JP2003261316A - Method of controlling reaction gas composition - Google Patents

Method of controlling reaction gas composition

Info

Publication number
JP2003261316A
JP2003261316A JP2003013124A JP2003013124A JP2003261316A JP 2003261316 A JP2003261316 A JP 2003261316A JP 2003013124 A JP2003013124 A JP 2003013124A JP 2003013124 A JP2003013124 A JP 2003013124A JP 2003261316 A JP2003261316 A JP 2003261316A
Authority
JP
Japan
Prior art keywords
gas
reaction
reactor
amount
reduction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003013124A
Other languages
Japanese (ja)
Other versions
JP4153797B2 (en
Inventor
Torakatsu Miyashita
虎勝 宮下
Yosuke Suezawa
洋介 末沢
Teruyuki Nakazawa
輝幸 中澤
Akio Nio
彰夫 仁王
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Corp
Kawasaki Heavy Industries Ltd
Original Assignee
Mitsubishi Corp
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Corp, Kawasaki Heavy Industries Ltd filed Critical Mitsubishi Corp
Priority to JP2003013124A priority Critical patent/JP4153797B2/en
Publication of JP2003261316A publication Critical patent/JP2003261316A/en
Application granted granted Critical
Publication of JP4153797B2 publication Critical patent/JP4153797B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of controlling a reaction gas composition in a 1st reaction furnace in a method of manufacturing iron carbide by performing partial reduction in a 1st reaction operation and performing remaining reduction and carbonization in a 2nd reaction operation. <P>SOLUTION: A part of the reduction reaction of an iron-containing raw material is carried out in the 1st reaction furnace 19 and the remaining reduction and the carbonization reaction is carried out in the 2nd reaction furnace 39. The reaction gas composition in the 1st reaction furnace 19 is controlled by adjusting the flow rate of the reaction gas discharged out of the reaction line through a pipe line 25 from the 1st reaction furnace. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、反応ガス組成の制
御方法に関し、特に、製鉄・製鋼用の原料として好適で
ある鉄カーバイドの製造における反応ガス組成の制御方
法に関する。 【0002】 【従来の技術および発明が解決しようとする課題】一般
的に鋼の製造は、高炉により鉄鉱石を銑鉄に転化し、そ
の後、平炉又は転炉などにより銑鉄を鋼に転化する工程
からなっているが、このような伝統的な製法は、必要な
エネルギー、設備規模、およびコスト等が大きなものに
なるため、小規模の製鋼には、直接製鋼により鉄鉱石を
製鋼炉原料に転化し、この製鋼炉原料を電気炉等により
鋼に転化する工程からなる方法が採用されている。かか
る直接製鋼には、鉄鉱石を還元鉄に転化する直接還元法
があるが、この方法で製造される還元鉄は反応活性が強
く、大気中の酸素と反応して発熱するため、輸送、貯蔵
には不活性ガスによるシール等の手当が必要となる。こ
のため、反応活性が低く、容易に輸送、貯蔵が可能で、
比較的高パーセンテージの鉄を含有する鉄カーバイド
が、近年、電気炉等による製鋼原料として使用されつつ
ある。 【0003】さらに、鉄カーバイドを主成分とする鉄鋼
原料は、輸送貯蔵が容易であるばかりでなく、鉄と化合
している炭素が製鉄あるいは製鋼炉の燃料源となる他、
製鋼炉内では反応を促進する微細な気泡の発生源となる
利点もある。このようなことから、近年鉄カーバイドを
主成分とする製鉄、製鋼用原料は特に注目されている。 【0004】かかる鉄カーバイドを製造する従来の方法
は、鉄鉱石を粉体にして流動層式反応器に充填し、還元
ガス(水素ガス)と炭化ガス(例えば、メタンガスな
ど)の混合ガスと所定温度で反応させることで、鉄鉱石
内の鉄酸化物(ヘマタイト(Fe23)、マグネタイト
(Fe34)、ウスタイト(FeO)など)を単一操作
(一つの反応器内に還元および炭化ガスを同時に導入し
て行う操作をいう)で還元および炭化させるものであ
る。この種の先行技術としては、特表平6−50198
3号公報に記載のものがある。 【0005】還元と炭化を単一操作で行う方法は、シス
テム的に単純であるという利点はあるが、還元反応また
は炭化反応のそれぞれに最適になるように反応ガス組成
や反応温度を個別にフレキシブルに設定することはでき
ないため、効率的に反応を進めることができない。そこ
で、本出願人は、第一反応操作において使用するガスを
還元反応のみに最適な組成に、また第二反応操作におい
て使用するガスを残りの還元反応と炭化反応に最適な組
成にすることができるように、「製鉄用含鉄原料の還元
反応の一部を行う第一反応操作の後に、残りの還元反応
と炭化反応を行う第二反応操作を進めることを特徴とす
る鉄カーバイドの製造方法および製造装置」に関する発
明について特許出願をした(特願平8−30985
号)。この発明によれば、単一操作で鉄カーバイドを製
造する従来の方法では不可能な、各操作ごとの各種対応
がとれ、プロセスとしてフレキシブルになるので、反応
時間の短縮を図るとともに還元および炭化ガスの流量を
大幅に低減しうる等の利点がある。 【0006】このように反応を2段階に分けて行う方法
には多くの利点があるが、第一反応操作後の反応の進行
程度を制御しなければ、効率的に反応を進めることがで
きないことがある。すなわち、第一反応操作における還
元率が低すぎるか、またはその還元率が高すぎると、反
応操作時間が長くなるという不都合がある。 【0007】例えば、この種の反応ガスの調整方法とし
て、特開昭56−98412号公報には、図6に示すよ
うに、「還元反応塔71内に、供給口72から鉄鉱石を
導入し、供給口73から炭材を導入し、燃焼反応塔74
内で、供給口75から導入した炭材とノズル76から供
給した酸素を含むガスにより熱媒体粒子を生成し、供給
口77から供給する循環ガスによりこの熱媒体粒子を流
動化し、その熱媒体粒子を連絡管78を経て還元反応塔
71に移動させ、還元反応塔71内において供給口79
から供給される循環ガスにより鉄鉱石と熱媒体粒子を流
動化させ、一定時間の反応を終えて生成する還元鉄粒子
を下部の排出口80より排出させ、熱媒体粒子を連絡管
81とサイクロン82を経て燃焼反応塔74内に戻し、
燃焼反応器74内にノズル83から導入するスチームの
量を調整することにより循環ガス中のH2 とCOの比率
を変更することを特徴とする循環ガス組成の調節方法」
が記載されている。この公報に記載されたものは、一見
すると、2つの反応炉からなるが、反応炉は実質的に1
基(還元反応塔71のみ)であり、還元反応の促進だけ
を考慮すればよい。 【0008】これに比して本願発明は還元反応と炭化反
応の2つの反応を2段階操作で行う場合において、第一
反応操作で部分的に還元し、第二反応操作で残りの還元
と炭化を行って目標とする組成の鉄カーバイドを得る方
法における第一反応炉の反応ガス組成の制御方法を提供
することを目的としている。 【0009】 【課題を解決するための手段】上記目的を達成するため
に本発明の要旨は、第一反応炉におけるガス成分を当該
反応に必要なガスと反応によって生成されるガスと不純
物ガスに分けた場合、その反応炉の入口および出口のガ
ス組成から得られるガス密度を一定にして反応炉の入口
および出口の不純物ガス比率をそれぞれAおよびA´と
し、系外から当該反応炉に補給される補給ガス中の不純
物ガス比率Bと反応で消費されるガス量Cに基づいてそ
の反応炉に混入する不純物ガス量Dを求め、不純物ガス
量Dを不純物ガス比率A´で除することによって得られ
るものを系外に排出するブリードガス量Eとし、その反
応炉を経由する反応ループを循環するガス量を循環ガス
量Fとした場合、FとEの比率を一定に保つように補給
ガスをその反応炉に供給することによって第一反応炉の
反応ガス組成を制御し、もって、第一反応炉において所
定の反応ガス組成の下で所定の還元率まで還元する。そ
の後に第二反応炉において、残りの還元と炭化を行って
目標とする炭化率の鉄カーバイドを製造する。 【0010】 【発明の実施の形態】すなわち、本発明は、含鉄原料の
還元反応の一部を行う第一反応操作の後に、残りの還元
反応と炭化反応を行う第二反応操作を進める鉄カーバイ
ドの製造における第一反応操作を行う第一反応炉の入口
および出口のガス密度を一定にすることによって反応ガ
ス組成を制御する方法であって、第一反応炉におけるガ
ス成分を当該反応に必要なガスと反応によって生成され
るガスと不純物ガスに分けた場合、その反応炉の入口お
よび出口のガス組成から得られるガス密度を一定にして
反応炉の入口および出口の不純物ガス比率をそれぞれA
およびA´とし、系外から当該反応炉に補給される補給
ガス中の不純物ガス比率Bと反応で消費されるガス量C
に基づいてその反応炉に混入する不純物ガス量Dを求
め、不純物ガス量Dを不純物ガス比率A´で除すること
によって得られるものを系外に排出するブリードガス量
Eとし、その反応炉を経由する反応ループを循環するガ
ス量を循環ガス量Fとした場合、FとEの比率を一定に
保つように補給ガスをその反応炉に供給することを特徴
としている。 【0011】上記のように構成される本発明によれば、
第一反応炉におけるガス成分を当該反応に必要なガスと
反応によって生成されるガスと不純物ガスに分けた場
合、その反応炉の入口および出口のガス組成から得られ
るガス密度を一定にして反応炉の入口および出口の不純
物ガス比率をそれぞれAおよびA´とし、系外から当該
反応炉に補給される補給ガス中の不純物ガス比率Bと反
応で消費されるガス量Cに基づいてその反応炉に混入す
る不純物ガス量Dを求め、不純物ガス量Dを不純物ガス
比率A´で除することによって得られるものを系外に排
出するブリードガス量Eとし、その反応炉を経由する反
応ループを循環するガス量を循環ガス量Fとした場合、
FとEの比率を一定に保つように補給ガスをその反応炉
に供給することにより、第一反応操作に不要なガス成分
が反応系内に蓄積されるのを防止し、第一反応炉の反応
ガス組成を一定に保って、一定の反応時間の後に所定の
還元率まで還元することができる。 【0012】また、反応系内に補給するガス中のメタン
の流量を調整することにより水素の比率を変更し、還元
反応の反応速度を制御することができる。この場合、後
記するように、循環ガス中へのメタンの蓄積を防止する
ために系外に排出する反応ガス量を増加することが必要
になる。 【0013】さらに、反応温度を変化させることによ
り、平衡ガス組成および反応速度を制御することができ
る。 【0014】後記するように、温度と圧力が一定であれ
ば、ガス密度は分子量に比例して一義的に定まるので、
ガス密度を測定することによりガス組成を知ることがで
きる。 【0015】 【実施例】以下に本発明の実施例を説明する。図1は本
発明の方法を実施するに好適である鉄カーバイドの製造
装置の概略構成図である。図1の装置は、製鉄用含鉄原
料としてヘマタイトを主に含有する鉄鉱石の部分的な還
元を行う第一反応操作部分10と、残りの還元反応と炭
化反応を行う第二反応操作部分30とから構成されてい
る。第一反応操作部分10の反応ガスの流れは、管路1
