JP2003261867A - Manufacturing method for fluorescent material - Google Patents

Manufacturing method for fluorescent material

Info

Publication number
JP2003261867A
JP2003261867A JP2002061824A JP2002061824A JP2003261867A JP 2003261867 A JP2003261867 A JP 2003261867A JP 2002061824 A JP2002061824 A JP 2002061824A JP 2002061824 A JP2002061824 A JP 2002061824A JP 2003261867 A JP2003261867 A JP 2003261867A
Authority
JP
Japan
Prior art keywords
phosphor
suspension
precursor
solution
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002061824A
Other languages
Japanese (ja)
Inventor
Hideki Hoshino
秀樹 星野
Satoshi Ito
聡 伊藤
Naoko Furusawa
直子 古澤
Takayuki Suzuki
隆行 鈴木
Hisahiro Okada
尚大 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2002061824A priority Critical patent/JP2003261867A/en
Publication of JP2003261867A publication Critical patent/JP2003261867A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a fine particulate fluorescent material having a narrow particle size distribution and good luminous intensity using a liquid phase method. <P>SOLUTION: The fluorescent material is manufactured by a method wherein a solution containing constituent metal elements of the fluorescent material is preliminarily prepared, a precursor suspension of the fluorescent substance is manufactured by the liquid phase method to be discharged into a gaseous atomosphere as fine liquid drops and these fine liquid drops are dried and heated. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は液相法を用いて製造
された蛍光体の前駆体及び該前駆体によって製造された
蛍光体、更には該蛍光体を製造する技術に関する。
TECHNICAL FIELD The present invention relates to a precursor of a phosphor produced by a liquid phase method, a phosphor produced by the precursor, and a technique for producing the phosphor.

【0002】[0002]

【従来の技術】蛍光体の製造方法としては、蛍光体母体
を構成する元素を含む化合物と賦活剤元素を含む化合物
を共に所定量混合し、焼成して固体間反応を行う固相法
と、蛍光体母体を構成する元素を含む溶液と賦活剤元素
を含む溶液を共に混合して溶液中で蛍光体の前駆体の沈
殿を生成させ、この前駆体を固液分離してから焼成する
液相法がある。
2. Description of the Related Art As a method for producing a phosphor, a solid phase method in which a compound containing an element constituting a phosphor matrix and a compound containing an activator element are mixed together in a predetermined amount and baked to carry out an inter-solid reaction, A liquid phase in which a solution containing an element constituting the phosphor matrix and a solution containing an activator element are mixed together to generate a precipitate of a precursor of the phosphor in the solution, and the precursor is solid-liquid separated and then baked. There is a law.

【0003】蛍光体の収率と発光効率を高めるには、そ
の蛍光体の組成をできるだけ化学量論的な組成に近づけ
る必要がある。更に、蛍光体の粒子径を小さくするに従
い比表面積が増大する為、発光に寄与する割合が大きく
なる。固相法では純粋に化学量論的な組成を有する蛍光
体を製造することは難しく、固体間反応の結果、反応し
ない余剰の不純物や反応によって生ずる副塩等が残留
し、化学量論的に高純度な蛍光体を得ることが難しい。
また、固体間反応の為、粒子径を小さくすることが難し
い。蛍光体形成後に粉砕等の処理により微粒化すること
が試みられているが、蛍光体粒子へのダメージや粒子径
分布が広くなる等の問題点がある。組成的に均一で高純
度な微粒子蛍光体を得るには、固相法よりも液相法の方
が適している。
In order to improve the yield and luminous efficiency of the phosphor, it is necessary to make the composition of the phosphor as close to the stoichiometric composition as possible. Furthermore, the specific surface area increases as the particle size of the phosphor is reduced, so that the ratio contributing to light emission increases. It is difficult to produce a phosphor having a purely stoichiometric composition by the solid phase method, and as a result of the reaction between solids, excess impurities that do not react and side salts generated by the reaction remain, resulting in stoichiometry. It is difficult to obtain a high-purity phosphor.
Further, it is difficult to reduce the particle size because of the reaction between solids. Attempts have been made to reduce the size of the phosphor by a process such as crushing after forming the phosphor, but there are problems such as damage to the phosphor particles and a broad particle size distribution. The liquid phase method is more suitable than the solid phase method in order to obtain a fine particle fluorescent material having a uniform composition and high purity.

【0004】液相法により蛍光体を製造する場合は、先
ず、蛍光体の前駆体である沈殿を生成させ、これを固液
分離して乾燥した後、焼成して蛍光体とする。特開平9
−71415号には、共沈法によって生じた希土類蓚酸
塩を水に分散・懸濁させて噴霧乾燥した後、乾燥前駆体
を焼成して蛍光体を製造する方法について記載がある。
しかしながら、従来の焼成方法として用いられている箱
型炉、坩堝炉のような材料静置型やロータリーキルンの
ような材料回転型を用いると、焼成時において材料間の
融着や付着、材料と装置間の付着が生じてしまい、液相
法により微小で高純度な前駆体が得られているにも関わ
らず、焼成によって蛍光体粒子の粗大化や所望の発光強
度が得られないなどの問題点があり、改善が望まれてい
た。
In the case of producing a phosphor by the liquid phase method, first, a precipitate which is a precursor of the phosphor is generated, and the precipitate is solid-liquid separated, dried, and then baked to obtain a phosphor. JP-A-9
No. 71415 describes a method of dispersing and suspending a rare earth oxalate produced by a coprecipitation method in water, spray-drying the mixture, and then firing a dried precursor to produce a phosphor.
However, if a box type furnace, a material stationary type such as a crucible furnace, or a material rotating type such as a rotary kiln that is used as a conventional firing method is used, fusion or adhesion between materials during firing, material-to-apparatus However, even though a fine and highly pure precursor is obtained by the liquid phase method, there are problems that the phosphor particles are coarsened by firing and the desired emission intensity cannot be obtained. Yes, and improvement was desired.

