JP2003261527A - METHOD FOR PRODUCING alpha-ALKYL-SUBSTITUTED PHENYLACETONITRILE - Google Patents

METHOD FOR PRODUCING alpha-ALKYL-SUBSTITUTED PHENYLACETONITRILE

Info

Publication number
JP2003261527A
JP2003261527A JP2002061937A JP2002061937A JP2003261527A JP 2003261527 A JP2003261527 A JP 2003261527A JP 2002061937 A JP2002061937 A JP 2002061937A JP 2002061937 A JP2002061937 A JP 2002061937A JP 2003261527 A JP2003261527 A JP 2003261527A
Authority
JP
Japan
Prior art keywords
substituted
alkyl
general formula
group
represented
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002061937A
Other languages
Japanese (ja)
Inventor
Yuichi Sugano
菅野  裕一
Takafumi Abe
崇文 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2002061937A priority Critical patent/JP2003261527A/en
Publication of JP2003261527A publication Critical patent/JP2003261527A/en
Pending legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for efficiently producing an α-alkyl-substituted phenylacetonitrile. <P>SOLUTION: The method for producing the α-alkyl-substituted phenylacetonitrile represented by general formula (3) (wherein, R<SB>1</SB>is an o-, m- or p-substituted group which is a 1-4C linear or branched alkyl group, a methylthio group, a halogen-substituted alkyl group, a halogen atom or an alkoxy group, with the proviso that R<SB>1</SB>may have two or more substituents which may form a ring with each other at m- or p-position of the aromatic ring; R<SB>2</SB>is a 1-5C linear or branched alkyl group) comprises reacting a substituted phenyl alkyl ketone represented by general formula (1) (wherein, R<SB>1</SB>and R<SB>2</SB>have the same meanings as the above) with hydrogen cyanide to provide a cyanhydrin compound, dehydrating the cyanhydrin compound to provide an unsaturated nitrile represented by general formula (2) (wherein, R<SB>1</SB>and R<SB>2</SB>have the same meanings as the above), and hydrogenating the unsaturated nitrile. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本反応はα−アルキル−置換
フェニルアセトニトリルの製造方法に関するものであ
る。α−アルキル−置換フェニルアセトニトリルは加水
分解により医農薬中間体として有用なαイソプロピル−
パラ置換フェニル酢酸を製造することができる。 【0002】 【従来の技術】αイソプロピル−パラ置換フェニル酢酸
は医農薬中間体として有用な化合物として知られている
(例えば、Agr. Biol. Chem., 38, 881 (1974)、J. Syn
th. Org. Chem., 38, 574 (1980)、特開昭61−911
57号、同63−1391711号)。従来、αイソプ
ロピル−パラ置換フェニル酢酸の製造法としては、置換
フェニルアセトニトリルとハロゲン化アルキルを強塩基
下反応させてα−アルキル置換フェニルアセトニトリル
を得、次いで鉱酸またはアルカリの存在下加水分解反応
させて得る方法が周知である(Agr. Biol. Chem., 39
(1), 267 (1974)、特開昭50−5350号公報)。置
換フェニルアセトニトリルを得るためには、置換トルエ
ンを出発物質とし、側鎖メチル基をモノハロゲン化した
のちニトリル基を導入する方法が一般的であるが、煩雑
な反応工程を要し、結果として高価な原料となる。 【0003】 【発明が解決しようとする課題】本発明の目的は、従来
技術における上記したような課題を解決し、α−アルキ
ル−置換フェニルアセトニトリルを効率よく製造する方
法を提供することにある。 【0004】 【課題を解決するための手段】本発明者らは、上記課題
について鋭意研究を重ねた結果、置換フェニルアルキル
ケトンとシアン化水素を反応させたシアンヒドリン化合
物を脱水させて、不飽和ニトリルを得、次いで水素化反
応を行うことにより、α−アルキル−置換フェニルアセ
トニトリルが収率よく製造できる方法を見出し本発明に
到達した。 【0005】すなわち、本発明は、一般式(1) 【0006】 【化4】 (式中、R1はオルト、メタ、パラ置換を意味し、炭素
数1〜4の直鎖または分鎖アルキル基、メチルチオ基、
ハロゲン置換アルキル基、ハロゲン原子またはアルコキ
シル基を表し、R1はメタ、パラ位の芳香環に2箇所以
上置換したり、またR1同士が環を構成している場合も
含むものとする。R2は炭素数1〜5の直鎖、または分
鎖アルキル基を表す。)で示される置換フェニルアルキ
ルケトンとシアン化水素を反応させたシアンヒドリン化
合物を脱水させて、一般式(2) 【0007】 【化5】 (式中R1、R2は前記と同様の意味を表す。)で示さ
れる不飽和ニトリルを得、次いで水素化反応を行うこと
により、一般式(3) 【0008】 【化6】(式中R1、R2は前記と同様の意味を表す。)で示さ
れるα−アルキル−置換フェニルアセトニトリルの製造
方法に関するものである。 【0009】 【発明の実施の形態】以下に、本発明の方法を詳しく説
明する。本発明における反応原料は一般式(1)で示さ
れる置換フェニルアルキルケトンである。置換フェニル
アルキルケトンは芳香族化合物とカルボン酸クロライド
もしくは酸無水物から塩化アルミニウムのようなルイス
酸を用いたフリーデルクラフツアシル化反応により得る
ことができ、容易に製造しうる化合物である。 【0010】得られた置換フェニルアルキルケトンはシ
アン化水素と反応し、容易にシアンヒドリン化合物を形
成する。反応には、少量の水酸化ナトリウム、水酸化カ
リウム、アンモニアなどの無機塩基性化合物や、テトラ
メチルアンモニウム、トリエチルアミン、ジエチルアミ
ンなどの有機塩基化合物を触媒として用い、低温で速や
かに反応が進行しシアンヒドリン化合物を形成する。反
応は平衡反応であり、転化率は反応平衡に依存する。 【0011】原料の置換フェニルアルキルケトンや得ら
れるシアンヒドリン化合物が固体である場合などには、
溶媒を用いることもできる。溶媒としては、シアン化水
素と反応しがたく、塩基性下で安定ならば任意に選択で
きるが、ジエチルエーテルやテトラヒドロフランなどの
低沸点のエーテル化合物が安定かつ、その後の留去も容
易であり適している。シアンヒドリン化合物は一般的に
pH7以上の領域では不安定で分解しやすいため、長期
保存する場合には極微量の硫酸などの酸性化合物を添加
し低温で保存するとよい。 【0012】得られたシアンヒドリン化合物の中心炭素
は3級炭素であるので、強酸性条件下容易に脱水して、
一般式(2)で表される不飽和ニトリルを生成する。不
飽和ニトリルの生成には高温側が有利であるが、シアン
ヒドリン化合物が高温では不安定であるため、−10℃
〜100℃、好ましくは0℃〜60℃で行う。反応は、
シアンヒドリン化合物に酸を加えても良いが、シアンヒ
ドリンの分解を避けるために、酸にゆっくりとシアンヒ
ドリン化合物を加えていく方法が望ましい。一般に強い
酸性条件ほど脱水側に有利であるとされており、シアン
ヒドリンに対して0.1〜10当量、好ましくは1当量
〜3当量の酸を使用する。酸としては硫酸が代表的であ
り、安価かつ取り扱いも容易である。 【0013】反応の際、一部分解したシアンヒドリンは
原料である置換フェニルアルキルケトンに戻るため、蒸
留操作により回収することができる。回収した置換フェ
ニルアルキルケトンは再度シアンヒドリン合成に供する
ことができ、これにより原料のロスを防ぐことができ
る。 【0014】得られた一般式(2)で表される不飽和ニ
トリルは抽出、蒸留の簡便な精製を経たのち、水素添加
により飽和エステルに転化させることにより、一般式
(3)で表されるα−アルキル−置換フェニルアセトニ
トリルが得られる。反応は通常のオレフィンの水素添加
にしたがい、例えば活性炭に担持したPdやPtなどの
担持金属触媒を用い、0℃〜100℃、常圧〜10MP
aの水素圧で反応を行うことにより、容易に選択的に飽
和ニトリルを得ることができる。 【0015】水素添加反応は発熱を伴うため、メタノー
ルなどの溶媒に希釈して反応を行ってもよい。また水素
添加反応は、光学活性な配位子により修飾された金属触
媒による不斉水素還元を行うこともできる(特開昭64
−9952号公報)。得られたα−アルキル−置換フェ
ニルアセトニトリルは、十分な純度であるが、再度蒸留
操作により精製を行ってもよい。 【0016】 【実施例】次に、本発明の方法を実施例により更に具体
的に説明するが、本発明はこれらの実施例によりその範
囲を限定されるものではない。 【0017】実施例1 [p−メチル−α−イソプロピルフェニルアセトニトリ
ルの製造]イソプロピル−p−メチルフェニルケトン3
24gに0.4gのトリエチルアミンを加え、シアン化
水素60gを滴下したのち、2℃で3時間撹拌し、シア
ンヒドリンを得た。硫酸300gに上記シアンヒドリン
を30℃でゆっくりと滴下した。1時間撹拌したのち、
70℃に昇温した。反応液と同量程度のメチルイソブチ
ルケトンを加えたのち、水により洗浄した。メチルイソ
ブチルケトンをエバポレートしたのち、減圧蒸留により
3−メチル−2−p−トルイル−2−ブテンカルボニト
リル250gを得た(3.5Torr、120℃)。 【0018】3−メチル−2−p−トルイル−2−ブテ
ンカルボニトリル250gとメタノール250gを混合
し、5重量%活性炭担持パラジウム触媒5gを加え、水
素圧0.5MPa、40℃で水素化反応を行ったのち、
溶媒を留去し、p−メチル−α−イソプロピルフェニル
アセトニトリル240gを得た。 【0019】実施例2 [p−メトキシ−α−イソプロピルフェニルアセトニト
リルの製造]イソプロピル−p−メトキシフェニルケト
ン200gを原料に用い、実施例1と同様に合成し、該
化合物120gを得た。 【0020】実施例3 [p−フルオロ−α−イソプロピルフェニルアセトニト
リルの製造]イソプロピル−p−フルオロフェニルケト
ン150gを原料に用い、実施例1と同様に合成し、該
化合物100gを得た。 【0021】実施例4 [p−エチル−α−イソプロピルフェニルアセトニトリ
ルの製造]イソプロピル−p−エチルフェニルケトン1
50gを原料に用い、実施例1と同様に合成し、該化合
物95gを得た。 【0022】 【発明の効果】本発明によれば容易に入手できる原料で
ある置換フェニルアルキルケトンを反応原料として用
い、α−アルキル−置換フェニルアセトニトリルを効率
よく製造することが可能であり、その工業的な意義は極
めて大きい。
Description: TECHNICAL FIELD The present reaction relates to a method for producing an α-alkyl-substituted phenylacetonitrile. α-Alkyl-substituted phenylacetonitrile can be converted to α-isopropyl-
Para-substituted phenylacetic acids can be produced. [0002] α-isopropyl-para-substituted phenylacetic acid is known as a compound useful as an intermediate for medical and agricultural chemicals (for example, Agr. Biol. Chem., 38, 881 (1974), J. Syn).
th. Org. Chem., 38, 574 (1980), JP-A-61-911.
Nos. 57 and 63-1391711). Conventionally, as a method for producing α-isopropyl-para-substituted phenylacetic acid, a substituted phenylacetonitrile and an alkyl halide are reacted under a strong base to obtain an α-alkyl-substituted phenylacetonitrile, followed by a hydrolysis reaction in the presence of a mineral acid or an alkali. A known method is known (Agr. Biol. Chem., 39
(1), 267 (1974), JP-A-50-5350). In order to obtain a substituted phenylacetonitrile, it is common to use a substituted toluene as a starting material, monohalogenate a side chain methyl group and then introduce a nitrile group, but a complicated reaction step is required, resulting in a high cost. Raw material. [0003] It is an object of the present invention to solve the above-mentioned problems in the prior art and to provide a method for efficiently producing an α-alkyl-substituted phenylacetonitrile. Means for Solving the Problems As a result of intensive studies on the above problems, the present inventors dehydrated a cyanohydrin compound obtained by reacting a substituted phenylalkyl ketone with hydrogen cyanide to obtain an unsaturated nitrile. Then, a hydrogenation reaction was carried out to find a method capable of producing an α-alkyl-substituted phenylacetonitrile in good yield, and reached the present invention. That is, the present invention provides a compound represented by the general formula (1): (In the formula, R1 means ortho, meta, para substitution, and a straight or branched alkyl group having 1 to 4 carbon atoms, a methylthio group,
It represents a halogen-substituted alkyl group, a halogen atom or an alkoxyl group, and R1 may be substituted at two or more positions on the meta- or para-position aromatic ring, or the case where R1s constitute a ring. R2 represents a linear or branched alkyl group having 1 to 5 carbon atoms. The dehydration of a cyanohydrin compound obtained by reacting a substituted phenylalkylketone represented by the formula (1) with hydrogen cyanide is performed to obtain a compound represented by the general formula (2): (Wherein R1 and R2 have the same meanings as described above), and then a hydrogenation reaction is carried out to obtain an unsaturated nitrile represented by the following general formula (3). (Wherein R1 and R2 have the same meanings as described above.) The present invention relates to a method for producing an α-alkyl-substituted phenylacetonitrile represented by the formula: Hereinafter, the method of the present invention will be described in detail. The reaction raw material in the present invention is a substituted phenyl alkyl ketone represented by the general formula (1). The substituted phenylalkyl ketone is a compound which can be obtained easily from an aromatic compound and a carboxylic acid chloride or an acid anhydride by a Friedel-Crafts acylation reaction using a Lewis acid such as aluminum chloride. The obtained substituted phenylalkyl ketone reacts with hydrogen cyanide to easily form a cyanohydrin compound. In the reaction, a small amount of an inorganic basic compound such as sodium hydroxide, potassium hydroxide, or ammonia, or an organic basic compound such as tetramethylammonium, triethylamine, or diethylamine is used as a catalyst. To form The reaction is an equilibrium reaction, and the conversion depends on the reaction equilibrium. When the starting substituted phenylalkylketone or the obtained cyanohydrin compound is a solid, for example,
Solvents can also be used. As the solvent, it is difficult to react with hydrogen cyanide and can be arbitrarily selected as long as it is stable under basic conditions. . Cyanhydrin compounds are generally unstable and easily decomposed in a pH range of 7 or more. Therefore, when storing for a long time, a very small amount of an acidic compound such as sulfuric acid may be added and stored at a low temperature. Since the central carbon of the obtained cyanohydrin compound is a tertiary carbon, it is easily dehydrated under strongly acidic conditions.
An unsaturated nitrile represented by the general formula (2) is produced. Although the high temperature side is advantageous for the generation of unsaturated nitriles, -10 ° C
To 100 ° C, preferably 0 ° C to 60 ° C. The reaction is
Although an acid may be added to the cyanohydrin compound, a method in which the cyanohydrin compound is slowly added to the acid is desirable to avoid decomposition of the cyanohydrin. Generally, it is considered that stronger acidic conditions are more advantageous on the dehydration side, and 0.1 to 10 equivalents, preferably 1 to 3 equivalents, of an acid is used based on cyanhydrin. A typical example of the acid is sulfuric acid, which is inexpensive and easy to handle. In the reaction, the partially decomposed cyanohydrin returns to the substituted phenylalkylketone as a raw material, and can be recovered by a distillation operation. The recovered substituted phenylalkyl ketone can be used again for cyanohydrin synthesis, thereby preventing loss of raw materials. The obtained unsaturated nitrile represented by the general formula (2) is subjected to simple purification by extraction and distillation, and then converted to a saturated ester by hydrogenation, whereby the unsaturated nitrile is represented by the general formula (3). An α-alkyl-substituted phenylacetonitrile is obtained. The reaction is carried out according to the usual hydrogenation of an olefin.
By conducting the reaction under the hydrogen pressure of a, a saturated nitrile can be easily and selectively obtained. Since the hydrogenation reaction is exothermic, the reaction may be carried out after dilution in a solvent such as methanol. In addition, the hydrogenation reaction can be carried out by asymmetric hydrogen reduction using a metal catalyst modified with an optically active ligand (Japanese Patent Application Laid-Open No. Sho 64)
-9952). The obtained α-alkyl-substituted phenylacetonitrile has sufficient purity, but may be purified again by a distillation operation. EXAMPLES Next, the method of the present invention will be described more specifically with reference to examples, but the scope of the present invention is not limited by these examples. Example 1 [Production of p-methyl-α-isopropylphenylacetonitrile] Isopropyl-p-methylphenylketone 3
To 24 g, 0.4 g of triethylamine was added, 60 g of hydrogen cyanide was added dropwise, and the mixture was stirred at 2 ° C. for 3 hours to obtain cyanohydrin. The above-mentioned cyanohydrin was slowly dropped at 300C in 300 g of sulfuric acid. After stirring for one hour,
The temperature was raised to 70 ° C. After about the same amount of methyl isobutyl ketone as the reaction solution was added, the mixture was washed with water. After evaporating methyl isobutyl ketone, vacuum distillation was performed to obtain 250 g of 3-methyl-2-p-toluyl-2-butenecarbonitrile (3.5 Torr, 120 ° C.). A mixture of 250 g of 3-methyl-2-p-toluyl-2-butenecarbonitrile and 250 g of methanol is added with 5 g of a 5% by weight activated carbon-supported palladium catalyst, and a hydrogenation reaction is carried out at a hydrogen pressure of 0.5 MPa and 40 ° C. After going,
The solvent was distilled off to obtain 240 g of p-methyl-α-isopropylphenylacetonitrile. Example 2 [Production of p-methoxy-α-isopropylphenylacetonitrile] Using 200 g of isopropyl-p-methoxyphenylketone as a raw material, the compound was synthesized in the same manner as in Example 1 to obtain 120 g of the compound. Example 3 [Production of p-fluoro-α-isopropylphenylacetonitrile] Using 150 g of isopropyl-p-fluorophenylketone as a raw material, the synthesis was carried out in the same manner as in Example 1 to obtain 100 g of the compound. Example 4 [Production of p-ethyl-α-isopropylphenylacetonitrile] Isopropyl-p-ethylphenylketone 1
Using 50 g as a raw material, synthesis was carried out in the same manner as in Example 1 to obtain 95 g of the compound. According to the present invention, α-alkyl-substituted phenylacetonitrile can be efficiently produced by using a readily available raw material, substituted phenylalkyl ketone, as a reaction raw material. Significance is extremely large.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4H006 AA02 AC11 AC13 AC54 BA25 BE06 BE20 QN30 4H039 CA19 CB10    ────────────────────────────────────────────────── ─── Continuation of front page    F-term (reference) 4H006 AA02 AC11 AC13 AC54 BA25                       BE06 BE20 QN30                 4H039 CA19 CB10

Claims (1)

【特許請求の範囲】 【請求項1】一般式(1) 【化1】 (式中、R1はオルト、メタ、パラ置換を意味し、炭素
数1〜4の直鎖または分鎖アルキル基、メチルチオ基、
ハロゲン置換アルキル基、ハロゲン原子またはアルコキ
シル基を表し、R1はメタ、パラ位の芳香環に2箇所以
上置換したり、またR1同士が環を構成している場合も
含むものとする。R2は炭素数1〜5の直鎖、または分
鎖アルキル基を表す。)で示される置換フェニルアルキ
ルケトンとシアン化水素を反応させたシアンヒドリン化
合物を脱水させて、一般式(2) 【化2】 (式中R1、R2は前記と同様の意味を表す。)で示さ
れる不飽和ニトリルを得、次いで水素化反応を行うこと
により、一般式(3) 【化3】 (式中R1、R2は前記と同様の意味を表す。)で示さ
れるα−アルキル−置換フェニルアセトニトリルの製造
方法。
[Claim 1] The general formula (1) (In the formula, R1 means ortho, meta, para substitution, and a straight or branched alkyl group having 1 to 4 carbon atoms, a methylthio group,
It represents a halogen-substituted alkyl group, a halogen atom or an alkoxyl group, and R1 may be substituted at two or more positions on the meta- or para-position aromatic ring, or the case where R1s constitute a ring. R2 represents a linear or branched alkyl group having 1 to 5 carbon atoms. The dehydration of a cyanohydrin compound obtained by reacting a substituted phenylalkyl ketone represented by the formula (1) with hydrogen cyanide is performed to obtain a compound represented by the general formula (2). (Wherein R1 and R2 have the same meanings as described above), and then a hydrogenation reaction is carried out to obtain a compound represented by the general formula (3). (Wherein R1 and R2 have the same meanings as described above), and a method for producing an α-alkyl-substituted phenylacetonitrile.
JP2002061937A 2002-03-07 2002-03-07 METHOD FOR PRODUCING alpha-ALKYL-SUBSTITUTED PHENYLACETONITRILE Pending JP2003261527A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002061937A JP2003261527A (en) 2002-03-07 2002-03-07 METHOD FOR PRODUCING alpha-ALKYL-SUBSTITUTED PHENYLACETONITRILE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002061937A JP2003261527A (en) 2002-03-07 2002-03-07 METHOD FOR PRODUCING alpha-ALKYL-SUBSTITUTED PHENYLACETONITRILE

Publications (1)

Publication Number Publication Date
JP2003261527A true JP2003261527A (en) 2003-09-19

Family

ID=29195962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002061937A Pending JP2003261527A (en) 2002-03-07 2002-03-07 METHOD FOR PRODUCING alpha-ALKYL-SUBSTITUTED PHENYLACETONITRILE

Country Status (1)

Country Link
JP (1) JP2003261527A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008523175A (en) * 2004-12-08 2008-07-03 ジボダン エス エー Organic compounds

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008523175A (en) * 2004-12-08 2008-07-03 ジボダン エス エー Organic compounds

Similar Documents

Publication Publication Date Title
KR101808479B1 (en) Method for producing phenylacetamide compound
JP4136866B2 (en) Novel industrial synthesis method of tetraesters of 5- [bis (carboxymethyl) amino] -3-carboxymethyl-4-cyano-2-thiophenecarboxylic acid, and divalent salts of ranelic acid and their hydrates Application to synthesis
US9056818B2 (en) Process for the preparation of derivatives of 1-(2-halobiphenyl-4-yl)-cyclopropanecarboxylic acid
KR20060030110A (en) Preparation of 1,3-diphenylprop-2-en-1-one derivatives
JP2011523953A (en) Process for preparing derivatives of 1- (2-halobiphenyl-4-yl) -cyclopropanecarboxylic acid
JP2003261527A (en) METHOD FOR PRODUCING alpha-ALKYL-SUBSTITUTED PHENYLACETONITRILE
JP5039419B2 (en) Method for producing cross-coupling compound
ES2214313T3 (en) PROCESS FOR THE CONVERSION OF ALDEHIDS IN NITRILS USING AMMONIA AND HYDROGEN PEROXIDE.
JP3561178B2 (en) Nitrile production method
US20040242690A1 (en) Method for preparing polyprenyl compounds
JP4269902B2 (en) Method for producing aromatic unsaturated compound
JP2003261500A (en) METHOD FOR PRODUCING alpha-ALKYL-SUBSTITUTED PHENYLACETIC ACID
JPH08245517A (en) Production of alkylcyclopentanone derivative
CN115724769B (en) Method for synthesizing fluorine-containing phenylethynyl phenyl propionitrile liquid crystal compound
WO2010099693A1 (en) Preparation method of acylbenzenes
JP2004269451A (en) Method for producing mandelic acid derivative
KR20220039116A (en) Method for producing high purity Pelubiprofen
KR20080094075A (en) Process for preparing 3,4-disubstituted phenylacetic acids and novel intermediates
WO1998005630A1 (en) Process for the preparation of organic nitriles
JP2646294B2 (en) Nitrile production method
BE856317Q (en) PROCESS FOR PREPARING ARYLALCANOIC ACIDS
JP3864657B2 (en) Process for producing aromatic acrylonitrile
GB2065118A (en) 2-(2&#39;,2&#39;-dichloro-3&#39;,3&#39;,3&#39;-trifluoropropyl)- and 2-(2&#39;,2&#39;,3&#39;-trichloro-3&#39;,3&#39;-difluoropropyl)-4-chlorocyclobutan-1-ones
JP4876560B2 (en) Method for producing 4-halogenotetrahydropyran compound
US20140081034A1 (en) 5-sec-butyl-2-(2,4-dimethyl-cyclohex-3-enyl)-5-methyl-[1,3]dioxane and process for making the same