1、管路12、圧縮機13、管路14、熱交換器15、
管路16、加熱器17、管路18、流動層式反応炉(第
一反応炉)19、管路20、熱交換器15、管路21、
スクラバ22および管路23がループを構成している。
すなわち、第一反応炉19の底部ガス入口に、管路1
2、圧縮機13、管路14、熱交換器15、管路16、
加熱器17、管路18を順に経て反応ガスが供給され、
第一反応炉19の頂部出口から、管路20、熱交換器1
5、管路21、スクラバ22、管路23、管路11、管
路12を順に経て反応ガスが循環するループが形成され
ている。管路11と管路12との連結部分に連結した管
路24より循環経路に所定の組成のガスを補給し、管路
11と管路23との連結部分に連結した管路25より所
定量のガスを系外に排出するように構成されている。ス
クラバ22は、中空の本体26、ガス中に水を噴射する
管路27、および本体26内の水を排出する管路28よ
り構成され、第一反応炉19から排出されたガスを冷却
し、ガス中の水蒸気を凝縮させて除去するものである。 【0016】第二反応操作部分30の反応ガスの流れ
も、第一反応操作部分10と同様であるため、共通する
箇所に第一反応操作部分10の各番号に20を加えた番
号を付して説明を省略する。 【0017】以上のように構成される鉄カーバイドの製
造装置において、粉状にした鉄鉱石を管路50を介して
第一反応操作部分10の第一反応炉19の上部に供給す
ると、部分的に還元された鉄鉱石は第一反応炉19の下
部から管路51を経て第二反応操作部分30の流動層式
反応炉(第二反応炉)39に連続的に供給され、この第
二反応炉39内で残りの還元と炭化を行った後、鉄カー
バイド製品が管路52を経て連続的に取り出される。以
上の反応に用いる反応ガスの組成については、第一反応
操作は還元反応のみを考慮すればよいことから、水素を
主体とする還元ガスにより行い、第二反応操作は還元反
応及び炭化反応を考慮しなければならないので、水素と
メタンを主体とする混合ガスで行う。 【0018】ところで、第一反応操作の基本である還元
反応は以下の式で表され、第二反応操作の基本である
残りの還元と炭化反応は以下の式で表される。 【0019】 3Fe23+5H2 →6FeO2/3+5H2O ・・・ 6FeO2/3 +2CH4→2Fe3C +4H2O ・・・ 式に示すように、固形分を無視すれば、第一反応操作
において、第一反応炉に供給された5モルの水素
(H2 )は5モルの水蒸気(H2O) になり、反応前後
でガスの容積は変わらない。例えば、第一反応炉へ供給
された反応ガスの組成(入口)と、第一反応炉から排出
されるガスの組成(出口)の一例を示せば、以下の表1
に示すとおりである。ガス密度(ρ)は、次式に示す
ように、温度(T°K)と圧力(Patm) が一定であれ
ば、分子量(M)に比例する。 【0020】 ρ=(M/22.414)×(Patm/1atm)×(273/273+T) 【0021】 【表1】 【0022】表1に明らかなように、第一反応炉の入出
のガス組成には、CH4 を初めとする不純物が相当量含
まれている。元来、第一反応操作は還元反応のみを行う
のであるから、CH4 は不要な元素であり、H2を主と
して含むガス(H2≧90%)が供給されている。しか
し、補給ガスに同伴されるか、あるいは原料鉄鉱石とと
もにCH4 等の不純物が第一反応炉の循環ガス中に混入
し、時間経過とともに不純物の量も増加する。この循環
ガス中への不純物の蓄積を極力減らすためには、第一反
応炉から排出されるガスをすべて系外に排出すれば、循
環ガスへの不純物の混入を最小限に抑えることができ
る。しかし、これではガスの消費量が膨大なものにな
り、運転コストが極めて大きくなるので、実操業におい
ては経済性を考慮して、反応系外へ排出されるガスの量
は循環ガス量の5%程度以下にして、ガスバランスが保
たれている。そこで、表1記載のように、第一反応炉入
口のガス密度(平均分子量)を6.26とし、第一反応
炉出口のガス密度(平均分子量)を8.34とするため
に、ブリードガス量(図1の管路25から系外に除去す
るガス量)を循環ガス量に対してどの程度の数値にすべ
きかを試算してみる。 (循環ガス量の計算)表1に示すように、第一反応炉に
おける反応の結果、H2 は13容積%減少しており、逆
にH2Oは13容積%増加している。上記式に示すよ
うに、H2は5モル消費されるので、5モルが13容積
%に相当する。従って、第一反応操作部分の循環ループ
を循環しているガス量は、5/0.13=38.5モル
になる。 (ブリードガス量の計算)いま、簡単のために系外から
補給されるガスの95%はH2であり、CH4等の不純物
は5%であるとすると、反応に供されるH2 は5モルで
あるから、反応系内に混入する不純物のモル数は、5×
0.05/0.95=0.26モルになる。表1より、
第一反応炉における不純物量(CH4、CO、CO2、N
2) は25容積%であるから、0.26×1/0.25
=1.04モルのガスを系外に除去すれば、循環ガス中
への不純物の蓄積を防止できる。すなわち、循環ガス量
38.5モルに対して1.04モルのガスをブリードす
れば(1.04/38.5=0.027)、現状のガス
組成を維持することができる。 【0023】もし、ブリードガス量が循環ガス量の2.
7%より少なければ、不純物が循環ガス中に蓄積するの
で、入口のガス密度は表1の値より大きくなる。 【0024】一方、ブリードガス量が循環ガス量の2.
7%より多ければ、循環ガス中に蓄積している不純物が
どんどん系外に除去されるので、入口のガス密度は表1
の値より小さくなる。 【0025】このように、ブリードガス量を調整するこ
とにより、第一反応炉の入口と出口のガス密度差または
ガス密度比を変化させることができる。ブリードガス量
と循環ガス中のH2とCH4の比率との関係の具体的な一
例を図2に示す。図2は第一反応炉の反応温度が590
℃で、炉内圧力が4気圧で、補給ガス量が30000N
3/hr の場合の例であり、ブリードガス量が増える
ほどメタン量は減少しており、逆にH2 は増加してい
る。 【0026】第一反応炉のガス組成を変化させる方法と
しては、図3に示すように、系内への補給ガスに添加す
るガス(CO2+CH4)の量を調整する方法がある。図
3は第一反応炉の反応温度が590℃で、炉内圧力が4
気圧で、補給ガス量が30000Nm3/hrで、ブリ
ードガス量が300Nm3/hrの場合の例である。図
3に示すように、(CO2+CH4)量が50Nm3/h
r 以上になると、循環ガス中のCH4 が平衡濃度に達
し、それ以上には増加しない。 【0027】さらに、図4に示すように、反応温度を変
化させることによって、平衡ガス組成および還元反応の
反応速度を制御することができる。 【0028】以上のようにして反応ガス組成を制御する
ことができるが、ガス密度(分子量)を測定するための
ガスサンプリングシステムの一例を図5に示す。図5に
おいて、61は入口ガスライン、62は出口ガスライン
である。63はガス中の水分を除去するための冷却器、
64はガス密度計、65は湿度計、66はフィルター、
67はガスクロマトグラフ又は質量分析計である。な
お、点線部分は水分の凝縮を防ぐために保温されてい
る。 【0029】 【発明の効果】本発明は上記のとおり構成されているの
で、還元反応と炭化反応の2つの反応を2段階操作で行
う場合において、第一反応操作で所定の還元率まで還元
し、第二反応操作で残りの還元と炭化を行って目標とす
る組成の鉄カーバイドを効率的に得ることができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling a reaction gas composition, and more particularly, to a method for controlling a reaction gas composition in the production of iron carbide, which is suitable as a raw material for steelmaking and steelmaking. It relates to a control method. 2. Description of the Related Art Generally, steel production is performed by converting iron ore into pig iron using a blast furnace and then converting pig iron into steel using a flat furnace or a converter. However, such a traditional manufacturing method requires large amounts of energy, equipment scale, and cost.Therefore, for small-scale steelmaking, iron ore is directly converted into steelmaking furnace raw material by steelmaking. A method of converting the raw material of the steelmaking furnace into steel by an electric furnace or the like is employed. In such direct steelmaking, there is a direct reduction method for converting iron ore to reduced iron, but the reduced iron produced by this method has a strong reaction activity and generates heat by reacting with oxygen in the atmosphere, so that it is transported and stored. Requires a treatment such as sealing with an inert gas. For this reason, the reaction activity is low, it can be easily transported and stored,
Iron carbide containing a relatively high percentage of iron has recently been used as a raw material for steelmaking by electric furnaces and the like. [0003] Further, steel raw materials containing iron carbide as a main component are not only easy to transport and store, but also carbon combined with iron serves as a fuel source for iron making or steel making furnaces.
In a steelmaking furnace, there is also an advantage that it is a source of fine bubbles that promote the reaction. For these reasons, in recent years, raw materials for steelmaking and steelmaking mainly composed of iron carbide have attracted particular attention. [0004] In the conventional method of producing such iron carbide, a powder of iron ore is charged into a fluidized-bed reactor, and a mixed gas of a reducing gas (hydrogen gas) and a carbon gas (for example, methane gas) is mixed with a predetermined gas. By reacting at a temperature, iron oxides (such as hematite (Fe 2 O 3 ), magnetite (Fe 3 O 4 ), wustite (FeO)) in iron ore can be reduced to a single operation (reduction and addition in one reactor). (Referring to an operation performed by simultaneously introducing a carbonized gas). As this kind of prior art, Japanese Patent Application Laid-Open No. 6-50198 is disclosed.