【0005】また、特開2001−107042号等に
は予め調製した蛍光体の構成金属元素を含有する溶液を
超音波噴霧器等で微細な液滴となし、熱分解反応炉で加
熱して蛍光体を製造する方法について記載があるが、こ
の方法では液滴を高濃度化するに従い粒子の粗大化及び
粒子径範囲の広がりが見られる為、均一で微小な粒子を
製造するには生産性を低くせざるを得なかった。しかし
ながら、構成金属元素の濃度を低くすると噴霧する際の
持ち込み水分量が多すぎて、乾燥不良や結晶化不良が生
じてしまうという問題があり、微粒子蛍光体の高生産性
と高発光強度を両立するには充分とはいえなかった。
Further, in Japanese Patent Laid-Open No. 2001-107042, a solution containing a constituent metal element of a phosphor prepared in advance is made into fine liquid droplets by an ultrasonic atomizer or the like and heated in a pyrolysis reaction furnace to produce the phosphor. Although there is a description of a method for producing a fine particle, this method shows coarsening of the particles and widening of the particle size range as the concentration of the droplet is increased. I had no choice but to do it. However, if the concentration of the constituent metal elements is lowered, there is a problem that the amount of water brought in during spraying is too large, resulting in poor drying or poor crystallization, and both high productivity and high emission intensity of the fine particle phosphor are achieved. It wasn't enough to do it.

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は、液相
法を用いて、粒度分布の狭い、更には発光強度が良好な
微粒子蛍光体の製造方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for producing a fine particle phosphor having a narrow particle size distribution and good emission intensity by using a liquid phase method.

【0007】[0007]

【課題を解決するための手段】本発明者等は、上記目的
を達成する為に、液相法による蛍光体の製造方法につい
て鋭意検討した結果、粒度分布の狭い、更には発光強度
の良好な微粒子蛍光体が得られることを見出し、本発明
を完成させるに至った。本発明の上記目的は、以下の構
成によって達成された。
Means for Solving the Problems The inventors of the present invention have made earnest studies on a method for producing a phosphor by a liquid phase method in order to achieve the above object, and as a result, have found that the particle size distribution is narrow and that the emission intensity is good. The inventors have found that a fine particle phosphor can be obtained, and completed the present invention. The above object of the present invention has been achieved by the following configurations.

【0008】1.蛍光体の構成金属元素を含有する溶液
を予め調製し、液相法で蛍光体の前駆体懸濁液を製造
し、該前駆体懸濁液を微細な液滴としてガス雰囲気中に
放出して該液滴を乾燥及び加熱することを特徴とする蛍
光体の製造方法。
1. A solution containing the constituent metal elements of the phosphor is prepared in advance, a precursor suspension of the phosphor is manufactured by a liquid phase method, and the precursor suspension is discharged as fine droplets into a gas atmosphere. A method for producing a phosphor, which comprises drying and heating the droplets.

【0009】2.前駆体懸濁液に湿式分散処理を施して
前駆体分散液とした後、微細な液滴としてガス雰囲気中
に放出することを特徴とする前記1に記載の蛍光体の製
造方法。
2. 2. The method for producing a phosphor according to the above 1, wherein the precursor suspension is subjected to a wet dispersion treatment to form a precursor dispersion, and then the droplets are discharged as fine droplets into a gas atmosphere.

【0010】3.低沸点有機溶媒を含有する溶媒を用い
て蛍光体の構成金属元素を含有する溶液又は懸濁液を予
め調製し、該溶液又は懸濁液を噴霧方式で焼成すること
を特徴とする蛍光体の製造方法。
3. A solution or suspension containing a constituent metal element of the phosphor is prepared in advance using a solvent containing a low-boiling organic solvent, and the solution or suspension is baked by a spray method. Production method.

【0011】4.蛍光体の構成金属元素を含有する水系
溶液を予め調製し、該水系溶液から反応晶析法で蛍光体
の前駆体懸濁液を製造し、乾燥工程を経た後、低沸点有
機溶媒を含有する溶媒を用いて溶液又は懸濁液とし、該
溶液又は懸濁液を噴霧方式で焼成することを特徴とする
蛍光体の製造方法。
4. An aqueous solution containing a constituent metal element of the phosphor is prepared in advance, a precursor suspension of the phosphor is produced from the aqueous solution by a reaction crystallization method, and a low boiling point organic solvent is contained after a drying step. A method for producing a phosphor, which comprises forming a solution or suspension using a solvent, and firing the solution or suspension by a spray method.

【0012】5.低沸点有機溶媒を含有する溶媒を用い
て湿式分散処理を施して前駆体分散液とした後、噴霧方
式で焼成することを特徴とする前記4に記載の蛍光体の
製造方法。
5. 5. The method for producing a phosphor according to the above 4, wherein the precursor dispersion liquid is subjected to a wet dispersion treatment using a solvent containing a low boiling point organic solvent, and then the precursor dispersion liquid is baked.

【0013】6.蛍光体の構成金属元素を含有する溶液
又は懸濁液を予め調製し、該溶液又は懸濁液を噴霧熱分
解する際、燒結防止剤の存在下で行うことを特徴とする
蛍光体の製造方法。
6. A method for producing a phosphor, characterized in that a solution or suspension containing a constituent metal element of the phosphor is prepared in advance, and when the solution or suspension is pyrolyzed by spraying, it is carried out in the presence of a sintering inhibitor. .

【0014】7.少なくとも1つの工程が焼結防止剤の
存在下で行われることを特徴とする前記1〜5のいずれ
か1項に記載の蛍光体の製造方法。
7. 6. The method for producing a phosphor according to any one of 1 to 5 above, wherein at least one step is performed in the presence of a sintering inhibitor.

【0015】以下、本発明に用いられる蛍光体の製造方
法について更に詳細に説明する。本発明においては液相
法により製造した前駆体を微小な液滴としてガス雰囲気
中に噴霧して乾燥及び加熱する製造方法を用いることに
より、生産性が高く、且つ発光強度の良好な微粒子蛍光
体を提供することができるようになった。
The method for producing the phosphor used in the present invention will be described in more detail below. In the present invention, a fine particle phosphor having high productivity and good emission intensity is used by using a manufacturing method in which a precursor manufactured by a liquid phase method is sprayed in a gas atmosphere as fine droplets and dried and heated. Can now be provided.

【0016】本発明の蛍光体の製造方法としては、蛍光
体の構成金属元素を含む溶液を混合して溶液中で蛍光体
の前駆体を生成させ、次いで、前駆体を含有する微小な
液滴を特定のガス雰囲気中に噴霧する。この時、前駆体
を一旦乾燥させて低沸点溶媒中に懸濁させてから噴霧さ
せても良い。また、本発明においては、前駆体懸濁液を
湿式分散処理してから噴霧することがより好ましい形態
である。
As the method for producing the phosphor of the present invention, a solution containing the constituent metal elements of the phosphor is mixed to form a precursor of the phosphor in the solution, and then fine droplets containing the precursor are mixed. Is sprayed in a specific gas atmosphere. At this time, the precursor may be once dried, suspended in a low boiling point solvent and then sprayed. Further, in the present invention, a more preferable form is that the precursor suspension is wet-dispersed and then sprayed.

【0017】本発明においては、前駆体の生成方法は液
相法を用いることが好ましい。蛍光体の種類・用途に応
じて共沈法を用いても良く、また、ゾル−ゲル法を用い
ても良い。共沈法においては、2液以上の蛍光体原料溶
液を貧溶媒中に液中添加することがより微小で粒度分布
の狭い蛍光体を製造する為には好ましい態様である。
In the present invention, it is preferable to use the liquid phase method as the method for producing the precursor. The coprecipitation method may be used, or the sol-gel method may be used, depending on the type and application of the phosphor. In the coprecipitation method, adding two or more liquids of the phosphor raw material into the poor solvent is a preferable mode for producing a phosphor having a finer and narrow particle size distribution.

【0018】この時、蛍光体の種類や所望の性能を得る
為に、添加速度や添加位置、攪拌条件、pH等諸物性値
を調整することがより好ましい。例えば母結晶に燐酸ス
トロンチウム系の複合酸化物、賦活剤にユーロピウムを
用いた場合は、塩化ストロンチウムと硝酸ユーロピウム
を溶解した水溶液と燐酸2水素アンモニウム水溶液の2
液を60℃の純水母液中に高速液中添加する場合、pH
6に母液を制御して2液を混合するとSr10(PO46
Cl2の沈殿が生成するが、pH10で混合するとSr
10(PO46(OH)2の沈殿が生成される。また、こ
の方法によれば平均粒径が0.05μmから1μm程度
の粒度分布の狭い単分散な微粒子が得られる。
At this time, in order to obtain the kind of the phosphor and the desired performance, it is more preferable to adjust various physical properties such as the addition speed, the addition position, the stirring condition, and the pH. For example, when strontium phosphate-based composite oxide is used for the mother crystal and europium is used as the activator, two solutions of an aqueous solution in which strontium chloride and europium nitrate are dissolved and an aqueous solution of ammonium dihydrogen phosphate are used.
When the solution is added to the pure water mother liquor at 60 ° C in the high-speed liquid, the pH
When the mother liquor is controlled to 6 and the two liquids are mixed, Sr 10 (PO 4 ) 6
Cl 2 precipitates, but when mixed at pH 10, Sr
A precipitate of 10 (PO 4 ) 6 (OH) 2 is produced. Further, according to this method, monodisperse fine particles having a narrow particle size distribution with an average particle size of about 0.05 μm to 1 μm can be obtained.

【0019】ここで示す平均粒径とは、例えば球状、棒
状、或いは平板状の粒子の場合には粒子の体積と同等な
球を考えたときの直径をしめす。
In the case of spherical, rod-shaped, or tabular particles, the average particle diameter shown here is the diameter of a sphere having the same volume as the particle.

【0020】また、ここで示す単分散とは、下記式で求
められる単分散度が40%以下の場合を表す。本発明に
おいては、単分散度としては、30%以下が更に好まし
く、0.1〜20%が特に好ましい。
The term "monodispersion" as used herein means that the degree of monodispersion obtained by the following formula is 40% or less. In the present invention, the monodispersity is more preferably 30% or less, particularly preferably 0.1 to 20%.

【0021】単分散度=(粒径の標準偏差)/(粒径の
平均値)×100 本発明において、蛍光体は上述のような液相法で製造す
ることができれば有機物であっても無機物であってもよ
く、特に制限なく用いることができる。
Monodispersity = (standard deviation of particle size) / (average value of particle size) × 100 In the present invention, the phosphor may be an organic substance or an inorganic substance as long as it can be produced by the liquid phase method as described above. Or may be used without particular limitation.

【0022】用いることができる有機蛍光体としては、
例えば、brilliant sulfo flavi
ne FF、basic yellow HG、eos
ine、rhodamine 6G、rhodamin
e B、ピレン環を有する蛍光物質、ピレントリスルホ
ン酸ナトリウムやピレンテトラスルホン酸ナトリウム及
びこれらのヒドロキシ置換体、アミノ置換体、アセトア
ミド置換体、C.I.ベーシックレッド1、C.I.ベ
ーシックレッド2、C.I.ベーシックレッド9、C.
I.ベーシックレッド12、C.I.ベーシックレッド
13、C.I.ベーシックレッド14、C.I.ベーシ
ックレッド17、C.I.アシッドレッド51、C.
I.アシツドレッド52、C.I.アシッドレッド9
2、C.I.アシッドレッド、C.I.ベーシックバイ
オレット1、C.I.ベーシックバイオレット3、C.
I.ベーシックバイオレット7、C.I.ベーシックバ
イオレット10、C.I.ベーシックバイオレット14
等が挙げられる。
As the organic phosphor that can be used,
For example, brilliant sulfo flavi
ne FF, basic yellow HG, eos
ine, rhodamine 6G, rhodamine
e B, a fluorescent substance having a pyrene ring, sodium pyrene trisulfonate, sodium pyrene tetrasulfonate and their hydroxy-substituted products, amino-substituted products, acetamide-substituted products, C.I. I. Basic Red 1, C.I. I. Basic Red 2, C.I. I. Basic Red 9, C.I.
I. Basic Red 12, C.I. I. Basic Red 13, C.I. I. Basic Red 14, C.I. I. Basic Red 17, C.I. I. Acid Red 51, C.I.
I. Acid Red 52, C.I. I. Acid Red 9
2, C.I. I. Acid Red, C.I. I. Basic Violet 1, C.I. I. Basic Violet 3, C.I.
I. Basic Violet 7, C.I. I. Basic Violet 10, C.I. I. Basic violet 14
Etc.

【0023】無機蛍光物質としては、例えば、特開昭5
0−6410号公報、同61−65226号公報、同6
4−22987号公報、同64−60671号公報、特
開平1−168911号等公報に記載された蛍光物質、
例えば、ZnS:Ag、CaWO4、Y2SiO5:C
e、ZnS:Ag,Ga,Cl、Ca259Cl:E
2+、BaMgAl1423:Eu2+等の青色発光無機蛍
光物質、例えば、ZnS:Cu,Al、(Zn,Cd)
S:Cu,Al、ZnS:Cu,Au,Al、Zn 2
iO4:Mn、ZnS:Ag,Cu、(Zn,Cd)
S:Cu、ZnS:Cu、Gd22S:Tb、La22
S:Tb、Y2SiO5:Ce,Tb、Zn2GeO4:M
n、CeMgAl1119:Tb、SrGa24:E
2+、ZnS:Cu,Co、MgO・nB23:Ce,
Tb、LaOBr:Tb,Tm、La22S:Tb等の
緑色発光無機蛍光物質、例えば、Y23:Eu、YVO
4:Eu、Y22S:Eu、3.5MgO,0.5Mg
2GeO2:Mn、(Y,Cd)BO3:Eu等の赤色
発光無機蛍光物質が挙げられる。また、3波長蛍光物質
に使用されている蛍光物質や、ハロリン酸カルシウム等
も好ましく用いることができる。
Examples of the inorganic fluorescent substance include, for example, Japanese Patent Laid-Open No.
0-6410, 61-65226, 6
No. 4-22987, No. 64-60671, and
Fluorescent substances described in the publications such as Kaihei 1-168811,
For example, ZnS: Ag, CaWOFour, Y2SiOFive: C
e, ZnS: Ag, Ga, Cl, Ca2BFiveO9Cl: E
u 2+, BaMgAl14Otwenty three: Eu2+Blue luminous inorganic firefly such as
Optical material, for example ZnS: Cu, Al, (Zn, Cd)
S: Cu, Al, ZnS: Cu, Au, Al, Zn 2S
iOFour: Mn, ZnS: Ag, Cu, (Zn, Cd)
S: Cu, ZnS: Cu, Gd2O2S: Tb, La2O2
S: Tb, Y2SiOFive: Ce, Tb, Zn2GeOFour: M
n, CeMgAl11O19: Tb, SrGa2SFour: E
u2+, ZnS: Cu, Co, MgO.nB2O3: Ce,
Tb, LaOBr: Tb, Tm, La2O2S: such as Tb
Green-emitting inorganic phosphor, eg Y2O3: Eu, YVO
Four: Eu, Y2O2S: Eu, 3.5MgO, 0.5Mg
F2GeO2: Mn, (Y, Cd) BO3: Red such as Eu
Examples include luminescent inorganic fluorescent substances. Also, three-wavelength fluorescent substance
Fluorescent substances used in, calcium halophosphate, etc.
Can also be preferably used.

【0024】本発明においては、前駆体懸濁液及び/ま
たは分散液を微小な液滴として噴霧することが好まし
い。微小な液滴を形成する方法としては、例えば、加圧
空気で液体を吸い上げながら噴霧して1〜50μmの液
滴を形成する方法、圧電結晶からの2MHz程度の超音
波を利用して4〜10μmの液滴を形成する方法、孔径
が10〜20μmのオリフィスを振動子により、振動さ
せて、そこへ一定速度で液体を供給して振動数に応じて
5〜50μmの液滴を放出する方法、回転している円盤
上に液を一定速度で落下させて遠心力によって20〜1
00μmの液滴を形成する方法、液体表面に高い電圧を
引加して0.5〜10μmの液滴を発生する方法などが
挙げられる。
In the present invention, it is preferable to spray the precursor suspension and / or dispersion as fine droplets. As a method of forming minute droplets, for example, a method of forming a droplet of 1 to 50 μm by sucking the liquid with pressurized air to form a droplet and a method of using ultrasonic waves of about 2 MHz from a piezoelectric crystal Method of forming droplets of 10 μm, method of vibrating an orifice having a hole diameter of 10 to 20 μm by a vibrator, supplying liquid at a constant speed thereto, and discharging droplets of 5 to 50 μm according to the frequency of vibration , The liquid is dropped on the rotating disk at a constant speed, and centrifugal force causes 20 to 1
Examples include a method of forming droplets of 00 μm and a method of applying a high voltage to the surface of the liquid to generate droplets of 0.5 to 10 μm.

【0025】本発明において、前駆体懸濁液及び/また
は分散液中に含まれる前駆体濃度に特に限定はないが、
好ましく用いられる範囲は0.01mol/L以上10
mol/L以下である。0.01mol/L以下では生
産性が悪くなり、10mol/L以上では粗大粒子にな
りやすい。
In the present invention, the concentration of the precursor contained in the precursor suspension and / or dispersion is not particularly limited,
The preferred range is 0.01 mol / L or more 10
It is below mol / L. When the amount is 0.01 mol / L or less, the productivity is poor, and when the amount is 10 mol / L or more, coarse particles are likely to be formed.

【0026】上述のような方法で形成された液滴は、次
に、キャリアガスと共に熱分解反応炉内に導入されて乾
燥及び加熱されることにより蛍光体となる。蛍光体の種
類及び所望の特性を得る為に、必要に応じて溶媒の種
類、キャリアガスの種類、キャリアガス流量、熱分解反
応炉内の温度を選択することが出来る。
The droplets formed by the above method are then introduced into the thermal decomposition reaction furnace together with a carrier gas, dried and heated to become phosphors. In order to obtain the type of phosphor and the desired characteristics, the type of solvent, the type of carrier gas, the flow rate of carrier gas, and the temperature in the thermal decomposition reaction furnace can be selected as necessary.

【0027】本発明において、溶媒は水及び水以下の沸
点を有する低沸点有機溶媒が好ましく適用される。例え
ばエタノール、メタノール等のアルコール類が好ましく
用いられる。また、水と低沸点有機溶媒の混合溶媒を用
いても何ら問題なく適用することができる。
In the present invention, the solvent is preferably water or a low-boiling organic solvent having a boiling point lower than that of water. For example, alcohols such as ethanol and methanol are preferably used. In addition, a mixed solvent of water and a low boiling point organic solvent can be used without any problem.

【0028】本発明において、前駆体含有液滴を噴霧す
る際のガス雰囲気に特に限定はなく、酸化性雰囲気、還
元性雰囲気、または不活性雰囲気のいずれでもよく、蛍
光体主相の種類や発光に寄与する賦活剤イオンの種類に
応じて適宜選択される。例えば、酸化物を主相とする蛍
光体を合成する場合には、空気、酸素、窒素、水素、少
量の水素を含む窒素やアルゴンが好ましい。
In the present invention, the gas atmosphere in which the precursor-containing droplets are sprayed is not particularly limited, and may be any of an oxidizing atmosphere, a reducing atmosphere, or an inert atmosphere, and the type of phosphor main phase and light emission. It is appropriately selected according to the type of activator ion that contributes to. For example, when synthesizing a phosphor having an oxide as a main phase, air, oxygen, nitrogen, hydrogen, and nitrogen or argon containing a small amount of hydrogen are preferable.

【0029】一方、硫化物や酸硫化物を主相とする蛍光
体を合成する場合には、窒素、水素、少量の水素を含む
窒素やアルゴン、硫化水素や二硫化炭素を含む窒素や水
素やアルゴンなどが好ましい。また、酸化雰囲気で原子
価を保ちやすいEu3+等を賦活イオンとする場合には、
空気や酸素などの酸化性ガスが好ましく、還元雰囲気で
原子価を保ちやすいEu2+等を賦活イオンとする場合に
は、水素、少量の水素を含む窒素やアルゴンなどの還元
性ガスが好ましい。
On the other hand, when synthesizing a phosphor having sulfide or oxysulfide as the main phase, nitrogen, hydrogen, nitrogen or argon containing a small amount of hydrogen, nitrogen or hydrogen containing hydrogen sulfide or carbon disulfide, or Argon and the like are preferred. Also, when Eu 3+ or the like, which is easy to maintain valence in an oxidizing atmosphere, is used as the activating ion,
Oxidizing gases such as air and oxygen are preferable, and when Eu 2+ or the like, which easily maintains the valence in a reducing atmosphere, is used as the activating ions, hydrogen or a reducing gas such as nitrogen or argon containing a small amount of hydrogen is preferable.

【0030】本発明において、前駆体液滴を噴霧する際
の熱分解反応炉内の温度は600℃から1900℃の範
囲内の温度で行われる。温度が低すぎると結晶化が充分
に進まず、温度が高すぎると不要なエネルギーを消費す
る為、コスト上好ましくない。炉内での滞留時間は1秒
間以上24時間以下であることが好ましい。滞留時間が
短すぎると結晶化が充分に進まず、滞留時間が長すぎる
と不要なエネルギーを消費する為、コスト上好ましくな
い。
In the present invention, the temperature in the pyrolysis reaction furnace when spraying the precursor droplets is carried out at a temperature within the range of 600 ° C to 1900 ° C. If the temperature is too low, crystallization does not proceed sufficiently, and if the temperature is too high, unnecessary energy is consumed, which is not preferable in terms of cost. The residence time in the furnace is preferably 1 second or more and 24 hours or less. If the residence time is too short, crystallization will not proceed sufficiently, and if the residence time is too long, unnecessary energy will be consumed, which is not preferable in terms of cost.

【0031】本発明においては、噴霧熱分解炉に導入す
る前処理として、前駆体懸濁液に湿式分散処理を施すこ
とがより好ましい。処理方法について特に限定は無く、
高速攪拌機やボールミル、サンドミル、コロイドミル、
振動ミル、ホモジナイザー等が好ましく適用できる。ま
た、必要に応じて、これに分散剤等を添加しても良い。
例えば、液相法によって得られた前駆体懸濁液に分散剤
等を添加して調製し、次いで、この調製液をメディアが
充填されているメディアミル中を通過させて機械的分散
処理する方法が挙げられる。処理に要する時間・エネル
ギーは蛍光体の種類や所望の性能、処理量等によって適
宜選択される。
In the present invention, it is more preferable to subject the precursor suspension to a wet dispersion treatment as a pretreatment to be introduced into the spray pyrolysis furnace. There is no particular limitation on the processing method,
High-speed stirrer, ball mill, sand mill, colloid mill,
A vibration mill and a homogenizer can be preferably applied. Moreover, you may add a dispersing agent etc. to this as needed.
For example, a method in which a precursor suspension obtained by the liquid phase method is prepared by adding a dispersant or the like, and then the prepared liquid is passed through a media mill filled with media to perform a mechanical dispersion treatment. Is mentioned. The time and energy required for the treatment are appropriately selected depending on the type of phosphor, desired performance, treatment amount, and the like.

【0032】本発明においては、燒結防止剤を添加する
ことがより好ましい。スラリーとして添加しても良く、
また、粉状のものを添加しても良い。更に前駆体形成時
に添加しても良いし、湿式分散処理時に添加しても良
い。また、燒結防止剤に特に限定はなく、蛍光体の種類
及び所望の性能によって適宜選択される。例えば、前駆
体含有液滴を噴霧する際の温度域が800℃以下ではT
iO2等の金属酸化物が、1000℃以下ではSiO
2が、1700℃以下ではAl23が各々好ましく使用
される。
In the present invention, it is more preferable to add a sintering inhibitor. It may be added as a slurry,
Further, powdery one may be added. Further, it may be added at the time of forming the precursor or may be added at the time of wet dispersion treatment. Further, the anti-sintering agent is not particularly limited and is appropriately selected depending on the kind of the phosphor and the desired performance. For example, when the temperature range for spraying the precursor-containing droplets is 800 ° C. or lower, T
Metal oxides such as io 2 are SiO at 1000 ° C or lower.
2 and Al 2 O 3 are preferably used at 1700 ° C. or lower.

【0033】本発明の方法を用いることによって得られ
た蛍光体は、カラーテレビジョン用蛍光体に適用するこ
とが出来るが、蛍光ランプ用蛍光体や、プラズマディス
プレイパネル(PDP)用蛍光体、フィールドエミッシ
ョンディスプレー(FED)等の他用途の蛍光体にも好
ましく適用することができる。
The phosphor obtained by using the method of the present invention can be applied to a phosphor for a color television, but it is used for a fluorescent lamp, a plasma display panel (PDP), and a field. It can be preferably applied to phosphors for other purposes such as emission display (FED).

【0034】[0034]

【実施例】以下、実施例により本発明を説明するが、本
発明はこれらの実施例によって制限されるものではな
い。
The present invention will be described below with reference to examples, but the present invention is not limited to these examples.

【0035】《(Y0.95Eu0.0523の作製》 比較例1 硝酸イットリウム(Y(NO33・6H2O)65.5
gと硝酸ユーロピウム(Eu(NO33・6H2O)
4.0gをそれぞれ純水500mlに溶解し、原料溶液
C−1を作製した。次いで、C−1を噴霧熱分解装置
(大川原加工機(株)社製 型式:RH−2)を用い
て、原料液滴を900℃大気雰囲気中に噴霧し、20秒
間滞留させて蛍光体H−1を作製した。H−1の化学組
成は(Y0.95Eu0.0523であった。
<< Preparation of (Y 0.95 Eu 0.05 ) 2 O 3 >> Comparative Example 1 Yttrium nitrate (Y (NO 3 ) 3 .6H 2 O) 65.5
g and europium nitrate (Eu (NO 3) 3 · 6H 2 O)
4.0 g of each was dissolved in 500 ml of pure water to prepare a raw material solution C-1. Then, C-1 was sprayed into a 900 ° C. air atmosphere with raw material droplets by using a spray pyrolyzer (Model: RH-2, manufactured by Okawara Machinery Co., Ltd.), and allowed to stay for 20 seconds to cause phosphor H -1 was produced. The chemical composition of the H-1 was (Y 0.95 Eu 0.05) 2 O 3.

【0036】実施例1 40℃に加温した純水250ml中に硝酸イットリウム
(Y(NO33・6H 2O)65.5gと硝酸ユーロピ
ウム(Eu(NO33・6H2O)4.0gを加え、よ
く攪拌して完全に溶解させた。この溶液をA―1とす
る。次いで、40℃に加温した純水250ml中に蓚酸
((COOH)2・2H20)34.0gを加え、よく攪
拌して完全に溶解させた。この溶液をB―1とする。
Example 1 Yttrium nitrate was added to 250 ml of pure water heated to 40 ° C.
(Y (NO3)3・ 6H 2O) 65.5 g and europium nitrate
Umm (Eu (NO3)3・ 6H2O) 4.0g was added.
Stir well to dissolve completely. This solution is called A-1
It Then, oxalic acid was added to 250 ml of pure water heated to 40 ° C.
((COOH)2・ 2H20) Add 34.0 g and stir well.
Stir to dissolve completely. This solution is designated as B-1.

【0037】次いで、アンモニアによりpH8に調整し
た純水500ml中に、A−1とB−1を同時に100
ml/minの添加速度で液中添加して沈殿を生成させ
た。この時、A−1とB−1の添加と共にpHが刻々変
化したので、その都度アンモニア水を同時に加えてpH
を常に8±0.5になるように調整した。A−1とB−
1を全量添加して、前駆体を含有する懸濁液D−1を得
た。
Next, 100 ml of A-1 and B-1 were simultaneously added to 500 ml of pure water adjusted to pH 8 with ammonia.
Addition was performed in the liquid at an addition rate of ml / min to generate a precipitate. At this time, the pH changed every moment with the addition of A-1 and B-1.
Was always adjusted to 8 ± 0.5. A-1 and B-
1 was completely added to obtain a suspension D-1 containing a precursor.

【0038】次いで、D−1を噴霧熱分解装置(大川原
加工機(株)社製 型式:RH−2)を用いて、原料液
滴を900℃大気雰囲気中に噴霧し、20秒間滞留させ
て蛍光体K−1を作製した。
Then, D-1 was sprayed into the air atmosphere at 900 ° C. in an air atmosphere by using a spray pyrolyzer (Model: RH-2 manufactured by Okawara Koki Co., Ltd.) and allowed to stay for 20 seconds. Phosphor K-1 was produced.

【0039】実施例2 噴霧熱分解装置に投入する前に、前記前駆体含有懸濁液
D−1をメディア型湿式分散装置(エスシー・アディケ
ム(株)社製 型式:SL−C12)を用いて2500
rpmで20分間湿式分散処理を施すこと以外は同様の
方法で蛍光体K−2を作製した。
Example 2 The precursor-containing suspension D-1 was placed in a media type wet dispersion device (Model: SL-C12 manufactured by SC Adchem Co., Ltd.) before being charged into the spray pyrolysis device. 2500
Phosphor K-2 was produced by the same method except that the wet dispersion treatment was performed for 20 minutes at rpm.

【0040】実施例3 噴霧熱分解装置に投入する前に、前記前駆体含有懸濁液
D−1を120℃で噴霧乾燥して得られた乾燥済前駆体
粉体と、エタノール450mlを混ぜて前駆体懸濁液D
−1′を得た。得られた前駆体懸濁液D−1′をメディ
ア型湿式分散装置(エスシー・アディケム(株)社製
型式:SL−C12)を用いて2500rpmで20分
間湿式分散処理を施すこと以外は同様の方法で蛍光体K
−3を作製した。
Example 3 Before being charged into a spray pyrolysis apparatus, 450 ml of ethanol was mixed with dried precursor powder obtained by spray drying the above-mentioned precursor-containing suspension D-1 at 120 ° C. Precursor suspension D
-1 'was obtained. The obtained precursor suspension D-1 ′ was used as a media type wet dispersion device (manufactured by SSC Adychem Co., Ltd.).
Phosphor K by the same method except that wet dispersion treatment is performed at 2500 rpm for 20 minutes using a model: SL-C12).
-3 was produced.

【0041】実施例4 湿式分散処理時にアルミナ粉末(日本アエロジル(株)
社製 Aluminium Oxide C)を1質量
%加えて処理を行うこと以外はK−3と同様の方法で蛍
光体K−4を作製した。
Example 4 Alumina powder (Nippon Aerosil Co., Ltd.) during wet dispersion treatment
Phosphor K-4 was produced by the same method as K-3 except that 1% by mass of Aluminum Oxide C) manufactured by the same company was added for treatment.

【0042】《(Y0.9Eu0.1)VO4の作製》 比較例2 50℃に加温したエタノール500ml中にY(CH3
COCHCOCH33・3H2Oの10.6gとEu
(CH3COCHCOCH33・2H2Oの1.0gを加
え、よく攪拌して完全に溶解させた。この溶液をA―2
とする。次いで、50℃に加温したメタノール250m
l中にVO(CH3COCHCOCH33の13.2g
を加え、よく攪拌して完全に溶解させた。この溶液をB
―2とする。A−2とB−2の両液を混ぜてよく混合し
て均一溶液とした後、純水70mlを30分間かけて滴
下した。この時、純水の滴下に伴いpHが刻々変化した
ので、その都度アンモニア水を同時に加えてpHを常に
10±0.5になるように調整した。滴下終了後、60
℃に昇温して10時間熟成を行い、前駆体を含有する懸
濁液D−2を得た。
<< Preparation of (Y 0.9 Eu 0.1 ) VO 4 >> Comparative Example 2 Y (CH 3 was added to 500 ml of ethanol heated to 50 ° C.
COCHCOCH 3) 3 · 3H 2 O of 10.6g and Eu
(CH 3 COCHCOCH 3) 3 · 2H 2 O-of 1.0g was added, and completely dissolved thoroughly stirring. This solution is A-2
And Then, 250m of methanol heated to 50 ° C
13.2 g of VO (CH 3 COCHCOCH 3 ) 3 in 1
Was added and thoroughly stirred to dissolve completely. This solution is B
-Set to 2. Both solutions A-2 and B-2 were mixed and mixed well to form a uniform solution, and 70 ml of pure water was added dropwise over 30 minutes. At this time, since the pH changed every moment as pure water was dropped, ammonia water was added at each time so that the pH was constantly adjusted to 10 ± 0.5. After dropping, 60
The temperature was raised to ° C and aging was carried out for 10 hours to obtain a suspension D-2 containing a precursor.

【0043】次いで、D−2をエタノール300mlで
洗浄した後、濾過により前駆体ケーキを得た。この前駆
体ケーキを65℃で12時間かけて乾燥し、乳鉢で粉砕
した後、アルミナ坩堝に入れて電気炉((株)モトヤマ
社製 型式:SBT2025D)を用いて、900℃大
気雰囲気中で5時間焼成して蛍光体H−2を作製した。
H−2の化学組成は(Y0.9Eu0.1)VO4であった。
Next, D-2 was washed with 300 ml of ethanol and then filtered to obtain a precursor cake. This precursor cake was dried at 65 ° C. for 12 hours, crushed in a mortar, placed in an alumina crucible, and placed in an electric furnace (manufactured by Motoyama Co., Ltd., model: SBT2025D) at 900 ° C. in an atmospheric atmosphere. Phosphor H-2 was produced by firing for a time.
The chemical composition of H-2 was (Y 0.9 Eu 0.1 ) VO 4 .

【0044】実施例5 前記前駆体含有懸濁液D−2を噴霧熱分解装置(大川原
加工機(株)社製 型式:RH−2)を用いて、原料液
滴を900℃窒素ガス100%の雰囲気中に噴霧し、2
0秒間滞留させて蛍光体K−5を作製した。
Example 5 The above precursor-containing suspension D-2 was sprayed with a spray pyrolysis apparatus (Model: RH-2, manufactured by Okawara Koki Co., Ltd.) to form raw material droplets at 900 ° C. and 100% nitrogen gas. 2 in the atmosphere of
Phosphor K-5 was prepared by allowing it to stay for 0 seconds.

【0045】実施例6 噴霧熱分解装置に投入する前に、前記前駆体含有懸濁液
D−2中をメディア型湿式分散装置(VMA−GETZ
MANN GMBH社製 型式:DISPERMAT
SL−C12 EX)を用いて2500rpmで20分
間分散処理を施すこと以外は実施例5と同様の方法で蛍
光体K−6を作製した。
Example 6 The precursor-containing suspension D-2 was charged in a media type wet dispersion device (VMA-GETZ) before being charged into a spray pyrolysis device.
Mann GMBH model: DISPERMAT
A phosphor K-6 was produced in the same manner as in Example 5 except that the dispersion treatment was performed using SL-C12 EX) at 2500 rpm for 20 minutes.

【0046】<蛍光体の評価> (発光強度測定)蛍光体粉末H−1〜K−6について、
254nm紫外線を照射したときの発光強度を確認し
た。
<Evaluation of Phosphor> (Measurement of Luminous Intensity) Regarding phosphor powders H-1 to K-6,
The emission intensity when irradiated with 254 nm ultraviolet light was confirmed.

【0047】発光強度測定は、蛍光光度計(HITAC
HI社製 F3010)を用いて、励起波長254n
m、測定温度25℃条件で測定した。
The emission intensity is measured by a fluorescence photometer (HITAC
Excitation wavelength 254n using HI F3010)
m, measurement temperature was measured at 25 ° C.

【0048】また、本発明の蛍光体K−1からK−4の
発光強度は比較蛍光体H−1の発光強度を100%とし
た時の相対値で示した。本発明の蛍光体K−5からK−
6の発光強度は比較蛍光体H−2の発光強度を100%
とした時の相対値で示した。
The emission intensities of the phosphors K-1 to K-4 of the present invention are shown as relative values when the emission intensity of the comparative phosphor H-1 is 100%. Phosphors K-5 to K- of the present invention
The emission intensity of 6 is 100% of that of the comparative phosphor H-2.
It was shown as a relative value when.

【0049】(平均粒径測定)蛍光体粉末H−1〜K−
6の電子顕微鏡写真の中から不作為に500個の粒子を
選択し、蛍光体粉末H−1〜K−6各々の平均粒径を求
めた。
(Measurement of average particle size) Phosphor powders H-1 to K-
Six hundred particles were randomly selected from the electron micrograph of No. 6, and the average particle diameter of each of the phosphor powders H-1 to K-6 was determined.

【0050】(単分散度測定)蛍光体粉末H−1〜K−
6の電子顕微鏡写真の中から不作為に500個の粒子を
選択し、蛍光体粉末H−1〜K−6各々の単分散度を求
めた。
(Measurement of Monodispersity) Phosphor powders H-1 to K-
Six hundred particles were randomly selected from the electron micrograph of No. 6, and the monodispersity of each of the phosphor powders H-1 to K-6 was determined.

【0051】また、ここで示す単分散度とは、下記式で
求められる単分散度が40%以下の場合を表す。
The monodispersity shown here means that the monodispersity calculated by the following formula is 40% or less.

【0052】単分散度=(粒径の標準偏差)/(粒径の
平均値)×100
Monodispersity = (standard deviation of particle size) / (average value of particle size) × 100

【0053】[0053]

【表1】 [Table 1]

【0054】表1から明らかなように、本発明の試料
は、粒度分布の狭い発光強度の良好な微粒子蛍光体であ
ることが判る。
As is clear from Table 1, the sample of the present invention is a fine particle phosphor having a narrow particle size distribution and good emission intensity.

【0055】[0055]

【発明の効果】本発明により、液相法により製造した前
駆体を微小な液滴としてガス雰囲気中に噴霧して乾燥及
び加熱する製造方法で、粒度分布の狭い発光強度の良好
な微粒子蛍光体を得た。
Industrial Applicability According to the present invention, a precursor produced by the liquid phase method is sprayed in a gas atmosphere as fine droplets, dried and heated, and a fine particle phosphor having a narrow particle size distribution and good emission intensity. Got

───────────────────────────────────────────────────── フロントページの続き (72)発明者 鈴木 隆行 東京都日野市さくら町1番地コニカ株式会 社内 (72)発明者 岡田 尚大 東京都日野市さくら町1番地コニカ株式会 社内 Fターム(参考) 4G048 AA03 AB02 AC08 AE07 4G076 AA02 AB07 AB11 AB12 BA11 DA11 4H001 CA01 CF02    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Takayuki Suzuki             Konica Stock Market, 1 Sakura-cho, Hino City, Tokyo             In-house (72) Inventor Naohiro Okada             Konica Stock Market, 1 Sakura-cho, Hino City, Tokyo             In-house F-term (reference) 4G048 AA03 AB02 AC08 AE07                 4G076 AA02 AB07 AB11 AB12 BA11                       DA11                 4H001 CA01 CF02

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 蛍光体の構成金属元素を含有する溶液を
予め調製し、液相法で蛍光体の前駆体懸濁液を製造し、
該前駆体懸濁液を微細な液滴としてガス雰囲気中に放出
して該液滴を乾燥及び加熱することを特徴とする蛍光体
の製造方法。
1. A solution containing a constituent metal element of a phosphor is prepared in advance, and a precursor suspension of the phosphor is produced by a liquid phase method,
A method for producing a phosphor, characterized in that the precursor suspension is discharged as fine droplets into a gas atmosphere to dry and heat the droplets.
【請求項2】 前駆体懸濁液に湿式分散処理を施して前
駆体分散液とした後、微細な液滴としてガス雰囲気中に
放出することを特徴とする請求項1に記載の蛍光体の製
造方法。
2. The phosphor according to claim 1, wherein the precursor suspension is subjected to a wet dispersion treatment to form a precursor dispersion, which is then discharged as fine droplets into a gas atmosphere. Production method.
【請求項3】 低沸点有機溶媒を含有する溶媒を用いて
蛍光体の構成金属元素を含有する溶液又は懸濁液を予め
調製し、該溶液又は懸濁液を噴霧方式で焼成することを
特徴とする蛍光体の製造方法。
3. A solution or suspension containing a constituent metal element of a phosphor is prepared in advance using a solvent containing a low-boiling organic solvent, and the solution or suspension is fired by a spray method. And a method for producing a phosphor.
【請求項4】 蛍光体の構成金属元素を含有する水系溶
液を予め調製し、該水系溶液から反応晶析法で蛍光体の
前駆体懸濁液を製造し、乾燥工程を経た後、低沸点有機
溶媒を含有する溶媒を用いて溶液又は懸濁液とし、該溶
液又は懸濁液を噴霧方式で焼成することを特徴とする蛍
光体の製造方法。
4. An aqueous solution containing a constituent metal element of a phosphor is prepared in advance, a precursor suspension of the phosphor is produced from the aqueous solution by a reaction crystallization method, and after a drying step, a low boiling point is obtained. A method for producing a phosphor, which comprises forming a solution or suspension using a solvent containing an organic solvent, and firing the solution or suspension by a spray method.
【請求項5】 低沸点有機溶媒を含有する溶媒を用いて
湿式分散処理を施して前駆体分散液とした後、噴霧方式
で焼成することを特徴とする請求項4に記載の蛍光体の
製造方法。
5. The phosphor according to claim 4, wherein the precursor dispersion liquid is subjected to a wet dispersion treatment using a solvent containing a low boiling point organic solvent, and then the precursor dispersion liquid is fired by a spray method. Method.
【請求項6】 蛍光体の構成金属元素を含有する溶液又
は懸濁液を予め調製し、該溶液又は懸濁液を噴霧熱分解
する際、燒結防止剤の存在下で行うことを特徴とする蛍
光体の製造方法。
6. A solution or suspension containing a constituent metal element of a phosphor is prepared in advance, and spray pyrolysis of the solution or suspension is performed in the presence of a sintering inhibitor. Method for manufacturing phosphor.
【請求項7】 少なくとも1つの工程が焼結防止剤の存
在下で行われることを特徴とする請求項1〜5のいずれ
か1項に記載の蛍光体の製造方法。
7. The method for producing a phosphor according to claim 1, wherein at least one step is performed in the presence of a sintering inhibitor.
JP2002061824A 2002-03-07 2002-03-07 Manufacturing method for fluorescent material Pending JP2003261867A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002061824A JP2003261867A (en) 2002-03-07 2002-03-07 Manufacturing method for fluorescent material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002061824A JP2003261867A (en) 2002-03-07 2002-03-07 Manufacturing method for fluorescent material

Publications (1)

Publication Number Publication Date
JP2003261867A true JP2003261867A (en) 2003-09-19

Family

ID=29195914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002061824A Pending JP2003261867A (en) 2002-03-07 2002-03-07 Manufacturing method for fluorescent material

Country Status (1)

Country Link
JP (1) JP2003261867A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006063220A (en) * 2004-08-27 2006-03-09 Konica Minolta Medical & Graphic Inc Phosphor paste and plasma display panel
WO2007034657A1 (en) * 2005-09-22 2007-03-29 Konica Minolta Medical & Graphic, Inc. Finely particulate fluorescent material and process for producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006063220A (en) * 2004-08-27 2006-03-09 Konica Minolta Medical & Graphic Inc Phosphor paste and plasma display panel
WO2007034657A1 (en) * 2005-09-22 2007-03-29 Konica Minolta Medical & Graphic, Inc. Finely particulate fluorescent material and process for producing the same

Similar Documents

Publication Publication Date Title
TWI412575B (en) Core/shell phosphor precursors and phosphors
Hirai et al. Preparation of Gd2O3: Eu3+ and Gd2O2S: Eu3+ phosphor fine particles using an emulsion liquid membrane system
Wang et al. Luminescence properties of nanocrystalline YVO4: Eu3+ under UV and VUV excitation
JPH11503712A (en) Rare earth borate and its precursors, their preparation and their use as luminophores
KR100293330B1 (en) A preparing method for green fluorescent body based orthosilicate
JPH0745655B2 (en) Method for manufacturing phosphor
KR101458026B1 (en) A rare earth nano phosphor and synthetic method thereof
JP2005054046A (en) Method for producing fluorophor
US6663843B2 (en) Method of producing barium-containing composite metal oxide
JP2003261867A (en) Manufacturing method for fluorescent material
KR100351635B1 (en) Process for preparing spherical blue phosphor based on aluminates
Yoon et al. Comparison of YAG: Eu phosphor synthesized by supercritical water and solid-state methods in a batch reactor
KR20070064663A (en) Precursor compound and crystallised compound of the alkaline-earth aluminate type, and methods of preparing and using the crystallised compound as phosphor
JP2004256763A (en) Method for producing phosphor
JP2004277543A (en) Method for producing phosphor particle
JP2007106832A (en) Method for producing phosphor and the phosphor produced by the method
KR100447936B1 (en) Green emitting phosphor by VUV excitiation and its preparation method
KR20100014525A (en) Iridium-containing phosphor and method for producing the same
KR100419863B1 (en) Preparing method for spherical red phosphor based on borates
KR100424861B1 (en) Preparing process for spherical red phosphor based on borates using hydrolysis
JPH09255950A (en) Preparation of light-storing luminescent pigment
JP2008063574A (en) Europium-activated yttrium oxide and process for producing the same
JP2003171661A (en) Method for producing phosphor and phosphor
JP2003213256A (en) Method for producing phosphor
JPWO2007132625A1 (en) Method for producing nano semiconductor particles