JP2003263980A - Pellet for positive electrode of alkali battery - Google Patents
Pellet for positive electrode of alkali batteryInfo
- Publication number
- JP2003263980A JP2003263980A JP2002066636A JP2002066636A JP2003263980A JP 2003263980 A JP2003263980 A JP 2003263980A JP 2002066636 A JP2002066636 A JP 2002066636A JP 2002066636 A JP2002066636 A JP 2002066636A JP 2003263980 A JP2003263980 A JP 2003263980A
- Authority
- JP
- Japan
- Prior art keywords
- positive electrode
- pellet
- powder
- content
- less
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y02E60/12—
Landscapes
- Primary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
【発明の詳細な説明】Detailed Description of the Invention
【0001】[0001]
【発明の属する技術分野】本発明は、アルカリ電池の正
極用ペレットに関する。TECHNICAL FIELD The present invention relates to a positive electrode pellet for an alkaline battery.
【0002】[0002]
【従来の技術】従来より、時計、計測機器、カメラ等に
装着されるアルカリ電池(通称ボタン電池)として酸化
銀電池が普及している。酸化銀電池は、正極として酸化
銀(Ag 2O)を活物質として用い、用途に応じてカーボ
ン、MnO2、NiOOH 、CoOOH 、AgNiO2、AgCoO2、CaO 、Mn
O 、HgO 、CdO 、CdS 、ポリテトラフルオロエチレン、
金属銀、グラファイト等が添加される。負極活物質とし
て亜鉛末、電解質としてアルカリ溶液、たとえば水酸化
カリウム(NaOH)や水酸化ナトリウム(KOH) などを用いて
構成されるものが一般的である。銀は高価な材料である
が、酸化銀電池は小型でも高容量が要求される場合の不
可欠な正極材料とされており、このためボタン電池の殆
どは酸化銀電池で構成されていると言っても過言ではな
い。2. Description of the Related Art Conventionally, in clocks, measuring instruments, cameras, etc.
Oxidized as an alkaline battery (commonly called a button battery) to be installed
Silver batteries are widespread. Silver oxide batteries are oxidized as the positive electrode
Silver (Ag 2O) as the active material, depending on the application
MnO2, NiOOH, CoOOH, AgNiO2, AgCoO2, CaO, Mn
O 2, HgO 2, CdO 2, CdS 2, polytetrafluoroethylene,
Metallic silver, graphite, etc. are added. As the negative electrode active material
Zinc powder, an alkaline solution as an electrolyte, such as hydroxide
With potassium (NaOH) or sodium hydroxide (KOH)
It is generally composed. Silver is an expensive material
However, silver oxide batteries are not suitable for high capacity even when they are small.
It is considered to be an essential positive electrode material, and as a result, most button batteries
It is no exaggeration to say that they are composed of silver oxide batteries.
Yes.
【0003】昨今、電子機器、時計などの電源用電池と
して一層の小型化、高容量化、長期信頼性のニーズが高
まっており、アルカリ電池の高性能化が望まれている。
しかしながら小型化、高容量化が進むにつれて、電池体
積中に占める正極合材の比率が高まり、自ずと電池一個
に占める正極体のコスト比率が高まっている。Recently, there is an increasing need for further miniaturization, higher capacity and long-term reliability as a battery for a power source of electronic devices, watches and the like, and there is a demand for higher performance of alkaline batteries.
However, as miniaturization and higher capacity have progressed, the ratio of the positive electrode mixture material in the battery volume has increased, and naturally the cost ratio of the positive electrode body in one battery has increased.
【0004】この正極体のなかで最もコストを多く占め
るのは酸化銀である。このため、正極ペレット中の銀含
量を少なくすることは不変の要求となっている。同時に
正極ペレットの導電率は可能な限り高い方が望ましい
が、正極活物質に酸化銀を用いる場合においては、その
ままではペレットの導電性がほとんどないため、たとえ
ばペレットの一部を還元して金属銀を析出させる方法
や、黒鉛などの導電剤を添加する方法が採られている。Among the positive electrode bodies, silver oxide occupies the most cost. Therefore, there is a constant demand for reducing the silver content in the positive electrode pellets. At the same time, it is desirable that the conductivity of the positive electrode pellet is as high as possible. However, when silver oxide is used as the positive electrode active material, since the pellet has almost no conductivity as it is, for example, a part of the pellet is reduced to form metallic silver. And a method of adding a conductive agent such as graphite.
【0005】[0005]
【発明が解決しようとする課題】しかしながら酸化銀の
一部を金属銀として析出させる方法では金属銀が活物質
として機能しないので、内部抵抗の問題が解決されても
放電容量の低下をもたらすことになる。また、黒鉛など
の導電剤を添加して内部抵抗を下げる場合には、黒鉛が
活物質として機能しないばかりか、比重が極小であるた
め、正極合材中でかなりの体積を占めることになり、同
じく内部抵抗の問題が解決されても、正極活物質の占め
る割合が減少し、電池の放電容量が減少してしまう。こ
の為、この様な方法によらない導電率の高い正極ペレッ
トが望まれていた。However, in the method of precipitating a part of silver oxide as metallic silver, metallic silver does not function as an active material, so that even if the problem of internal resistance is solved, the discharge capacity is lowered. Become. Further, when a conductive agent such as graphite is added to reduce the internal resistance, not only graphite does not function as an active material, but also the specific gravity is extremely small, so that it occupies a considerable volume in the positive electrode mixture, Similarly, even if the problem of internal resistance is solved, the proportion of the positive electrode active material decreases, and the discharge capacity of the battery decreases. For this reason, there has been a demand for a positive electrode pellet having a high electric conductivity which does not depend on such a method.
【0006】また、長期信頼性については、実電池にお
いて3 年〜5 年以上といった寿命が求められる為、正極
ペレットにおいても、貯蔵による電池特性の劣化が少な
い事が必要である。As for long-term reliability, since the life of an actual battery is required to be 3 to 5 years or more, it is necessary for the positive electrode pellet to have little deterioration in battery characteristics due to storage.
【0007】更に、正極ペレット製造時には秤量作業や
充填作業は不可欠である為、ペレットの構成物質である
正極活物質粉体の取り扱い易さ、すなわち粉塵の発生が
少なく、充填性に優れた粉体特性を持った活物質を使用
する事が必要であった。Further, since the weighing work and the filling work are indispensable at the time of manufacturing the positive electrode pellets, the positive electrode active material powder which is a constituent material of the pellets is easy to handle, that is, the dust is less generated and the filling property is excellent. It was necessary to use active materials with characteristics.
【0008】したがって、本発明の課題は、このような
要求を満たすことができる正極用ペレットを提供するこ
とにある。[0008] Therefore, an object of the present invention is to provide a positive electrode pellet capable of satisfying such requirements.
【0009】[0009]
【課題を解決するための手段】かかる課題を解決すべ
く、本発明者らは種々の試験研究を重ねてきたが、湿式
酸化法とも言うべき方法で得たAg−Bi−(M)−O
系化合物(Mは遷移金属の少なくとも1種、代表的には
マンガン、ニッケルまたはコバルトを表す)からなる粉
体を用いて正極用ペレットを作成すると、コスト、導電
率、電池特性、貯蔵性などの諸要求を同時に満たすこと
ができることがわかった。より具体的には、銀、ビスマ
ス、およびMの無機酸塩と、水酸化アルカリ、およびペ
ルオクソ二硫化ナトリウム等の酸化剤を水溶媒中で反応
させて得たAg−Bi−(M)−O系化合物からなる粉
体を正極活物質として使用する。この粉体は、Ag、B
iおよびO(酸素)からなる化合物の結晶、またはA
g、Bi、MおよびOからなる化合物の結晶を有し且つ
粒子内全域にBiが分散している粒子からなる。In order to solve such a problem, the present inventors have conducted various tests and studies, but Ag-Bi- (M) -O obtained by a method which should be called a wet oxidation method.
When a pellet for a positive electrode is prepared by using a powder made of a system compound (M represents at least one kind of transition metal, typically manganese, nickel or cobalt), cost, conductivity, battery characteristics, storability, etc. It turns out that various requirements can be met at the same time. More specifically, Ag-Bi- (M) -O obtained by reacting an inorganic acid salt of silver, bismuth, and M, an alkali hydroxide, and an oxidizing agent such as sodium peroxodisulfide in a water solvent. A powder of a system compound is used as the positive electrode active material. This powder is Ag, B
A crystal of a compound consisting of i and O (oxygen), or A
It is composed of particles having a crystal of a compound consisting of g, Bi, M and O and having Bi dispersed throughout the particle.
【0010】したがって,本発明によれば、Ag、Bi
およびO(酸素)からなる化合物の結晶、またはAg、
Bi、M(Mは遷移金属を表す)およびOからなる化合
物の結晶を有し且つ粒子内全域にBiが分散している粒
子からなる粉体を用いて成形されたアルカリ電池の正極
用ペレットを提供する。このような粒子からなる粉体を
用いて成形されたアルカリ電池の正極用ペレットは、A
g/(Bi+M)のモル比が1〜7(Mを含有しない場
合にはM=0として算出)で、Bi/Mのモル比が 0.1
〜100 の範囲にあり、酸素含有量が5重量%以上の組成
を有する。Therefore , according to the present invention, Ag, Bi
And a crystal of a compound consisting of O (oxygen), or Ag,
A pellet for a positive electrode of an alkaline battery formed by using a powder made of particles having a compound crystal made of Bi, M (M represents a transition metal) and O and having Bi dispersed throughout the particle. provide. A positive electrode pellet of an alkaline battery formed by using a powder made of such particles is A
The molar ratio of g / (Bi + M) is 1 to 7 (calculated as M = 0 when M is not contained), and the molar ratio of Bi / M is 0.1.
And a composition having an oxygen content of 5% by weight or more.
【0011】[0011]
【発明の実施の形態】本発明に従う正極用ペレットは、
Ag、BiおよびOからなる化合物の結晶、またはA
g、Bi、MおよびOからなる化合物の結晶を有し且つ
粒子内全域にBiが分散している粒子からなる粉体を用
いて成形した点に特徴がある。Mは遷移元素から選ばれ
る一つ以上の元素であり、電池特性である開回路電圧を
低く押さえる目的に添加され、前記のようにMは、M
n、NiまたはCoが好ましい。BEST MODE FOR CARRYING OUT THE INVENTION A pellet for a positive electrode according to the present invention comprises
A crystal of a compound consisting of Ag, Bi and O, or A
It is characterized in that it is formed by using a powder having particles of a compound having g, Bi, M and O and having Bi dispersed throughout the particle. M is one or more elements selected from the transition elements, and is added for the purpose of keeping the open circuit voltage, which is a battery characteristic, low.
n, Ni or Co are preferred.
【0012】ここで言う「成形」とは、粉体を電池の正
極として適した形状のペレットに圧粉成形することを意
味しており、このようにして成形されたペレットは、通
常は1個の電池に対して1個のペレットが正極用として
装填される。The term "molding" as used herein means that the powder is compacted into pellets having a shape suitable for a positive electrode of a battery, and one pellet is usually molded in this manner. For each battery, one pellet is loaded for the positive electrode.
【0013】この正極用ペレットは、好ましくはNO3
含有量が0.1重量%以下、アルカリ金属およびアルカ
リ土類金属の含有量の総量が2重量%以下、そして、C
O3含有量が0.5重量%以下であり、これによって貯蔵
時の電池特性の劣化が少ない正極ペレットとなる。ここ
で言う貯蔵性とは正極ペレット自体を貯蔵した場合の電
池特性の劣化度合いと、正極ペレットを電池に組み込ん
だ場合における貯蔵時の電池特性の劣化度合いの両方を
意味する。This positive electrode pellet is preferably NO 3
The content is less than 0.1% by weight, the total content of alkali metals and alkaline earth metals is less than 2% by weight, and C
The O 3 content is 0.5% by weight or less, whereby a positive electrode pellet with less deterioration of battery characteristics during storage is obtained. The term "storability" as used herein means both the degree of deterioration of the battery characteristics when the positive electrode pellets themselves are stored and the degree of deterioration of the battery characteristics when the positive electrode pellets are incorporated into a battery.
【0014】さらに、この正極用ペレットは好ましくは
導電率が1×10-4 S/cm以上、密度が好ましくは5g
/cm3以上である。また、この正極用ペレットは、用途に
よっては、通常の酸化銀電池の場合と同様に、Mn
O2、NiOOH、CoOOH、AgNiO2、AgCo
O2、CaO、MnO、HgO、CdO、CdS、ポリ
テトラフルオロエチレン、金属銀およびグラファイトか
らなる群から選ばれた少なくとも1種の添加剤を含有す
ることができる。Further, the positive electrode pellets preferably have an electric conductivity of 1 × 10 -4 S / cm or more and a density of 5 g.
/ cm 3 or more. Further, this positive electrode pellet may have a Mn content similar to that of a normal silver oxide battery, depending on the application.
O 2 , NiOOH, CoOOH, AgNiO 2 , AgCo
It may contain at least one additive selected from the group consisting of O 2 , CaO, MnO, HgO, CdO, CdS, polytetrafluoroethylene, metallic silver and graphite.
【0015】Ag、BiおよびOからなる化合物の結
晶、またはAg、Bi、MおよびOからなる化合物の結
晶を有し且つ粒子内全域にBiが分散している粒子(A
g−Bi−(M)−O系化合物の粒子という)からなる
粉体を得るには、以下に述べるようなAg、Bi、Mの
水溶性塩を湿式で酸化する方法、すなわち、
(1)銀、ビスマス、遷移金属の塩とアルカリを水中で
反応させ中和澱物を得る工程(以下、中和工程という)
(2)得た中和澱物の懸濁液に酸化剤を添加して澱物を
酸化する工程(以下、酸化工程という)
(3)得た酸化澱物を固液分離する工程(以下分離工程
という)
(4)ろ別した澱物を水洗乾燥する工程
(5)乾燥物を解砕して粉体を得る工程
を経ることによって製造することができる。Particles having a crystal of a compound composed of Ag, Bi and O, or having a crystal of a compound composed of Ag, Bi, M and O and having Bi dispersed throughout the particle (A
In order to obtain a powder composed of particles of a g-Bi- (M) -O-based compound), a method of wet-oxidizing a water-soluble salt of Ag, Bi, or M as described below, that is, (1) A step of reacting a salt of silver, bismuth, or a transition metal with an alkali in water to obtain a neutralized starch (hereinafter referred to as a neutralization step) (2) An oxidizing agent is added to the obtained suspension of the neutralized starch. Step of oxidizing the starch (hereinafter referred to as oxidation step) (3) Step of solid-liquid separating the obtained oxidized starch (hereinafter referred to as separation step) (4) Step of washing and drying the separated starch (5) Drying It can be manufactured by going through a process of crushing an object to obtain a powder.
【0016】各工程について以下に個別に説明すると、
(1)中和工程:銀、ビスマス、遷移金属の塩として代
表的には硝酸銀、硝酸ビスマスおよび硝酸ニッケルなど
を使用することができる。また、アルカリとしては強ア
ルカリ(たとえば水酸化カリウムや水酸化ナトリウムの
ほか水酸化リチウムなど)を使用する。中和処理は、ア
ルカリ水溶液に銀、ビスマス、遷移金属の塩の水溶液を
添加する方法、アルカリ水溶液と銀、ビスマス、遷移金
属の塩の水溶液を混合する方法、銀、ビスマス、遷移金
属の塩の水溶液にアルカリ水溶液を添加する方法いずれ
の方法でもよいが、アルカリ水溶液に銀、ビスマス、遷
移金属の塩の水溶液を添加する方法が特に有効である。
また、アルカリ度は高い方が反応が進み易い。反応温度
は特に限定しないが、室温から110℃までの範囲が望
ましい。攪拌については、中和反応が均一に進行する程
度の攪拌強度があればよい。Each step will be described below individually. (1) Neutralization step: Silver nitrate, bismuth, and transition metal salts such as silver nitrate, bismuth nitrate and nickel nitrate can be typically used. A strong alkali (eg, potassium hydroxide, sodium hydroxide, lithium hydroxide, etc.) is used as the alkali. The neutralization treatment includes a method of adding an aqueous solution of silver, bismuth and a salt of a transition metal to an alkaline aqueous solution, a method of mixing an alkaline aqueous solution with an aqueous solution of a salt of silver, bismuth and a transition metal, a method of adding a salt of silver, bismuth and a transition metal. Any method of adding an alkaline aqueous solution to the aqueous solution may be used, but a method of adding an aqueous solution of a salt of silver, bismuth, or a transition metal to the alkaline aqueous solution is particularly effective.
Further, the higher the alkalinity, the easier the reaction proceeds. The reaction temperature is not particularly limited, but is preferably in the range of room temperature to 110 ° C. As for the stirring, it is sufficient that the stirring strength is such that the neutralization reaction proceeds uniformly.
【0017】(2)酸化工程:酸化工程は中和工程と同
時に行うことができるが、中和工程と酸化工程を分離し
て行った方が好ましい。また、これら工程の間に昇温工
程を挿入するのが好ましい。酸化剤としては、通常の酸
化剤(例えばKMnO4, NaOCl, H2O2, K2S2
O8, Na2S2O8、オゾン等)を使用することができ
る。酸化処理においては液温を50℃以上好ましくは7
0℃以上として攪拌下において酸化剤を添加することが
望ましい。液温が高くなると酸化剤の分解が進むので液
温は110℃以下とするのがよい。添加する酸化剤の量
は、銀、ビスマス、遷移金属が価数を上げるのに十分な
量があればよく、この価数変化の当量以上、好ましくは
2倍当量程度がよい。(2) Oxidation step: The oxidation step can be carried out simultaneously with the neutralization step, but it is preferable to carry out the neutralization step and the oxidation step separately. Further, it is preferable to insert a temperature raising step between these steps. As the oxidizing agent, a common oxidizing agent (for example, KMnO 4 , NaOCl, H 2 O 2 , K 2 S 2 is used).
O 8, Na 2 S 2 O 8, ozone, etc.) can be used. In the oxidation treatment, the liquid temperature is 50 ° C or higher, preferably 7
It is desirable to add an oxidizer while stirring at 0 ° C or higher. The liquid temperature is preferably 110 ° C. or lower because the decomposition of the oxidant proceeds as the liquid temperature rises. The amount of the oxidizing agent to be added may be sufficient to increase the valence of silver, bismuth, and the transition metal, and is equal to or more than this valence change, preferably about twice the equivalent.
【0018】(3)分離工程以降:酸化澱物の懸濁液を
固液分離する前に酸化澱物を熟成する工程を挿入するの
が好ましい。この工程は、酸化処理後の懸濁液をその温
度で10分から120分程度保持する処理であり、酸化
澱物の均一化を目的としたものである。酸化澱物を液か
らろ別した後は、これを洗浄してAg−Bi−(M)−
O系化合物のケーキを得る。洗浄は純水で洗浄するのが
よい。乾燥は50〜200℃で行う。200℃を超える
と、生成した化合物が分解するおそれがある。得られた
乾燥物は、粉砕機により解砕して粉体とすることができ
る。(3) After the separation step: It is preferable to insert a step of aging the oxidized starch before solid-liquid separation of the suspension of the oxidized starch. This step is a treatment for holding the suspension after the oxidation treatment for about 10 to 120 minutes at that temperature, and is intended to make the oxidized precipitate uniform. After the oxidized precipitate was filtered off from the liquid, it was washed and washed with Ag-Bi- (M)-.
A cake of O-based compound is obtained. It is preferable to wash with pure water. Drying is performed at 50 to 200 ° C. If the temperature exceeds 200 ° C, the produced compound may decompose. The obtained dried product can be crushed into a powder by a crusher.
【0019】このようにして得られたAg−Bi−
(M)−O系化合物の粒子からなる粉体は、そのX線パ
ターン(銅ターゲット使用、波長=1.5405オングストロ
ーム) の主ピーク群はX線回折データベース(ICD
D)のどの化合物のものとも一致せず、AgOまたはA
g2Oの主ピーク群も現れない。したがって、この粉末
中にはAgOまたはAg2Oとしての化合物は実質的に
存在しないか、存在したとしてもそれは不純物としての
ものであり、この不純物量はAgOとAg2Oの両者の
合計量として高々1重量%以下好ましくは0.5重量%
以下、さらに好ましくはX線回折での検量限界以下の量
である。この粉体は、これを成形して正極用ペレットと
したときに、高い導電率を有することができ、高い成形
密度のもとで100%に近い利用率で使用できる。The thus obtained Ag-Bi-
The main peak group of the X-ray pattern (using a copper target, wavelength = 1.5405 angstrom) of the powder composed of the particles of the (M) -O compound is the X-ray diffraction database (ICD).
D0) does not match any of the compounds of AgO or A
The main peak group of g 2 O does not appear either. Therefore, the compound as AgO or Ag 2 O is not substantially present in this powder, or if it is present, it is as an impurity, and the amount of this impurity is the total amount of both AgO and Ag 2 O. At most 1% by weight or less, preferably 0.5% by weight
Below, the amount is more preferably below the calibration limit in X-ray diffraction. When this powder is molded into a positive electrode pellet, it can have high conductivity, and can be used at a utilization rate close to 100% under high molding density.
【0020】また、この粉体を、粉塵発生が少なく優れ
た流動性および充填性を備えた性質のものに改善するた
めに、上記の酸化工程を経て得られた酸化生成物に対し
て噴霧造粒法または破砕造粒法を採用して平均粒径が10
μm 以上、好ましくは50μm以上の粒子からなる粉粒品
にすると、安息角が50度以下となって流動性が改善さ
れ、粉塵発生が少なく且つ充填性に優れた粉粒品が得ら
れるので、この粉粒品を成形して正極用ペレットにすれ
ば、その成形作業性が良好となる。さらに、この粉粒品
は、嵩密度が 1.0以上〜6.3 g/cm3で且つタップ密度が
1.5 以上〜6.3 g/cm3のものとなり、副次的な効果とし
てペレットの成形性も更に向上できる。Further, in order to improve this powder to one having a property of excellent dustability and excellent flowability and filling property, spray formation is performed on the oxidation product obtained through the above-mentioned oxidation step. The average particle size is 10 using the granulation method or crushing granulation method.
If it is a powder or granular product consisting of particles of μm or more, preferably 50 μm or more, the repose angle is 50 degrees or less and the fluidity is improved, so that a powder or granular product with less dust generation and excellent filling property can be obtained, If the powder product is molded into a positive electrode pellet, its molding workability becomes good. Furthermore, this powder product has a bulk density of 1.0 or more to 6.3 g / cm 3 and a tap density of
It becomes 1.5 to 6.3 g / cm 3 , and as a secondary effect, the formability of pellets can be further improved.
【0021】[0021]
【実施例】〔実施例1〕前述した中和工程において、モ
ル比がAg/Bi=3 、となるように硝酸銀、硝酸ビスマス
を秤量した。両者の合計量に対してモル比で10倍のNaOH
を溶解した水溶液(1.5 リットル) に前記硝酸銀と硝酸
ビスマスを添加して撹拌することにより液中に中和澱物
を生成させた。得られた中和澱物の懸濁液を90℃に昇温
し、かき混ぜながら、酸化剤としてペルオクソ二硫化ナ
トリウム(Na2S2O8)を、AgとBiの合計量に対してモル比
で2倍量で該懸濁液に添加して酸化処理した。酸化終了
後、90℃の温度に30分間保持する熟成を行った後、
澱物を濾別し、水洗し100℃で乾燥し、その乾燥品を
解砕機で解砕して粉体を得た。Example 1 In the above neutralization step, silver nitrate and bismuth nitrate were weighed so that the molar ratio was Ag / Bi = 3. 10 times the molar amount of both NaOH
The silver nitrate and bismuth nitrate were added to an aqueous solution (1.5 liters) in which was dissolved and stirred to form a neutralized precipitate in the solution. The temperature of the obtained suspension of neutralized starch was raised to 90 ° C., and sodium peroxodisulfide (Na 2 S 2 O 8 ) as an oxidant was added to the total amount of Ag and Bi in a molar ratio with stirring. Was added to the suspension in an amount of 2 times, and subjected to oxidation treatment. After completion of oxidation, after aging by holding at a temperature of 90 ° C. for 30 minutes,
The precipitate was separated by filtration, washed with water and dried at 100 ° C, and the dried product was crushed with a crusher to obtain a powder.
【0022】得られた粉体を、以下の方法で成形して正
極ペレットを作成し、その放電容量を求めた結果を表1
に示した。The obtained powder was molded by the following method to prepare a positive electrode pellet, and the discharge capacity thereof was determined.
It was shown to.
【0023】〔正極ペレットの作成方法〕図1に示した
ように、内径φ11.3mmで高さ30mmの円筒状の空洞1を持
つ鋼製のダイ2と、外径φ11.3mmで高さ10mmの鋼製第一
パンチ3と、外径φ11.3mmで高さ40mmの鋼製第二パンチ
4を用いる。成形に当たっては、図2に示すように、ダ
イ2の空洞1の底部に第一パンチ3をセットした上、こ
の第一パンチ3の上部の空洞1内に粉末1.0gを装填す
る。そして、この空洞1内の粉末5に対して第二パンチ
4によって4 t/cm2 の圧力で成形し、正極ペレットを得
る。
〔電池の評価方法〕正極として前記の正極用ペレット、
負極としてZn板 0.5g、電解液としてZn飽和のKO
H40%を用い、セパレーターはセロファンを用いて2
電極セルを作成する。このようにして作成した電池を2
5℃の恒温器に1時間放置した後、0.01 Cの放電レー
トで放電し、1.4 V終止の放電容量を求めた。[Production Method of Positive Electrode Pellets] As shown in FIG. 1, a steel die 2 having a cylindrical cavity 1 having an inner diameter of 11.3 mm and a height of 30 mm, and an outer diameter of 11.3 mm and a height of 10 mm. The first steel punch 3 and the second steel punch 4 having an outer diameter of 11.3 mm and a height of 40 mm are used. In the molding, as shown in FIG. 2, the first punch 3 is set on the bottom of the cavity 1 of the die 2, and 1.0 g of the powder is loaded in the cavity 1 above the first punch 3. Then, the powder 5 in the cavity 1 is molded by the second punch 4 at a pressure of 4 t / cm 2 to obtain a positive electrode pellet. [Battery evaluation method] The positive electrode pellets as a positive electrode,
Zn plate 0.5g as negative electrode, Zn saturated KO as electrolyte
H40% is used, and the separator is cellophane 2
Create an electrode cell. The battery created in this way is
After leaving it in a thermostat at 5 ° C. for 1 hour, it was discharged at a discharge rate of 0.01 C, and the discharge capacity at the end of 1.4 V was obtained.
【0024】〔実施例2〕実施例1と同様な方法によ
り、Ag:Bi:Niのモル比が、表1に示したような値となる
ように変えて、硝酸銀、硝酸ビスマス、硝酸ニッケルを
秤量して溶解した各水溶液を、液温が50℃で(Ag+Bi+Ni)
に対してモル比で10倍の水酸化ナトリウムを溶解した水
溶液(1.5リットル) に撹拌下で加えて中和澱物を得た。
各中和澱物の懸濁液を90℃に昇温し、酸化剤としてペル
オクソ二流化ナトリウム(Na2S2O8)を、(Ag+Bi+Ni)に対
してモル比で2倍量で該懸濁液に添加して酸化処理を行
った後、澱物を濾別し、水洗し100℃で乾燥し、その
乾燥品を解砕機で解砕して粉体を得た。該粉体を前述の
方法で正極ペレットを作成し、放電容量を測定した。放
電容量の測定値を表1に示した。Example 2 By the same method as in Example 1, silver nitrate, bismuth nitrate, and nickel nitrate were changed by changing the Ag: Bi: Ni molar ratio to the values shown in Table 1. Weigh each dissolved aqueous solution at a temperature of 50 ° C (Ag + Bi + Ni)
A neutralized precipitate was obtained by adding to an aqueous solution (1.5 liters) in which sodium hydroxide was dissolved in a molar ratio of 10 times with respect to the above (1.5 liter) with stirring.
The temperature of the suspension of each neutralized starch was raised to 90 ° C., and sodium peroxodifluide (Na 2 S 2 O 8 ) was used as an oxidizer in a molar ratio twice as much as (Ag + Bi + Ni) Then, the precipitate was filtered, washed with water and dried at 100 ° C., and the dried product was crushed with a crusher to obtain a powder. A positive electrode pellet was prepared from the powder by the method described above, and the discharge capacity was measured. The measured values of discharge capacity are shown in Table 1.
【0025】また、硝酸ニッケルに代えて硝酸コバルト
または硝酸マンガンを使用し、Ag:Bi:CoまたはAg:Bi:Mn
のモル比が表2の値となるように、硝酸銀、硝酸ビスマ
スおよび硝酸コバルトまたは硝酸マンガンの配合割合を
変えた以外は実施例1を繰り返し、得られた粉体から前
記のようにして作成した正極ペレットの放電容量を表2
に示した。同じ条件で測定した酸化銀正極ペレットの放
電容量は210mAh/gであるが、これと比べると表1と表2
からAg含量が少ないにも関わらず、放電容量が高い事が
わかる。Further, cobalt nitrate or manganese nitrate is used instead of nickel nitrate, and Ag: Bi: Co or Ag: Bi: Mn is used.
Example 1 was repeated except that the compounding ratios of silver nitrate, bismuth nitrate, and cobalt nitrate or manganese nitrate were changed so that the molar ratio of the above became the value of Table 2, and the powder obtained was prepared as described above. Table 2 shows the discharge capacity of the positive electrode pellets.
It was shown to. The discharge capacity of the silver oxide positive electrode pellets measured under the same conditions is 210 mAh / g. Compared with this, Table 1 and Table 2
It can be seen from the results that the discharge capacity is high despite the low Ag content.
【0026】[0026]
【表1】 [Table 1]
【0027】[0027]
【表2】 [Table 2]
【0028】〔実施例3〕Ag:Bi:Niのモル比が表3に示
す値となるように、中和工程で使用した硝酸銀、硝酸ビ
スマスおよび硝酸ニッケルの配合割合を変えた以外は、
実施例1を繰り返し、それぞれのAg-Bi-Ni-O系の粉体を
得た。該粉体を前述の方法で正極ペレットを作成し、ペ
レットの導電率を下記の方法で求めた結果を表3に示し
た。Example 3 Except that the mixing ratios of silver nitrate, bismuth nitrate and nickel nitrate used in the neutralization step were changed so that the molar ratio of Ag: Bi: Ni became the value shown in Table 3.
Example 1 was repeated to obtain each Ag-Bi-Ni-O-based powder. A positive electrode pellet was prepared from the powder by the above method, and the conductivity of the pellet was determined by the following method. The results are shown in Table 3.
【0029】〔導電率の測定法〕材質が異なる以外は図
1の治具と同様の治具を用いて行った。すなわち、図3
に示すように、内径11.3mmで高さ30mmの円上空洞6を持
つ塩ビ製のダイ7と、外径11.3mmで高さ10mmの鋼製の第
一パンチ8と、外径11.3mmで高さ40mmの鋼製の第二パン
チ9を用い、空洞6の底部に第一パンチ8をセットした
上、この第一パンチ8の上に正極ペレット10をセットす
る。そしてこのペレット10に対して第二パンチ9によっ
て4t/cm2の圧力を加える。その際、第一パンチ8 と第二
パンチ9 の各両端面にはアルミ箔11と12を取り付けてお
く。[Method of Measuring Conductivity] A jig similar to the jig shown in FIG. 1 was used except that the material was different. That is, FIG.
As shown in, a die 7 made of vinyl chloride having a circular cavity 6 with an inner diameter of 11.3 mm and a height of 30 mm, a steel first punch 8 with an outer diameter of 11.3 mm and a height of 10 mm, and an outer diameter of 11.3 mm with a high height. A 40 mm thick steel second punch 9 is used to set the first punch 8 at the bottom of the cavity 6, and then the positive electrode pellet 10 is set on the first punch 8. Then, a pressure of 4 t / cm 2 is applied to the pellet 10 by the second punch 9. At that time, aluminum foils 11 and 12 are attached to both end surfaces of the first punch 8 and the second punch 9, respectively.
【0030】次いで、この圧力を加えた状態での高さ
(厚み)を計測すると共に、この圧力で成形した状態で
第一パンチ8と第二パンチ9の両端に取り付けたアルミ
箔11と12の間の電気抵抗を測定する。そして、計測され
た圧粉体の厚み、抵抗値および断面積( パンチ径から計
算される面積)とから次式によって導電率を計算して求
める。なお、正極ペレットが存在しない状態でのアルミ
箔11と12の間の電気抵抗をブランクとして測定してお
き、このブランク値を各測定値から減じる補正を行う。
表3には同様の方法で測定した酸化銀ペレットの導電率
も併記した。本実施例によって得られた正極ペレットは
十分な導電率を示したことがわかる。導電率=高さ(厚
み)/(電気抵抗×断面積)Next, the height (thickness) under the pressure is measured, and the aluminum foils 11 and 12 attached to both ends of the first punch 8 and the second punch 9 are molded under this pressure. Measure the electrical resistance between them. Then, from the measured thickness, resistance value and cross-sectional area (area calculated from punch diameter) of the green compact, conductivity is calculated by the following equation. The electrical resistance between the aluminum foils 11 and 12 in the absence of the positive electrode pellet is measured as a blank, and the blank value is corrected by subtracting it from each measured value.
Table 3 also shows the conductivity of the silver oxide pellets measured by the same method. It can be seen that the positive electrode pellets obtained in this example showed sufficient conductivity. Conductivity = height (thickness) / (electrical resistance x cross-sectional area)
【0031】[0031]
【表3】 [Table 3]
【0032】〔実施例4〕Ag:Bi:Niのモル比が表4に表
示の値となるように、中和工程で使用した硝酸銀、硝酸
ビスマスおよび硝酸ニッケルの配合割合を変えた以外は
実施例1を繰り返し、それぞれのAg-Bi-Ni-O系の粉体を
得た。該粉体を前述の方法で正極ペレットを作成し、ペ
レットの重量と寸法から成形密度を求めた結果を表4に
示した。[Example 4] Except that the compounding ratios of silver nitrate, bismuth nitrate and nickel nitrate used in the neutralization step were changed so that the molar ratio of Ag: Bi: Ni became the value shown in Table 4. Example 1 was repeated to obtain each Ag-Bi-Ni-O-based powder. A positive electrode pellet was prepared from the powder by the method described above, and the result of obtaining the molding density from the weight and size of the pellet is shown in Table 4.
【0033】[0033]
【表4】 [Table 4]
【0034】〔実施例5〕前述した中和工程において、
モル比がAg/(Bi+Ni)=3 、Bi/Ni=1 となるように
硝酸銀、硝酸ビスマスおよび硝酸ニッケルを秤量して溶
解した水溶液を、液温が50℃で、(Ag+Bi+Ni) に対し1
0倍量の水酸化ナトリウム水溶液(1.5リットル)
に、撹拌下で加えて中和澱物を得た。この中和澱物懸濁
液を90℃に昇温し、酸化剤としてペルオクソ二硫化ナト
リウム(Na2S2O8)を、液中金属イオンを酸化するに要す
る理論的価数変化当量の2 倍量で、該懸濁液に添加して
酸化処理した。酸化終了後、90℃の温度に30分間保
持する熟成を行った後、澱物を濾別し、純水で洗浄濾液
の電気伝導度が0.4mS/m となるまで洗浄した。Example 5 In the above-mentioned neutralization step,
An aqueous solution in which silver nitrate, bismuth nitrate and nickel nitrate were weighed and dissolved so that the molar ratios were Ag / (Bi + Ni) = 3 and Bi / Ni = 1, at a liquid temperature of 50 ° C, (Ag + Bi + Ni) Against 1
Zero volume of sodium hydroxide solution (1.5 liters)
Under stirring to give a neutralized precipitate. The temperature of this neutralized starch suspension was raised to 90 ° C., and sodium peroxodisulfide (Na 2 S 2 O 8 ) as an oxidant was added to the theoretical valence change equivalent of 2 to oxidize metal ions in the liquid. A double amount was added to the suspension for oxidation treatment. After completion of the oxidation, aging was carried out by maintaining the temperature at 90 ° C. for 30 minutes, the precipitate was filtered off and washed with pure water until the electric conductivity of the filtrate was 0.4 mS / m.
【0035】得られたケーキを100 ℃で12h 乾燥した後
粉砕し、Ag-Bi-Ni-O系化合物の粉体を得、前述の方法で
正極ペレットを作成した。The obtained cake was dried at 100 ° C. for 12 hours and then pulverized to obtain a powder of Ag-Bi-Ni-O compound, and the positive electrode pellet was prepared by the above method.
【0036】この正極ペレットを用いて電池を作成し、
電池組み立て後から1h後に放電を開始し、放電容量を求
めた。また、電池の貯蔵性を評価するため、電池組み立
て後に60℃の温度で7日間貯蔵したものについての放電
容量を求め、貯蔵前と貯蔵後の放電容量の維持率を求め
た。結果を表5に示した。A battery was prepared using this positive electrode pellet,
Discharge was started 1 hour after the battery was assembled, and the discharge capacity was determined. Further, in order to evaluate the storability of the battery, the discharge capacity of a battery stored at a temperature of 60 ° C. for 7 days after the battery assembly was determined, and the maintenance ratio of the discharge capacity before and after the storage was determined. The results are shown in Table 5.
【0037】〔実施例6〕洗浄濾液の電気伝導度が10mS
/mとなるまで洗浄を行った以外は、実施例5を繰り返し
た。得られた正極ペレットの不純物含有量と電池貯蔵性
の評価結果を表5に併記した。Example 6 The electric conductivity of the washing filtrate is 10 mS.
Example 5 was repeated except that the washing was performed until it became / m. Table 5 also shows the evaluation results of the impurity content of the obtained positive electrode pellet and the battery storability.
【0038】〔比較例1〕洗浄濾液の電気伝導度が900m
S/m となるまで洗浄を行った以外は、実施例5を繰り返
した。得られた正極ペレットの不純物含有量と電池貯蔵
性の評価結果を表5に併記した。[Comparative Example 1] The electric conductivity of the washing filtrate is 900 m.
Example 5 was repeated except that the washing was performed until the S / m was reached. Table 5 also shows the evaluation results of the impurity content of the obtained positive electrode pellet and the battery storability.
【0039】[0039]
【表5】 [Table 5]
【0040】〔実施例7〕酸化終了後、90℃の温度に30
分間保持する熟成を行ったところまでは実施例5と同じ
処理を行った。得られたスラリーを濾別し、まずこのス
ラリー体積の4倍量のNaOH=5% 水溶液で洗浄し、次い
で、純水を用いて洗浄濾液の電気伝導度が20mS/mとなる
まで洗浄した。得られたケーキを100 ℃で12h 乾燥した
後粉砕し、Ag-Bi-Ni-O系化合物の粉体を得、前述の方法
で正極ペレットを作成した。Example 7 After the completion of oxidation, the temperature was raised to 90 ° C. for 30 hours.
The same treatment as in Example 5 was performed until the aging was carried out for holding for 1 minute. The obtained slurry was separated by filtration, washed with an aqueous solution of NaOH = 5% in an amount four times the volume of the slurry, and then with pure water until the electric conductivity of the washing filtrate reached 20 mS / m. The obtained cake was dried at 100 ° C. for 12 hours and then pulverized to obtain a powder of Ag-Bi-Ni-O compound, and the positive electrode pellet was prepared by the method described above.
【0041】この正極ペレットを用いて電池を作成し、
電池組み立て後から1h後に放電を開始し、放電容量を求
めた。さらに正極ペレットの貯蔵性を評価する為に、該
正極ペレットを温度60℃、湿度80% の恒温恒湿槽にて30
日間放置したものについても同様にして放電容量を求
め、両者の放電容量から前述のように容量維持率を求め
た。結果を表6に示した。A battery was prepared using this positive electrode pellet,
Discharge was started 1 hour after the battery was assembled, and the discharge capacity was determined. Furthermore, in order to evaluate the storability of the positive electrode pellets, the positive electrode pellets were stored in a thermo-hygrostat at a temperature of 60 ° C and a humidity of 80% for 30 days.
The discharge capacity was similarly determined for those left for a day, and the capacity retention rate was determined from the discharge capacities of the two as described above. The results are shown in Table 6.
【0042】〔実施例8〕洗浄液として、5%KOH 水溶液
を用いた以外は実施例7を繰り返した。得られた正極ペ
レットの不純物含量とペレット貯蔵性の結果を表6に併
記した。Example 8 Example 7 was repeated except that a 5% KOH aqueous solution was used as the cleaning solution. Table 6 shows the results of the impurity content and the pellet storability of the obtained positive electrode pellets.
【0043】〔実施例9〕5%NaOH水溶液で洗浄した後、
純水を用いて洗浄する際に、洗浄濾液の電気電導度が0.
5S/mとなるまで洗浄した以外は、実施例7を繰り返し
た。得られた正極ペレットの不純物含量とペレット貯蔵
性の結果を表6に併記した。Example 9 After washing with 5% NaOH aqueous solution,
When washing with pure water, the electric conductivity of the washing filtrate is 0.
Example 7 was repeated except that the washing was carried out to 5 S / m. Table 6 shows the results of the impurity content and the pellet storability of the obtained positive electrode pellets.
【0044】〔比較例2〕5%NaOH水溶液で洗浄を実施
し、純水による洗浄を省略した以外は、実施例7を繰り
返した。得られた正極ペレットの不純物含量とペレット
貯蔵性の結果を表6に併記した。Comparative Example 2 Example 7 was repeated except that the washing was carried out with a 5% NaOH aqueous solution and the washing with pure water was omitted. Table 6 shows the results of the impurity content and the pellet storability of the obtained positive electrode pellets.
【0045】〔比較例3〕5%KOH 水溶液で洗浄を実施
し、純水による洗浄を省略した以外は、実施例8を繰り
返した。得られた正極ペレットの不純物含量とペレット
貯蔵性の結果を表6に併記した。[Comparative Example 3] Example 8 was repeated except that washing with a 5% KOH aqueous solution was performed and washing with pure water was omitted. Table 6 shows the results of the impurity content and the pellet storability of the obtained positive electrode pellets.
【0046】[0046]
【表6】 [Table 6]
【0047】表6の結果から、NaやKなどの強アルカ
リの不純物が多くなると、ペレットの貯蔵性能が劣化す
ることがわかる。このため、これら強アルカリ金属の含
有量は総量で少なくとも2重量%以下とする必要があ
る。From the results shown in Table 6, it can be seen that the storage performance of the pellets deteriorates when the amount of impurities of strong alkali such as Na and K increases. Therefore, the total content of these strong alkali metals must be at least 2% by weight or less.
【0048】〔実施例10〕中和工程で使用する水酸化
ナトリウム水溶液として、炭酸ナトリウム濾別後の水酸
化ナトリウムを用いた以外は、実施例6を繰り返した。
ここで、炭酸ナトリウム濾別後の水酸化ナトリウムと
は、水酸化ナトリウムの貯蔵中に大気中の炭酸を吸収し
て生成した炭酸ナトリウムを、白色沈殿物として濾別し
た後の水酸化ナトリウム水溶液である。Example 10 Example 6 was repeated except that sodium hydroxide after filtering off sodium carbonate was used as the sodium hydroxide aqueous solution used in the neutralization step.
Here, the sodium hydroxide after the sodium carbonate is filtered is the sodium hydroxide aqueous solution after the sodium carbonate produced by absorbing the carbonic acid in the atmosphere during the storage of sodium hydroxide is filtered off as a white precipitate. is there.
【0049】得られた正極ペレット中のCO3含有量を
測定すると共に、この正極ペレットを用いて電池を作成
し、電池組み立て1時間後の開回路電圧を測定した。そ
れらの結果を表7に示した。The CO 3 content in the obtained positive electrode pellets was measured, and a battery was prepared using this positive electrode pellet, and the open circuit voltage was measured 1 hour after the battery was assembled. The results are shown in Table 7.
【0050】〔実施例11〕脱CO2空気雰囲気下で中
和工程および酸化工程を実施し且つ乾燥工程を真空中で
実施した以外は実施例10を繰り返した。得られた正極ペ
レット中のCO3含有量を測定すると共に、この正極ペ
レットを用いて電池を作成し、電池組み立て1時間後の
開回路電圧を測定した。それらの結果を表7に示した。Example 11 Example 10 was repeated except that the neutralization step and the oxidation step were carried out under a CO 2 -free air atmosphere, and the drying step was carried out in vacuum. The CO 3 content in the obtained positive electrode pellets was measured, a battery was prepared using the positive electrode pellets, and the open circuit voltage after 1 hour of battery assembly was measured. The results are shown in Table 7.
【0051】〔比較例4〕中和工程で使用するアルカリ
水溶液として、(Ag+Bi+Ni)に対してモル比で9倍量の水
酸化ナトリウムとモル比で1倍量の炭酸ナトリウムを溶
解した水溶液(1.5リットル) を使用した以外は、実施例
6を繰り返した。得られた正極ペレット中のCO3含有
量を測定すると共に、この粉体を用いて電池を作成し、
電池組み立て1時間後の開回路電圧を測定した。それら
の結果を表7に示した。Comparative Example 4 As an alkaline aqueous solution used in the neutralization step, 9 times the molar amount of sodium hydroxide and 1 times the molar amount of sodium carbonate were dissolved with respect to (Ag + Bi + Ni). Example 6 was repeated except that the prepared aqueous solution (1.5 liters) was used. The CO 3 content in the obtained positive electrode pellets was measured, and a battery was prepared using this powder,
The open circuit voltage was measured 1 hour after the battery was assembled. The results are shown in Table 7.
【0052】[0052]
【表7】 [Table 7]
【0053】表7の結果から、正極ペレット中のCO3
含有量が多くなると電池の開回路電圧が高くなることが
分かる。この開回路電圧は 1.65 Vを超えると, 電解液
の分解によりガス発生が起こる可能性がある。このた
め、正極ペレット中のCO3量は0.5 重量%以下とする
必要がある。From the results of Table 7, CO 3 in the positive electrode pellets
It can be seen that the higher the content, the higher the open circuit voltage of the battery. If this open circuit voltage exceeds 1.65 V, gas generation may occur due to decomposition of the electrolytic solution. Therefore, the amount of CO 3 in the positive electrode pellet needs to be 0.5% by weight or less.
【0054】〔実施例12 〕前述した中和工程におい
て、Ag/(Bi+Ni)のモル比=3 、Bi/Niのモル比=1
となるように硝酸銀、硝酸ビスマスおよび硝酸ニッケル
を秤量して溶解した水溶液を、液温が50℃で(Ag+Bi+N
i) に対し10倍量の水酸化ナトリウム水溶液(1.5リ
ットル)に撹拌下で加えて中和澱物を得た。この中和澱
物懸濁液を90℃に昇温し、酸化剤としてペルオクソ二硫
化ナトリウム(Na2S2O8)を、価数変化の2倍量で該懸濁
液に添加して酸化処理した。酸化終了後、90℃の温度
に30分間保持する熟成を行った後、澱物を濾別し、水
洗し100℃で乾燥し、その乾燥品を解砕機で解砕して
粉体を得た。この粉体を〔中間粉〕と呼ぶ。Example 12 In the above-mentioned neutralization step, the molar ratio Ag / (Bi + Ni) = 3, the molar ratio Bi / Ni = 1.
Aqueous solution in which silver nitrate, bismuth nitrate and nickel nitrate are weighed and dissolved so that the temperature becomes 50 ° C (Ag + Bi + N
A 10-fold amount of sodium hydroxide aqueous solution (1.5 liter) with respect to i) was added with stirring to obtain a neutralized precipitate. The temperature of this neutralized starch suspension was raised to 90 ° C., and sodium peroxodisulfide (Na 2 S 2 O 8 ) was added as an oxidant in an amount twice the valence change to oxidize the suspension. Processed. After completion of the oxidation, aging was carried out by maintaining the temperature at 90 ° C. for 30 minutes, the precipitate was filtered off, washed with water and dried at 100 ° C., and the dried product was crushed with a crusher to obtain a powder. . This powder is called [intermediate powder].
【0055】得られた中間粉から測定用試料をサンプリ
ングし、その嵩密度、タップ密度、安息角、粒度および
比表面積を測定し、その結果を表8に示した。またこの
中間粉の流動性、粉塵発生の程度、詰め込み性を下記の
ようにして評価し、その結果も表8に示した。A sample for measurement was sampled from the obtained intermediate powder, and its bulk density, tap density, angle of repose, particle size and specific surface area were measured, and the results are shown in Table 8. The fluidity, the degree of dust generation, and the packing property of this intermediate powder were evaluated as follows, and the results are also shown in Table 8.
【0056】〔嵩密度の測定〕:直径15mm、高さ160mm
の試験管に粉末を充填し、その充填重量と充填体積の測
定値から求めた。
〔タップ密度の測定〕:嵩密度の測定と同じ試験管に粉
末を充填し、その充填重量と、充填させた粉末を100
0回タッピングした後の充填体積の測定値から求めた。
〔流動性の評価〕:安息角が40度以下のものを流動性が
良(○)、40度を超え50度未満のものを可(△)、
50度以上のを不可(×)として3 段階評価を行った。
〔安息角の測定〕:化学実験用の漏斗であって、口径60
mm、ノズル長65mm、ノズル部内径6mm の漏斗を、そのノ
ズル先端が水平台から75mmの高さとなる位置に固定し、
漏斗のホッパー部に粉体を100g投入し、その全てが水平
台上に円錐状となって堆積したときの堆積物の水平から
の角度を測定する。[Measurement of bulk density]: diameter 15 mm, height 160 mm
The test tube was filled with the powder, and it was determined from the measured values of the filling weight and the filling volume. [Measurement of tap density]: The same test tube used for measurement of bulk density was filled with powder, and the filling weight and the filled powder were 100%.
It was determined from the measured value of the filling volume after tapping 0 times. [Evaluation of flowability]: Good flowability (○) if the angle of repose is 40 degrees or less, acceptable (△) if the repose angle is more than 40 degrees and less than 50 degrees,
A rating of 50 degrees or more was judged as unacceptable (x) and a three-level evaluation was performed. [Measurement of angle of repose]: It is a funnel for chemical experiments and has a caliber of 60.
mm, nozzle length 65 mm, nozzle inner diameter 6 mm, fix the funnel at a position where the tip of the nozzle is 75 mm above the horizontal base,
100 g of the powder is put into the hopper of the funnel, and the angle from the horizontal of the deposit is measured when all of them are conical on the horizontal table.
【0057】〔粒度の測定〕:レーザー回折法(島津株
式会社製の粒度測定装置) による。
〔比表面積の測定〕:BET法(カンタクロム社製) に
よった。
〔粉塵発生の評価〕:100 ccの透明なポリ容器に粉体25
gを入れ、10回浸透させ、10秒間静置したときに容器上
部に浮遊する粒子を目視観察し、浮遊物が認められない
ものを良(○)、浮遊物で曇った状態となるものを不良
(×)とし、わずかに浮遊するものが認められるが、気
にならない程度のものを可(△)として3段階評価を行
った。
〔詰め込み性の評価〕:嵩密度が2.0 g/cm3以上のもの
を詰め込み性が良(○)、1.0 g/cm3を超え〜2.0 g/c
m3未満のものを詰め込み性が可(△)、1.0 g/cm3以下
のものを詰め込み性が不良(×)として3段階評価を行
った。[Measurement of particle size]: By a laser diffraction method (particle size measuring device manufactured by Shimadzu Corporation). [Measurement of specific surface area]: BET method (manufactured by Kantachrome Co., Ltd.) was used. [Evaluation of dust generation]: 25 powder in a 100 cc transparent plastic container
Add g, let it infiltrate 10 times, and visually observe the particles floating in the upper part of the container when left standing for 10 seconds.Good (○) if no suspended matter is observed, and those that become cloudy with suspended matter It was rated as bad (×), and some particles were found to float, but those that were not noticeable were evaluated as acceptable (Δ), and three-level evaluation was performed. [Evaluation of packing property]: Good packing property for bulk density of 2.0 g / cm 3 or more (○), exceeding 1.0 g / cm 3 to 2.0 g / c
Those having a packing capacity of less than m 3 were evaluated as having a good packing property (Δ), and those having a packing density of 1.0 g / cm 3 or less were evaluated as having a poor packing property (x), and three-level evaluation was performed.
【0058】表8の結果にみられるように、中間粉の流
動性および粉塵発生の評価は必ずしも良好ではなかっ
た。As can be seen from the results in Table 8, the fluidity of the intermediate powder and the evaluation of dust generation were not always good.
【0059】次いで、中間粉を、大河原加工機株式会社
製のスプレードライヤーFOC-16を用いて熱風温度200 ℃
で噴霧造粒を行った。得られた造粒品を〔造粒粉〕と呼
ぶ。造粒粉の電子顕微鏡写真(SEM像) 観察では65μm 程
度の球状粒子からなるものが殆んどであった。造粒粉か
ら測定用試料をサンプリングし、その嵩密度、タップ密
度、安息角、粒度および比表面積を測定し、また造粒粉
の流動性、粉塵発生の程度、詰め込み性の評価を行っ
た。それらの結果を表8に併記したが、表8の結果にみ
られるように、造粒粉の嵩密度が高く且つ安息角が低く
なって流動性が良好となり、粉塵発生も皆無となった。Next, the intermediate powder was heated to a hot air temperature of 200 ° C. using a spray dryer FOC-16 manufactured by Okawara Koki Co., Ltd.
Spray granulation was performed. The obtained granulated product is called [granulated powder]. Electron micrographs (SEM images) of the granulated powder showed that most of them consisted of spherical particles of about 65 μm. A sample for measurement was sampled from the granulated powder, and its bulk density, tap density, angle of repose, particle size and specific surface area were measured, and the fluidity of the granulated powder, the degree of dust generation, and the packing property were evaluated. The results are also shown in Table 8. As can be seen from the results in Table 8, the granulated powder had a high bulk density and a low angle of repose, resulting in good fluidity and no generation of dust.
【0060】〔実施例13〕中間粉を得るまでは実施例
12を繰り返した。得られた中間粉を、ターボ工業株式会
社製WP160 のローラーコンパクターを用いて圧粉成形
し、この成形物を日本グラニュレーター株式会社製GRN-
1531を用いて破砕し、造粒粉を得た。ここでローラーコ
ンパクターの成形圧力は1.0 t/cmとした。また、グラニ
ュレーターによる破砕は三段階で行い、ロールの一段目
の溝ピッチは2 mm(ロールクリアランス0.35mm) 、ロー
ルの二段目の溝ピッチは1.2mm(ロールクリアランス0.11
mm) 、ロール3 段目の溝ピッチは0.6mm(ロールクリアラ
ンス0.11mm) とした。Example 13 Example until an intermediate powder was obtained
Repeated 12 times. The obtained intermediate powder was compacted using a roller compactor of WP160 manufactured by Turbo Industry Co., Ltd., and this molded product was manufactured by Nippon Granulator Co., Ltd. GRN-
It was crushed using 1531 to obtain granulated powder. The molding pressure of the roller compactor was 1.0 t / cm. Also, crushing with a granulator is performed in three stages, the groove pitch of the first stage of the roll is 2 mm (roll clearance 0.35 mm), and the groove pitch of the second stage of the roll is 1.2 mm (roll clearance 0.11
mm) and the groove pitch of the third stage of the roll was 0.6 mm (roll clearance 0.11 mm).
【0061】この造粒粉から測定用試料をサンプリング
し、嵩密度、タップ密度、安息角、粒度および比表面積
を測定し、また造粒粉の流動性、粉塵発生の程度、詰め
込み性の評価を行った。それらの結果を表8に併記し
た。A sample for measurement was sampled from this granulated powder, and the bulk density, tap density, angle of repose, particle size and specific surface area were measured, and the fluidity of the granulated powder, the degree of dust generation, and the packing property were evaluated. went. The results are also shown in Table 8.
【0062】更に、造粒粉を目開き50μm の篩いを用い
て50μm 以下の粒子を除いた。得られた篩い上の粉体
(整粒粉1という) から測定用試料をサンプリングし、
その嵩密度、タップ密度、安息角、粒度および比表面積
を測定し、また整粒粉の流動性、粉塵発生の程度、詰め
込み性の評価を行った。それらの結果を表8に併記し
た。Further, the granulated powder was sieved with a sieve of 50 μm to remove particles of 50 μm or less. Sampling a sample for measurement from the obtained powder on the sieve (referred to as sized powder 1),
The bulk density, tap density, angle of repose, particle size and specific surface area were measured, and the fluidity of the sized powder, the degree of dust generation, and the packing property were evaluated. The results are also shown in Table 8.
【0063】次に、造粒粉を目開き100 μm の篩いを用
いて100 μm 以下の粒子を除いた。得られた篩い上の粉
体(整粒粉2という) から測定用試料をサンプリング
し、その嵩密度、タップ密度、安息角、粒度および比表
面積を測定し、また整粒粉の流動性、粉塵発生の程度、
詰め込み性の評価を行った。それらの結果を表8に併記
した。Next, the granulated powder was sieved to remove particles having a size of 100 μm or less using a sieve having a mesh size of 100 μm. A sample for measurement is sampled from the obtained powder on the sieve (referred to as sized powder 2), and its bulk density, tap density, angle of repose, particle size and specific surface area are measured, and the fluidity of the sized powder and dust are measured. Degree of occurrence,
The packing property was evaluated. The results are also shown in Table 8.
【0064】表8の結果にみられるように、整粒粉は嵩
密度およびタップ密度が更に高くなり、比表面積が低く
なって、流動性、粉塵発生および詰め込み性の評価も良
好なものが得られた。As can be seen from the results in Table 8, the sized powder has a higher bulk density and tap density, a lower specific surface area, and has good evaluation of fluidity, dust generation and packing property. Was given.
【0065】〔比較例5〕前述した中和工程において、
Ag/(Bi+Ni)のモル比=3 、Bi/Niのモル比=1.0
となるように硝酸銀、硝酸ビスマスおよび硝酸ニッケル
を秤量して溶解した水溶液を、液温が50℃で、(Ag+Bi+
Ni) に対し10倍量の水酸化ナトリウム水溶液(1.5
リットル)に、撹拌下で加えて中和澱物を得た。この中
和澱物懸濁液を90℃に昇温し、酸化剤としてペルオクソ
二硫化ナトリウム(Na2S2O8)を、価数変化の2倍量で該
懸濁液に添加して酸化処理した。酸化終了後、90℃の
温度に30分間保持する熟成を行った後、澱物を濾別
し、水洗し100℃で乾燥し、その乾燥品を解砕機で解
砕して粉体を得た。[Comparative Example 5] In the neutralization step described above,
Ag / (Bi + Ni) molar ratio = 3, Bi / Ni molar ratio = 1.0
An aqueous solution in which silver nitrate, bismuth nitrate and nickel nitrate are weighed and dissolved so that the temperature becomes 50 ° C and (Ag + Bi +
An aqueous solution of sodium hydroxide 10 times the amount of Ni) (1.5
Liter) under stirring to give a neutralized precipitate. The temperature of this neutralized starch suspension was raised to 90 ° C., and sodium peroxodisulfide (Na 2 S 2 O 8 ) was added as an oxidant in an amount twice the valence change to oxidize the suspension. Processed. After completion of the oxidation, aging was carried out by maintaining the temperature at 90 ° C. for 30 minutes, the precipitate was filtered off, washed with water and dried at 100 ° C., and the dried product was crushed with a crusher to obtain a powder. .
【0066】この粉体から測定用試料をサンプリング
し、その嵩密度、タップ密度、安息角、粒度および比表
面積を測定し、また整粒粉の流動性、粉塵発生の程度、
詰め込み性の評価を行った。それらの結果を表8に併記
した。A sample for measurement was sampled from this powder, and its bulk density, tap density, angle of repose, particle size and specific surface area were measured, and the fluidity of the sized powder, the degree of dust generation,
The packing property was evaluated. The results are also shown in Table 8.
【0067】[0067]
【表8】 [Table 8]
【0068】[0068]
【発明の効果】以上説明した様に、本発明によれば、湿
式酸化法よって合成したAg−Bi−(M)−O系化合
物の粉体を用いることにより、銀含量が少なくても、放
電容量、導電性、貯蔵性の特性に優れたアルカリ電池用
の正極ペレットが提供される。As described above, according to the present invention, by using the powder of the Ag-Bi- (M) -O type compound synthesized by the wet oxidation method, the discharge can be performed even if the silver content is small. Provided is a positive electrode pellet for an alkaline battery, which has excellent capacity, conductivity, and storage characteristics.
【図面の簡単な説明】[Brief description of drawings]
【図1】成形密度を測定するのに使用する冶具の寸法形
状を示す図である。FIG. 1 is a diagram showing a dimensional shape of a jig used for measuring a molding density.
【図2】図1の冶具を用いて成形密度を測定する状態を
示す略断面図である。FIG. 2 is a schematic cross-sectional view showing a state in which a molding density is measured using the jig shown in FIG.
【図3】正極用ペレットの導電率を測定する状態を示す
略断面図である。FIG. 3 is a schematic cross-sectional view showing a state in which the conductivity of a positive electrode pellet is measured.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 尾本 義和 東京都千代田区丸の内1丁目8番2号 同 和鉱業株式会社内 (72)発明者 仁科 正行 東京都千代田区丸の内1丁目8番2号 同 和鉱業株式会社内 Fターム(参考) 5H024 AA04 AA14 BB07 CC03 DD17 EE01 EE03 EE06 EE07 EE09 FF07 HH00 HH01 HH04 HH08 HH13 5H050 AA08 AA09 AA12 AA19 BA04 CA02 CB13 DA09 EA01 EA05 EA09 EA12 EA24 GA10 HA01 HA02 HA05 HA07 HA08 HA17 ─────────────────────────────────────────────────── ─── Continued front page (72) Inventor Yoshikazu Omoto 1-8-2 Marunouchi, Chiyoda-ku, Tokyo Within Wa Mining Co., Ltd. (72) Inventor Masayuki Nishina 1-8-2 Marunouchi, Chiyoda-ku, Tokyo Within Wa Mining Co., Ltd. F-term (reference) 5H024 AA04 AA14 BB07 CC03 DD17 EE01 EE03 EE06 EE07 EE09 FF07 HH00 HH01 HH04 HH08 HH13 5H050 AA08 AA09 AA12 AA19 BA04 CA02 CB13 DA09 EA01 EA05 EA09 EA12 EA24 GA10 HA01 HA02 HA05 HA07 HA08 HA17
Claims (14)
合物の結晶、またはAg、Bi、M(Mは遷移金属を表
す)およびOからなる化合物の結晶を有し且つ粒子内全
域にBiが分散している粒子からなる粉体を用いて成形
されたアルカリ電池の正極用ペレット。1. A crystal of a compound composed of Ag, Bi and O (oxygen), or a crystal of a compound composed of Ag, Bi, M (M represents a transition metal) and O, and Bi is distributed throughout the particle. A positive electrode pellet for an alkaline battery, which is formed by using a powder composed of dispersed particles.
またはMを含有しないときにはAg/Biのモル比が1
以上7以下であり、酸素含有量が5重量%以上である請
求項1に記載の正極用ペレット。2. A molar ratio of Ag / (Bi + M) in the powder,
Alternatively, when M is not contained, the molar ratio Ag / Bi is 1
The positive electrode pellet according to claim 1, wherein the positive electrode pellet has an oxygen content of 7 or more and an oxygen content of 5% by weight or more.
求項1または2に記載の正極用ペレット。3. The positive electrode pellet according to claim 1, which has an electric conductivity of 1 × 10 −4 S / cm or more.
し3のいずれかに記載の正極用ペレット。4. The positive electrode pellet according to claim 1, which has a density of 5 g / cm 3 or more.
求項1ないし4のいずれかに記載の正極用ペレット。5. The positive electrode pellet according to claim 1, wherein the NO 3 content is 0.1% by weight or less.
含有量の総量が2重量%以下である請求項1ないし5の
いずれかに記載の正極用ペレット。6. The pellet for a positive electrode according to claim 1, wherein the total content of the alkali metal and the alkaline earth metal is 2% by weight or less.
求項1ないし6のいずれかに記載の正極用ペレット。7. The pellet for a positive electrode according to claim 1, which has a CO 3 content of 0.5% by weight or less.
カリ土類金属の含有量およびCO3含有量の総量が2重
量%以下である請求項1ないし4に記載の正極用ペレッ
ト。8. The positive electrode pellet according to claim 1, wherein the NO 3 content, the alkali metal and alkaline earth metal content, and the total CO 3 content are 2% by weight or less.
る請求項1ないし8のいずれかに記載の正極用ペレッ
ト。9. The positive electrode pellet according to claim 1, wherein the powder has a repose angle of less than 50 degrees.
m以下の粒子からなり且つ安息角が50未満のものであ
る請求項1ないし8のいずれかに記載の正極用ペレッ
ト。10. The powder has an average particle size of 10 μm or more and 5 m.
The pellet for a positive electrode according to any one of claims 1 to 8, which is composed of particles of m or less and has an angle of repose of less than 50.
m3で且つタップ密度が1.5 超え〜6.3 g/cm3のものであ
る請求項1ないし10のいずれかに記載の正極用ペレッ
ト。11. The powder has a bulk density of more than 1.0 to 6.3 g / c.
positive electrode pellets according to any one of claims 1 to 10 and a tap density in m 3 is of 1.5 beyond ~6.3 g / cm 3.
が0.1 〜30m2/gのものである請求項1ないし11のい
ずれかに記載の正極用ペレット。12. The positive electrode pellet according to claim 1, wherein the powder has a specific surface area measured by BET method of 0.1 to 30 m 2 / g.
AgNiO2、AgCoO2、CaO、MnO、HgO、
CdO、CdS、ポリテトラフルオロエチレン、金属銀
およびグラファイトからなる群から選ばれた少なくとも
1種の添加剤を含有する請求項1または4ないし12の
いずれかに記載の正極用ペレット。13. MnO 2 , NiOOH, CoOOH,
AgNiO 2 , AgCoO 2 , CaO, MnO, HgO,
The pellet for a positive electrode according to any one of claims 1 or 4 to 12, containing at least one additive selected from the group consisting of CdO, CdS, polytetrafluoroethylene, metallic silver and graphite.
からなるアルカリ電池において、正極活物質として請求
項1ないし13のいずれかに記載の正極用ペレットを用
いたことを特徴とするアルカリ電池。14. An alkaline battery comprising a negative electrode active material, a positive electrode active material and an electrolyte, wherein the positive electrode pellet according to any one of claims 1 to 13 is used as the positive electrode active material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002066636A JP4328890B2 (en) | 2002-03-12 | 2002-03-12 | Pellet for positive electrode of alkaline battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002066636A JP4328890B2 (en) | 2002-03-12 | 2002-03-12 | Pellet for positive electrode of alkaline battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003263980A true JP2003263980A (en) | 2003-09-19 |
JP4328890B2 JP4328890B2 (en) | 2009-09-09 |
Family
ID=29198325
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002066636A Expired - Lifetime JP4328890B2 (en) | 2002-03-12 | 2002-03-12 | Pellet for positive electrode of alkaline battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4328890B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006185649A (en) * | 2004-12-27 | 2006-07-13 | Dowa Mining Co Ltd | Battery positive electrode material |
JP2009064672A (en) * | 2007-09-06 | 2009-03-26 | Seiko Instruments Inc | Flat type alkaline primary battery |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000195512A (en) * | 1998-12-25 | 2000-07-14 | Mitsubishi Materials Corp | Active material powder and electrode material for electrode of silver oxide battery and manufacture thereof |
-
2002
- 2002-03-12 JP JP2002066636A patent/JP4328890B2/en not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000195512A (en) * | 1998-12-25 | 2000-07-14 | Mitsubishi Materials Corp | Active material powder and electrode material for electrode of silver oxide battery and manufacture thereof |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006185649A (en) * | 2004-12-27 | 2006-07-13 | Dowa Mining Co Ltd | Battery positive electrode material |
JP2009064672A (en) * | 2007-09-06 | 2009-03-26 | Seiko Instruments Inc | Flat type alkaline primary battery |
Also Published As
Publication number | Publication date |
---|---|
JP4328890B2 (en) | 2009-09-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5228292B2 (en) | A method for producing a lithium-nickel-manganese-cobalt composite oxide. | |
KR100848714B1 (en) | Enclosed nickel-zinc primary battery, its anode and production methods for them | |
JP4566025B2 (en) | Alkaline storage battery | |
US20040209166A1 (en) | Nickel hydrogen secondary battery | |
EP2828910B1 (en) | Metal-doped nickel oxide active materials | |
JP2007091573A (en) | Lithium-nickel-manganese-cobalt multiple oxide, method for producing the same, and application of the multiple oxide | |
US8153298B2 (en) | Positive electrode for alkaline battery and alkaline battery using the same | |
JP4904457B2 (en) | Alkaline battery positive electrode material, method for producing the same, and alkaline battery positive electrode material | |
EP1675199A1 (en) | Battery positive electrode material | |
US10804536B2 (en) | Substituted lambda manganese dioxides in an alkaline electrochemical cell | |
US20100272631A1 (en) | Silver oxide powder for alkaline battery and method of producing the same | |
AU2003226708A1 (en) | Zinc powder or zinc alloy powder for alkaline batteries | |
US3350198A (en) | Cadmium metal sponge | |
JP3341693B2 (en) | Active material powder for electrode of silver oxide battery, electrode material and production method thereof | |
JP2016027563A (en) | Solid electrolyte, lithium battery and lithium air battery | |
JP2003263980A (en) | Pellet for positive electrode of alkali battery | |
JP4756189B2 (en) | Silver oxide powder for alkaline batteries | |
US11133499B2 (en) | Substituted ramsdellite manganese dioxides in an alkaline electrochemical cell | |
JP4182233B2 (en) | Positive electrode active material for batteries | |
JP4328889B2 (en) | Positive electrode active material for batteries | |
JP2835282B2 (en) | Nickel hydroxide for nickel electrode, method for producing the same, nickel electrode, and alkaline secondary battery incorporating the same | |
JP3434873B2 (en) | Positive active material for non-aqueous lithium secondary battery, method for producing the same, and lithium secondary battery | |
JP2005108816A (en) | Hydrogen storage alloy for alkaline accumulator, its manufacturing method and alkaline accumulator | |
JPH0576745B2 (en) | ||
JP4374430B2 (en) | Cathode active material for alkaline electrolyte battery and alkaline electrolyte battery using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050216 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080926 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20081028 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20081212 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090224 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090402 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090512 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20090527 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20090527 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090528 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20090527 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4328890 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120626 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120626 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130626 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |