cl 2 (0.021 g, 0.04 mmol) was added carefully. After heating the reaction mixture at 60 ° C. for 3 hours, 2N
Of hydrochloric acid-methanol solution. The precipitated polythiophene product was filtered, redissolved in 70 ml hot tetrahydrofuran and precipitated from a 2N ammonia-methanol solution. This operation was repeated twice to remove the acid and the oligomer. After drying in vacuum at room temperature, 1.6 g of M w
41,900, to give M n 11,800K, Tm180 ℃ of poly [2,5-bis (2-thienyl) -3,4-dioctyl thiophene] (2). 1 H-NMR (CDCl 3 ): δ7.30, 7.13,
7.05, 2.73, 1.59, 1.45, 1.29,
0.89 13 C-NMR (CDCl 3 ): δ140.4,136.
7, 135.1, 129.
8, 126.4, 123.9, 31.9, 30.7,
29.9, 29.3, 28.
3, 22.7, 14.2

【0054】図1及び図3にそれぞれ図示した、ひとつ
はボトムコンタクト型もうひとつはトップコンタクト型
配置の2つの供試デバイスを、前述の製造手順に従い上
記のポリチオフェンを用いて製造した。デバイスは、評
価の前に真空中80℃で20時間乾燥させた。各デバイ
スに対し5個以上のトランジスタから得た平均特性値を
次にまとめた。 (1)ボトムコンタクト型デバイス(W=1,000μ
m、L=10μm) 移動度:3.4×10-4〜1.3×10-3cm2/V.
sec 初期電流オン/オフ比:0.8〜1.3×104 5日後の電流オン/オフ比:5.0〜7.0×103 (2)トップコンタクト型デバイス(W=5,000μ
m、L=60μm) 移動度:1.3〜3.1×10-3cm2/V.sec 初期電流オン/オフ比:1.5〜2.6×105 5日後の電流オン/オフ比:1.1〜2.0×105 30日後の電流オン/オフ比:8.0〜9.5×104
Two test devices, one of which is a bottom contact type and the other of which is a top contact type, shown in FIGS. 1 and 3, respectively, were manufactured using the above polythiophene according to the manufacturing procedure described above. The device was dried at 80 ° C. in vacuum for 20 hours before evaluation. The average characteristic values obtained from 5 or more transistors for each device are summarized below. (1) Bottom contact device (W = 1,000μ
m, L = 10 μm) Mobility: 3.4 × 10 −4 to 1.3 × 10 −3 cm 2 / V.
sec Initial current on / off ratio: 0.8 to 1.3 × 10 4 Current on / off ratio after 5 days: 5.0 to 7.0 × 10 3 (2) Top contact type device (W = 5,000 μ)
m, L = 60 μm) Mobility: 1.3 to 3.1 × 10 −3 cm 2 / V. sec Initial current on / off ratio: 1.5 to 2.6 × 10 5 Current on / off ratio after 5 days: 1.1 to 2.0 × 10 5 Current on / off ratio after 30 days: 8.0 9.5 x 10 4

【0055】初期電流オン/オフ比が大きく、時間を経
ても電流オン/オフ比の低下が遅いことから、本発明の
実施の形態のポリチオフェン半導体層が安定であること
が示された。
Since the initial current on / off ratio is large and the current on / off ratio decreases slowly over time, it is shown that the polythiophene semiconductor layer of the embodiment of the present invention is stable.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明によるポリチオフェン類の実施の形態
を用いた薄膜トランジスタ構造体の概略図である。
FIG. 1 is a schematic view of a thin film transistor structure using an embodiment of polythiophenes according to the present invention.

【図2】 本発明によるポリチオフェン類の実施の形態
を用いた別の薄膜トランジスタ構造体の概略図である。
FIG. 2 is a schematic diagram of another thin film transistor structure using an embodiment of polythiophenes according to the present invention.

【図3】 本発明によるポリチオフェン類の実施の形態
を用いた別の薄膜トランジスタ構造体の概略図である。
FIG. 3 is a schematic diagram of another thin film transistor structure using an embodiment of polythiophenes according to the present invention.

【図4】 本発明によるポリチオフェン類の実施の形態
を用いた別の薄膜トランジスタ構造体の概略図である。
FIG. 4 is a schematic diagram of another thin film transistor structure using an embodiment of polythiophenes according to the present invention.

【符号の説明】[Explanation of symbols]

1 薄膜トランジスタ構造体、12 ポリチオフェン半
導体層、14 絶縁性誘電体層、16 基板、18 ゲ
ート電極、20 ソース電極、22 ドレイン電極、3
0 薄膜トランジスタ構造体、32 ポリチオフェン半
導体層、34絶縁性誘電体層、36 基板、38 ゲー
ト電極、40 ソース電極、42 ドレイン電極、50
薄膜トランジスタ構造体、52 ポリチオフェン半導
体層、54 酸化ケイ素誘電体層、56 シリコンウエ
ハ、60 ソース電極、62ドレイン電極、70 薄膜
トランジスタ構造体、72 ポリチオフェン半導体層、
74 絶縁性誘電体層、76 基板、78 ゲート電
極、80 ソース電極、82 ドレイン電極。
1 thin film transistor structure, 12 polythiophene semiconductor layer, 14 insulating dielectric layer, 16 substrate, 18 gate electrode, 20 source electrode, 22 drain electrode, 3
0 thin film transistor structure, 32 polythiophene semiconductor layer, 34 insulating dielectric layer, 36 substrate, 38 gate electrode, 40 source electrode, 42 drain electrode, 50
Thin film transistor structure, 52 Polythiophene semiconductor layer, 54 Silicon oxide dielectric layer, 56 Silicon wafer, 60 Source electrode, 62 Drain electrode, 70 Thin film transistor structure, 72 Polythiophene semiconductor layer,
74 insulating dielectric layer, 76 substrate, 78 gate electrode, 80 source electrode, 82 drain electrode.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 イリアン ウー カナダ オンタリオ ミッシソーガ ボナ ー ロード 2360 アパートメント 1004 (72)発明者 ダサラオ ケイ ムルチ カナダ オンタリオ ミッシソーガ セイ ント ローレント コート 3667 Fターム(参考) 4J032 BA03 BA04 BA05 BA25 BB06 BC02 CA02 CA03 CA04 CA12 CA14 CB04 CB05 CD02 CD08 CE03 CG01 5F110 AA05 BB01 BB03 BB05 BB10 CC03 CC05 CC07 DD01 DD02 DD05 EE01 EE02 EE03 EE04 EE07 EE08 EE42 EE43 EE44 FF01 FF02 FF03 FF07 FF23 GG05 GG06 GG25 GG28 GG29 GG42 HK01 HK02 HK03 HK07 HK32 QQ06    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Irian Wu             Canada Ontario Mississauga Bona             ー Road 2360 Apartment 1004 (72) Inventor Dasarao Kei Murchi             Canada Ontario Mississauga Say             Troon Rent Court 3667 F-term (reference) 4J032 BA03 BA04 BA05 BA25 BB06                       BC02 CA02 CA03 CA04 CA12                       CA14 CB04 CB05 CD02 CD08                       CE03 CG01                 5F110 AA05 BB01 BB03 BB05 BB10                       CC03 CC05 CC07 DD01 DD02                       DD05 EE01 EE02 EE03 EE04                       EE07 EE08 EE42 EE43 EE44                       FF01 FF02 FF03 FF07 FF23                       GG05 GG06 GG25 GG28 GG29                       GG42 HK01 HK02 HK03 HK07                       HK32 QQ06

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 下記化1の構造式(I)を持つポリチオ
フェンを含む電子的デバイスであって、 【化1】 式中、R及びR’は側鎖であり、Aは二価結合基であ
り、x及びyは非置換チエニレン単位又はセグメントの
数を示し、zは0又は1であり、xとyとの和は0より
大きく、mはセグメントの数を示し、nは重合度を示す
ことを特徴とする電子的デバイス。
1. An electronic device comprising polythiophene having the structural formula (I) of the following formula: In the formula, R and R ′ are side chains, A is a divalent bonding group, x and y represent the number of unsubstituted thienylene units or segments, z is 0 or 1, and x and y are An electronic device, wherein the sum is greater than 0, m indicates the number of segments, and n indicates the degree of polymerization.
【請求項2】 請求項1に記載の電子的デバイスであっ
て、R及びR’はそれぞれ独立して、アルキル及び置換
アルキルより選ばれ、Aはアリーレンであることを特徴
とする電子的デバイス。
2. The electronic device according to claim 1, wherein R and R ′ are each independently selected from alkyl and substituted alkyl, and A is arylene.
【請求項3】 請求項1に記載の電子的デバイスであっ
て、R及びR’はそれぞれ独立して、アルキルとアルキ
ル誘導体とから成る群より選ばれるものであって、前記
アルキル誘導体は、アルコキシアルキル、シロキシ置換
アルキル、パーフルオロアルキルであるパーハロアルキ
ル、及びポリエーテルであり、Aは、フェニレン、ビフ
ェニレン、フェナントレニレン、ジヒドロフェナントレ
ニレン、フルオレニレン、オリゴアリーレン、メチレ
ン、ポリメチレン、ジアルキルメチレン、ジオキシアル
キレン、ジオキシアリーレン、及びオリゴエチレンオキ
シドである、アリーレンから成る群より選ばれることを
特徴とする電子的デバイス。
3. The electronic device according to claim 1, wherein R and R ′ are each independently selected from the group consisting of alkyl and alkyl derivatives, and the alkyl derivative is alkoxy. Alkyl, siloxy substituted alkyl, perhaloalkyl which is a perfluoroalkyl, and polyether, A is phenylene, biphenylene, phenanthrenylene, dihydrophenanthrenylene, fluorenylene, oligoarylene, methylene, polymethylene, dialkylmethylene, An electronic device selected from the group consisting of arylene, which is dioxyalkylene, dioxyarylene, and oligoethylene oxide.
【請求項4】 請求項1に記載の電子的デバイスであっ
て、Aは、炭素数約6〜約40のアリーレンであること
を特徴とする電子的デバイス。
4. The electronic device according to claim 1, wherein A is arylene having about 6 to about 40 carbon atoms.
【請求項5】 請求項1に記載の電子的デバイスであっ
て、nは約7〜約5,000であり、いずれもポリスチ
レン標準を用いたゲル浸透クロマトグラフ法より求め
た、ポリチオフェンの数平均分子量(Mn)は約2,0
00〜約10万であり、重量平均分子量(Mw)は約
4,000〜約50万であることを特徴とする電子的デ
バイス。
5. The electronic device according to claim 1, wherein n is about 7 to about 5,000, and each has a number average of polythiophene determined by gel permeation chromatography using a polystyrene standard. The molecular weight (M n ) is about 2,0
An electronic device having a weight average molecular weight ( Mw ) of about 4,000 to about 500,000.
【請求項6】 薄膜トランジスタであって、基板と、ゲ
ート電極と、ゲート誘電体層と、ソース電極及びドレイ
ン電極と、前記ソース及びドレイン電極と前記ゲート誘
電体層とに接した半導体層と、を含み、前記半導体層は
請求項1に記載のポリチオフェンを含むことを特徴とす
る薄膜トランジスタ。
6. A thin film transistor, comprising a substrate, a gate electrode, a gate dielectric layer, a source electrode and a drain electrode, and a semiconductor layer in contact with the source and drain electrodes and the gate dielectric layer. A thin film transistor, comprising: the semiconductor layer comprising the polythiophene according to claim 1.
【請求項7】 薄膜トランジスタであって、下記化2の
構造式(1)〜(14)を持つポリチオフェン類から成
る群より選ばれるポリチオフェンを含むことを特徴とす
る薄膜トランジスタ。 【化2】
7. A thin film transistor, comprising a polythiophene selected from the group consisting of polythiophenes having structural formulas (1) to (14) shown below. [Chemical 2]
【請求項8】 請求項7に記載の薄膜トランジスタであ
って、式中、nは約5〜約5,000であることを特徴
とする薄膜トランジスタ。
8. The thin film transistor according to claim 7, wherein n is from about 5 to about 5,000.
【請求項9】 請求項1に記載される電子的デバイスで
あって、式中、x、y、及びmは1〜3であり、zは0
又は1であり、前記電子的デバイスは薄膜トランジスタ
であることを特徴とする電子的デバイス。
9. The electronic device according to claim 1, wherein x, y, and m are 1 to 3 and z is 0.
Or 1, and the electronic device is a thin film transistor.
JP2003006210A 2002-01-11 2003-01-14 Devices using polythiophenes Expired - Lifetime JP4530616B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/042,356 2002-01-11
US10/042,356 US6621099B2 (en) 2002-01-11 2002-01-11 Polythiophenes and devices thereof

Publications (3)

Publication Number Publication Date
JP2003264327A true JP2003264327A (en) 2003-09-19
JP2003264327A5 JP2003264327A5 (en) 2006-02-23
JP4530616B2 JP4530616B2 (en) 2010-08-25

Family

ID=21921442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003006210A Expired - Lifetime JP4530616B2 (en) 2002-01-11 2003-01-14 Devices using polythiophenes

Country Status (4)

Country Link
US (1) US6621099B2 (en)
EP (1) EP1329474B1 (en)
JP (1) JP4530616B2 (en)
DE (1) DE60308738T2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003261655A (en) * 2002-01-11 2003-09-19 Xerox Corp Polythiophenes and device using these
JP2005268751A (en) * 2004-03-17 2005-09-29 Lucent Technol Inc P-type organic field-effect transistor having fluorinated channel
JP2006008679A (en) * 2004-06-10 2006-01-12 Xerox Corp Process for preparing small-molecular thiophene compound
JP2006036755A (en) * 2004-06-10 2006-02-09 Xerox Corp Device with small molecular thiophene compound having divalent linkage
JP2006225461A (en) * 2005-02-16 2006-08-31 Sumitomo Chemical Co Ltd Polythiophene
JP2006261486A (en) * 2005-03-18 2006-09-28 Ricoh Co Ltd Organic thin film transistor and image display device employing it
JP2007534815A (en) * 2004-04-26 2007-11-29 メルク パテント ゲーエムベーハー Electroluminescent polymers and uses thereof
JP2009105413A (en) * 2004-12-08 2009-05-14 Samsung Sdi Co Ltd Method for forming conductive pattern, and thin film transistor using the same and method for manufacturing the same
JP2010157769A (en) * 2003-10-01 2010-07-15 Spansion Llc Method of processing organic memory device
KR20110021275A (en) * 2009-08-25 2011-03-04 삼성전자주식회사 Organic semiconductor polymer, and transistor including the same
JP5692228B2 (en) * 2010-07-02 2015-04-01 コニカミノルタ株式会社 Organic photoelectric conversion device and solar cell using the same

Families Citing this family (84)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60124702T2 (en) * 2001-09-04 2007-12-06 Sony Deutschland Gmbh Adjusted light-emitting polymer blends, film and Vorrichung based on these mixtures
US6949762B2 (en) * 2002-01-11 2005-09-27 Xerox Corporation Polythiophenes and devices thereof
EP1498456A4 (en) * 2002-04-22 2009-06-10 Konica Corp Organic semiconductor composition, organic semiconductor element, and process for producing the same
US6821811B2 (en) * 2002-08-02 2004-11-23 Semiconductor Energy Laboratory Co., Ltd. Organic thin film transistor and method of manufacturing the same, and semiconductor device having the organic thin film transistor
US6890868B2 (en) * 2002-10-17 2005-05-10 Xerox Corporation Process for depositing gelable composition that includes dissolving gelable composition in liquid with agitating to disrupt gelling
US6803262B2 (en) * 2002-10-17 2004-10-12 Xerox Corporation Process using self-organizable polymer
US7220985B2 (en) * 2002-12-09 2007-05-22 Spansion, Llc Self aligned memory element and wordline
GB0229191D0 (en) * 2002-12-14 2003-01-22 Plastic Logic Ltd Embossing of polymer devices
EP1434281A3 (en) * 2002-12-26 2007-10-24 Konica Minolta Holdings, Inc. Manufacturing method of thin-film transistor, thin-film transistor sheet, and electric circuit
US7973313B2 (en) * 2003-02-24 2011-07-05 Semiconductor Energy Laboratory Co., Ltd. Thin film integrated circuit device, IC label, container comprising the thin film integrated circuit, manufacturing method of the thin film integrated circuit device, manufacturing method of the container, and management method of product having the container
US6855951B2 (en) * 2003-03-19 2005-02-15 Xerox Corporation Fluorinated polythiophenes and devices thereof
US6897284B2 (en) * 2003-03-19 2005-05-24 Xerox Corporation Polythiophenes and devices thereof
DE10337346A1 (en) 2003-08-12 2005-03-31 Covion Organic Semiconductors Gmbh Conjugated polymers containing dihydrophenanthrene units and their use
WO2005020342A1 (en) * 2003-08-22 2005-03-03 Matsushita Electric Industrial Co., Ltd. Vertical organic fet and its manufacturing method
US7169883B2 (en) * 2003-08-22 2007-01-30 Xerox Corporation Polymers
JPWO2005022660A1 (en) * 2003-08-29 2006-10-26 松下電器産業株式会社 Organic semiconductor film, electronic device using the same, and manufacturing method thereof
KR101007787B1 (en) * 2003-12-08 2011-01-14 삼성전자주식회사 Organic Semiconductor Polymer for Organic Thin Film Transistor, Containing Quinoxaline Ring in the Backbone Chain
US7768405B2 (en) * 2003-12-12 2010-08-03 Semiconductor Energy Laboratory Co., Ltd Semiconductor device and manufacturing method thereof
KR101137797B1 (en) 2003-12-15 2012-04-20 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Method for manufacturing thin film integrated circuit device, noncontact thin film integrated circuit device and method for manufacturing the same, and idtag and coin including the noncontact thin film integrated circuit device
WO2005070992A2 (en) * 2004-01-27 2005-08-04 Canon Kabushiki Kaisha Conjugated thiophene compound, conprising perfluorinated and alkylated sidechains, conductive organic thin film containing the compound, and field-effect type organic transistor employing the thin film
TWI228833B (en) * 2004-05-04 2005-03-01 Ind Tech Res Inst Method for enhancing the electrical characteristics of organic electronic devices
GB0410921D0 (en) * 2004-05-14 2004-06-16 Plastic Logic Ltd Self-aligned active layer island
EP1751166B1 (en) 2004-05-18 2009-10-28 MERCK PATENT GmbH Mono-, oligo- and polythieno[3,2-b]thiophenes
JP2008504370A (en) * 2004-06-09 2008-02-14 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング Polymerizable thieno [3,2-b] thiophenes
US7312469B2 (en) * 2004-06-10 2007-12-25 Xerox Corporation Device with small molecular thiophene compound
KR101069519B1 (en) * 2004-07-08 2011-09-30 삼성전자주식회사 Alternating Organic Semiconductor Copolymers Containing Oligothiophene and n-Type Heteroaromatic Units in the Backbone Chain
US7105375B2 (en) * 2004-07-30 2006-09-12 Xerox Corporation Reverse printing
KR100691319B1 (en) * 2004-09-15 2007-03-12 엘지.필립스 엘시디 주식회사 organic thin film transistor and method of fabricating the same
US7270694B2 (en) 2004-10-05 2007-09-18 Xerox Corporation Stabilized silver nanoparticles and their use
CN100345888C (en) * 2004-11-01 2007-10-31 中国科学院化学研究所 Branch chain conjugated polythiofuran derivative material and its preparation method
US7170093B2 (en) * 2004-11-05 2007-01-30 Xerox Corporation Dielectric materials for electronic devices
KR100603397B1 (en) * 2004-11-18 2006-07-20 삼성에스디아이 주식회사 Organic thin film transistor and flat panel display device therewith
KR20060070716A (en) * 2004-12-21 2006-06-26 한국전자통신연구원 Organic memory device and method for fabricating the same
US7619242B2 (en) * 2005-02-25 2009-11-17 Xerox Corporation Celluloses and devices thereof
US7321021B2 (en) * 2005-03-22 2008-01-22 Xerox Corporation Removing impurities from polythiophene
US8089062B2 (en) * 2005-03-23 2012-01-03 Xerox Corporation Wax encapsulated electronic devices
GB2424759A (en) * 2005-04-01 2006-10-04 Seiko Epson Corp Inkjet deposition of polythiophene semiconductor material dissolved in halogenated aromatic solvents
US20060231908A1 (en) * 2005-04-13 2006-10-19 Xerox Corporation Multilayer gate dielectric
KR101102158B1 (en) * 2005-05-11 2012-01-02 삼성전자주식회사 Novel Organic Polymer Semiconductor, Method for forming Organic Polymer Semiconductor Thin Film and Organic Thin Film Transistor using the Same
US7994509B2 (en) * 2005-11-01 2011-08-09 Hewlett-Packard Development Company, L.P. Structure and method for thin film device with stranded conductor
US7341893B2 (en) * 2005-06-02 2008-03-11 Hewlett-Packard Development Company, L.P. Structure and method for thin film device
US7705346B2 (en) * 2005-06-06 2010-04-27 Xerox Corporation Barrier layer for an organic electronic device
US9024298B2 (en) * 2005-07-26 2015-05-05 Xerox Corporation Encapsulation layer for electronic devices
JP2009503233A (en) * 2005-08-01 2009-01-29 プレックストロニクス インコーポレーティッド Potential doping of conducting polymers
JP4860980B2 (en) * 2005-10-20 2012-01-25 ローム株式会社 Motor drive circuit and disk device using the same
US7314908B2 (en) * 2005-11-18 2008-01-01 Xerox Corporation Polythiophene processes
US7425723B2 (en) * 2005-12-21 2008-09-16 Xerox Corporation Organic thin-film transistors
US7632703B2 (en) * 2005-12-22 2009-12-15 Xerox Corporation Organic thin-film transistors
US7345303B2 (en) * 2005-12-22 2008-03-18 Xerox Corporation Organic thin-film transistors
US8637138B2 (en) * 2005-12-27 2014-01-28 Palo Alto Research Center Incorporated Layered structures on thin substrates
US7816146B2 (en) * 2005-12-27 2010-10-19 Palo Alto Research Center Incorporated Passive electronic devices
US7784173B2 (en) * 2005-12-27 2010-08-31 Palo Alto Research Center Incorporated Producing layered structures using printing
US20070188483A1 (en) * 2006-01-30 2007-08-16 The Samson Group, Llc Display apparatus for outdoor signs and related system of displays and methods of use
KR100772662B1 (en) 2006-02-01 2007-11-02 학교법인 포항공과대학교 Organic thin film transistor for increasing field-effect charge mobility and fabrication method thereof
KR101314931B1 (en) * 2006-10-30 2013-10-04 삼성전자주식회사 Organic Polymeric Semiconductor, Method for preparing thereof and Ambipolar Organic Thin Film Transistor using the same
US7816469B2 (en) * 2006-12-12 2010-10-19 Xerox Corporation Process for producing polymer nanodispersions
JP2008235780A (en) * 2007-03-23 2008-10-02 Toshiba Corp Thin film transistor and its manufacturing method
US7795614B2 (en) 2007-04-02 2010-09-14 Xerox Corporation Device with phase-separated dielectric structure
US7754510B2 (en) 2007-04-02 2010-07-13 Xerox Corporation Phase-separated dielectric structure fabrication process
US7652339B2 (en) * 2007-04-06 2010-01-26 Xerox Corporation Ambipolar transistor design
US20090142482A1 (en) * 2007-11-30 2009-06-04 Xerox Corporation Methods of Printing Conductive Silver Features
US20090148600A1 (en) * 2007-12-05 2009-06-11 Xerox Corporation Metal Nanoparticles Stabilized With a Carboxylic Acid-Organoamine Complex
US20090224011A1 (en) * 2008-03-07 2009-09-10 Sperbeck Bryanlee P Method of and an apparatus for assisting in putting on and taking off a wet suit used by water enthusiasts
US8298314B2 (en) * 2008-08-18 2012-10-30 Xerox Corporation Silver nanoparticles and process for producing same
US8419822B2 (en) * 2008-08-18 2013-04-16 Xerox Corporation Methods for producing carboxylic acid stabilized silver nanoparticles
US7821068B2 (en) 2008-08-18 2010-10-26 Xerox Corporation Device and process involving pinhole undercut area
KR20100064657A (en) * 2008-12-05 2010-06-15 엘지디스플레이 주식회사 Tft array substrate and method for fabricating of the same
US8834965B2 (en) 2009-02-12 2014-09-16 Xerox Corporation Organoamine stabilized silver nanoparticles and process for producing same
US7935278B2 (en) 2009-03-05 2011-05-03 Xerox Corporation Feature forming process using acid-containing composition
US20100233361A1 (en) * 2009-03-12 2010-09-16 Xerox Corporation Metal nanoparticle composition with improved adhesion
JP5770642B2 (en) * 2010-01-29 2015-08-26 日立化成株式会社 Compound having trimethylene structure, polymer compound containing unit having trimethylene structure, and reactive compound having trimethylene structure
US8366971B2 (en) 2010-04-02 2013-02-05 Xerox Corporation Additive for robust metal ink formulations
US9076975B2 (en) 2010-04-27 2015-07-07 Xerox Corporation Dielectric composition for thin-film transistors
US8147908B2 (en) 2010-06-09 2012-04-03 Xerox Corporation Increased throughput for large-scale production of low melt organoamine stabilized silver nano-particles
US8765025B2 (en) 2010-06-09 2014-07-01 Xerox Corporation Silver nanoparticle composition comprising solvents with specific hansen solubility parameters
US8158032B2 (en) 2010-08-20 2012-04-17 Xerox Corporation Silver nanoparticle ink composition for highly conductive features with enhanced mechanical properties
US8623447B2 (en) 2010-12-01 2014-01-07 Xerox Corporation Method for coating dielectric composition for fabricating thin-film transistors
US8586134B2 (en) 2011-05-06 2013-11-19 Xerox Corporation Method of fabricating high-resolution features
US20130029034A1 (en) 2011-07-28 2013-01-31 Xerox Corporation Process for producing silver nanoparticles
WO2013133688A1 (en) 2012-03-09 2013-09-12 Mimos Berhad Nanocomposite casting composition
US9525135B2 (en) 2013-01-28 2016-12-20 Xerox Corporation Thixotropic composition
KR101532310B1 (en) * 2013-02-18 2015-06-29 삼성전자주식회사 Two-Dimensional Material Stacked Flexible Photosensor
CN105304497B (en) * 2015-09-30 2021-05-14 京东方科技集团股份有限公司 Thin film transistor, array substrate and related manufacturing method
US11678562B2 (en) * 2019-08-27 2023-06-13 Phillips 66 Company Methods and systems of organic semiconducting polymers

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08508311A (en) * 1993-03-31 1996-09-03 シス バイオ インターナショナル Conductive polymer / nucleotide copolymer, method for producing the same and use thereof
JPH10190001A (en) * 1996-12-20 1998-07-21 Lucent Technol Inc Manufacture of organic thin film transistor
JP2000506914A (en) * 1996-03-06 2000-06-06 ビーエーエスエフ アクチェンゲゼルシャフト Substituted polythiophenes, their production and their use
JP2003261655A (en) * 2002-01-11 2003-09-19 Xerox Corp Polythiophenes and device using these

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2664430B1 (en) * 1990-07-04 1992-09-18 Centre Nat Rech Scient THIN FILM FIELD EFFECT TRANSISTOR WITH MIS STRUCTURE, IN WHICH THE INSULATION AND THE SEMICONDUCTOR ARE MADE OF ORGANIC MATERIALS.
US5619357A (en) 1995-06-06 1997-04-08 International Business Machines Corporation Flat panel display containing black matrix polymer
US5969376A (en) 1996-08-23 1999-10-19 Lucent Technologies Inc. Organic thin film transistor having a phthalocyanine semiconductor layer
US5777070A (en) 1997-10-23 1998-07-07 The Dow Chemical Company Process for preparing conjugated polymers
US6447668B1 (en) * 1998-07-09 2002-09-10 Acm Research, Inc. Methods and apparatus for end-point detection
NO314525B1 (en) * 1999-04-22 2003-03-31 Thin Film Electronics Asa Process for the preparation of organic semiconductor devices in thin film
GB0028867D0 (en) * 2000-11-28 2001-01-10 Avecia Ltd Field effect translators,methods for the manufacture thereof and materials therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08508311A (en) * 1993-03-31 1996-09-03 シス バイオ インターナショナル Conductive polymer / nucleotide copolymer, method for producing the same and use thereof
JP2000506914A (en) * 1996-03-06 2000-06-06 ビーエーエスエフ アクチェンゲゼルシャフト Substituted polythiophenes, their production and their use
JPH10190001A (en) * 1996-12-20 1998-07-21 Lucent Technol Inc Manufacture of organic thin film transistor
JP2003261655A (en) * 2002-01-11 2003-09-19 Xerox Corp Polythiophenes and device using these

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003261655A (en) * 2002-01-11 2003-09-19 Xerox Corp Polythiophenes and device using these
JP4520093B2 (en) * 2002-01-11 2010-08-04 ゼロックス コーポレイション Polythiophenes and devices using the same
JP2010157769A (en) * 2003-10-01 2010-07-15 Spansion Llc Method of processing organic memory device
JP2005268751A (en) * 2004-03-17 2005-09-29 Lucent Technol Inc P-type organic field-effect transistor having fluorinated channel
JP2007534815A (en) * 2004-04-26 2007-11-29 メルク パテント ゲーエムベーハー Electroluminescent polymers and uses thereof
KR101188157B1 (en) 2004-04-26 2012-10-05 메르크 파텐트 게엠베하 Electroluminescent polymers and the use thereof
JP2006036755A (en) * 2004-06-10 2006-02-09 Xerox Corp Device with small molecular thiophene compound having divalent linkage
JP2006008679A (en) * 2004-06-10 2006-01-12 Xerox Corp Process for preparing small-molecular thiophene compound
JP2009105413A (en) * 2004-12-08 2009-05-14 Samsung Sdi Co Ltd Method for forming conductive pattern, and thin film transistor using the same and method for manufacturing the same
JP2006225461A (en) * 2005-02-16 2006-08-31 Sumitomo Chemical Co Ltd Polythiophene
JP2006261486A (en) * 2005-03-18 2006-09-28 Ricoh Co Ltd Organic thin film transistor and image display device employing it
KR20110021275A (en) * 2009-08-25 2011-03-04 삼성전자주식회사 Organic semiconductor polymer, and transistor including the same
KR101644048B1 (en) 2009-08-25 2016-07-29 삼성전자 주식회사 Organic semiconductor polymer, and transistor including the same
JP5692228B2 (en) * 2010-07-02 2015-04-01 コニカミノルタ株式会社 Organic photoelectric conversion device and solar cell using the same

Also Published As

Publication number Publication date
US6621099B2 (en) 2003-09-16
DE60308738D1 (en) 2006-11-16
DE60308738T2 (en) 2007-01-18
JP4530616B2 (en) 2010-08-25
EP1329474A1 (en) 2003-07-23
EP1329474B1 (en) 2006-10-04
US20030136958A1 (en) 2003-07-24

Similar Documents

Publication Publication Date Title
JP4530616B2 (en) Devices using polythiophenes
JP4530613B2 (en) Polythiophenes and devices using the same
JP4530614B2 (en) Polythiophenes
JP4520093B2 (en) Polythiophenes and devices using the same
US6777529B2 (en) Polythiophenes and devices thereof
US7112649B2 (en) Polythiophenes and devices thereof
JP4584539B2 (en) Polythiophenes
US7049629B2 (en) Semiconductor polymers and devices thereof
US20040183068A1 (en) Fluorinated polythiophenes and devices thereof
US7449542B2 (en) Polymers
US20040186266A1 (en) Fluorinated polythiophenes and devices thereof
Liu et al. Ong

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060111

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100511

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100608

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4530616

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term