There is one described in Japanese Patent Publication No. Although the method of performing reduction and carbonization in a single operation has the advantage of system simplicity, the reaction gas composition and reaction temperature are individually flexible so as to be optimal for each of the reduction reaction and carbonization reaction. , The reaction cannot proceed efficiently. Therefore, the present applicant has set the gas used in the first reaction operation to have an optimum composition only for the reduction reaction, and the gas used in the second reaction operation to have the optimum composition for the remaining reduction reaction and carbonization reaction. As possible, `` after the first reaction operation to perform a part of the reduction reaction of the iron-containing raw material for iron production, the method for producing iron carbide characterized by proceeding a second reaction operation to perform the remaining reduction reaction and carbonization reaction and Filed a patent application for the invention relating to "manufacturing equipment" (Japanese Patent Application No. 8-30985).
issue). According to the present invention, various operations can be taken for each operation, which is impossible with the conventional method of manufacturing iron carbide in a single operation, and the process becomes flexible. There is an advantage that the flow rate of the gas can be greatly reduced. Although the method of performing the reaction in two stages as described above has many advantages, the reaction cannot be efficiently advanced unless the degree of progress of the reaction after the first reaction operation is controlled. There is. That is, if the reduction ratio in the first reaction operation is too low or the reduction ratio is too high, there is a disadvantage that the reaction operation time becomes long. [0007] For example, Japanese Patent Application Laid-Open No. Sho 56-98412 discloses a method for adjusting a reaction gas of this kind, as shown in FIG. , The carbon material is introduced from the supply port 73 and the combustion reaction
Inside, the heat medium particles are generated by the carbon material introduced from the supply port 75 and the gas containing oxygen supplied from the nozzle 76, and the heat medium particles are fluidized by the circulating gas supplied from the supply port 77. Is moved to the reduction reaction tower 71 via the connecting pipe 78, and the supply port 79 is provided in the reduction reaction tower 71.
The iron ore and the heat medium particles are fluidized by the circulating gas supplied from the furnace, the reduced iron particles generated after the reaction for a certain period of time are discharged from the lower outlet 80, and the heat medium particles are communicated with the connecting pipe 81 and the cyclone 82. And returned into the combustion reaction tower 74,
Adjusting the amount of steam introduced from the nozzle 83 into the combustion reactor 74 to change the ratio of H 2 to CO in the circulating gas.
Is described. At first glance, the publication described in this publication consists of two reactors.
Group (only the reduction reaction tower 71), and only promotion of the reduction reaction may be considered. In contrast, in the present invention, when two reactions, a reduction reaction and a carbonization reaction, are performed in a two-step operation, the reduction and the carbonization are partially performed in the first reaction operation and the remaining reduction and carbonization are performed in the second reaction operation. To provide a method of controlling the reaction gas composition of the first reactor in a method of obtaining iron carbide having a target composition by performing the above. In order to achieve the above object, the gist of the present invention is to convert gas components in a first reactor into a gas necessary for the reaction, a gas generated by the reaction, and an impurity gas. When divided, the gas density obtained from the gas composition at the inlet and the outlet of the reactor is kept constant, and the impurity gas ratio at the inlet and the outlet of the reactor is A and A ', respectively. The impurity gas amount D to be mixed into the reactor is obtained based on the impurity gas ratio B in the supply gas and the gas amount C consumed in the reaction, and the impurity gas amount D is obtained by dividing the impurity gas amount D by the impurity gas ratio A ′. The amount of bleed gas discharged to the outside of the system is referred to as E, and the amount of gas circulating in the reaction loop passing through the reactor is referred to as the circulating gas amount F. And controlling the reaction gas composition in the first reactor by feeding to the reactor, with it, reducing to a predetermined reduction ratio under a predetermined reaction gas composition in the first reactor. Thereafter, in the second reactor, the remaining reduction and carbonization are performed to produce iron carbide having a target carbonization ratio. [0010] That is, the present invention provides an iron carbide in which a first reaction operation for partially performing a reduction reaction of an iron-containing raw material is followed by a second reaction operation for performing the remaining reduction reaction and carbonization reaction. A method for controlling the reaction gas composition by making the gas density at the inlet and outlet of the first reactor performing the first reaction operation in the production of the first reactor, gas components in the first reactor required for the reaction When the gas and the gas generated by the reaction are divided into impurity gases, the gas density obtained from the gas composition at the inlet and the outlet of the reactor is kept constant, and the impurity gas ratio at the inlet and the outlet of the reactor is A, respectively.
And A ′, the ratio B of the impurity gas in the replenishment gas supplied to the reactor from outside the system and the gas amount C consumed in the reaction
The amount of impurity gas D to be mixed into the reaction furnace is obtained based on the above formula, and the amount obtained by dividing the amount of impurity gas D by the ratio of impurity gas A ′ is referred to as the amount of bleed gas E discharged to the outside of the system. When the amount of gas circulating in the passing reaction loop is the circulating gas amount F, a supply gas is supplied to the reaction furnace so that the ratio of F to E is kept constant. According to the present invention configured as described above,
When the gas components in the first reactor are divided into a gas necessary for the reaction, a gas generated by the reaction, and an impurity gas, the gas density obtained from the gas composition at the inlet and the outlet of the reactor is kept constant, and the The impurity gas ratios at the inlet and the outlet of the reactor are A and A ', respectively. Based on the impurity gas ratio B in the supply gas supplied to the reactor from outside the system and the gas amount C consumed in the reaction, the reactor is The amount D of the impurity gas to be mixed is determined, and the amount obtained by dividing the amount D of the impurity gas by the ratio A ′ of the impurity gas is defined as the amount of bleed gas E discharged to the outside of the system, and circulates through a reaction loop passing through the reactor. When the gas amount is the circulation gas amount F,
By supplying a make-up gas to the reactor so as to keep the ratio of F and E constant, unnecessary gas components for the first reaction operation are prevented from accumulating in the reaction system, and The reaction gas composition can be kept constant and can be reduced to a predetermined reduction ratio after a certain reaction time. Further, the rate of hydrogen can be changed by adjusting the flow rate of methane in the gas supplied to the reaction system, thereby controlling the reaction rate of the reduction reaction. In this case, as described later, it is necessary to increase the amount of the reaction gas discharged out of the system in order to prevent the accumulation of methane in the circulating gas. Further, by changing the reaction temperature, the equilibrium gas composition and the reaction rate can be controlled. As described later, if the temperature and the pressure are constant, the gas density is uniquely determined in proportion to the molecular weight.
The gas composition can be known by measuring the gas density. Embodiments of the present invention will be described below. FIG. 1 is a schematic configuration diagram of an iron carbide manufacturing apparatus suitable for carrying out the method of the present invention. The apparatus of FIG. 1 includes a first reaction operation section 10 for partially reducing iron ore mainly containing hematite as an iron-containing raw material for iron production, and a second reaction operation section 30 for performing the remaining reduction reaction and carbonization reaction. It is composed of The flow of the reaction gas in the first reaction operation section 10 is
1, pipe 12, compressor 13, pipe 14, heat exchanger 15,
Pipe 16, heater 17, pipe 18, fluidized bed reactor (first reactor) 19, pipe 20, heat exchanger 15, pipe 21,
The scrubber 22 and the conduit 23 form a loop.
That is, the pipe 1 is connected to the bottom gas inlet of the first reactor 19.
2, compressor 13, pipe 14, heat exchanger 15, pipe 16,
A reaction gas is supplied through a heater 17 and a pipe 18 in order,
From the top outlet of the first reactor 19, a pipe 20, a heat exchanger 1
5, a loop is formed in which the reaction gas circulates sequentially through the pipe 21, the scrubber 22, the pipe 23, the pipe 11, and the pipe 12. A gas having a predetermined composition is supplied to the circulation path from a pipe 24 connected to a connection section between the pipes 11 and 12, and a predetermined amount is supplied from a pipe 25 connected to a connection section between the pipe 11 and the pipe 23. Is discharged outside the system. The scrubber 22 includes a hollow main body 26, a pipe 27 that injects water into the gas, and a pipe 28 that discharges water in the main body 26, and cools the gas discharged from the first reactor 19, It condenses and removes water vapor in the gas. Since the flow of the reaction gas in the second reaction operation part 30 is the same as that in the first reaction operation part 10, the common parts are numbered by adding 20 to each number of the first reaction operation part 10. The description is omitted. In the iron carbide manufacturing apparatus configured as described above, when powdered iron ore is supplied to the upper part of the first reaction furnace 19 of the first reaction operation section 10 through the pipe 50, The iron ore reduced to is continuously supplied from the lower part of the first reactor 19 to the fluidized bed reactor (second reactor) 39 of the second reaction operation part 30 via the pipe line 51, and this second reaction After the rest of the reduction and carbonization in the furnace 39, the iron carbide product is continuously removed via line 52. Regarding the composition of the reaction gas used in the above reaction, since only the reduction reaction needs to be considered in the first reaction operation, the first reaction operation is performed using a reducing gas mainly composed of hydrogen, and the second reaction operation considers the reduction reaction and the carbonization reaction. Therefore, a mixed gas mainly composed of hydrogen and methane is used. The reduction reaction which is the basis of the first reaction operation is represented by the following equation, and the remaining reduction and carbonization reaction which is the basis of the second reaction operation is represented by the following equation. 3Fe 2 O 3 + 5H 2 → 6FeO 2/3 + 5H 2 O 6FeO 2/3 + 2CH 4 → 2Fe 3 C + 4H 2 O As shown in the formula, if the solid content is neglected, In one reaction operation, 5 moles of hydrogen (H 2 ) supplied to the first reactor becomes 5 moles of steam (H 2 O), and the gas volume does not change before and after the reaction. For example, the following Table 1 shows an example of the composition (inlet) of the reaction gas supplied to the first reactor and the composition (outlet) of the gas discharged from the first reactor.
As shown in FIG. The gas density (ρ) is proportional to the molecular weight (M) if the temperature (T ° K) and the pressure (Patm) are constant, as shown in the following equation. Ρ = (M / 22.414) × (Patm / 1atm) × (273/273 + T) As apparent from Table 1, the gas composition at the inlet and outlet of the first reactor contains a considerable amount of impurities such as CH 4 . Originally, since the first reaction process is performed only reduction reaction, CH 4 is unnecessary elements, mainly including gas H 2 (H 2 ≧ 90% ) is supplied. However, impurities such as CH 4 are entrained in the circulating gas of the first reactor together with the supplementary gas or mixed with the raw iron ore, and the amount of the impurities increases with time. In order to reduce the accumulation of impurities in the circulating gas as much as possible, if all the gas discharged from the first reactor is discharged out of the system, the contamination of the circulating gas with the impurities can be minimized. However, in this case, the gas consumption becomes enormous and the operating cost becomes extremely large. Therefore, in actual operation, the amount of gas discharged to the outside of the reaction system is reduced to 5% of the circulating gas amount in consideration of economy. % Or less, the gas balance is maintained. Therefore, as shown in Table 1, the bleed gas was set so that the gas density (average molecular weight) at the inlet of the first reactor was 6.26 and the gas density (average molecular weight) at the outlet of the first reactor was 8.34. A trial calculation is made to determine how much the amount (the amount of gas to be removed from the system from the pipe 25 in FIG. 1) should be set to the circulating gas amount. (Calculation of Circulating Gas Amount) As shown in Table 1, as a result of the reaction in the first reactor, H 2 has decreased by 13% by volume and H 2 O has increased by 13% by volume. As shown in the above formula, 5 moles of H 2 are consumed, so 5 moles corresponds to 13% by volume. Therefore, the amount of gas circulating in the circulation loop of the first reaction operation part is 5 / 0.13 = 38.5 mol. (Bleed gas amount calculation) Now, 95% of the gas supplied from outside the system for the sake of simplicity is H 2, when the impurities such as CH 4 is 5%, H 2 to be used in the reaction are Since it is 5 moles, the number of moles of impurities mixed in the reaction system is 5 ×
0.05 / 0.95 = 0.26 mol. From Table 1,
The amount of impurities in the first reactor (CH 4 , CO, CO 2 , N
2 ) is 25% by volume, so 0.26 × 1 / 0.25
If 1.04 mol of gas is removed from the system, accumulation of impurities in the circulating gas can be prevented. That is, if 1.04 mol of gas is bleed with respect to 38.5 mol of circulating gas (1.04 / 38.5 = 0.027), the current gas composition can be maintained. If the bleed gas amount is 2.
If less than 7%, impurities accumulate in the circulating gas and the gas density at the inlet will be greater than the values in Table 1. On the other hand, the amount of bleed gas is 2.
If it is more than 7%, impurities accumulated in the circulating gas will be removed more and more out of the system.
Becomes smaller than the value of. As described above, by adjusting the bleed gas amount, it is possible to change the gas density difference or the gas density ratio between the inlet and the outlet of the first reactor. FIG. 2 shows a specific example of the relationship between the bleed gas amount and the ratio of H 2 and CH 4 in the circulating gas. FIG. 2 shows that the reaction temperature of the first reactor is 590.
℃, furnace pressure is 4 atm, replenishment gas amount is 30000N
This is an example in the case of m 3 / hr, and the methane amount decreases as the bleed gas amount increases, and H 2 increases on the contrary. As a method of changing the gas composition of the first reactor, there is a method of adjusting the amount of gas (CO 2 + CH 4 ) to be added to the supply gas into the system as shown in FIG. FIG. 3 shows that the reaction temperature of the first reactor was 590 ° C.
In pressure, in amounts up gas is 30000 nM 3 / hr, bleed gas weight is an example of the case of 300 Nm 3 / hr. As shown in FIG. 3, the amount of (CO 2 + CH 4 ) is 50 Nm 3 / h
Above r, the CH 4 in the circulating gas reaches the equilibrium concentration and does not increase further. Further, as shown in FIG. 4, by changing the reaction temperature, the equilibrium gas composition and the reaction rate of the reduction reaction can be controlled. The reaction gas composition can be controlled as described above. FIG. 5 shows an example of a gas sampling system for measuring the gas density (molecular weight). In FIG. 5, reference numeral 61 denotes an inlet gas line, and 62 denotes an outlet gas line. 63 is a cooler for removing moisture in the gas,
64 is a gas density meter, 65 is a hygrometer, 66 is a filter,
67 is a gas chromatograph or mass spectrometer. The dotted line portion is kept warm to prevent condensation of water. Since the present invention is configured as described above, in the case where the two reactions of the reduction reaction and the carbonization reaction are performed in a two-stage operation, the reduction is performed to a predetermined reduction rate in the first reaction operation. The remaining reduction and carbonization can be performed in the second reaction operation to efficiently obtain iron carbide having a target composition.

【図面の簡単な説明】 【図1】本発明の方法を実施するに好適な鉄カーバイド
の製造装置の一例を示す概略構成図である。 【図2】ブリードガス量に対する循環ガス中のH2とC
4の比率との関係を示す図である。 【図3】循環ガス中へのCO2とCH4の添加量に対する
循環ガス中のH2およびCH4の比率との関係を示す図で
ある。 【図4】反応温度と還元時間との関係を示す図である。 【図5】ガスサンプリングシステムの一例を示す概略構
成図である。 【図6】従来の流動化還元炉の概略構成を示す図であ
る。 【符号の説明】 10…第一反応操作部分 19…第一反応炉 30…第二反応操作部分 39…第二反応炉
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic configuration diagram showing an example of an iron carbide manufacturing apparatus suitable for carrying out the method of the present invention. FIG. 2 H 2 and C in circulating gas against bleed gas amount
Is a diagram showing the relationship between the ratio of H 4. FIG. 3 is a graph showing the relationship between the amount of CO 2 and CH 4 added to the circulating gas and the ratio of H 2 and CH 4 in the circulating gas. FIG. 4 is a diagram showing a relationship between a reaction temperature and a reduction time. FIG. 5 is a schematic configuration diagram illustrating an example of a gas sampling system. FIG. 6 is a diagram showing a schematic configuration of a conventional fluidizing reduction furnace. [Description of Signs] 10 ... first reaction operation part 19 ... first reaction furnace 30 ... second reaction operation part 39 ... second reaction furnace

───────────────────────────────────────────────────── フロントページの続き (72)発明者 末沢 洋介 兵庫県神戸市中央区東川崎町3丁目1番1 号 川崎重工業株式会社神戸工場内 (72)発明者 中澤 輝幸 東京都千代田区丸の内2丁目6番3号 三 菱商事株式会社内 (72)発明者 仁王 彰夫 東京都千代田区丸の内2丁目6番3号 三 菱商事株式会社内 Fターム(参考) 4G146 MA12 MB25 NA05 NB07 NB14 NB20 4K012 DF01 DF05 DF09    ────────────────────────────────────────────────── ─── Continuation of front page    (72) Inventor Yosuke Suezawa             3-1-1 Higashikawasaki-cho, Chuo-ku, Kobe City, Hyogo Prefecture             No.Kawasaki Heavy Industries, Ltd.Kobe Factory (72) Inventor Teruyuki Nakazawa             2-6-3 Marunouchi, Chiyoda-ku, Tokyo 3             Ryosho Corporation (72) Inventor Akio Nioh             2-6-3 Marunouchi, Chiyoda-ku, Tokyo 3             Ryosho Corporation F term (reference) 4G146 MA12 MB25 NA05 NB07 NB14                       NB20                 4K012 DF01 DF05 DF09

Claims (1)

【特許請求の範囲】 【請求項1】 含鉄原料の還元反応の一部を行う第一反
応操作の後に、残りの還元反応と炭化反応を行う第二反
応操作を進める鉄カーバイドの製造における第一反応操
作を行う第一反応炉の入口および出口のガス密度を一定
にすることによって反応ガス組成を制御する方法であっ
て、第一反応炉におけるガス成分を当該反応に必要なガ
スと反応によって生成されるガスと不純物ガスに分けた
場合、その反応炉の入口および出口のガス組成から得ら
れるガス密度を一定にして反応炉の入口および出口の不
純物ガス比率をそれぞれAおよびA´とし、系外から当
該反応炉に補給される補給ガス中の不純物ガス比率Bと
反応で消費されるガス量Cに基づいてその反応炉に混入
する不純物ガス量Dを求め、不純物ガス量Dを不純物ガ
ス比率A´で除することによって得られるものを系外に
排出するブリードガス量Eとし、その反応炉を経由する
反応ループを循環するガス量を循環ガス量Fとした場
合、FとEの比率を一定に保つように補給ガスをその反
応炉に供給することによって第一反応炉の反応ガス組成
を制御する方法。
Claims: 1. A first reaction in the production of iron carbide in which a first reaction operation for performing a part of a reduction reaction of an iron-containing raw material is followed by a second reaction operation for performing a remaining reduction reaction and a carbonization reaction. A method for controlling a reaction gas composition by keeping a gas density at an inlet and an outlet of a first reactor for performing a reaction operation, wherein a gas component in the first reactor is generated by a reaction with a gas necessary for the reaction. Gas and impurity gas, the gas density obtained from the gas composition at the inlet and outlet of the reactor is kept constant, and the impurity gas ratio at the inlet and outlet of the reactor is A and A ', respectively. From the amount of impurity gas B in the supply gas supplied to the reaction furnace and the amount C of gas consumed in the reaction, the amount D of impurity gas mixed into the reaction furnace is determined. When the amount obtained by dividing by the gas ratio A ′ is the bleed gas amount E discharged to the outside of the system, and the amount of gas circulating in the reaction loop passing through the reaction furnace is the circulating gas amount F, A method for controlling the reaction gas composition of a first reactor by supplying a make-up gas to the reactor so as to keep the ratio constant.
JP2003013124A 2003-01-22 2003-01-22 Method for preventing accumulation of impurity gas components in circulating gas Expired - Fee Related JP4153797B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003013124A JP4153797B2 (en) 2003-01-22 2003-01-22 Method for preventing accumulation of impurity gas components in circulating gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003013124A JP4153797B2 (en) 2003-01-22 2003-01-22 Method for preventing accumulation of impurity gas components in circulating gas

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP9334224A Division JPH11171526A (en) 1997-12-04 1997-12-04 Control method of reaction gas composition

Publications (2)

Publication Number Publication Date
JP2003261316A true JP2003261316A (en) 2003-09-16
JP4153797B2 JP4153797B2 (en) 2008-09-24

Family

ID=28672830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003013124A Expired - Fee Related JP4153797B2 (en) 2003-01-22 2003-01-22 Method for preventing accumulation of impurity gas components in circulating gas

Country Status (1)

Country Link
JP (1) JP4153797B2 (en)

Also Published As

Publication number Publication date
JP4153797B2 (en) 2008-09-24

Similar Documents

Publication Publication Date Title
JP2727436B2 (en) Method and apparatus for manufacturing iron carbide
CN103597099B (en) Use the system and method that iron oxide reduction is metallic iron by coke(oven)gas and oxygen steelmaking furnace gas
US5603748A (en) Process and apparatus for a direct reduction of iron oxide containing materials to form Fe3 C
US5618032A (en) Shaft furnace for production of iron carbide
RU2006119217A (en) INSTALLATION FOR MANUFACTURING LIQUID IRON, DIRECTLY USING SMALL OR LUMBER COAL AND DUSTY IRON ORE, METHOD FOR MANUFACTURING IT, COMPLETE STEEL WORK, USE THE OPERATION
US5613997A (en) Metallurgical process
CN114729409B (en) Method for direct reduction of iron ore
GB2065709A (en) Gaseous reduction of metal ores using reducing gas produced by gasification of solid or liquid fossil fuels
JPH07150211A (en) Method and apparatus for directly reducing fine ore or concentrate
US5542963A (en) Direct iron and steelmaking
JP3157478B2 (en) Operation management method of iron anchor hydride manufacturing process
US5069716A (en) Process for the production of liquid steel from iron containing metal oxides
JP2003261316A (en) Method of controlling reaction gas composition
JP2005502790A (en) Method for reducing particulate material containing metal, especially iron ore
JPS607685B2 (en) Direct production method of crude steel
JPH11171526A (en) Control method of reaction gas composition
US4298190A (en) Apparatus for gaseous reduction of metal ores with cooling loop
JP3025253B1 (en) Manufacturing method of iron carbide
JP3279504B2 (en) Iron carbide manufacturing equipment
JP3104842B2 (en) Iron anchor hydride production equipment
JP2948771B2 (en) Manufacturing method of iron carbide
RU2190022C2 (en) Method and device for production of iron by direct reduction
WO1998030497A1 (en) Iron carbide manufacturing process and apparatus
JPH10237522A (en) Production of iron carbide
TWI599657B (en) Methods and systems for producing direct reduced iron incorporating a carbon dioxide and steam reformer fed by recovered carbon dioxide

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070410

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080325

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080430

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080617

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080704

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120711

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees